
Example: Regime-switching Linear Discrete-time

Model

Lu Ou, Michael D. Hunter, Sy-Miin Chow

February 11, 2020

This file demonstrates the utilization of dynr in fitting a regime-switching
linear dynamic models. A complete modeling script for this example is available
as one of the demo examples in dynr and can be found using

> file.edit(system.file("demo", "RSLinearDiscreteYang.R", package = "dynr"))

1 Regime-switching State Space Model

Facial electromyography (EMG) has been used in the behavioral sciences as one
possible indicator of human emotions [e.g., 1, 2, 3, 4]. When human subjects
are exposed to emotion induction procedures, researchers have detected changes
in individuals’ facial EMG recordings even when the corresponding changes in
facial expression are too subtle to be detected by human raters [1, 5, 2].

A time series of EMG data contains bursts of electrical activity that are
typically magnified when an individual is under emotion induction. [6] proposed
using a regime-switching linear state-space model in which the individual may
transition between regimes with and without facial EMG activation. As such,
heterogeneities in the dynamic patterns and variance of EMG data are also
accounted for through the incorporation of these latent regimes. Model fitting
was previously performed at the individual level. Data from the participant
shown in Figure 1(A) are made available as part of the demonstrative examples
in dynr.

The model of interest is the final model selected for this participant by [6]:

yi(ti,j) = µySi(ti,j) + βSi(ti,j)Self-report(ti,j) + ηi(ti,j), (1)

ηi(ti,j+1) = φSi(ti,j)ηi(ti,j) + ζi(ti,j+1), (2)

in which we allowed the intercept, µySi(ti,j), the regression slope, βSi(ti,j), and
the autoregression coefficient, φSi(ti,j), to be regime-dependent. By allowing
φSi(ti,j) to be regime-specific, we indirectly allowed the total variance of the
latent component, ηi(ti,j+1), to be heterogeneous across the deactivation and
activation stages, in spite of requiring the dynamic noise variance, E(ζi(t)

2), to
be constant across regimes.

1

(A)

Measured iEMG

Measured Self−Report

0

2

4

6

8

10

12

0 50 100

0

2

4

6

S
el

f−
R

ep
or

t

In
te

gr
at

ed
 E

M
G

 (
 µ

V
)

Time (seconds)

1

−1

0

1

2

3

0 50 100
time

S
m

oo
th

ed
 S

ta
te

 V
al

ue
s

variable eta

regime Activated Deactivated

(B) Results from RS−AR model

Figure 1: (A) A plot of integrated electromyography (iEMG) and self–report
affect ratings for one participant with a time interval of 0.2 seconds between
two adjacent observations. Self–report = self–report affect ratings; iEMG =
integrated EMG signals. (B) An automatic plot of the smoothed state estimates
for the regime-switching linear state-space model.

1.1 Prepare the data

The first step in dynr modeling is to structure the data. This is done with the
dynr.data() function.

> #---- Load packages ----

> require("dynr")

> #---- Read in data and create dynr data object----

> data("EMG")

> EMGdata <- dynr.data(EMG, id = 'id', time = 'time',

+ observed = 'iEMG', covariates = 'SelfReport')

The first argument of this function is either a ts class object of single-subject
time series or a data.frame structured in a long (relational) format (i.e., with
different measurement occasions from the same subject appearing as different
rows in the data frame). Missing values in the observed variables should be
indicated by NA. When a ts class object is passed to dynr.data(), no other
inputs are needed. Otherwise, the id argument needs the name of the ID vari-
able as input, and allows multiple people to be estimated in a single model by
distinguishing different individuals with the ID variable. That is, it indicates
which rows should be modeled together as a time series. Thus, multi-subject
modeling is as easy as single-subject modeling; only the data differ. The time
argument needs the name of the TIME variable that indicates subject-specific
measurement occasions. If a discrete-time model is desired, the TIME variable
should contain subject-specific sequences of (subsets of) consecutively equally
spaced numbers (e.g, 1, 2, 3, · · ·). In other words, the program assumes that
the input data.frame is equally spaced with potential missingness. If the mea-
surement occasions for a subject are a subset of an arithmetic sequence but are
not consecutive, NAs will be inserted automatically to create an equally spaced
data set before estimation. If a continuous-time model is being specified, the
TIME variable can contain subject-specific increasing sequences of irregularly

2

spaced real numbers. That is, the data may be input at their original, irregu-
larly spaced intervals without the need to insert missingness. In this particular
example, a discrete time model is used.

The observed and covariates arguments are used to indicate the names of the
observed variables and covariates in the data. Covariates are defined as fixed
predictors that are hypothesized to affect the modeling functions in one or more
ways, but are otherwise not of interest (i.e., not modeled as dependent variables)
to the user. Missing values in covariates are not allowed. That is, missing values
in the covariates, if there are any, should be imputed first. The dynr.data()
function lets users include data sets with many variables, but only use a few.
The output of the function combines with the model recipe information later to
map the model onto the data.

1.2 Prepare the recipes

The next step in dynr modeling is to build the recipes for the various parts of
a model. The recipes are created with prep.*() functions.

1.2.1 Model specification: the dynamic functions

The dynamic model can take on the form of continuous-time models as

dηi(t) = fSi(t) (ηi(t), t,xi(t)) dt+ dwi(t), (3)

or the form of discrete-time state-space models [7] as

ηi(ti,j+1) = fSi(t) (ηi(ti,j), ti,j ,xi(ti,j)) +wi(ti,j+1), (4)

where i indexes person, t indexes time, ηi(t) is the r×1 vector of latent variables
at time t, xi(t) is the vector of covariates at time t, and fSi(t)(.) is the vector of
(possibly nonlinear) dynamic functions. fSi(t)(.) depends on the latent regime
indicator, Si(t), the discrete-valued latent variable that indexes the operating
regime at time t.

The dynamic functions, fSi(t)() in Equations 3 and 4, can be specified using
one of two possible functions in dynr: prep.formulaDynamics() and prep.matrixDynamics().
The dynamic model in this particular example consists only of linear func-
tions, although the parameters that appear in these linear functions are regime-
dependent. In this special case, the dynamic model in Equation 4 reduces to:

ηi(ti,j+1) = αSi(ti,j) + FSi(ti,j)ηi(ti,j) +BSi(ti,j)xi(ti,j) +wi(ti,j+1), (5)

where the general, possibly nonlinear function fSi(t)() is replaced with a lin-
ear function consisting of (1) an intercept term αSi(ti,j), (2) linear dynamics
instantiated as an r × r matrix FSi(ti,j), (3) linear covariate regression effects
BSi(ti,j), and the same additive noise term wi(ti,j+1). As indicated by the sub-
script Si(ti,j), all of these can also be regime-dependent. Of course, the same
structure is possible in continuous time as the linear analog of Equation 3.

dηi(t) =
(
αSi(t) + FSi(t)ηi(t) +BSi(t)xi(t)

)
dt+ dwi(t), (6)

3

In this example, the dynamics as in Equation 2 are linear and discrete-time,
so we can describe the dynamics in terms of Equation 5 as

ηi(ti,j+1) = 0︸︷︷︸
αSi(ti,j)

+φSi(ti,j)︸ ︷︷ ︸
FSi(ti,j)

ηi(ti,j) + 0︸︷︷︸
BSi(ti,j)

xi(ti,j) + ζi(ti,j+1)︸ ︷︷ ︸
wi(ti,j+1)

. (7)

The prep.matrixDynamics() function allows the user to specify the structures of
the intercept vector αSi(ti,j), through values.int and params.int , the covariate
regression matrix BSi(ti,j), through values.exo and params.exo, and the one-
step-ahead transition matrix FSi(ti,j), through values.dyn and params.dyn, in
the linear special case for those who prefer to work in such a matrix algebraic
framework. We illustrate this function in the current example below. The
values.dyn argument gives a list of matrices for the starting values of FSi(ti,j).
The params.dyn argument names the free parameters. These are the φSt

in
Equation 2. The isContinuousTime argument switches between continuous-
time modeling (when true) and discrete-time modeling (when false). Because
this argument is false, the dynamics are in a discrete-time form that matches
Equation 2. The arguments corresponding to the intercepts (values.int and
params.int) and the covariate effects (values.exo and params.exo) are omitted
to leave these matrices as zeros.

> #---- Dynamic functions ----

> recDyn <- prep.matrixDynamics(

+ values.dyn = list(matrix(.1, 1, 1), matrix(.5, 1, 1)),

+ params.dyn = list(matrix('phi_1', 1, 1), matrix('phi_2', 1, 1)),

+ isContinuousTime = FALSE)

1.2.2 Model specification: the linear measurement function

For both discrete- and continuous-time models, we assume that we have a
discrete-time measurement model in which ηi(ti,j) at discrete time point ti,j
is indicated by a p × 1 vector of manifest observations, yi(ti,j) as

yi(ti,j) = τSi(ti,j) + ΛSi(ti,j)ηi(ti,j) + ASi(ti,j)xi(ti,j) + εi(ti,j), εi(ti,j) ∼ N
(
0,RSi(ti,j)

)
, (8)

where τSi(ti,j) is a p × 1 vector of intercepts, ASi(ti,j) is a matrix of regression
weights for the covariates observed at time ti,j , ΛSi(ti,j) is a p×r factor loadings
matrix that links the observed variables to the latent variables, and εi(ti,j) is
a p × 1 vector of measurement errors assumed to be serially uncorrelated over
time and normally distributed with zero means and (possibly) regime-specific
covariance matrix, RSi(ti,j).

> #---- Measurement ----

> recMeas <- prep.measurement(

+ values.load = rep(list(matrix(1, 1, 1)), 2),

+ values.int = list(matrix(4, 1, 1), matrix(3, 1, 1)),

+ params.int = list(matrix('mu_1', 1, 1), matrix('mu_2', 1, 1)),

4

+ values.exo = list(matrix(0, 1, 1), matrix(1, 1, 1)),

+ params.exo = list(matrix('fixed', 1, 1), matrix('beta_2', 1, 1)),

+ obs.names = c('iEMG'),

+ state.names = c('eta'),

+ exo.names = c("SelfReport"))

1.2.3 Model specification: the latent and observed noise covariance
structures

The noise recipe is created with prep.noise(). wi(t) in Equation 3 is an r-
dimensional Wiener process (i.e., continuous-time analog of a random walk pro-
cess). The differentials of the Wiener processes have zero means and regime-
specific covariance matrix, QSi(t), often called the diffusion matrix. In Equa-
tion 4, however, wi(t) denotes a vector of Gaussian distributed process noise
with regime-specific covariance matrix, QSi(t). In both continuous- and discrete-
time models, QSi(t) can be specified by the *.latent arguments in prep.noise().
The *.observed arguments are for RSi(ti,j) in Equation 8.

The code below creates the noise recipe by calling the prep.noise() function.
The noise recipe is stored in the recNoise object, an abbreviation for “recipe
noise”. The latent noise covariance matrix is a 1× 1 matrix with a free param-
eter called dynNoise, short for “dynamic noise.” The observed noise covariance
matrix is also a 1× 1 matrix, but has the measurement noise variance fixed to
zero. These covariance matrices need to be positive definite. The zero’s in the
diagonal of a covariance matrix are internally replaced by a small positive num-
ber automatically before estimation. To ensure the matrix stays positive definite
in estimation, we will apply a set of transformations to the matrix in each iter-
ation of the optimization, so the starting or fixed values of these matrices are
automatically adjusted for this purpose.

> #---- Dynamic and measurement noise cov structures----

> recNoise <- prep.noise(

+ values.latent = matrix(1, 1, 1),

+ params.latent = matrix('dynNoise', 1, 1),

+ values.observed = matrix(0, 1, 1),

+ params.observed = matrix('fixed', 1, 1))

1.2.4 Model specification: the initial condition

In both the discrete- and continuous-time cases, the initial conditions for the dy-
namic functions are defined explicitly to be the latent variables at an individual-
specific initial time point, ti,1 (i.e., the first observed time point), denoted as
ηi(ti,1), and are specified to be normally distributed with means µη1 and co-
variance matrix, Ση1 :

ηi(ti,1) ∼ N (µη1 ,Ση1) . (9)

The subscript Si(t) that appears in Equations 3–8 indicates that the values
of the parameters in these functions and matrices may depend on Si(t), the

5

operating regime for individual i at time point, t. Often in practice, only some
of these elements are freed to vary by regime. To make inferences on Si(ti,j), it
is essential to specify a model or mechanism through which Si(ti,j) changes over
individuals and time. Just as with the continuous latent variables in ηi(t), we
initialize the categorical latent variable Si(ti,j) on the first occasion and then
provide a model for how Si(ti,j) changes over time. The initial class (or regime)
probabilities for Si(ti,1) are represented using a multinomial regression model
as

Pr
(
Si(ti,1) = m|xi(ti,1)

) ∆
= πm,i1 =

exp(am+bT
mxi(ti,1))∑M

k=1 exp(ak+bT
k xi(ti,1))

, (10)

where M denotes the total number of regimes, am denotes the logit intercept for
the mth regime and bm is a nb×1 vector of regression slopes linked to a vector of
covariates used to explain possible interindividual differences in initial log-odds
(LO) of being in a regime relative to the reference regime selected by the user,
operationalized as the regime where am and all entries in bm are set to zero.
Setting these entries to be zero in at least the reference regime is necessary for
identification purposes: this ensures that the initial regime probabilities across
all the hypothesized regimes sum to 1.0. In the simplest case without covariates,
Equation 10 reduces to a specification of M initial regime prevalence parameters
- either on a LO (ranging from −∞ to +∞) or a probability (ranging between
0 and 1) scale, as preferred by the user.

The prep.initial() function is used to specify the µη1 and Ση1 in Equation 9,
as well as the model for the initial regime probabilities (i.e., Equation 10).

> #---- Initial condition specification ----

> recIni <- prep.initial(

+ values.inistate = matrix(0, 1, 1),

+ params.inistate = matrix('fixed', 1, 1),

+ values.inicov = matrix(1, 1, 1),

+ params.inicov = matrix('fixed', 1, 1),

+ values.regimep = c(1, 0),

+ params.regimep = c('fixed', 'fixed'))

1.2.5 Model specification: the regime-switching model

With the initial class probabilities specified, it remains to create a model for how
the classes change over time. A simple strategy for this is to create a first-order
Markov model for the categorical latent variable, Si(ti,j), j = 2, . . . , T , for the
remaining time span. Such a model assumes that the probability of entering
the current regime depends only on the previous regime. All possible transi-
tions from one regime to another can be arranged into a matrix of transition
probabilities, in which the rows index the previous regime at time ti,j−1 and
the columns index the regime to which the system transitions at time ti,j . The
rows of this matrix sum to 1.0 because the probability of transitioning from
a particular state to any other state must be 1.0. Hence, we use a first-order

6

Markov process to define how the classes change over time in a transition prob-
ability matrix. This transition matrix may also depend on covariates. Thus, a
multinomial logistic regression equation is assumed to govern the probabilities
of transitions between regimes as:

Pr
(
Si(ti,j) = m|Si(ti,j−1) = l,xi(ti,j)

) ∆
= πlm,it =

exp(clm+dT
lmxi(ti,j)∑M

k=1 exp(clk+dT
lkxi(ti,j))

,(11)

where πlm,it denotes individual i’s probability of transitioning from class l at
time ti,j−1 to class m at time ti,j (i.e., the entry in the lth row and mth col-
umn of the transition probability matrix), clm denotes the logit intercept for the
transition probability, and dlm is a nd×1 vector of logit slopes summarizing the
effects of the covariates in xi(ti,j) on that transition probability. The coefficients
in dlm are LO parameters representing the effects of the covariates on the LO
of transitioning from the lth regime into the mth regime relative to transition-
ing into the reference regime - namely, the regime in which all LO parameters
(including clM and all elements in dT

lM) are set to 0. One regime, again, has
to be specified as the reference regime for identification purposes to ensure that
conditional on being in a particular regime at time ti,j−1, the probabilities of

transitioning to each of the M regimes sum to 1.0 (i.e.,
∑M

m=1 πlm = 1).
The prep.regimes() function specifies the structure of the regime switching

functions shown in Equation 11. Note that based on Equation 11, a total of
nd + 1 parameters, including an intercept, clm, and nd regression slopes in
dlm, have to be defined for each of the functions governing the transition from
the lth regime (l = 1, . . . ,M) to the mth regime (m = 1, . . . ,M). In total,
there are M ×M of such transition functions, corresponding to entries in an
M ×M transition probability matrix. The function prep.regimes() requires the
user to provide the starting values (through the values argument) and names
(through the params argument) for these M × (nd + 1) parameters as a matrix
whose number of rows equals to the number of regimes (i.e., M) and number of
columns equals to the product of the number of regimes and the total number
of parameters (i.e., (nd + 1)M) as:

c11 d>11 c12 d>12 · · · c1M d>1M
c21 d>21 c22 d>22 · · · c2M d>2M
...

...
...

...
...

...
...

cM1 d>M1 cM2 d>M2 · · · cMM d>MM

 . (12)

In this example, we do not have any covariates in the regime-switching (RS)
functions. Thus, all the cells corresponding to the entries in dlm drop out. The
problem then reduces to the specification of a 2 × 2 transition log-odds (LO)
matrix. Here, we are interested in specifying a RS model in which conditional
on any of the two previous regimes, there is a higher probability of staying in
the current regime than transitioning to a different regime. To accomplish this,
we first note that we set the LO entries in second column of the 2 × 2 transition
LO matrix (corresponding to the Activated Regime) to zero for identification
purposes. Thus, the Activated Regime serves in this case as the reference regime.

7

The first column of the transition LO matrix, which consists of freely estimated
LO parameters named c11 and c21 , is populated with the starting values of:
(1) c11 = 0.7, corresponding to exp(0.7) = 2.01 times greater LO of staying
within the Deactivated Regime as transitioning from the Deactivated to the
Activated Regime, the reference regime; and (2) c21 = −1, corresponding to
exp(−1) = 0.37 times lower LO of transitioning from the Activated Regime to
the Deactivated Regime relative to the LO of staying Activated.

> # ---- Regimes-switching model ----

> recReg <- prep.regimes(

+ values = matrix(c(.7, -1, 0, 0), 2, 2),

+ params = matrix(c('c11', 'c21', 'fixed', 'fixed'), 2, 2))

In essence, the above code creates the following transition probability matrix:

Deactivatedti,j+1

Activatedti,j+1

Deactivatedti,j
exp(c11)

exp(c11)+exp(0)
exp(0)

exp(c11)+exp(0)

Activatedti,j
exp(c21)

exp(c21)+exp(0)
exp(0)

exp(c21)+exp(0)

 (13)

with starting values of

(Deactivatedti,j+1
Activatedti,j+1

Deactivatedti,j .668 .332
Activatedti,j .269 .731

)
. (14)

In many situations it is useful to specify the structure of the transition LO
matrix in deviation form - that is, to express the LO intercepts in all but the
reference regime as deviations from the LO intercept in the reference regime.
This creates a comparison class with all other transition intercepts evaluated
as compared to that class. Note that the deviation reference regime differs
from that described previously. The former description had only a reference
column, whereas the deviation reference regime adds to this a reference row. In
the deviation case it is expedient to reformulate the intercept as the sum of a
baseline and a deviation:

clm = cm + c∆,lm (15)

where cm denotes the logit intercept for the probability of switching into latent
class m from the reference row class, c∆,lm denotes the deviation in LO of
switching into latent classm at time ti,j from latent class l (i.e., from Si(ti,j−1) =
l to Si(ti,j) = m), as compared to switching from the reference row class. In this
case, the multinomial logistic regression equation in Equation 11 now appears
as:

Pr
(
Si(ti,j) = m|Si(ti,j−1) = l,xi(ti,j)

) ∆
= πlm,it =

exp(cm+c∆,lm+dT
lmxi(ti,j)∑M

k=1 exp(ck+c∆,lk+dT
lkxi(ti,j))

,(16)

8

and all parameters in Equation 16 can be summarized into
c∆,11 dT

11 c∆,12 dT
12 · · · c∆,1M dT

1M

c∆,21 dT
21 c∆,22 dT

22 · · · c∆,2M dT
2M

...
...

...
...

...
...

...
c1 dT

M1 c2 dT
M2 · · · cM dT

MM

 , (17)

if we use regime M for the reference row and hence have c∆,Ml = 0 for l = 1,
. . ., M . This allows the same parameter matrix structure for both the devia-
tion form (Equation 17) and non-deviation form (Equation 12) of the regime
switching probabilities by dropping the c∆,Ml terms in the reference row and
replacing them with the cm logit intercepts. For convenience, both the deviation
and the non-deviation form (Equations 16 and 11) are available in dynr. For
identification purposes, we can again choose regime M as the reference column
and impose the constraints that cM = c∆,lM = 0 and dlM = 0 for l = 1, . . .,

M to ensure that
∑M

m=1 πlm = 1. Likewise, above we have shown an example
that uses regime M for the reference row and column, but these are independent
choices that can be made by the user. Users can specify regime-switching log-
odds in deviation form by invoking the optional argument, deviation=TRUE in
the call to prep.regimes.

> recReg2 <- prep.regimes(

+ values = matrix(c(.8, -1, 0, 0), 2, 2),

+ params = matrix(c('c_Delta11', 'c1', 'fixed', 'fixed'), 2, 2),

+ deviation = TRUE, refRow = 2)

By default the reference row is set to the automatically detected reference col-
umn, but the code makes this choice explicit. Importantly, this code creates the
same starting values as seen in Equation 14 but parameterized in the form of
Equation 17. The deviation form can be extremely useful for testing hypotheses
about the relationships between LO intercepts and for making constraints across
regimes.

1.3 Create and cook the model

After the recipes for all parts of the model are defined, the dynr.model() func-
tion creates the model and stores it in the dynrModel object. Each recipe
(i.e., objects of class dynrRecipe created by prep.*()) and the data prepared by
dynr.data() are given to this function. The function requires dynamics, measure-
ment , noise, initial , and data as mandatory inputs for all models. When there
are multiple regimes in the model, the regimes argument should be provided
as shown below. When parameters are subject to transformation functions, a
transform argument can be added, which will be discussed in the second exam-
ple. The dynr.model() function takes the recipes and the data and combines
information from both. In doing so, this function uses the information from
each recipe to write the text for a C function. Optionally, the C functions can

9

be written to a file named by the outfile argument (i.e., “RSLinearDsicrete.c” in
this specific example) so that the user can inspect the automatically generated
C code. Ideally of course, there is no need to ever examine this file; however,
it is sometimes useful for debugging purposes and may be helpful for specify-
ing models that extend those supported by the R interface functions. More
frequently, inspecting the dynrModel object and “serving it” will provide the
needed information.

> #---- Create model ----

>

> rsmod <- dynr.model(

+ dynamics = recDyn,

+ measurement = recMeas,

+ noise = recNoise,

+ initial = recIni,

+ regimes = recReg,

+ data = EMGdata,

+ outfile = "RSLinearDiscrete.c")

> #---- Create model and cook it all up ----

>

> yum <- dynr.cook(rsmod)

In the last line above, the model is “cooked” with the dynr.cook() function to
estimate the free parameters and their standard errors. When cooking, the C
code that was written by dynr.model() is compiled and dynamically linked to
the rest of the compiled dynr code. Then the C is executed to optimize the free
parameters while calling the dynamically linked C functions that were created
from the user-specified recipes. There are two points worth emphasizing in this
regard. First, the user never has to write C functions. Second, the user benefits
from the C functions because of their speed. In this way, dynr provides an R
interface for dynamical systems modeling while maintaining much of the speed
associated with C.

1.4 Serve the results

The final step associated with dynr modeling is serving results (a dynrCook
object) after the model has been cooked. To this end, several standard, popu-
lar S3 methods are defined for the dynrCook class, including coef(), confint(),
deviance(), logLik() (and thus implicitly AIC() and BIC()), names(), nobs(),
summary(), and vcov(). These methods perform the same tasks as their counter-
parts for regression models (i.e., lm class objects). Besides, dynr also provides
a few other model-serving functions. Here we illustrate in turn: summary(),
plot(), dynr.ggplot() (or autoplot()), plotFormula(), and printex(). The sum-
mary() method provides a table of free parameter names, estimates, standard
errors, t-values, and Wald-type confidence intervals.

> #---- Serve it! ----

> summary(yum)

10

These parameter estimates, standard errors, and likelihood values closely mirror
those reported in [6, p. 755-756]. In the Deactivated Regime, the autoregressive
parameter (phi 1) and the intercept (mu 1) are lower than in the Activated
Regime. So, neighboring EMG measurements are more closely related in the
Activated Regime and the overall level is slightly higher. This matches very well
with the idea that the Activated Regime consists of bursts of facial muscular ac-
tivities and an elevated emotional state. Similarly, the effect of the self-reported
emotional level is positive in the Activated Regime and fixed to zero in the
Deactivated Regime. In the nested model that freely estimated this covariate
effect in the Deactivated Regime, it was estimated at -0.00258 with a t-value of
-0.097 and thus was subsequently fixed at zero. So, in the Deactivated Regime
there is no relationship between the self-reported emotional level and the facial
muscular activity. Essentially, in the Activated Regime the facial EMG and the
self-reported emotions become coupled, but in the Deactivated Regime they are
unrelated. The dynamic noise parameter gives a sense of the size of the intrinsic
unmeasured disturbances that act on the system. These forces perturb the sys-
tem with a typical magnitude (i.e., standard deviation) of a little less than half
a point on the EMG scale seen in Figure 1(A). Lastly, the log-odds parameters
(c11 and c21) can be turned into the transition probability matrix yielding

(Deactivatedti,j+1
Activatedti,j+1

Deactivatedti,j .9959 .0041
Activatedti,j .0057 .9943

)
(18)

which implies that both the Deactivated and the Activated Regimes are strongly
persistent with high self-transistion probabilities. Next we consider some of the
visualization options for serving a model.

The default plot() method is used to visualize the time series in a collec-
tion of plots: (1) a plot of time series created by dynr.ggplot() (or autoplot()),
(2) a histogram of predicted regimes, and (3) a plot of equations created by
plotFormula().

> plot(yum, dynrModel = rsmod, style = 1, textsize = 5)

The dynr.ggplot() (or autoplot()) method creates a plot of the smoothed state
estimates overlaying the predicted regimes. It needs the result object and model
object as inputs, and allows for plotting (1) user-selected smoothed state vari-
ables by default and (2) user-selected observed-versus-predicted values by setting
a style to 2. An illustrative plot is created from the code below and shown in
Figure 1(B).

> #pdf('./Figures/plotRSGG.pdf', height=7, width=12)

> dynr.ggplot(yum, dynrModel = rsmod, style = 1,

+ names.regime = c("Deactivated", "Activated"),

+ title = "(B) Results from RS-AR model", numSubjDemo = 1,

+ shape.values = c(1),

+ text = element_text(size = 24),

11

+ is.bw = TRUE)

> #dev.off()

>

> autoplot(yum, dynrModel = rsmod, style = 1,

+ names.regime = c("Deactivated", "Activated"),

+ title = "(B) Results from RS-AR model", numSubjDemo = 1,

+ shape.values = c(1),

+ text = element_text(size = 16),

+ is.bw = TRUE)

This shows that for the first 99 seconds the participant is in the Deactivated
Regime, with their latent state ηi(ti,j+1) varying according to the lower auto-
correlation model and having no relation to the variation in the self-reported
emotional data in Figure 1(A). Then the participant switches to the Activated
Regime and their latent state becomes more strongly autocorrelated and cou-
pled to the self-report data. There follows a brief period in the Deactivated
Regime around time=130 seconds with a subsequent return to the Activated
Regime for the remainder of the observation. Of course, note that Figure 1(A)
shows the observed EMG data whereas Figure 1(B) shows the latent state which
is related to the observed data by Equation 1.

For all users, the plotFormula() method can be used to display equations on
R plots. Equations can be viewed in several ways after the model is specified: (1)
with free parameter names and fixed values, as illustrated here in Figure 2(A),
(2) with parameter starting values, or (3) after estimation with fitted parameter
values as in Figure 2(B). Each of these desired characteristics can be embedded
in the neatly typeset equations. The ParameterAs argument changes which of
these characteristics is used in the equations. Here the user-supplied parameter
names and estimated parameters are typeset in Figure 2 because ParameterAs
was respectively given names(rsmod), namely, the parameter names stored in
the dynrModel object, rsmod , and coef(yum), namely, the estimated free param-
eter values stored in the dynrCook object, yum. Starting values for parameters
are also possible values for this argument. The plotFormula() method does not
require the user to install LATEX facilities and compile LATEX code in a sep-
arate step, and hence are convenient to use. To maximize the readability of
the equations, it is only shown here using equations for the dynamic model and
measurement model, which can be obtained by respectively setting the printDyn
and printMeas arguments to true.

> plotFormula(dynrModel = rsmod, ParameterAs = names(rsmod),

+ printDyn = TRUE, printMeas = TRUE) +

+ ggtitle("(A)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

> plotFormula(dynrModel = rsmod, ParameterAs = coef(yum),

+ printDyn = TRUE, printMeas = TRUE) +

+ ggtitle("(B)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

12

We can see that the equations in Figure 2(A) are precisely those from Equations
1 and 2 which we used to define the model except that we have fixed β1 to zero.
If these equations did not match, it may indicate that we made a mistake in our
model specification.

Dynamic Model

Regime 1:

η(t+1) = φ1 × η(t) + w1(t)

Regime 2:

η(t+1) = φ2 × η(t) + w1(t)

Measurement Model

Regime 1:

iEMG = 0 × SelfReport + µ1 + η

Regime 2:

iEMG = β2 × SelfReport + µ2 + η

(A)

Dynamic Model

Regime 1:

η(t+1) = 0.27 × η(t) + w1(t)

Regime 2:

η(t+1) = 0.47 × η(t) + w1(t)

Measurement Model

Regime 1:

iEMG = 0 × SelfReport + 4.55 + η

Regime 2:

iEMG = 0.46 × SelfReport + 4.75 + η

(B)

Figure 2: Automatic plots of model equations with (A) parameter names and
(B) estimated parameters for the regime-switching linear state-space model.

Finally, for LATEX users, the printex() method helps generate equations for
the model in LATEX form.

> printex(rsmod,

+ ParameterAs = names(rsmod),

+ printInit = TRUE, printRS = TRUE,

+ outFile = "RSLinearDiscreteYang.tex")

The ParameterAs argument functions the same as that in the plotFormula()
method. Here we have selected to use the names of the free parameters as ev-
idenced by giving names(rsmod) to the ParameterAs argument. In this case
the initial conditions and regime-switching functions are included in the equa-
tions, as indicated by the printInit and printRS arguments being set to true.
The LATEX code for the equations is written to the file specified, “RSLinearDis-
creteYang.tex”, which the user can then work with and modify as he/she wishes.
Of course, this function is designed more as a convenience feature for users who
are already using LATEX as a writing tool and requires all the LATEX-related fa-
cilities already in place on the user’s computer. If so desired, the tex file can
also be compiled within R and viewed as a pdf via the texi2pdf() function in
the tools library:

13

> tools::texi2pdf("RSLinearDiscreteYang.tex")

> system(paste(getOption("pdfviewer"), "RSLinearDiscreteYang.pdf"))

This example has used real EMG data from a previous study [6] to illustrate
many parts of the user-interface for dynr. Of particular note are the various
“serving” functions which allow users to both verify their model and examine
their results in presentation-ready formats. In the next example, we will use
simulated data to further illustrate features of dynr, especially the nonlinear
formula interface for dynamics.

References

[1] G. E. Schwartz. “Biofeedback, Self-regulation, and the Patterning of Phys-
iological Processes.” In: American Scientist 63 (1975), pp. 314–324.

[2] John T. Cacioppo and R.E. Petty.“Electromyograms as Measures of Extent
and Affectivity of Information Processing.” In: American Psychologist 36
(1981), pp. 441–456. doi: 10.1037//0003-066x.36.5.441.

[3] John T. Cacioppo et al. “Electromyographic Activity over Facial Muscle
Regions Can Differentiate the Valence and Intensity of Affective Reactions.”
In: Journal of Personality and Social Psychology 50.2 (1986), pp. 260–268.
doi: 10.1037//0022-3514.50.2.260.

[4] Ulf Dimberg, Monika Thunberg, and Kurt Elmehed. “Unconscious Facial
Reactions to Emotional Facial Expressions.” In: Psychological Science 11.1
(2000), pp. 86–89. doi: 10.1111/1467-9280.00221.

[5] Ulf Dimberg. “Facial Electromyography and Emotional Reactions.” In: Psy-
chophysiology 27 (1990), pp. 481–494. doi: 10.1111/j.1469-8986.1990.
tb01962.x.

[6] Manshu Yang and S-M. Chow. “Using State-Space Model with Regime
Switching to Represent the Dynamics of Facial Electromyography (EMG)
Data.”In: Psychometrika: Application and Case Studies 74.4 (2010), pp. 744–
771. doi: 10.1007/s11336-010-9176-2.

[7] J. Durbin and S. J. Koopman. Time Series Analysis by State Space Meth-
ods. Oxford, United Kingdom: Oxford University Press, 2001.

14

