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1. About

The R package eNetXplorer is available under GPL-3 license at the CRAN repository. The package source
is located at https://CRAN.R-project.org/package=eNetXplorer.

Authors: Julidn Candia and John S. Tsang

Maintainer: Julidn Candia <julian.candia@nih.gov>

2. Installation

To install to your default directory, type
install.packages("eNetXplorer")

For more installation options, type help(install.packages).

3. eNetXplorer’s Workflow

In order to describe eNetXplorer’s workflow, this Section presents the analysis pipeline applied to synthetic
datasets; to further illustrate eNetXplorer’s features, real datasets are distributed with the package as
described in Sections below.

First, we create a function to generate data for a Gaussian (linear regression) model, which consists of:

e An input numerical matrix with n_inst instances or observations (as rows) and n_pred predictors or
features (as columns).
e An input numerical vector of length n_inst with the observed response.

For normally distributed random variables, the following data-generating function will create a set of features
correlated with the response according to any arbitrary, pre-defined population covariance matrix covmat:


https://CRAN.R-project.org/package=eNetXplorer
mailto:julian.candia@nih.gov

data_gen <- function(n_inst, covmat, seed=123) {
library (expm);
set.seed(seed)
data <- matrix(rnorm(n_inst*ncol(covmat)) ,ncol=ncol(covmat))’%*%sqrtm(covmat)
predictor=datal,-1]
rownames (predictor) = pasteO("Inst.",1:n_inst)
colnames (predictor) = pasteO("Feat.",1:(ncol(covmat)-1))
list(response=datal,1],predictor=predictor)

}

Here, we assume that the first row/column in covmat is the response, while the remaining variables correspond
to the features. In order to generate covariant matrices with interesting properties, the following function will
produce a block of features correlated with each other (where r_block is the intra-block Pearson’s correlation)
as well as correlated with the response (with correlation r_resp):

covmat_gen <- function(n_pred, block_size, r_resp, r_block) {
covmat = matrix(rep(l.e-3, (n_pred+1)*#*2),ncol=(n_pred+1))
for (i_pred in 1:block_size) {
for (j_pred in (i_pred+1):(block_size+1)) {
if (i_pred==1) {
covmat [i_pred, j_pred] = r_resp
} else {
covmat [i_pred,j_pred] = r_block

}
covmat [j_pred,i_pred] = covmat[i_pred, j_pred]
}
}
for (i_pred in 1:n_pred) {
covmat [i_pred,i_pred] = 1
}

covmat

}

Let us use these two functions to generate predictor and response inputs:

data = data_gen(n_inst=50, covmat_gen(n_pred=60, block_size=5, r_resp=0.5, r_block=0.35))

We examine the predictor correlation structure; as expected from our covmat_gen call, the block of features
1-5 is significantly intra-correlated, while the remaining features appear only weakly (and, in some cases, even
negatively) correlated.



Color Key

. S

Count

Feat.2
Feat.4
Feat.6
Feat.8
Feat.10
Feat.12
Feat.14
Feat.16
Feat.18
Feat.20
Feat.22
Feat.24
Feat.26
Feat.28
Feat.30
Feat.32
Feat.34
Feat.36
Feat.38
Feat.40
Feat.42
Feat.44
Feat.46
Feat.48
Feat.50
Feat.52
Feat.54
Feat.56
Feat.58
Feat.60

1

LT T ST ST B . N ST S N S e ST S - SR SN, SR S S ST, S -}
P B B e e B O O N AR IR B IR IR B S A Y B B BT
RN AR T B T N N~ B A O~ B B A O~ B B~ S O -~ A~
L L duuw oo oo OO OO IO DT DO DD

L I I I T I T T T T

We also examine the correlation between predictors and the response; by design, the block of features 1-5
carries the largest positive correlation with the response.
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Since the number of features is larger than the number of observations, we need to implement a regularized
regression model. But which model? We know that ridge will fit a model where all predictors (including
all the non-informative ones) will have non-zero contributions. Lasso, on the other end, will exclude most
features and provide a minimal model representation. The elastic net allows us to scan the regularization
path from ridge to lasso via the mixing parameter alpha. However, the following open questions remain:

e Which alpha represents the top-performing regularized model?

o What is the model-level statistical significance across alpha?

e What is the feature-level statistical significance of a given alpha-model?
e How does feature-level statistical significance change across alpha?



To address these questions, eNetXplorer generates an ensemble of null models (based on random permutations
of the response) on a family of regularized models from ridge to lasso. First, we load the eNetXplorer
package:

library(eNetXplorer)

Next, we run eNetXplorer on the datasets we just generated. The call to eNetXplorer with default
parameters is:

fit_def = eNetXplorer(x = data$predictor, y = data$response, family = "gaussian')

Results can be made more precise by increasing the number of cross-validation runs (n_run) and the number
of null-model response permutations per run (n_perm_null), as well as by choosing a smaller step in the
path of alpha models:

fit = eNetXplorer(x = data$predictor, y = data$response, family = "gaussian", alpha = seq(O,
1, by = 0.1), n_run = 1000, n_perm_null = 250, seed = 123)

Function summary generates a brief report on the results; for each alpha, it displays the optimal lambda
(obtained by maximizing a quality function over out-of-bag instances), the corresponding maximum value of
the quality function, and the model significance (p-value based on comparison to permutation null models).

summary (fit)

## Call:

## eNetXplorer(x = data$predictor, y = data$response, family = "gaussian",
#it alpha = seq(0, 1, by = 0.1), seed = 123, n_run = 1000, n_perm_null = 250)
##

#it alpha lambda.max QF.est model.vs.null.pval

## 0.000000 3.724056 0.2222 0.06524 .

## 0.100000 0.697820 0.3202 0.04222 *

## 0.200000 0.382928 0.3254 0.04641 =*

## 0.300000 0.293516 0.3096 0.05316 .

## 0.400000 0.200581 0.3086 0.06305 .

## 0.500000 0.168105 0.3038 0.06389 .

## 0.600000 0.140088 0.2936 0.07106 .

## 0.700000 0.125793 0.2936 0.07027 .

## 0.800000 0.115310 0.2923 0.07448 .

## 0.900000 0.097839 0.2886 0.07634 .

## 1.000000 0.092248 0.2776 0.08398 .

## ——-

## Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

A graphical display of model performance across alpha is provided by

plot(fit, plot.type="summary")
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We observe that, at p-value<0.05, the most significant models are alpha=0.1 and 0.2; in terms of performance,
the quality function (which, by default, is Pearson’s correlation) evaluated between out-of-bag predictions
and the response is maximized by the alpha=0.2 model. Let us examine this top-performing model in more
detail.

Our next question is to determine the top features that play a role in the top-performing model. Following a
similar strategy to that of alpha-model selection, statistical significance at the feature level is determined by
comparison to permutation null models; see (Candia and Tsang 2019) for technical details.

We generate a caterpillar plot of the top features based on their coefficients:

plot(fit, alpha.index = which.max(fit$model_QF_est), plot.type = "featureCaterpillar",
stat = c("coef"))
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feature coefficient

We observe that features 5, 8, and 2 are selected by the regularized model with alpha=0.2 at p-value<0.05;
features 3 and 27 are significant at p-value<0.1. Next, we aim to explore those same top features across the
entire elastic net family: Which of them would still be selected under more stringent regularization criteria?

plot(fit, alpha.index = which.max(fit$model_QF_est), plot.type = "featureHeatmap",
stat = c("coef"), notecex = 1.5)
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Here, we observe that more regularized models (alpha=0.5-0.8) favor features 5, 8 and 2 (at significance
p-value<0.1); towards lasso (alpha=0.9,1), feature 5 is the only one selected at p-value<0.05-0.1. As
expected, these models are more stringent on feature selection than less regularized (i.e. smaller alpha)
models. It is also interesting to observe that lasso-like models remove feature redundancies: from the block of
correlated features 1-5, only feature 5 is picked up as representative. This example illustrates some important
characteristics of mixed-regularization model families:

o less regularized (smaller alpha) models promote redundancy; they benefit from borrowed informa-
tion across significantly correlated predictors; they provide larger signatures, which are potentially
more robust and resilient under measurement noise; they offer more opportunities for systems-level
interpretation (e.g. downstream pathway analysis in the context of genomics).

o more regularized (larger alpha) models promote sparsity; they tend to pick just one predictor out of a
set of correlated ones; they may facilitate interpretation with high-dimensional datasets and/or in the
absence of systems-level annotations; they provide smaller signatures, which may be more useful in
certain contexts (e.g. biomarker panels).

In order to gather more details regarding a particular solution, we plot the quality function across the range
of values for the regularization parameter lambda:

plot(fit, alpha.index = which.max(fit$model_QF_est), plot.type = "lambdaVsQF")

alpha=0.2 ; QF=correlation (pearson)
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If so desired, eNetXplorer allows end-users to extend the number of lambda values (via nlambda) and/or
extend their range while keeping the lambda density uniform in log scale (via nlambda.ext).

There may exist outlier instances that may require further examination; we generate a scatterplot of response
vs out-of-bag predictions across all instances:

plot(fit, alpha.index = which.max(fit$model_QF_est), plot.type = "measuredVs0OB")



alpha=0.2; lambda=0.383; QF=0.33
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Naturally, model performance across alpha is strongly dependent on the structure of the input datasets. In
the case example above, we purposefully generated a block of informative correlated predictors to highlight the
characteristics of less regularized (smaller alpha) models and their ability to leverage borrowed information.
Let us now generate input datasets with just one prevalent informative predictor:

data = data_gen(n_inst=50, covmat_gen(n_pred=60, block_size=1, r_resp=0.7, r_block=0.35))

As before, we examine the predictor correlation structure:
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Moreover, as before, we also examine the correlation between predictors and the response; by design, feature

1 is the most informative predictor:
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We run eNetXplorer on the new datasets:

fit = eNetXplorer(x = data$predictor, y = data$response, family = "gaussian", alpha

1, by = 0.1), n_run = 1000, n_perm_null = 250, seed = 123)

The summary table is:

summary (fit)

## Call:

## eNetXplorer(x = data$predictor, y = data$response, family = "gaussian",
## alpha = seq(0, 1, by = 0.1), seed = 123, n_run = 1000, n_perm_null =
##

## alpha lambda.max QF.est model.vs.null.pval

## 0.00000 6.15154 0.1833 0.082884 .

## 0.10000 1.92280 0.4391 0.004960 *x*

## 0.20000 1.21315 0.5179 0.000824 ***

## 0.30000 0.88762 0.5475 0.000384 *x**

## 0.40000 0.66571 0.5691 0.000180 *x**

## 0.50000 0.53257 0.5824 0.000156 ***

## 0.60000 0.42364 0.5916 8.0e-05 ***

## 0.70000 0.38041 0.5950 0.000116 ***

## 0.80000 0.33286 0.6026 8.8e-05 *x*x

## 0.90000 0.29587 0.6042 0.000108 *x**

## 1.00000 0.27896 0.6094 8.0e-05 ***

## ——-

## Signif. codes: O '*xkxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We generate the plot of model performance across alpha:

plot(fit, plot.type="summary")
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Here, we observe that the quality function appears to increase monotonically with alpha; the maximum

corresponds to the lasso solution, alpha=1.

We generate a caterpillar plot of the top features based on their coeflicients:

plot(fit, alpha.index =

which.max(fit$model_QF_est), plot.type =

-log10 pval (model vs null)

"featureCaterpillar",

stat = c("coef"))
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We observe that only feature 1 is selected by lasso. Are there other features that would be selected under less
stringent regularization criteria?
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plot(fit, alpha.index = which.max(fit$model_QF_est), plot.type = "featureHeatmap",
stat = c("coef"), notecex = 1.5)
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We find that, except for features 8, 27 and 14 for ridge regularization (alpha=0), feature 1 appears dominant
all across the regularization range. This, indeed, reflects the covariance structure we chose to generate the
data.

4. Datasets

The eNetXplorer package provides two datasets of biological interest:

e HIN1_Flow, comprised of longitudinal cell population frequencies and titer responses upon HIN1
vaccination; and

e Leukemia_miR, which contains microRNA (miR) expression data from cell lines and primary (patient)
samples classified by different acute leukemia phenotypes, as well as normal control samples sorted by
cell type.

4.1 HIN1_Flow

The HIN1_Flow dataset comprises data from a cohort of healthy subjects vaccinated against the influenza
virus HIN1 (Tsang et al. 2014). Using five different 15-color flow cytometry stains for T-cell, B-cell, dendritic
cell, and monocyte deep-phenotyping, 113 cell population frequencies were measured longitudinally pre-
(days -7, 0) and post-vaccination (days 1, 7, 70) on a cohort of 49 healthy human subjects (F=31, M=18,
median age=24). Cell populations were manually gated and expressed as percent of parent. Samples and
cell populations were filtered independently for each timepoint; samples were excluded if the median of the
fraction of viable cells across all five tubes was <0.7, while cell populations were excluded if >80% of samples
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had <20 cells. Data were logl0-transformed and pooled across all timepoints, then adjusted for age, gender,
and ethnicity effects. For each timepoint, a numerical matrix of predictors is provided with subjects as rows
and cell populations as columns. The response is the adjusted maximum fold change (adjMFC) of serum
titers at day 70 relative to baseline, as defined in (Tsang et al. 2014). Two versions of the serum titer response
are provided in the package; one as a numerical vector and the other one as a categorical vector discretized
into low (“0”), intermediate (“1”) and high (“2”) response classes. A metadata file with cell population
annotations is also provided.

To load the dataset:
data(HI1N1_Flow)

4.2 Leukemia_miR

The Leukemia_miR dataset comprises data of human microRNA (miR) expression of 847 miRs from 80 acute
myeloid (AML) and acute lymphoblastic (ALL) leukemia cell lines, 60 primary (patient) samples, and 50
normal control samples sorted by cell type (CD34+ HSPC, Granulocytes, Monocytes, T-cells and B-cells) (Tan
et al. 2014; Candia et al. 2015). Acute lymphoblastic leukemia samples are further classified by B-cell (B-ALL)
and T-cell (T-ALL) subphenotypes. Two dataset versions are provided: the full dataset Leuk_miR_full (190
samples x 847 miRs) and the filtered dataset Leuk_miR_filt (140 samples x 370 miRs). A numerical matrix
of predictors is provided with samples as rows and miRs as columns. Two categorical response vectors are
provided for binomial (AML, ALL) and multinomial (AML, B-ALL, T-ALL) classification.

To load the dataset:

data(Leukemia_miR)

To filter the full dataset (and recapitulate the filtered data provided by Leuk_miR_filt):

expr_full = Leuk_miR_full$expression_matrix

miR_filter = rep(F,nrow(Leuk_miR_full$miR_metadata))
miR_filter[apply(expr_full,2,mean)>1.2] = T

sample_filter = rep(T,nrow(Leuk_miR_full$sample_metadata))
sample_filter[Leuk_miR_full$sample_metadata$sample_class=="Normal"] = F
expr_filtered = expr_full[sample_filter,miR_filter]

miR_filtered = Leuk_miR_full$miR_metadata[miR_filter,]

sample_filtered = Leuk_miR_full$sample_metadata[sample_filter,]

5. Notes on the algorithm’s efficiency

eNetXplorer has been successfully tested and used on datasets with hundreds and up to 1,000+ features.
However, the algorithm’s efficiency degrades noticeably as the number of features is increased. In order to
analyze high-dimensional datasets with thousands or, even, tens of thousands of features (e.g. RNA-Seq), we
advise implementing dimensional-reduction preprocessing approaches. Useful strategies, for instance, are:
(i) to compute the average (or, alternatively, the first principal component) of gene modules, which may be
based on biological annotations (e.g. pathways, Gene Ontology classifications, etc.), previous meta-studies
(Chaussabel et al. 2008; Li et al. 2014; Weiner 3rd and Domaszewska 2016) or calculated de novo (Langfelder
and Horvath 2008); or (ii) to filter out low-expression genes, then select the most variable genes across the
cohort (ranked by variance or mean absolute deviation).

It should also be noticed that the efficiency of linear regression (Gaussian) and binomial classification models
is far superior than that of multinomial classification. Therefore, whenever possible, we advise merging class
labels (to turn a multinomial problem into a binomial one) or, in scenarios with multiple ordinal classes,
converting the multinomial problem into a linear regression one.
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Running time is linear on n_run (number of runs) and n_perm_null (number of random null-model permuta-
tions of the response per run). Default values were chosen with the purpose to achieve a balanced tradeoff
between speed and statistical accuracy. We suggest running exploratory eNetXplorer models with default
values (or adjusted as needed to generate relatively quick results), then re-run with more statistics to obtain
more accurate estimates. Depending on the size and complexity of the dataset, as well as on the type of
generalized linear model and parameters chosen, it is not uncommon to run eNetXplorer jobs that could
take several hours, or even several days, to complete. Thus, we advise to start small (sacrificing statistical
accuracy to shorten running time) and adjust parameters incrementally.

6. Summary

e eNetXplorer addresses key questions regarding model regularization and feature selection based on
permutation-based statistical significance tests. Results are provided in the form of standard plots,
summary statistics and output tables.

o As illustrated by synthetic datasets, which were generated from covariance matrices involving normally
distributed features and response distributions, eNetXplorer workflows are generally applicable to
model any datasets consisting of n_inst observations across n_pred predictors or features that aim to
explain a set of n_inst response values.

o Regularization models are particularly useful in scenarios involving a large number of features (even larger
than the number of observations) and/or sets of significantly correlated features. These scenarios are
typical of datasets generated by current technologies in molecular and cellular biology, but applications
to other data rich environments are certainly possible.
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