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Introduction

This vignette will cover the ddhazard function used for estimation in the dynamichazard package You can
install the version of the package used to make this vignette from github with the devtools package by
calling devtools::install github("boennecd/dynamichazard@c1d3510"). You can also get the latest
version on CRAN by calling:

install.packages("dynamichazard")

1.1 Why and when to use the ddhazard

The ddhazard function is intended for situation where you have a dynamic binary regression model or time-
to-event model with time-varying coefficients. The advantage of the state spaces methods used here is that
you can extrapolate to time periods beyond the data used in estimation. An example is forecasting firm
failures given the firms present accounting data. The task is to use the present data to estimate a model
and forecast the likelihood of default for the firms in the following year.

The estimation function ddhazard is implemented such that:

1. The time complexity of the computation is linear in the number of observations and in time.

2. The dimension of the observation equation can vary through time allowing for late entry and right
censoring.

3. It is fast due to the C++ implementation and supports multithreading.

4. The methods are fast compared to e.g., sequential Monte Carlo alternatives which are also implemented
in the package (see dynamichazard::PF EM and dynamichazard::PF forward filter).

1.2 Guide to vignettes

The vignette here is the primary vignette where the models and estimation methods are explained. The
package also contains other supplementary vignettes. Comparing methods for time-varying logistic models
shows the methods applied to a real world data set. The vignette illustrates how to use the estimation
function ddhazard and other functions in this package. The vignette only uses the discrete time model.
This vignette also describes the continuous time model. The Bootstrap illustration vignette shows how to
use the ddhazard boot function which is a wrapper for the boot function from the boot package. ddhazard
Diagnostics illustrates how the residuals and hatvalues functions can be used to check the model fit.

1.3 Dynamic binary regression

We will introduce the setup and discrete model in the following paragraphs. We are observing individual
1, 2, . . . who each has an event at time T1, T2, . . . . We will also refer to an event as death as is typical in
survival analysis. In addition we see covariate vectors xi1,xi2, . . . for each individual i. Each covariate
vector xij is valid in a period (ti,j−1, tij ]. Thus, a data frame may look as follows:
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id tstart tstop event x1 x2

1 0.00 1.26 0 0.377 0.463
1 1.26 12.00 1 -0.241 -0.353
2 9.91 12.62 0 -0.140 0.122
2 12.62 16.94 0 0.188 0.352
2 16.94 18.45 0 -0.490 0.281

2 18.45 28.00 0 0.193 0.208
3 0.00 5.00 1 0.441 -0.476
4 0.00 1.09 0 0.297 0.352
4 1.09 7.00 1 -0.304 -0.324
5 24.71 28.00 0 -0.390 0.363

This is in the typical start-stop time format. The column id shows which individual the row belongs
to. tstart is point at which the row is valid from and tstop is when the row is valid to. event is one if
the individual dies at tstop and x1 and x2 are two covariates. Thus, the individual with id 1 dies at time
12 while id 2 survives all the periods we observe. The methods we look at will allow for right-censoring to
handle an individuals like id 2, and left-censoring (delayed entry).

We will put the observations into intervals 1, 2, . . . , d each with length ψ1, ψ2, . . . , ψd. That is, we observe
a total of d intervals. Assume that each ψt = 1 for simplicity. Then we define the a series of indicators for
each individual given by:

yijt = 1{Ti∈(ti,j−1,tij ]∧t−1<tij≤t}

which denotes whether individual i has event with the j’th covariate vector in interval t. Next, the risk set
in interval t is given by:

Rt = {(i, j) ∈ Z+ × Z : ti,j−1 ≤ t− 1 ≤ tij}
where Z are the natural numbers. We will refer to this as the discrete risk set as we later introduce a
continuous version. For simplicity we assume that we have removed all observation that are strictly inside
an interval. I.e. those where:

∃t ∈ Z+ : t− 1 < ti,j−1 < tij < t

Further, we change the event flag for the last observation in case an individual has an event with a covariate
vector inside an interval. Later, we introduce the continuous model where we can handle the information of
such observations. For a given individual i who has covariate vector j in interval t, we model the chance of
an event by:

P (Yijt = 1|y1, . . . ,yt−1,αt) = h(α⊤
t xijt)

where yt is the vector of outcomes given risk set Rt and h is the inverse link function. For example, this
could be the inverse logistic function such that h(η) = exp(η)/(1+exp(η)). The ddhazard function estimates
models in the state space form:

yt ∼ P (yt|αt)
αt+1 = Fαt +Rηt ηt ∼ N(0, ψtQ)

, t = 1, . . . , d

αt is the state vector with the corresponding state equation. Again, we will fix ψt = 1. However, the
ddhazard function is implemented to handle any equidistant interval length. That is, ψt = ψ for a pre-
specified constant ψ. Further, we let Ht(αt) = Var (yt|αt) denote the conditional covariance matrix of
yt | αt and let zt(αt) denote the conditional mean. They are defined by:

zkt(αt) = E (Yijt|αt) = h(α⊤
t xijt) (1)

Hkk′t(αt) =

{
Var (Yijt|αt) f = f ′

0 otherwise
(2)

=

{
zkt(αt)(1− zkt(αt)) k = k′

0 otherwise

2



where we assumed that individual i with covariate vector j was at the k’th index of the risk set at time
t. The state equation is implemented with a 1. and 2. order random walk. For the first order random
walk F = R = Im where m is the number of time varying coefficients and Im is the identity matrix with
dimension m. As for the second order random walk, we have:

F =

(
2Im −Im
Im 0m

)
, R =

(
Im
0m

)

where 0m is a m × m matrix with zeros in all entries. We let the linear predictor in equation (2) in the
second order random walk as

(R⊤αt)
⊤xijt = ξ⊤t xijt

where ξt = R⊤αt and we order state equation such that αt = (ξ⊤t , ξ
⊤
t−1)

⊤ to match the definition of F and
R. The likelihood of the model where α0,α1, . . . ,αd are observed can be written as follows by application
of the Markov property of the model:

P (α0, . . . ,αd,yt, . . . ,yT ) = L (α0, . . . ,αd)

= p(α0)
d∏

t=1

P (αt|αt−1)
∏

(i,j)∈Rt

P (yijt|αt)

which we can expand to (omitting a normalization constant):

L (α0, . . . ,αd) = logL (α0, . . . ,αd) =−
1

2
(α0 − a0)

⊤
Q−1

0 (α0 − a0)

− 1

2

d∑

t=1

(αt − Fαt−1)
⊤
R⊤ψ−1

t Q−1R (αt − Fαt−1)

− 1

2
log |Q0| −

d

2
log |Q|

+

d∑

t=1

∑

(i,j)∈Rt

lijt(αt) + . . .

lijt(αt) = yijt log h(x
⊤
ijtαt) + (1− yijt) log

(
1− h(x⊤

ijtαt)
)

The unknown parameters are the initial state vector α0 and the covariance matrix Q . We estimate these
using an EM-algorithm. The E-step is carried out first by filtering with an Extended Kalman filter (EKF), an
Unscented Kalman filter (UKF) or an approximation of the posterior modes. We apply a smoother after using
the filter. The method is chosen by the method argument of the ddhazard control function passed to the
control argument of ddhazard (e.g., ddhazard control(method = "EKF", ...)). All filtering methods
requires an initial state vector α0, co-variance matrix Q and initial co-variance matrix Q0 to start.

A key thing to notice (and a likely source of error if forgotten) is that the Q argument for Q is scaled
by the length of the time interval, ψt. The motivation for this behavior is that you can alter ψt and get
comparable estimates of Q. Further, it will also be useful if unequal intervals lengths are implemented later.
Q 0 is not scaled and thus will exactly match Q0 in the estimation. The reasoning is that Q0 is independent
of our time interval length and reflects our uncertainty of α0

We will make two fits to illustrate how a call to ddhazard looks and to show that Q will be scaled by ψt.
To do so, we use the pbc data set from the survival package. The first call is:

library(dynamichazard)

dd_fit_short <- ddhazard(

Surv(time, status == 2) ~ log(bili), # Formula like for coxph from survival

data = pbc,
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by = 100, # Length of time intervals

Q = diag(.3^2, 2), # Covariance matrix in state eqn

Q_0 = diag(2^2, 2), # Covariance matrix for initial state

# vector

max_T = 3600, # Last time we observe

id = pbc$id, # id of individuals

control = ddhazard_control(eps = 1e-4))

# Print diagonal of covariance matrix

diag(dd_fit_short$Q)

## (Intercept) log(bili)

## 0.000244 0.000211

Above, we estimate the model with a time intervals of length by = 100. The model is the logistic model
which we introduced later. For now, let us see what happens if we increase the interval length by changing
the by argument:

library(dynamichazard)

dd_fit_wide <- ddhazard(

Surv(time, status == 2) ~ log(bili),

data = pbc,

by = 150, # Increased

Q = diag(.3^2, 2),

Q_0 = diag(2^2, 2),

max_T = 3600,

id = pbc$id,

control = ddhazard_control(eps = 1e-4))

# Print relative differences between diagonal of covariance matrices

Q_short <- sqrt(diag(dd_fit_short$Q))

Q_wide <- sqrt(diag(dd_fit_wide$Q))

(Q_wide - Q_short) / Q_short

## (Intercept) log(bili)

## -0.00465 -0.08954

We see that the diagonal entries are not ”too far” from each other with the two fits. Plots of the two sets
of predicted coefficients are similar in terms of width of the confidence bounds (black is the short intervals
and blue is long intervals):

par(mfcol = c(1, 2), mar = c(5, 4, 1, 1), cex = .75)

for(i in 1:2){
plot(dd_fit_short, cov_index = i, col = "Black")

plot(dd_fit_wide, cov_index = i, col = "DarkBlue", add = T)

}
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Further, as expected the intercept is larger when we use longer intervals length. To ease the notation,
we assume that ψt = 1 in the rest of the vignette. The rest of this vignette is structured as follows. Section
2 will cover the EM algorithm. This is followed by the sections 3, 4, and sections 5 and 6 which respectively
covers the extended Kalman filter, unscented Kalman filter, and approximation of the posterior mode used
to perform the filtering in the E-step of the EM algorithm. Next, the section 7 and 8 covers how estimation
is done with weights or fixed effects. The sections 9 and 10 covers the models implemented in this package.
Finally, we end with a section 11.

I encourage you to use the shiny app while reading this vignette. You can launch the shiny app by
installing this package and running:

dynamichazard::ddhazard_app()

The app will allow you to compare the methods and models described here on simulated data sets.

2 EM algorithm

An EM algorithm is used to estimate the initial state space vector α0 and the co-variance matrix Q.
Optionally Q0 is also estimated if control = ddhazard control(est Q 0 = T, ...). Though, we do not
have sufficient information to estimate this matrix. Define

a t|s = E (αt|y1, . . . ,ys) , V t|s = E (Vt|y1, . . . ,ys)

for the conditional mean and co-variance matrix. Notice that the letter ’a’ is used for mean estimates
while ’alpha’ is used for the unknown state as is typical in the state space literature. The notation above
both covers filter estimates in the case where s ≤ t and smoothed estimates when s > t. We suppress the
dependence of the covariates (xijt) here to simplify the notation. The initial values for α0, Q and Q0 can
be set by passing a vector for the a 0 argument of ddhazard for α0 and matrices to Q 0 and Q argument of
ddhazard for respectively Q0 and Q.

2.1 E-step

The outcome of the E-step are the smoothed estimates:

a
(k)
t|d, V

(k)
t|d, t = 0, 1, . . . , d

where d is the number of periods we observe. Superscripts ·(k) is used to distinguish between the estimates

from each iteration of the EM-algorithm. Thus, a
(k)
t|d is the smoothed state space vector for interval t in

iteration k of the EM algorithm. The required input to start the E-step is an initial mean vector â
(k−1)
0 and

co-variance matrix Q̂(k−1). Given these input, we compute the following estimates by using a filter:
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a j|j−1, a i|i, V j|j−1, V i|i, i = 0, 1, . . . , d ∧ j = 1, 2, . . . , d

Then the estimates are smoothed by computing:

B
(k)
t = V t−1|t−1FV

−1
t|t−1

a
(k)
t−1|d = a t−1|t−1 +Bt(a

(k)
t|d − a t|t−1)

V
(k)
t−1|d = V t−1|t−1 +Bt(V

(k)
t|d −V t|t−1)B

⊤
t

t = d, d− 1, . . . , 1

2.2 Kalman Filter

The standard Kalman filter is carried out by recursively doing a prediction step and a correction step. This
also applies for all the implemented filters. Thus, this paragraph is included to introduce general notions.
The first step in the Kalman Filter is the prediction step where we estimate a t|t−1 and V t|t−1 based on
a t−1|t−1 and V t−1|t−1. Secondly, we carry out the correction step where we estimate a t|t and V t|t based
on a t|t−1 and V t|t−1 and the observations. We repeat the process until t = d.

2.3 M-step

The M-step updates the mean â
(k−1)
0 and co-variance matrices Q̂(k−1) and Q̂

(k−1)
0 (the latter being optional).

These are computed by:

α̂
(k)
0 = a

(k)
0|d, Q̂

(k)
0 = V

(k)
0|d

Q̂(k) =
1

d

d∑

t=1

R⊤

((
a
(k)
t|d − Fa

(k)
t−1|d

)(
a
(k)
t|d − Fa

(k)
t−1|d

)⊤

+V
(k)
t|d − FB

(k)
t V

(k)
t|d −

(
FB

(k)
t V

(k)
t|d

)⊤
+ FV

(k)
t−1|dF

⊤

)
R

We check the relative norm of the change in the state vectors to check for convergence. You can select the
threshold for convergence by setting the eps argument of ddhazard control which is passed to the control
argument of ddhazard (e.g., ddhazard control(eps = 0.001, ...)). Algorithm 1 shows the method.

3 Extended Kalman Filter

The idea of the Extended Kalman filter is to replace the observational equation with a first order Taylor
expansion. This approximated model can then be estimated with a regular Kalman Filter. The EKF
presented here is originally described in Fahrmeir [1992] and Fahrmeir [1994] where the EM-algorithm as
shown above is also from. The formulation in Fahrmeir [1994] differs from the standard Kalman Filter by
re-writing the correction step using the Woodbury matrix identity. This has two computational advantages.
The first one is that the time complexity is O(nt) instead of O(n3

t ) where nt = |Rt| denotes the cardinality of
the risk set. Secondly, we do not have store an intermediate nt×nt matrix. The EKF starts with prediction
step where we compute:

a t|t−1 = Fa t−1|t−1,

V t|t−1 = FV t−1|t−1F
⊤ +RQR⊤

Secondly, we perform the correction step by:

V t|t =
(
V−1

t|t−1 +Ut(a t|t−1)
)−1

a t|t = a t|t−1 +V t|tut(a t|t−1)

where ut(a t|t−1) and Ut(a t|t−1) are given by:
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Algorithm 1 EM algorithm with unspecified filter.

Input:

Q,Q0,a0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd

Convergence threshold ǫ

1: Set a
(0)
0|0 = a0 and Q(0) = Q

2: for k = 1, 2, . . . do
3: procedure E-step

4: Apply filter with a
(k−1)
0|0 , Q(k−1) and Q0 to get

a 1|0, a 1|1, a 2|1, . . . , ad|d−1, ad|d and
V 1|0, V 1|1, V 2|1, . . . , Vd|d−1, Vd|d

Apply smoother by computing
5: for t = d, d− 1, . . . , 1 do

6: B
(k)
t = V t−1|t−1FV

−1
t|t−1

7: a
(k)
t−1|d = a t−1|t−1 +B

(k)
t (a

(k)
t|d − a t|t−1)

8: V
(k)
t−1|d = V t−1|t−1 +B

(k)
t (V

(k)
t|d −V t|t−1)

(
B

(k)
t

)⊤

9: procedure M-step

Update the initial state and the covariance matrix by

10: a
(k)
0|0 = a

(k)
0|d

11:

Q(k) =
1

d

d∑

t=1

R⊤

((
a
(k)
t|d − Fa

(k)
t−1|d

)(
a
(k)
t|d − Fa

(k)
t−1|d

)⊤

+V
(k)
t|d − FB

(k)
t V

(k)
t|d −

(
FB

(k)
t V

(k)
t|d

)⊤
+ FV

(k)
t−1|dF

⊤

)
R

Stop the if sum of relative norm of changes is below the threshold

12:

∑d
t=0

∥∥∥a(k)

t|d
−a

(k−1)

t|d

∥∥∥
∥∥∥a(k−1)

t|d

∥∥∥
< ǫ

ut(αt) =
∑

(i,j)∈Rt

uijt(αt), uijt(αt) = xijt
∂h(η)/∂η

Hkkt(αt)
(yijt − h(η))

∣∣∣∣
η=x⊤

ijtαt

Ut(αt) =
∑

(i,j)∈Rt

Uijt(αt), Uijt(αt) = xijtx
⊤
ijt

(∂h(η)/∂η)
2

Hkkt(αt)

∣∣∣∣∣
η=x⊤

ijtαt

Rt is the set of indices of individuals who are at risk in time interval t. Further, the ks in Hkkt(αt) are set
such that the match with the i’th individuals j’th covariate matrix. Algorithm 2 shows the EKF method.

3.1 Divergence

Initial testing showed that the EKF has issues with divergence for some data set. The cause of divergence
seems to be overstepping in the correction step where we update a t|t. In particular, the signs of the elements
of a t|t tends to alter between t−1, t, t+1 etc. and the absolute values tends to increase in each iteration when
the algorithm diverges. The following section describes solutions to this issue. Fahrmeir [1992] mentions
that the correction step can be viewed as a single Fisher Scoring step. This motivates:

1. To take multiple steps if a t|t is far from a t|t−1.

2. Introduce a learning rate.

Simulated data sets show that the learning rate solves the issues with divergence. Let 1 ≥ ζ0 > 0 denote
the learning rate and ǫNR denote the tolerance for convergence in the correction step. Then set a = a t|t−1

and compute:
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Algorithm 2 Extended Kalman filter (EKF).

Input:

Q,Q0,a0, X1, . . . ,Xd, y1, . . . ,yd, R1, . . . , Rd

1: Set a 0|0 = a0 and V 0|0 = Q0

2: for t = 1, 2, . . . , d do

3: procedure Prediction step

4: a t|t−1 = Fa t−1|t−1

5: V t|t−1 = FV t−1|t−1F
⊤ +RQR⊤

6: procedure Correction step

Compute the score vector and the information matrix and set
7: Let a = a t|t−1

8: ut(a) =
∑

(i,j)∈Rt
uijt(a), uijt(a) = xijt

∂h(η)/∂η
Hkkt(a)

(yijt − h(η))
∣∣∣
η=x⊤

ijta

9: Ut(a) =
∑

(i,j)∈Rt
Uijt(a), Uijt(a) = xijtx

⊤
ijt

(∂h(η)/∂η)2

Hkkt(a)

∣∣∣
η=x⊤

ijta

10: V t|t =
(
V−1

t|t−1 +Ut(a)
)−1

11: a t|t = a t|t−1 +V t|tut(a)

V t|t =
(
V−1

t|t−1 +Ut(a)
)−1

a t|t = V t|t

(
Ut(a)a+V−1

t|t−1a t|t−1 + ζ0ut(a)
)

if ‖a t|t − a‖/(‖a‖+δ) < ǫNR then exit

else set a = a t|t and repeat

where δ is small like 10−9. The arguments for the above formulas are covered later in the global mode
approximation section. Selecting ζ0 < 1 in case of divergence can solve the non-convergence issue. Thus, the
following procedure is used if the algorithm fails with initial learning rate ζ0: try a learning of ζ0 for given
0 < ζ0 ≤ 1 and define 0 < ζ < 1. If that fails then try a rate of ζ0ζ

1. If that fails then try a rate of ζ0ζ
2 etc.

The process is stopped when we succeed to fit the model or we fail to estimate the model with a learning
rate of ζ0ζ

b for a given integer b.
While Fahrmeir [1992] does not observe improvements with multiple iterations, we find improvements in

terms of out-of-sample prediction (for example by setting ǫNR = 10−2 or lower) with a moderate or large
amount of observations.

The value of ζ0 and ǫNR are set by respectively the arguments LR and NR eps to ddhazard control. By
default, LR = 1 and NR eps = NULL which yields a learning rate of 1 and a single Fischer scoring step. These
arguments can be altered by setting e.g. control = ddhazard control(LR = 0.75, NR eps = 0.00001)

for a learning rate of 0.75 and a threshold in the Fisher Scoring of 10−5.
In addition, a minor term is added covariance matrix to reduce the influence of extreme values. Thus,

the score and information matrix are computed with:

ut(αt) =
∑

(i,j)∈Rt

uijt(αt), uijt(αt) = xijt
∂h(η)/∂η

Hkkt(αt) + ξ
(yijt − h(η))

∣∣∣∣
η=x⊤

ijtαt

Ut(αt) =
∑

(i,j)∈Rt

Uijt(αt), Uijt(αt) = xijtx
⊤
ijt

(∂h(η)/∂η)
2

Hkkt(αt) + ξ

∣∣∣∣∣
η=x⊤

ijtαt

where ξ > 0 is a small number. The default can be changed with the denom term argument of ddhazard control.
The approach is similar to how the glmnet package handles close to boundary estimates [see Friedman et al.,
2010]. Algorithm 3 shows the new E-step.
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Algorithm 3 EKF with extra correction steps, learning rate, and hyperparameter ξ replacing lines 8-11 of
Algorithm 2.

Input:

Threshold ǫNR, learning rate ζ0 and small numbers δ and ξ
1: a t|t = a t|t−1

2: repeat

3: a = a t|t

4: ut(a) =
∑

(i,j)∈Rt
uijt(a), uijt(a) = xijt

∂h(η)/∂η
Hkkt(a)+ξ (yijt − h(η))

∣∣∣
η=x⊤

ijta

5: Ut(a) =
∑

(i,j)∈Rt
Uijt(a), Uijt(a) = xijtx

⊤
ijt

(∂h(η)/∂η)2

Hkkt(a)+ξ

∣∣∣
η=x⊤

ijta

6: V t|t =
(
V−1

t|t−1 +Ut(a)
)−1

7: a t|t = V t|t

(
Ut(a)a+V−1

t|t−1a t|t−1 + ζ0ut(a)
)

8: until
∥∥a t|t − a

∥∥ /(‖a‖+ δ) < ǫNR

4 Unscented Kalman Filter

The UKF selects state vectors called sigma point with given sigma weigths chosen to match the moments of
observation equation. The idea is similar to a Monte Carlo methods for state space models but where the
state vectors are chosen deterministically rather than randomly drawn.

The motivation to use the UKF in place of the EKF is that we avoid the linerization error in the EKF.
Julier and Uhlmann [1997] introduce a UKF that approximate the first two moments and up to fourth
moment in certain settings. Julier and Uhlmann [2004] further develop the UKF and extends it to what is
later called the Scaled Unscented Transformation. We will cover the the Scaled Unscented Transformation
with the parametrizion from Wan and Van Der Merwe [2000] and formulas from Menegaz [2016].

One of the reasons the UKF has received a lot of attention (especially in engineering) is for settings
where the observation equation is complicated since the UKF does not require computation of the Jacobian
matrix. However, deriving the Jacobian matrix for the models in this package is not difficult.

4.1 The usual UKF formulation

We start by introducing a common notation used in the UKF literature. For two random vectors vt and bt,
let:

Pvt,bt
= Cov (vt, bt|y1, . . . ,yt)

Notice that Pαt,αt = V t|t. The UKF start with the prediction step. As pointed out in Julier and
Uhlmann [2004] and Menegaz [2016], the regular Kalman filter prediction step can be used when the state
equation is a linear Gaussian model. Thus, the prediction step is:

a t|t−1 = Fa t−1|t−1,

V t|t−1 = FV t−1|t−1F
⊤ +RQR⊤

This is exact given the previous estimates a t−1|t−1 and V t−1|t−1 and computationally less demanding.
Then we select 2q + 1 so-called sigma points (where q is the dimension of the state equation) denoted by
â0, â1, . . . , â2q+1 according to:

â0 = a t|t−1

âj = a t|t−1 +
√
q + λ

(√
V t|t−1

)
j

âj+q = a t|t−1 −
√
q + λ

(√
V t|t−1

)
j

j = 1, 2, . . . , q

where
(√

V t|t−1

)
j
is the j’th column of the lower triangular matrix of the Cholesky decomposition of V t|t−1.

We assign the following weights to each sigma point (we will cover selection of the hyperparameters α, β
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and κ shortly):

W
[m]
0 =

λ

q + λ

W
[c]
0 =

λ

q + λ
+ 1− α2 + β

W
[cc]
0 =

λ

q + λ
+ 1− α

W
[m]
j =W

[c]
j =

1

2(q + λ)
, j = 1, . . . , 2q

λ = α2(q + κ)− q
Next, we proceed to the correction step. We start by defining the following intermediates:

ŷj = zt (âj) , j = 0, 1, . . . , 2q

Ŷ = (ŷ0, . . . , ŷ2q)

y =

2q∑

j=0

W
[m]
j yj , ∆Ŷ = Ŷ − y1⊤, Ĥ =

2q∑

j=0

W
[c]
j Ht(âj)

∆Â = (â0, . . . , â2q)− a t|t−11
⊤

Pyt,yt
=

2q∑

j=0

W
[c]
j

(
(ŷj − y)(ŷj − y)⊤ + Ĥ

)
= ∆Ŷdiag

(
W (c)

)
∆Ŷ⊤ + Ĥ

Pαt,yt
=

2q∑

j=0

W
[cc]
j (âj − a t|t−1)(ŷj − y)⊤ = ∆Âdiag

(
W (cc)

)
∆Ŷ⊤

Then the correction step is:

a t|t = a t|t−1 +Pαt,ytP
−1
yt,yt

(yt − y)

V t|t = V t|t−1 −Pαt,ytP
−1
yt,yt

P⊤
αt,yt

4.2 Re-writting

The above formulation has the drawback that we have to invert Pyt,yt which is in-feasible when the number
of observations is large. We can re-write the correction step above by using the Woodbury matrix identity
to get an algorithm O(nt) instead of O(n3

t ) where nt = |Rt| is the number of elements of the risk set. The
correction step can be computed as:

ỹ = ∆Ŷ⊤Ĥ−1(yt − y)

G = ∆Ŷ⊤Ĥ−1∆Ŷ

c = ỹ −G

(
diag

(
W (c)

)−1

+G

)−1

ỹ

L = G−G

(
diag

(
W (c)

)−1

+G

)−1

G

a t|t = a t|t−1 +∆Âdiag
(
W (cc)

)
c

V t|t = V t|t−1 −∆Âdiag
(
W (cc)

)
Ldiag

(
W (cc)

)
∆Â⊤

where ỹ, G, L and c are intermediates. The above algorithm is O(nt) since Ĥ is a diagonal matrix. Algorithm
4 shows the UKF method.
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Algorithm 4 The unscented Kalman filter (UKF) where V
1/2
t|t−1 denotes the “square root” matrix of V t|t−1

and
(
V

1/2
t|t−1

)
j
denotes the j’th column of the “square root” matrix. diag(·) gives a diagonal matrix with

the entries of the argument vector in the diagonal. q is the dimension of the state vector. W (·) is the vector

with elements W
[·]
0 ,W

[·]
1 , . . . ,W

[·]
2q .

Input:

Q,Q0,a0, X1, . . . ,Xd, y1, . . . ,yd, R1, . . . , Rd

Hyperparameters α, β, and κ
1: Set a 0|0 = a0 and V 0|0 = Q0

Compute sigma weights with λ = α2(q + κ)− q
2: W

[m]
0 = λ

q+λ

3: W
[c]
0 = λ

q+λ + 1− α2 + β

4: W
[cc]
0 = λ

q+λ + 1− α
5: W

[m]
j =W

[c]
j = 1

2(q+λ) , j = 1, . . . , 2q

6: for t = 1, 2, . . . , d do

7: procedure Prediction step

8: a t|t−1 = Fa t−1|t−1

9: V t|t−1 = FV t−1|t−1F
⊤ +RQR⊤

10: procedure Correction step

Compute sigma points

11:

â0 = a t|t−1

âj = a t|t−1 +
√
q + λ

(
V

1/2
t|t−1

)
j

âj+q = a t|t−1 −
√
q + λ

(
V

1/2
t|t−1

)
j

j = 1, 2, . . . , q

Compute intermediates
12: ŷj = zt (âj) j = 0, 1, . . . , 2q

13: Ŷ = (ŷ0, . . . , ŷ2q)

14: y =
∑2q

j=0W
[m]
j yj

15: ∆Ŷ = Ŷ − y1⊤

16: Ĥ = ξI+
∑2q

j=0W
[c]
j Ht(âj)

17: ∆Â = (â0, . . . , â2q)− a t|t−11
⊤

18: ỹ = ∆Ŷ⊤Ĥ−1(yt − y)

19: G = ∆Ŷ⊤Ĥ−1∆Ŷ

20: c = ỹ −G
(
diag

(
W (c)

)−1
+G

)−1

ỹ

21: L = G−G
(
diag

(
W (c)

)−1
+G

)−1

G

Compute updates
22: a t|t = a t|t−1 +∆Âdiag

(
W (cc)

)
c

23: V t|t = V t|t−1 −∆Âdiag
(
W (cc)

)
Ldiag

(
W (cc)

)
∆Â⊤

4.3 The Square-root Unscented Kalman filter

Another idea could be to try the Square-root Unscented Kalman filter suggested in der Merwe and Wan
[2001]. The idea is to use a QR decompositions and Cholesky updates to get a more stable method. While
der Merwe and Wan [2001] shows that this scales equally well in the dimension of the state vector we show
below that it does not scale well with the number of individuals at risk, nt. The prediction step is as before.
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Next, let

qr (B) = C, C is the Choleksy decomposition of BB⊤ = C⊤C

cholupdate (C, c, v) = C̃, C̃ is the updated Cholesky factor C̃⊤C̃ = C⊤C+ vcc⊤

Whether we make an update or a downdate depends on the sign of v. The correction step can done as
follows:

C = qr
([√

W
[c]
1 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

√
Ĥ

])

C← cholupdate

(
C, ŷ0 − y, sign

(
W

[c]
0

)√
|W [c]

0 |
)

Pαt,yt
= ∆Âdiag

(
W (cc)

)
∆Ŷ⊤

K = Pαt,ytC
−1
(
C−1

)⊤

a t|t = a t|t−1 +K (yt − y)

V t|t = V t|t−1 −KC⊤CK⊤

where we use the left arrow, ←, to indicate an update and all definitions of matrices and vectors are as in
the beginning of this section. We will show that this is equivalent to the first method. First, assume that

the first weight is positive, W
[c]
0 > 0, such that we do not need the Cholesky update. Then:

C = qr
([√

W
[c]
0 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

√
Ĥ

])

⇒ C⊤C =
[√

W
[c]
0 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

√
Ĥ

]




√
W

[c]
0 (ŷ1 − y)

⊤

√
W

[c]
2 (ŷ2 − y)

⊤

...√
W

[c]
2q (ŷ2q − y)

⊤

√
Ĥ




= ∆Ŷdiag
(
W (c)

)
∆Ŷ⊤ + Ĥ = Pyt,yt

Pαt,yt
= ∆Âdiag

(
W (cc)

)
∆Ŷ⊤

K = Pαt,ytC
−1
(
C−1

)⊤
= Pαt,yt

(
C⊤C

)−1
= Pαt,ytP

−1
yt,yt

a t|t = a t|t−1 +K (yt − y) = a t|t−1 +Pαt,yt
P−1

yt,yt
(yt − y)

V t|t = V t|t−1 −KC⊤CK⊤ = V t|t−1 −Pαt,ytP
−1
yt,yt

P⊤
αt,yt

Next, we look at the computational cost of the case whereW
[c]
0 > 0. Since C ∈ R

(2q+1+nt)×nt , the cost of
finding the decomposition of C is O((2q+1+nt)n

2
t ) as stated in der Merwe and Wan [2001]. Consequently,

we end with a O(n3
t ) cost in every iteration of the filter making this method of little use when nt is large. I

have some ideas how we might change the method. Lets continue with the assumption that the first weight
is positive. Then one idea is to compute:

C = qr
([√

W
[c]
0 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

])

C← cholupdate
(
C, Ĥ, 1

)

In this case, we first find C ∈ R
(2q+1)×nt and then make a rank-nt update. The rest of the computations

are in-expensive relative to the number of observations, nt, since we have reduced the dimension of C ∈
R

(2q+1)×nt . In general, the key is that we want a Cholesky decomposition (or another decomposition)

of ∆Ŷdiag
(
W [c]

)
∆Ŷ⊤ + Ĥ which is easy to compute and ease the rest of the computations and storage

requirements. None of the above is implemented in the package.
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4.4 Extreme values

As with the EKF, a minor addition is made to the covariance matrix of the observational equation such that
we replace Ĥ by:

˜̂
H = Ĥ+ ξI

4.5 Selecting hyperparameters

We still need to select the hyperparameters κ, α and β. We will cover these in the given order. κ is usually
set to κ = 0 or κ = 3−m. Julier and Uhlmann [1997] argue that the latter is a ”useful heuristic” when the
state equation is Gaussian and α = 1.

The default in this package is κ = q(1+α2(0.1−1))/(α2(1−0.1)) and can be altered by setting the kappa
argument in the ddhazard control call which is passed to the control argument of ddhazard. For example,

control = ddhazard control(kappa = 1, ...) yields κ = 1. The default makes W
[m]
0 = 0.1 such that

all weights are positive. This ensures that V t|t−1 and Pyt,yt
are positive semi-definite. This follows since

both are sum of outer products with positive weights and as Ĥ is a diagonal matrix with positive entries.

0 < α ≤ 1 controls the spread of the sigma points. Notice that λ + q → 0+, W
[c]
0 ,W

[m]
0 → −∞ and

W
[c]
j ,W

[m]
j → ∞ (j > 0) as α → 0+. Thus, the lower the value of α, the lower the spread but the higher

the absolute weights. It is generally suggested to choose α small [see Gustafsson and Hendeby, 2012, Julier
and Uhlmann, 2004]. However, initial simulation studies showed that α = 1 yields the smallest mean square
error of estimated coefficients. Thus, this is the default. The parameter can be set with the alpha argument
of ddhazard control.

Lastly, β is a correction term to match the fourth-order term in the Taylor series expansion of the
covariance of the observational equation. Julier and Uhlmann [2004] show in the appendix that the optimal
value with a Gaussian state equation is β = 2. Though, initial simulation showed that β = 0 yielded the
best results and is therefore the default. It can be set with the beta argument of ddhazard control.

4.6 Selecting starting values

Experience with different data sets and the UKF shows that the method is sensitive to the starting values
of Q and Q0 (where the latter may be fixed). The reason for divergence can be illustrated by the effect
of Q0. We start the filter by setting V 0|0 = Q0. Say that we set Q0 = vIm and a0 = 0. Then the j’th
column of the Cholesky decomposition V 0|0 is a vector with

√
v in the j’th entry and zero in the rest of

the entries. Suppose that we set v large. Then the linear predictors computed with the b ≤ q + 1 sigma
point is

√
q + λ

√
vxij1b where xij1b is the b’th entry of individual i’s j’th covariate vector at time 1. This

can be potentially quite large in absolute terms if xij1b is moderately different from zero. This seems to lead
to divergence in some cases where all the predicted values becomes either zero or one with variance close to
zero. The later is an issue as we divide by the weighted average of the variances in the correction step.

Q has a similar effect although it is harder to illustrate with a small example as it occurs in an interme-
diate computations in the UKF. Based on experience, it seems that Q0 should be a diagonal matrix with
”somewhat” large values and Q should be a diagonal matrix with small values. Though, what is ”somewhat”
large and what is small dependent on the data set.

5 Sequential approximation of the posterior mode (SMA)

Another idea is do sequential rank-one approximations of the posterior modes. This section cover the details
of this method, the implementation and the pros and cons. Say we are at a given iteration t of the filtering
in the E-step. First, we carry out the prediction step with the closed form solution:

a t|t−1 = Fa t−1|t−1,

V t|t−1 = FV t−1|t−1F
⊤ +RQR⊤

Next, we replace the correction step with finding the mode that minimize the negative log-likelihood:
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argmin
α

− logP
(
α|a t|t−1,V t|t−1

)
−

∑

(i,j)∈Rt

logP (yijt|α)

However, we replace this problem with a series of update with one for each of the nt = |Rt| observations in
interval t. First, we set:

a
(0)
t|t = a t|t−1, V

(0)
t|t = V t|t−1

Then for k = 1, 2, . . . , nt we:

1. Set (i, j) to the k’th element of the risk set Rt

2. Update

a
(k)
t|t = argmin

α

− logP
(
α|a(k−1)

t|t ,V
(k−1)
t|t

)
− logP (yijt|α)

3. Update the covariance matrix by computing the inverse of the Hessian at a
(k)
t|t :

V
(k)
t|t =

((
V

(k−1)
t|t

)−1

+
∂ logP (yijt|α)

∂α∂α⊤

∣∣∣∣
α=a

(k)

t|t

)−1

Step 2 is a one dimensional problem of finding the constant v ∈ R that minimize:

v = argmin
b

b2
1

2

1

x⊤
ijtV

(k−1)
t|t xijt

− b
x⊤
ijta

(k−1)
t|t

x⊤
ijtV

(k−1)
t|t xijt

− (yijt log h(b) + (1− yijt) log(1− h(b))

= argmin
b

b2
1

2
d1 − bd1d2 − (yijt log h(b) + (1− yijt) log(1− h(b))

d1 =
1

x⊤
ijtV

(k−1)
t|t xijt

, d2 = x⊤
ijta

(k−1)
t|t

The update of the state vector given the constant v is done by:

a
(k)
t|t = a

(k−1)
t|t − (d1 − v)d2V(k−1)

t|t xijt

Further, step 3. can be re-written to:

V
(k)
t|t =

((
V

(k−1)
t|t

)−1

+ xijtgx
⊤
ijt

)−1

, g = −
logP

(
yijt|x⊤

ijtα = b
)

∂b2

∣∣∣∣∣
b=v

Further, we can apply Woodbury matrix identity (or in this case the less general Sherman–Morrison formula)
to avoid the inversions and get:

V
(k)
t|t = V

(k−1)
t|t −

V
(k−1)
t|t xijtgx

⊤
ijtV

(k−1)
t|t

1 + gx⊤
ijtV

(k−1)
t|t xijt

= V
(k−1)
t|t −

V
(k−1)
t|t xijtgx

⊤
ijtV

(k−1)
t|t

1 + g/d1

This method is selected by setting method = "SMA" in the ddhazard control call.

5.1 Implementation

Finding the constant v in step 2 can be done by the Newton Raphson method to find a unique minimum
when:

1. − logP (yijt|α) is convex in b.

2. − logP (yijt|α) bounded from below.
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which is true for the implemented models. Further, the learning rate ζ0 the decrease factor ζ as in the EKF
can be used here to by changing the correction step to:

a
(k)
t|t = a

(k−1)
t|t − (d1 − v)d2ζ0V(k−1)

t|t xijt

The Woodbury matrix identity can perform poorly for ill-conditioned matrices. This motivates the following
algorithm:

1. Set
a
(0)
t|t = a t|t−1, V

(0)
t|t = V t|t−1, LL⊤ =

(
V t|t−1

)−1

where L is the lower triangular matrix from the Cholesky decomposition of
(
V t|t−1

)−1
. For k =

1, 2, . . . , nt:

2. Perform step 1 and 2 as before to find the constant v and update a
(k)
t|t .

3. Update L by a rank-one-update of xijtgx
⊤
ijt such that LL⊤ ← LL⊤+xijtgx

⊤
ijt. We use the left arrow,

←, to indicate that we make an update.

4. Set V
(k)
t|t =

(
L−1

)⊤ (
L−1

)
.

Step 1 comes at an O(q3) cost per interval 1, 2, . . . , d. This is doable if we do not have too many
coefficients. Step 2 can be performed in O(q2). The current implementation use the Fortran code from the
post here http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646 based on Seeger [2004].

Moreover, we can reduce computations time by storing L̃ =
(
L−1

)⊤
and using that it is a triangular ma-

trix. L̃ is also a triangular matrix. Thus, we need to do less operations when doing the matrix multiplications.
Another advantage is that the rank-one update yields a positive semi definite matrix LL⊤. This is true since
xijtx

⊤
ijt is a vector outer product and as g is positive with distributions from the exponential family. Hence,

V
(k)
t|t =

(
L−1

)⊤ (
L−1

)
will remains a positive semi definite matrix. The method described here is used if you

set the argument posterior version = "cholesky" in the call to ddhazard control. The former method
using the Woodbury matrix identity is used if you set posterior version = "woodbury". Algorithm 5
shows the Woodbury matrix identity version and Algorithm 6 shows the Cholesky decomposition version.

15



Algorithm 5 Sequential approximation of the posterior mode. Left-arrow, ←, indicates an update instead
of an equality.

Input:

Q,Q0,a0, X1, . . . ,Xd, y1, . . . ,yd, R1, . . . , Rd

Learning rate ζ0
Set a 0|0 = a0 and V 0|0 = Q0

1: for t = 1, 2, . . . , d do

2: procedure Prediction step

3: a t|t−1 = Fa t−1|t−1

4: V t|t−1 = FV t−1|t−1F
⊤ +RQR⊤

5: procedure Correction step

Set V
(0)
t|t = V t|t−1, k = 0 and a

(0)
t|t = a t|t−1

6: for (i, j) ∈ Rt do

7: k ← k + 1
8: d1 = 1

x⊤
ijtV

(k−1)

t|t
xijt

9: d2 = x⊤
ijta

(k−1)
t|t

10: v = argmin
b

b2 1
2d1 − bd1d2 − logP

(
yijt|α⊤

t xijt = b
)

11: g = − logP(yijt|x
⊤
ijtα=b)

∂b2

∣∣∣∣
b=v

12: a
(k)
t|t = a

(k−1)
t|t − (d1 − v)d2ζ0V(k−1)

t|t xijt

13: V
(k)
t|t = V

(k−1)
t|t − V

(k−1)

t|t
xijtgx

⊤
ijtV

(k−1)

t|t

1+g/d1

Set a t|t = a
(nt)
t|t and V t|t = V

(nt)
t|t

Algorithm 6 Alternative correction step in the procedure at line 5 of Algorithm 5 with a Cholesky decom-
position. Left-arrow, ←, indicates an update instead of an equality.

1: Compute the Cholesky decomposition LL⊤ =
(
V t|t−1

)−1
and L̃ =

(
L−1

)⊤
2: for (i, j) ∈ Rt do

3: k ← k + 1
4: x̃ijt = L̃⊤xijt

5: d1 = 1
x̃⊤

ijtx̃ijt

6: d2 = x⊤
ijta

(k−1)
t|t

7: v = argmin
b

b2 1
2d1 − bd1d2 − logP

(
yijt|α⊤

t xijt = b
)

8: g = − logP(yijt|x
⊤
ijtα=b)

∂b2

∣∣∣∣
b=v

9: a
(k)
t|t = a

(k−1)
t|t − (d1 − v)d2ζ0L̃x̃ijt

10: LL⊤ ← LL⊤ + xijtgx
⊤
ijt

11: L̃ =
(
L−1

)⊤

Set a t|t = a
(nt)
t|t and V t|t = L̃L̃⊤

6 Global approximation of the posterior mode (GMA)

We can directly minimize:

argmin
α

− logP
(
α|a t|t−1,V t|t−1

)
−

∑

(i,j)∈Rt

logP (yijt|α)
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Algorithm 7 Correction step with the global mode approximation by Newton-Raphson.

Set a(0) = a t|t−1 and define:

c′(α) =
∂ logP(yt|e

′)
∂e′

∣∣∣∣
e′=Xtα

c′′(α) =
∂ logP(yt|e

′)
∂e′∂(e′)⊤

∣∣∣∣
e′=Xtα

1: repeat

2:

a(k) =
(
V−1

t|t−1 +X⊤
t (−c′′(α(k−1))Xt

)−1 (
ζ0V

−1
t|t−1a t|t−1 + ζ0X

⊤
t c

′(α(k−1))

+
(
X⊤

t

(
−c′′(α(k−1))

)
Xt + (1− ζ0)V−1

t|t−1

)
a(k−1)

)

3: until
∥∥a(k) − a(k−1)

∥∥ /(
∥∥a(k−1)

∥∥+ δ) < ǫ or k ≥ kmax else set k ← k + 1

4: V t|t =
(
G̃(a(k−1))

)−1

This is equivalent to a L2 penalized Generalized Linear Models (GLM) since we only use models from the
exponential family. This can be done with the usual penalized iteratively reweighted least squares. Every
iteration can be done in O

(
ntq

2 + q3
)
. We will go through computations in the following paragraphs. First,

we derive the gradient and the Hessian:

h̃(α) = − logP
(
α|a t|t−1,V t|t−1

)
−

∑

(i,j)∈Rt

logP (yijt|α)

g̃(α) = h̃′(α) = V−1
t|t−1

(
α− a t|t−1

)
−

∑

(i,j)∈Rt

∂ logP (yijt|α′)

∂α′

∣∣∣∣∣∣
α′=α

= V−1
t|t−1

(
α− a t|t−1

)
−X⊤

t

∂ logP (yt| e′)
∂e′

∣∣∣∣
e′=Xtα︸ ︷︷ ︸

c′(α)

G̃(α) = h̃′′(α) = V−1
t|t−1 −

∑

(i,j)∈Rt

∂2 logP (yijt|α′)

∂α′∂ (α′)
⊤

∣∣∣∣∣∣
α′=α

= V−1
t|t−1 −X⊤

t

∂ logP (yt| e′)
∂e′∂ (e′)

⊤

∣∣∣∣∣
e′=Xtα︸ ︷︷ ︸

c′′(α)

Xt

Thus, the update equation with a learning rate, ζ0, is:

a(k) = a(k−1) + ζ0

(
G̃(a(k−1))

)−1 (
−g̃(a(k−1))

)

=
(
V−1

t|t−1 +X⊤
t (−c′′(α(k−1))Xt

)−1 (
ζ0V

−1
t|t−1a t|t−1 + ζ0X

⊤
t c

′(α(k−1))

+
(
X⊤

t

(
−c′′(α(k−1))

)
Xt + (1− ζ0)V−1

t|t−1

)
a(k−1)

)

Algorithm 7 shows the final algorithm for the correction step with the GMA.
This method is selected by passing method = "GMA" in the ddhazard control call. You can change kmax

and ǫ by respectively with the arguments GMA max rep and GMA NR eps of ddhazard control. The above is
sensitive to the choice of Q0. An extreme example is if we have no events in the first interval and only an
intercept. Then setting Q0 to a diagonal matrix with large entries (in this case Q0 is a scalar) implies almost
no restrictions on the intercept. Thus, it will be optimal to select a value tending towards minus infinity.
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6.1 Alternative implementation

An alternative to the above algorithm for the exponential family is to re-write the original problem to get a
weighted least squares problem of the form:

b = Xta
(k−1) + h′

(
Xta

(k−1)
)−1 (

yt − h
(
Xta

(k−1)
))

argmin
α

∥∥∥∥∥

(
h′
(
Xta

(k−1)
)
Var

(
Yt|Xtα

(k−1)
)−1/2

0

0 V
−1/2
t|t−1

)

︸ ︷︷ ︸
C̃1/2

((
Xt

I

)

︸ ︷︷ ︸
X̃t

α−
(

b

α t|t−1

)

︸ ︷︷ ︸
b̃

)∥∥∥∥∥

where b is the working responses, h temporarily denotes the inverse link function at time t, h′ is the derivative
w.r.t. the linear predictor Xta

(k−1) and the inverse link function h implicitly depends on the risk set at

time t. The minimum w.r.t. α is α(k) =
(
X̃⊤

t C̃X̃t

)−1

X̃⊤
t C̃b̃. Though, this is the EKF shown earlier. To

see this, set a(k−1) = a t|t−1. Then,

(
X̃⊤

t C̃X̃t

)−1

=
(
V−1

t|t−1 +Ut(a t|t−1)
)−1

Further,

X̃⊤
t C̃b̃ = XT

t h
′
(
Xta t|t−1

)2
Var

(
Yt|Xta t|t−1

)−1
Xta t|t−1 + ut(a t|t−1) +V−1

t|t−1a t|t−1

=
(
V−1

t|t−1 +Ut(a t|t−1)
)
a t|t−1 + ut(a t|t−1)

Thus,

(
X̃⊤

t C̃X̃t

)−1

X̃⊤
t C̃b̃ = a t|t−1 +

(
V−1

t|t−1 +Ut(a t|t−1)
)−1

ut(a t|t−1)

This is the update equation in the EKF. Taking multiple steps give us:

(
X̃⊤

t C̃X̃t

)−1

=
(
V−1

t|t−1 +Ut(a
(k−1))

)−1

X̃⊤
t C̃b̃ = XT

t h
′
(
Xta

(k−1)
)2

Var
(
Yt|Xtα

(k−1)
)−1

Xta
(k−1) + ut(a

(k−1)) +V−1
t|t−1a t|t−1

= Ut(a
(k−1))a(k−1) +V−1

t|t−1a t|t−1 + ut(a
(k−1))

a(k) =
(
V−1

t|t−1 +Ut(a
(k−1))

)−1 (
Ut(a

(k−1))a(k−1) +V−1
t|t−1a t|t−1 + ut(a

(k−1))
)

7 Weights

Weights can be used in the EKF, UKF and posterior mode approximations. This can reduce the computation
in the logistic model with only categorical covariates or if we want to bootstrap the estimates. The following
section covers how the weights are handled in the previous filters. We will denote the weights at time t by
et = (e1, e2, . . . , ent

) where nt = |Rt| is the number of observations at risk at time t. Further, we denote Et

as the diagonal matrix with et as the diagonal
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7.1 EKF

Weights are handled in the EKF by replacing

ut(αt) =
∑

(i,j)∈Rt

uijt(αt), Ut(αt) =
∑

(i,j)∈Rt

Uijt(αt)

with

ut(αt) =

nt∑

k=1

eku(Rt)kt
(αt), Ut(αt) =

nt∑

k=1

ekU(Rt)kt
(αt)

where (Rt)k is the k’th element of Rt.

7.2 UKF

Weights are handled in the UKF by replacing:

ỹ = ∆Ŷ⊤Ĥ−1(yt − y) G = ∆Ŷ⊤Ĥ−1∆Ŷ

with

ỹ = ∆Ŷ⊤EtĤ
−1(yt − y) G = ∆Ŷ⊤EtĤ

−1∆Ŷ

7.3 SMA

Weights are handled in the SMA by replacing:

v = argmin
b

b2
1

2
d1 − bd1d2 − (yijt log h(b) + (1− yijt) log(1− h(b))

V
(k)
t|t = V

(k−1)
t|t −

V
(k−1)
t|t xijtgx

⊤
ijtV

(k−1)
t|t

1 + gx⊤
ijtV

(k−1)
t|t xijt

with

v = argmin
b

b2
1

2
d1 − bd1d2 − ef (yijt log h(b) + (1− yijt) log(1− h(b))

V
(k)
t|t = V

(k−1)
t|t −

V
(k−1)
t|t xijefgx

⊤
ijtV

(k−1)
t|t

1 + efgx⊤
ijtV

(k−1)
t|t xijt

7.4 GMA

Weights are handled in the same way as for the SMA by multiplying the c′(α) and c′′(α) with the weights
of the observation.

8 Fixed effects

This section will cover how fixed effects (non time-varying effects) are estimated. We will denote the coeffi-
cients for the fixed effects by γ. The fixed effects can be estimated with two methods. The first one is by
adding the fixed effects to state equation with their elements of the covariance matrix Q set to zero. That is,
we estimate the fixed effects in the E-step. The second method is to estimate the fixed effects in the M-step.
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8.1 Estimation in the E-step

The fixed effect can be estimated in the E-step in a similar manner to Harvey and Phillips [1979]. The
method in Harvey and Phillips [1979] is similar to recursive least squares where some of the effects are
time-varying. The elements with the fixed effects have a large value in the diagonal of Q0 (say 106) and zero
in the elements of the covariance matrix Q. Thus, we end with recursive least squares for the linear model
if all effects are fixed.

In this package, we set the entries of Q0 and Q in the same way. Nothing else is changed in the E-step.
Further, we set the all rows and columns of the fixed effects in Q to zero after the update in the M-step. This
seems to work with the EKF for a large range of large diagonal elements Q0 (say 105). However, the choice of
the diagonal entry in Q0 for fixed effects do have an impact with the UKF. ”Large” but not ”too large” values
tends to work. Though, what is large depends data set and model. The default for the diagonal elements of
Q0 for the fixed effects can be set with Q 0 term for fixed E step argument of ddhazard control. Setting
fixed terms method = "E step" in the ddhazard control call yields this method.

8.2 Estimation in the M-step

The other method is to estimate the fixed parameters in the M-step. For this section, I define γ as the fixed
parameters, xijt as the covariates corresponding to the time-varying parameters, and zijt as the covariates
corresponding to the fixed parameters. The dot product between the fixed parameters and the corresponding
covariates act as offsets in the filters because the linear predictor is x⊤

ijtαt+z⊤
ijtγ, where γ is fixed. Moreover,

the formulas for a0 and Q in the M-step are not affected because the only relevant terms for fixed effects in
the M-step are in the last line of the log-likelihood. However, the optimization is not easily solved exactly
in the M-step for the fixed parameters. The log-likelihood we need to maximize in the M-step in the k’th
iteration is

argmax
γ

E




d∑

t=1

∑

(i,j)∈Rt

lijt(αt,γ)

∣∣∣∣∣∣
a
(k−1)
0 ,γ(k−1),Q(k−1),Q0,y1, . . . ,yd




where I temporarily add an additional argument in the log-likelihood terms, lijt, for the fixed effects, and
use the superscripts to differentiate between the hyperparameter estimates of different iterations of the
EM-algorithm. The above is not easy to optimize. Thus, I make a zero-order Taylor expansion about
a 1|d, . . . ,ad|d in the current implementation to get

argmax
γ

d∑

t=1

∑

(i,j)∈Rt

lijt(a t|d,γ)

One advantage of doing this is that the problem can be solved with regular methods for GLMs when
the model is from the exponential family. However, the design matrix will be big, as each individual will
yield multiple rows because of different offsets from the time-varying parameters given by x⊤

ijta t|d. To
overcome this problem, I use the Fortran code from Miller [1992] to do a series of rank-one updates of the
QR-decomposition used to solve the iteratively re-weighted least square problem. This is the same approach
as in the biglm package. The computational complexity of each update is O

(
c2
)
, where c is the dimension

of γ.

8.3 Which method to use

Neither the method that use the recursive least squares like method in the E-step, nor the zero order
Taylor expansion in the M-step have performed consistently better on the data sets seen so far. Hence,
both are valid alternatives at this point. Fixed terms can be estimated by wrapping the covariates in the
formula of ddhazard in the ddFixed function. As an example, ddhazard(Surv(tstart, tstop, y) ~x1 +

ddFixed(x2), ...) will fit a model where x1 is time-varying and x2 is not.
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Figure 1: Illustration of going from event times to binary variables. Each horizontal line represents an
individual. A cross indicates that new covariates are observed while a filled circle indicates that the individual
have died. Open circles indicates that the individual is right-censored. Vertical dashed lines are time interval
borders.

9 Logistic model

The logistic model uses the inverse logit function as the inverse link function h. That is h(η) = exp(η)/(1 +
exp(η)). The logistic model is fitted by setting model = "logit" in the call to ddhazard. The following
paragraphs will cover the ”loss” of information due to using time intervals instead of event times which
motivates the continuous time model.

9.1 Event times to binary variables

This section will illustrate how we go from event time to binary variables for the logistic model and how
this can lead to ”loss” of information. It is elementary but included to stress this point and motivate the
continuous time model. We will use figure 1 as the illustration. Each horizontal line represent an individual.
A cross represents when the covariate values change for the individual and a filled circle represents the death
of an individual. Lines that ends with an open circle are right-censored.

We will return to the vertical lines shortly. First, we notice that the example is where we assume that
the covariates are step functions. An example hereof is a medical trial where patients get tests taken at
different point in time (when they have a time at their doctor, visit the hospital or similar). As an example,
ideally we would like to model that individual one has a blood pressure of x at time 0, re-visits at time 1.5
and has a blood pressure y and dies at time 2.5 whereas individual 2 has a blood pressure if z at time zero,
never visits the doctor again and we know that he have not died by time 2.25 (he is right-censored).

However, we do not model event times in the logistic model. Instead, we model binary outcomes in each
time interval. The vertical dashed lines in the figure represents the time interval borders. The first vertical
line from the left is where we start our estimation, the second vertical line is where the first time interval
ends and the second time intervals starts and the third vertical line is where the time interval ends. Thus,
we only have two time intervals in this example.

We can now cover how the individuals (horizontal lines) are used in the estimation:

a is a control in both time intervals. We use the covariates from 0 in the first time interval and the
covariates from 1 in the second time interval.
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b is not included in any of the time intervals. We do not know the covariates values at the start of the
second time interval so we cannot include him.

c is a control in the first time interval with the covariates from 0. He counts as a death in the second
time interval with the covariates from 1.

d acts like a.

e is a death in the first time interval with covariates from 0.

f is a control in the first time interval with the covariates from 0. He counts as a death in the second
time interval with the covariates from 1.

g is not included in any time intervals. We do not know if he survived the entire period of the first time
interval and thus we cannot include him.

The example illustrates that:

1. We loose information about covariates that are updated within time intervals. For instance, a, c, d and
f all use the covariates from 0 for the entire period of the first time interval despite that the covariates
change at 1. Moreover, we never use the information at 2 from a, d and f.

2. We loose information when we have right censoring. For instance, g is not included at all since we only
know that he survives parts of the first time interval.

3. We loose information for observation that only occurs within time intervals as is the case for b.

The above motivates the continuous time model that will be covered in the next sections where we go from
modelling binary outcomes to event times.

10 Continuous time model

The following section introduce the continuous time model. We start by describing the assumption of the
continuous time model. Then we turn to different estimation methods.

10.1 Assumptions

We make the following assumption in the continuous time model:

1. Coefficients (that is state variables α1, . . . ,αd) change at the end of time intervals.

2. The individuals covariates change at discrete times.

3. We have piecewise constant instantaneous hazards given by exp(x⊤
ijtαt) given an individual’s current

co-covariate vector xijt and state variable αt (assuming that individual i’s j’th covariate is within time
interval t).

The instantaneous hazard change when either the individuals covariates change or the coefficients change
when we change time interval. Thus, each individual’s stop time is piecewise constant exponential distributed
event time given the state vectors. The log-likelihood omitting a normalization constant:

L (α0, . . . ,αd) =−
1

2
(α0 − a0)

⊤
Q−1

0 (α0 − a0)

− 1

2

d∑

t=1

(αt − Fαt−1)
⊤
Q−1 (αt − Fαt−1)

− 1

2
log |Q0| − log

d

2
|Q|

+

d∑

t=1

∑

(i,j)∈Rt

lijt(αt) + . . .

lijt(αt) =yijtx
⊤
ijtαt − exp

(
x⊤
ijtαt

)
(min{t, tij} −max{t− 1, ti,j−1})
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where the lijt terms come from the log-likelihood:

log (P ( ti|α0, . . . ,αd)) = xi(ti)
⊤α(ti)−

∫ ti

0

exp
(
xi(u)

⊤α(u)
)
du

which simplifies into the terms of lijts when both the covariates xi(t) and state space parameters α(t) are
piecewise constant. Further, Rt is the continuous risk set given by:

Rt = {(i, j) ∈ Z+ × Z : ti,j−1 < t ∧ tij > t− 1}

In words, the condition is that the j’th observation of individual i is in the risk set if the observations 1) starts
before the intervals ends and 2) ends after the interval starts. The EKF and UKF uses Poisson counts with
a offset equal to the log of the at risk length of the covariate vector and coefficients pair for the continuous
time model. The SMA and GMA works directly with log-likelihood as shown above.

11 Diagnostics

This section will cover diagnostics tools. These includes:

• Residuals from the observations.

• Hat values.

• Residuals from the state vector.

11.1 Residuals from the observations

For the binary outcomes in the logistic model, one idea is to look at the Pearson residuals which we denote
rPijt which is the i’th individual’s Pearson residual with covariate vector j in interval t. That is,

ŷijt = exp
(
x⊤
ijta t|d)

)
/
(
1 + exp

(
x⊤
ijta t|d)

))

rPijt =
yijt − ŷijt√
Hkkt(a t|d)

=
yijt − ŷijt√
ŷijt(1− ŷijt)

Then we can:

• Plot residuals against time and highlight the individuals with at least one ”high” residual.

• Accumulate residuals for each individual i and plot against t. Any individuals with large or small
values may worth looking at.

• Stratify a covariate values into factors and plot accumulated residuals versus time. Any structural
deviations may show a missing covariate or incorrect transformation of the covariate on the linear
predictor scale.

• Accumulate residuals across intervals t and plot these.

You can get the Pearson residuals by calling residuals with a ddhazard fit and with argument type =

"pearson".

11.2 Hat values

Finding the influence matrix (also known as the hat matrix) does not seem to be possible in a computationally
efficient way. Thus, we will look at an approximation. We will focus on the logistic model. In the filters in
the E-step, each correction step in itself can be viewed as an logistic regression with an L2 penalty. Say we
at time t in the filter in the correction step with estimates a t|t−1 and V t|t−1. Then the penalty could be
interpreted as a prior N(a t|t−1,V t|t−1). With this view, regular hat values would be computed by:
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Ct(α t|t−1)
1/2Xt

(
X⊤

t Ct(α t|t−1)
−1Xt +V−1

t|t−1

)−1

X⊤
t Ct(α t|t−1)

1/2

where Xt is the design matrix in interval t and Ct(α) is the working weights as in glm. The above could
motivate the following matrix as the ”hat-like” matrix in each interval:

C̃t(α t|d)
1/2Xt

(
X⊤

t C̃t(α t|d)
−1Xt +V−1

t|d

)−1

X⊤
t C̃t(α t|d)

1/2

where we have used the final smoothed estimators. Plotting cumulative values versus time may show in-
fluential observations. You can get these estimates by calling hatvalues with a ddhazard object as the
argument.

11.3 Residuals from the state vector

We may be interested in looking at the predicted state error. The predicted state errors are given by:

η̂t = R⊤
(
a t|d − Fa t−1|d

)

which we may check if they are N (0,Var (ηt|Yd)). This will require that we find the smoothed covariance
matrix Var (ηt|Yd) = R⊤Var (αt − Fαt−1|Yd)R in order to standardize the predicted errors. We will
explain how this can be estimated in the following paragraphs when the EKF have been used. Standard
results yields:

Var (αt − Fαt−1|Yd) =Var (αt|Yd) + FVar (αt−1|Yd)F
⊤

− FCov (αt,αt−1|Yd)− Cov (αt,αt−1|Yd)
⊤
F⊤

Thus, we need smoothed correlation matrices Cov (αt,αt−1|Yd). We can estimate these recursively by first
setting [e.g., see Shumway and Stoffer, 2006]:

Cov (αd,αd−1|Yd) =
(
I−Kdżd(ad|d)

)
FV d−1|d−1, żd(ad|d) =

∂zd(α)

∂α

∣∣∣∣
α=a d|d

where Kd is the Kalman gain given by:

Kd = FV d|d−1żd(ad|d−1)
⊤C−1, C = Var (Yd|yd−1) = żd(ad|d−1)

⊤Vd|d−1żd(ad|d−1) +Hd(ad|d−1)

Next, for t = d, d− 1, . . . , 2 we recursively compute:

Cov (αt−1,αt−2|Yd)

= V t−1|t−1B
⊤
t−1 +Bt

(
Cov (αt,αt−1|Yd)−TV t−1|t−1

)
B⊤

t−1

Though, C will be a large square matrix when we have a lot of observation and possibly singular. However,
we can apply the Woodbury matrix identity to get:

C = Hd(ad|d−1)
−1 −XdVd|d−1

(
I+Ud(ad|d−1)Vd|d−1

)−1

X⊤
d

where Xd is the design matrix in the final interval. This is easy to compute when Hd is a diagonal matrix
and the dimension of the state equation is low. You can get the standardized predicted state errors by calling
residuals with a ddhazard fit and type = "std space error" if you have used the EKF.
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