
Dynamic Simulations of Autoregressive

Relationships in R with dynsim

Christopher Gandrud
City University London

Hertie School of Governance

Laron K. Williams
University of Missouri

Guy D. Whitten
Texas A & M University

Abstract

This code snippet introduces the dynsim R package for calculating dynamic simula-
tions with autoregressive time series using the approach laid out in Williams and Whitten
(2012). dynsim depicts long-run simulations of dynamic processes for a variety of sub-
stantively interesting scenarios, with and without the presence of exogenous shocks. The
package includes the dynsim function for calculating the dynamic simulations and provides
a function (dynsimGG) for graphically depicting the simulations

Keywords: autoregressive relationships, dynamic simulations, R.

1. Intoduction

Two recent trends in the social sciences have drastically improved the interpretation of statis-
tical models. The first trend is researchers providing substantively meaningful quantities of
interest when interpreting models rather than putting the burden on the reader to interpret
tables of coefficients (King, Tomz, and Wittenberg 2000). With this goal in mind, Gary King
and his co-authors have produced software, including the R (R Core Team 2015) package
Zelig (Owen, Imai, King, and Lau 2013), that eases the calculation and presentation of sub-
stantive quantities of interest. The second trend is a movement to more completely interpret
and present the inferences available from one’s model. This is seen most obviously in the
case of time-series models with an autoregressive series, where the effects of an explanatory
variable have both short- and a long-term components. A more complete interpretation of
these models therefore requires additional work ranging from the presentation of long-term
multipliers (De Boef and Keele 2008) to dynamic simulations (Williams and Whitten 2012).

These two trends can be combined to allow scholars to easily depict the long-term implica-
tions from estimates of dynamic processes through simulations. Dynamic simulations can be
employed to depict long-run simulations of dynamic processes for a variety of substantively-
interesting scenarios, with and without the presence of exogenous shocks. In this code snip-
pet we introduce dynsim (Gandrud, Williams, and Whitten 2015) which makes it easy for
researchers to implement this approach in R.1

In the next section we briefly discuss the dynamic simulations with autoregressive time series
approach. We then lay out the dynsim process and syntax for implementing this approach.

1There is also a Stata (StataCorp. 2015) implementation documented in Williams and Whitten (2011).



2 dynsim in R

Finally, we illustrate how to use the package with examples.

2. Dynamic simulations

Assume that we estimate the following partial adjustment model: Yt = α0+α1Yt−1+β0Xt+εt,
where Yt is a continuous variable, Xt is an explanatory variable and εt is a random error
term. The short-term effect of X1 on Yt is simple, β0. This is the inference that social
science scholars most often make, and unfortunately, the only one that they usually make
(Williams and Whitten 2012). However, since the model incorporates a lagged dependent
variable (Yt−1), a one-unit change in Xt on Yt also has a long-term effect by influencing the
value of Yt−1 in future periods. The appropriate way of calculating the long-term effect is
with the long-term multiplier, or κ1 = β0

(1−α1)
. We can then use the long-term multiplier to

calculate the total effect that Xt has on Yt distributed over future time periods. Of course,
the long-term multiplier will be larger as β0 or α1 gets larger in size.

We can use graphical depictions to most effectively communicate the dynamic properties
of autoregressive time series across multiple time periods. The intuition is simple. For a
given scenario of values of the explanatory variables, calculate the predicted value at time t:
ỹ = XC β̃ + ε̃, where β̃ is a vector of simulated effect coefficients, XC is a matrix of user-
specified values of variables, including yt−1, and ε̃ is one draw from N(0, σ̃2) (King et al. 2000).
At each subsequent observation of the simulation, the predicted value of the previous scenario
(ỹ|XC) replaces the value of yt−1 to calculate ỹt. Inferences such as long-term multipliers and
dynamic simulations are based on estimated coefficients that are themselves uncertain. It
is therefore very important to also present these inferences with the necessary measures of
uncertainty (such as confidence intervals).

Dynamic simulations offer a number of inferences that one cannot make by simply examining
the coefficients. First, one can determine whether or not the confidence interval for one
scenario overlaps across time, suggesting whether or not there are significant changes over
time. Second, one can determine whether the confidence intervals of different scenarios overlap
at any given time period, indicating whether the scenarios produce statistically different
predicted values. Finally, if one includes exogenous shocks, then one can determine the size of
the effect of the exogenous shock as well as how quickly the series then returns to its pre-shock
state. These are all invaluable inferences for testing one’s theoretical expectations.

3. dynsim process and syntax

Use the following four step process to simulate and graph autoregressive relationships with
dynsim:

1. Estimate the linear model using the core R function lm.

2. Set up starting values for simulation scenarios and (optionally) shock values at particular
iterations (e.g. points in simulated time).

3. Simulate these scenarios based on the estimated model using the dynsim function.

4. Plot the simulation results with the dynsimGG function.



Christopher Gandrud, Laron K. Williams, Guy D. Whitten 3

Before looking at examples of this process in action, let’s look at the dynsim and dynsimGG

syntax.

The dynsim function has seven arguments. The first–obj–is used to specify the model object.
The lagged dependent variable is identified with the ldv argument. The object containing
the starting values for the simulation scenarios is identified with scen. n allows you to specify
the number of simulation iterations. These are equivalent to simulated ‘time periods’. scen

sets the values of the variables in the model at ‘time’ n = 0. To specify the level of statistical
significance for the confidence intervals use the sig argument. By default it is set at 0.95

for 95 percent significance levels. The number of simulations drawn for each point in time–
i.e. each value of n–is adjusted with the num argument. By default 1,000 simulations are
drawn. Adjusting the number of simulations allows you to change the processing time. There
is a trade-off however between the amount of time it takes to draw the simulations and the
resulting information you have about about the simulations’ probability distributions (King
et al. 2000, 349). Finally the object containing the shock values is identified with the shocks

argument.

Objects for use with scen can be either a list of data frames–each data frame containing
starting values for a different scenario–or a data frame where each row contains starting
values for different scenarios. In both cases, the data frames have as many columns as there
are independent variables in the estimated model. Each column should be given a name that
matches the names of a variable in the estimation model. If you have entered an interaction
using *2 then you only need to specify starting values for the base variables not the interaction
term. The simulated values for the interaction will be found automatically.

shocks objects are data frames with the first column called times containing the iteration
number (as in n) when a shock should occur. Note each shock must be at a unique time that
cannot exceed n. The following columns are named after the shock variable(s), as they are
labeled in the model. The values will correspond to the variable values at each shock time.
You can include as many shock variables as there are variables in the estimation model. Again
only values for the base variables, not the interaction terms need to be specified.

Once the simulations have been run you will have a dynsim class object. These are also data
frames that contain seven elements.

• scenNumber: The scenario number.

• time: The time points.

• shock. ...: Columns containing the values of the shock variables at each point in
time.

• ldvMean: Mean of the simulation distribution.

• ldvLower: Lower bound of the simulation distribution’s central interval set with sig.

• ldvUpper: Upper bound of the simulation distribution’s central interval set with sig.

• ldvLower50: Lower bound of the simulation distribution’s central 50 percent interval.

• ldvUpper50: Upper bound of the simulation distribution’s central 50 percent interval.

2For example, an interaction between Var1 and Var2 entered into the model as Var1*Var2.



4 dynsim in R

Because dynsim objects are data frames you can plot them with any available method in R.

The dynsimGG function is the most convenient plotting approach. This function draws on
ggplot2 (Wickham and Chang 2015) to plot the simulation distributions across time. The
distribution means are represented with a line. The range of the central 50 percent interval
is represented with a dark ribbon. The range of the interval defined by the sig argument in
dynsim, e.g. 95%, is represented with a lighter ribbon.

The primary dynsimGG argument is obj. Use this to specify the output object from dynsim

that you would like to plot. The remaining arguments control the plot’s aesthetics. For
instance, the size of the central line can be set with the lsize argument and the level of opacity
for the lightest ribbon3 with the alpha argument. Please see the ggplot2 documentation for
more details on these arguments. You can change the color of the ribbons and central line
with the color argument. If only one scenario is plotted then you can manually set the
color using a variety of formats, including hexadecimal color codes. If more than one scenario
is plotted, then select a color palette from those available in the RColorBrewer package
(Neuwirth 2014).4 The plot’s title, y-axis and x-axis labels can be set with the title, ylab,
and xlab arguments, respectively.

There are three arguments that allow you to adjust the look of the scenario legend. leg.name
allows you to choose the legend’s name and leg.labels lets you change the scenario labels.
This must be a character vector with new labels in the order of the scenarios in the scen

object. legend allows you to hide the legend entirely. Simply set legend = FALSE.

Finally, if you included shocks in your simulations you can use the shockplot.var argument
to specify one shock variable’s fitted values to include in a plot underneath the main plot.
Use the shockplot.ylab argument to change the y-axis label.

The output from dynsimGG is generally a ggplot2 gg class object.5 Because of this you can
further change the aesthetic qualities of the plot using any relevant function from ggplot2
using the + operator.

3.1. Alternative package in R

The forecast package (Hyndman and Khandakar 2008; Hyndman 2015) provides a variety of
automatic forecasting algorithms using both exponential smoothing and ARIMA models and
includes plotting capabilities. While certainly impressive in its breadth of models available,
our function differs in two important ways for the practical researcher. First, forecast relies on
an algorithm to find the appropriate time series specification, whereas our analysis assumes
that scholars have already identified the appropriate model, most often through a combina-
tion of theory and model building steps. Second, the focus of forecast is on developing an
accurate forecast given the particular attributes of the time series. dynsim, on the other hand,
concentrates its efforts on exploring the estimated causal effects of the explanatory variables.
This is accomplished by establishing various theoretically-interesting scenarios, and allowing
for exogenous shocks to the series. Thus, we think that dynsim offers a number of distinct
advantages for the practical researcher.

3The darker 50 percent central interval ribbon is created by essentially doubling the opacity set by alpha.
4To see the full list, after loading RColorBrewer in your R session, simply enter brewer.pal.info into your

console.
5This is not true if you include a shock plot.



Christopher Gandrud, Laron K. Williams, Guy D. Whitten 5

4. Examples

The following examples demonstrate how dynsim works. They use the Grunfeld (1958) data
set. It is included with dynsim. To load the data use:

R> data(grunfeld, package = "dynsim")

The linear regression model we will estimate is:

Iit = α+ β1Iit−1 + β2Fit + β3Cit + µit (1)

where Iit is real gross investment for firm i in year t. Iit−1 is the firm’s investment in the
previous year. Fit is the real value of the firm and Cit is the real value of the capital stock.

In the grunfeld data set, real gross investment is denoted invest, the firm’s market value is
mvalue, and the capital stock is kstock. There are 10 large US manufacturers from 1935-1954
in the data set (Baltagi 2001). The variable identifying the individual companies is called
company. We can easily create the investment one-year lag using the slide function from the
DataCombine package (Gandrud 2015). Here is the code:

R> library(DataCombine)

R>

R> grunfeld <- slide(grunfeld, Var = "invest", GroupVar = "company",

+ TimeVar = "year", NewVar = "InvestLag")

The new lagged variable is called InvestLag. The reason we use slide rather than R’s core
lag function is that the latter is unable to lag a grouped variable. You could of course use
any other appropriate function to create the lags.

4.1. Dynamic simulation without shocks

Now that we have created our lagged dependent variable, we can begin to create dynamic
simulations with dynsim by estimating the underlying linear regression model using lm, i.e.:

R> M1 <- lm(invest ~ InvestLag + mvalue + kstock, data = grunfeld)

The resulting model object–M1–is used in the dynsim function to run the dynamic simulations.
We first create a list object containing data frames with starting values for each simulation
scenario. Imagine we want to run three contrasting scenarios with the following fitted values:

• Scenario 1: mean lagged investment, market value and capital stock held at their 95th
percentiles,

• Scenario 2: all variables held at their means,

• Scenario 3: mean lagged investment, market value and capital stock held at their 5th
percentiles.



6 dynsim in R

We can create a list object for the scen argument containing each of these scenarios with the
following code:

R> attach(grunfeld)

R> Scen1 <- data.frame(InvestLag = mean(InvestLag, na.rm = TRUE),

+ mvalue = quantile(mvalue, 0.95),

+ kstock = quantile(kstock, 0.95))

R> Scen2 <- data.frame(InvestLag = mean(InvestLag, na.rm = TRUE),

+ mvalue = mean(mvalue),

+ kstock = mean(kstock))

R> Scen3 <- data.frame(InvestLag = mean(InvestLag, na.rm = TRUE),

+ mvalue = quantile(mvalue, 0.05),

+ kstock = quantile(kstock, 0.05))

R> detach(grunfeld)

R>

R> ScenComb <- list(Scen1, Scen2, Scen3)

To run the simulations without shocks use:

R> Sim1 <- dynsim(obj = M1, ldv = "InvestLag", scen = ScenComb, n = 20)

4.2. Dynamic simulation with shocks

Now we include fitted shock values. In particular, we will examine how a company with
capital stock in the 5th percentile is predicted to change its gross investment when its market
value experiences shocks compared to a company with capital stock in the 95th percentile.
We will use market values for the first company in the grunfeld data set over the first 15
years as the shock values. To create the shock data use the following code:

R> # Keep only the mvalue for the first company for the first 15 years

R> grunfeldsub <- subset(grunfeld, company == 1)

R> grunfeldshock <- grunfeldsub[1:15, "mvalue"]

R>

R> # Create data frame for the shock argument

R> grunfeldshock <- data.frame(times = 1:15, mvalue = grunfeldshock)

Now add grunfeldshock to the dynsim shocks argument.

R> Sim2 <- dynsim(obj = M1, ldv = "InvestLag", scen = ScenComb, n = 15,

+ shocks = grunfeldshock)

Interactions between the shock variable and another exogenous variable can also be simulated
for. To include, for example, an interaction between the firm’s market value (the shock
variable) and the capital stock (another exogenous variable) we need to rerun the parametric
model like so:



Christopher Gandrud, Laron K. Williams, Guy D. Whitten 7

R> M2 <- lm(invest ~ InvestLag + mvalue*kstock, data = grunfeld)

We then run dynsim as before. The only change is that we use the fitted model object M2

that includes the interaction.

R> Sim3 <- dynsim(obj = M2, ldv = "InvestLag", scen = ScenComb, n = 15,

+ shocks = grunfeldshock)

4.3. Plotting simulations

The easiest and most effective way to communicate dynsim simulation results is with the
package’s built-in plotting capabilities, e.g.:

R> dynsimGG(Sim1)

We can make a number of aesthetic changes. The following code adds custom legend lables,
the ‘orange-red’ color pallette–denoted by OrRd–, and relabels the y-axis to create Figure 1.

R> Labels <- c("95th Percentile", "Mean", "5th Percentile")

R>

R> dynsimGG(Sim1, leg.name = "Scenarios", leg.labels = Labels, color = "OrRd",

+ ylab = "Predicted Real Gross Investment\n")

When plotting simulations with shock values another plot can be included underneath the
main plot showing one shock variable’s fitted values. To do this use the shockplot.var

argument to specify which variable to plot. Use the shockplot.ylab argument to change the
y-axis label. For example, the following code creates Figure 2:

R> dynsimGG(Sim2, leg.name = "Scenarios", leg.labels = Labels, color = "OrRd",

+ ylab = "Predicted Real Gross Investment\n", shockplot.var = "mvalue",

+ shockplot.ylab = "Firm Value")

5. Summary

In this code snippet we have demonstrated how the R package dynsim makes it easy to
implement Williams and Whitten’s (2012) approach to more completely interpreting results
from autoregressive time-series models where the effects of explanatory variables have both
short- and long-term components. Hopefully, this will lead to more meaningful investigations
and more useful presentations of results estimated from these relationships.

References

Baltagi B (2001). Econometric Analysis of Panel Data. Wiley and Sons, Chichester, UK.



8 dynsim in R

0

250

500

750

1000

5 10 15 20

Time

P
re

di
ct

ed
 R

ea
l G

ro
ss

 In
ve

st
m

en
t

Scenarios
95th Percentile
Mean
5th Percentile

Figure 1: Three Dynamic Simulationes Plotted with Custom Scenario Labels and Color
Palette

De Boef S, Keele L (2008). “Taking time seriously.” American Journal of Political Science,
52(1), 184–200.

Gandrud C (2015). DataCombine: Tools for Easily Combining and Cleaning Data Sets. R
package version 0.2.15, URL http://CRAN.R-project.org/package=DataCombine.

Gandrud C, Williams LK, Whitten GD (2015). dynsim: Dynamic Simulations of Autoregres-
sive Relationships. R package version 1.2, URL http://cran.r-project.org/package=

dynsim.

Grunfeld Y (1958). The Determinants of Corporate Investment. PhD thesis University of
Chicago.

Hyndman RJ (2015). forecast: Forecasting functions for time series and linear models. R
package version 6.1, URL http://github.com/robjhyndman/forecast.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package
for R.” Journal of Statistical Software, 26(3), 1–22. URL http://ideas.repec.org/a/

jss/jstsof/27i03.html.

King G, Tomz M, Wittenberg J (2000). “Making the Most of Statistical Analyses: Improving
Interpretation and Presentation.” American Journal of Political Science, 44(2), 347–361.

Neuwirth E (2014). RColorBrewer: ColorBrewer palettes. R package version 1.1-2, URL
http://CRAN.R-project.org/package=RColorBrewer.

http://CRAN.R-project.org/package=DataCombine
http://cran.r-project.org/package=dynsim
http://cran.r-project.org/package=dynsim
http://github.com/robjhyndman/forecast
http://ideas.repec.org/a/jss/jstsof/27i03.html
http://ideas.repec.org/a/jss/jstsof/27i03.html
http://CRAN.R-project.org/package=RColorBrewer


Christopher Gandrud, Laron K. Williams, Guy D. Whitten 9

250

500

750

1000

4 8 12

TimeP
re

di
ct

ed
 R

ea
l G

ro
ss

 In
ve

st
m

en
t

Scenarios
95th Percentile
Mean
5th Percentile

3000

3500

4000

4500

5000

5500

4 8 12

F
ir

m
 V

al
ue

Figure 2: An Example of a Dynamic Simulation with the Inclusion of a Shock Variable



10 dynsim in R

Owen M, Imai K, King G, Lau O (2013). Zelig: Everyone’s Statistical Software. R package
version 4.2-1, URL http://CRAN.R-project.org/package=Zelig.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. Version 3.2.1, URL http://www.

R-project.org/.

StataCorp (2015). “Stata Statistical Software: Release 14.”

Wickham H, Chang W (2015). ggplot2: An implementation of the Grammar of Graphics. R
package version 1.0.1, URL http://CRAN.R-project.org/package=ggplot2.

Williams LK, Whitten GD (2011). “Dynamic Simulations of Autoregressive Relationships.”
The Stata Journal, 11(4), 577–588.

Williams LK, Whitten GD (2012). “But Wait, There’s More! Maximizing Substantive Infer-
ences from TSCS Models.” Journal of Politics, 74(03), 685–693.

Affiliation:

Christopher Gandrud
Department of International Politics
City University London
London, United Kingdom
E-mail: gandrud@hertie-school.org
URL: http://christophergandrud.blogspot.com

http://CRAN.R-project.org/package=Zelig
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=ggplot2
mailto:gandrud@hertie-school.org
http://christophergandrud.blogspot.com

	Introduction
	Dynamic simulations
	process and syntax
	Alternative package in R

	Examples
	Dynamic simulation without shocks
	Dynamic simulation with shocks
	Plotting simulations

	Summary

