
Particle filters and smoothers in the dynamichazard
package

Benjamin Christoffersen

August 20, 2019

This vignette covers the particle filters and smoothers implemented in the dynamichaz-
ard package in R. Some prior knowledge of particle filters is assumed. Doucet and Johansen
(2009) provide a tutorial on particle filters and Kantas et al. (2015) cover parameter estima-
tion with particle filters. See also Cappé et al. (2005) for a general introduction to Hidden
Markov models. This vignette relies heavily on Fearnhead et al. (2010) and there is a big
overlap between what is presented here and the paper.

1 Method

The models implemented in the package is survival analysis models for terminal events.
These can be in discrete time where we have binary indicators Yik = 1{Ti∈(tk−1,tk]} which is
one if the random event time of individual i denoted by Ti ∈ (0,∞) is in the interval (tk−1, tk]
and zero otherwise. It can also be in continuous time where we model the distribution of
the event time of individual i, Ti, with a piecewise exponential distribution conditional on
observable covariates and the path of a discrete latent variable. To be more concrete, the
model is

yit ∼ g (yit|ηit)

ηt = XtR
+αt + ot + Ztω

αt = Fαt−1 +Rǫt ǫt ∼ N (0,Q)

α0 ∼ N (µ0,Q0)

,
i = 1, . . . , nt

t = 1, . . . , d
(1)

where I denote the conditional densities as gt (yt|αt) = g (yt|XtR
+αt + ot + Ztω) and

f (αt|αt−1). For each t = 1, . . . , d, we a have risk set given byRt ⊆ {1, 2, . . . , n}. Further, we
let nt = |Rt| denote the number of observation at risk at time t and nmax = maxt∈{1,...d} nt.
The observed outcomes are denoted by Yt = {yit}i∈Rt

. Xt is the design matrix of the
covariates and αt is the state vector containing the time-varying coefficients. The Zt is the
design matrix for the covariates with time-invariant coefficients and ω are the corresponding
coefficients.

The i’th row of Xt is xit, xit, ǫt ∈ R
r, µ0,αt ∈ R

p, F ∈ R
p×p, Q ∈ R

r×r is a positive
definite matrix, Q0 ∈ R

p×p is a positive definite matrix, ots are known offsets, and R is
a p × r matrix with p ≥ r which contains a subset of r columns of Ip. We will order the
entires of R such that the first r columns are the first r columns of Ip. I.e.,

R =

(
Ir
0

)

1

Superscript + denotes the Moore-Penrose inverse, R+ = R⊤ and R is left inverse (i.e.,
R⊤R = Ir). RR⊤ is a p × p diagonal matrix where the r first diagonal entries has value
1 and the rest of the diagonal entries are zero. The data sets we are working with have
nmax ≫ p ≥ r (e.g. nmax = 1000 and r = 5). We let

ξt = R+αt

The above allows us to have an oth order vector autoregressions, VAR (o), by settings

αt = (ξt, ξt−1, . . . , ξt−o+1)

F =

F1 · · · · · · Fo−1 Fo

Ir 0 · · · 0 0

0 Ir
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 Ir 0

, Fi ∈ R
r×r

I will use a particle filter to get a discrete approximation of the conditional distribution of
α1, . . . ,αd given the outcomes y1:d = {y1,y2, . . . ,yd} and use an EM-algorithm to estimate
Q, ω, and µ0. One choice of smoother is shown in Fearnhead et al. (2010) and another is
the generalized two-filter smoother shown by Briers et al. (2009). The rest of vignette is
structured as follows: first I give a brief introduction to the implemented particle filters and
smoothers. Then I cover what the effect is of some the arguments to particle functions in R

in the packages. The implemented particle filter and smoother from Fearnhead et al. (2010)
is presented next, followed by the used EM-algorithm and the smoother suggested by Briers
et al. (2009). The last section covers the implemented approximations of the gradient and
observed information matrix.

1.1 Overview

As a gentle introduction before the next sections, we will start by recalling an application
of importance sampling, use this to motivate particle filtering, and give a brief idea of the
implemented particle smoothers. Suppose we want to approximate a density c(x) = ζc̃(x)
where we only know c̃(x) and not the normalization constant ζ. One way to approximate
this density is to

• sample x1, x2, . . . , xN from a distribution with density b(x).

• Compute the unnormalized weights w̄i = c̃(xi)/b(xi).

• Normalize the weights wi = w̄i/
∑N

i=1 w̄i.

This gives us the following discrete approximation of the density

c(x) ≈
N∑

i=1

wiδxi
(x)

where δx is the Dirac delta function which has unit point mass at x. This is directly
applicable to the model in Equation (1) as at time 1 we want to approximate

p (α1|y1) =
g1 (y1|α1)

∫
f (α1|a0)φ (a0|µ0,Q0) da0

p (y1)

2

where φ (·|m,M) is the density function of a multivariate normal distribution with mean
m and covariance matrix M. We can easily evaluate the numerator for each α1 but not the
normalization constant, p (y1).

The extension to a particle filter (which I will call a forward particle filter) is that at
time 2 we want to approximate

p (α1:2|y1:2) = p (α1|y1)
g2 (y2|α2) f (α2|α1)

p (y2|y1)

Now, we can use the discrete approximation at time 1 of p (α1|y1), sample α2 given each
sampled α1, and apply importance sampling again. We can repeat this with similar argu-
ments at time 3, 4, . . . , d giving us an approximation of p (α1:d|y1:d). We will call the last
element of a sampled path at time t a particle. Further, we will denote the jth particle at

time t and its associated weight by α
(j)
t and w

(j)
t respectively.

One issue that may arise is that our samples (particles) may degenerate so essentially
only one sampled path of α1:d has any weight in the end. To avoid this, we may introduce
a re-sampling step. One way to re-sample is using the weights and letting the re-sampling

weights be β
(j)
t+1 = w

(j)
t where β

(j)
t+1 is the re-sampling weight of particle j at time t. We

then sample with replacement using β
(j)
t+1. Another option when we re-sample the particles

from time t is to use the information of the outcomes at time t+ 1, yt+1. This is called an
auxiliary particle filter and is introduced by Pitt and Shephard (1999).

However, we may end up with few or only one unique value at the early time points
(say α1) when we re-sample. Thus, it will be useful to use a smoother to get a better
approximation of the marginal density p (αt|y1:d). To do so, one idea is to use the two-filter
formula from Kitagawa (1994). Though, this requires that we can evaluate p (yt:d|αt). It
turns out that we can approximate this up to a constant which is just what need. This is
covered in further details in Section 6.

The approximation uses a particle filter which is run backwards in time and which
approximates an artificial distribution. The arguments for the backward particle filter is
very similar to the forward particle filter presented above. The kth particle in the backward
particle filter at time t, its re-sampling weight, and the associated weight will be denoted

by respectively α̃
(k)
t , β̃

(k)
t−1 and w̃

(k)
t . The final ith smoothed particle and weight at time t

will be denoted by α̂
(i)
t and ŵ

(i)
t . The latter gives us the following approximation of the

marginal density of αt | y1:d

p (αt|y1:d) ≈
NS∑

i=1

ŵ
(i)
t δ

α̂
(i)
t

(αt)

if we sampled NS smoothed particles at time t. The smoothing algorithm from Fearnhead
et al. (2010) is shown in Algorithm 1, the forward particle filter is shown Algorithm 2, and
the backward particle filter is shown in Algorithm 3.

1.2 Methods in the Package

The PF EM method in the dynamichazard package contains an implementation of the de-
scribed methods. You specify the number of particles by the N first, N fw n bw and N -

smooth argument for respectively the Nf , N and Ns in the Algorithm 1-3. We may want
more particles in the smoothing step, Ns > N , as pointed out in the discussion in Fearnhead

3

et al. (2010, p. 460-461). Further, selecting Nf > N may be preferable to ensure coverage
of the state space at time 0 and d+ 1.
We do not need to sample the time 0 and d + 1 particles. Instead we can make a special proposal distribution
for time 1 and time d. This is not implemented though...

The method argument specify how the filters are set up. The argument can take the
following values

• "bootstrap filter" for a bootstrap filter. This is where we sample using Equation
(5), (11) and (14). This is fast but the proposal distribution may be a poor approxi-
mation of the distribution we want to target.

• "PF normal approx w cloud mean" and "AUX normal approx w cloud mean" for the
Taylor approximation of the conditional density of yt made using the mean of the
parent particles and/or mean of the child particles. See Section 2. The PF and AUX

prefix specifies whether or not the auxiliary version should be used.

• "PF normal approx w particles" and "AUX normal approx w particles" for the Tay-
lor approximation of the conditional density of yt made using the parent and/or child
particle. See Section 2. The PF and AUX prefix specifies whether or not the auxiliary
version should be used.

The smoother is selected with the smoother argument. "Fearnhead O N" gives the
smoother in Algorithm 1 and "Brier O N square" gives the smoother in Algorithm 4. The
Systematic Re-sampling (Kitagawa, 1996) is used in all re-sampling steps. See Douc and
Cappé (2005) for a comparison of re-sampling methods. The rest of the arguments to PF EM

are similar to those of the ddhazard function.
It is not clear what will give the best performance for a given data set at a fixed compu-

tation cost. An advice is to use the trace argument and check the effective sample at each
point in time during the estimation. "bootstrap filter" may not be that much cheaper
in terms of computation time as we still have to evaluate gt in Equation (16), (17), and (19)
which is O (nmaxNr) or O (nmaxNSr) which is typically computationally expensive as nmax

is large. On the other hand, the "... w particles" methods have a computational com-
plexity of O

(
nmaxNr2

)
or O

(
nmaxNSr

2
)
with a potentially much larger constant. Thus,

the "... w cloud mean" may be preferred.
The rest of the vignette covers the implemented methods. It is mainly included to

show exactly what is computed and why. Further, I cover some currently not implemented
extensions that may be implemented in the future.

1.3 Proposal Distributions and Re-sampling Weights

Algorithm 1 shows one of the particle smoothers shown by Fearnhead et al. (2010) in the first
order state space model. In this situation R = Ir, r = p and αt = ξt. We need to specify a
series of proposal distributions and re-sampling weights. To show what is implemented and
why, we first consider the model where

yt | αt ∼ N (Xtαt + ot + Ztω,Ht)

for some known positive definite matrix Ht. This is not implemented in this package but
deriving optimal re-sampling weights and proposal distributions is possible in this case. In
fact, it makes little sense to use a particle filter and particle smoother in this case since the

4

Kalman filter and an exact smoother can be applied. However, the results here will turn
out to be useful to motivate the approximations we use later. The state space model is

yt ∼ N (ηt,Ht)

ηt = Xtαt + ot + Ztω

αt = Fαt−1 +Rǫt ǫt ∼ N (0,Q)

α0 ∼ N (µ0,Q0)

,
i = 1, . . . , nt

t = 1, . . . , d

We let ht = ot + Ztω such that ηt = Xtαt + ht to ease the notation. We first turn to the
forward particle filter in Algorithm 2. Ideally, we want the re-sampling weights to be

β
(j)
t ∝ p

(
yt

∣∣∣α(j)
t−1

)
w

(j)
t−1 (2)

=

∫
gt (yt|αt) f

(
at

∣∣∣α(j)
t−1

)
datw

(j)
t−1

= φ
(
yt

∣∣∣XtFα
(j)
t−1 + ht,XtQX⊤

t +Ht

)
w

(j)
t−1

We can notice that setting β
(j)
t = w

(j)
t−1 yields the so-called sequential importance re-sampling

algorithm. For the proposal distribution, the optimal proposal density is

q
(
αt

∣∣∣α(j)
t−1,yt

)
= p

(
αt

∣∣∣α(j)
t−1,yt

)

where we find that

log p
(
αt

∣∣∣α(j)
t−1,yt

)
= log p

(
αt,yt

∣∣∣α(j)
t−1

)
+ . . .

= log gt (yt|αt) + log f
(
αt

∣∣∣α(j)
t−1

)
+ . . .

= −
1

2
(yt −Xtαt − ht)

⊤
H−1

t (yt −Xtαt − ht)

−
1

2

(
αt − Fα

(j)
t−1

)⊤
Q−1

(
αt − Fα

(j)
t−1

)
+ . . .

= −
1

2
α⊤

t Σ
−1
t αt +α

⊤
t Σ

−1
t µ

(
α

(j)
t−1

)
+ . . .

Σt =
(
Q−1 +X⊤

t H
−1
t Xt

)−1
(3)

µ(x) = Σt

(
Q−1Fx+X⊤

t H
−1
t (yt − ht)

)
(4)

The . . . are terms of the normalization constant. We recognize the multivariate normal
distribution density and thus the optimal proposal density is

q
(
αt

∣∣∣α(j)
t−1,yt

)
= φ

(
αt

∣∣∣µ(α(j)
t−1),Σt

)

Alternatively, we can use the so-called bootstrap filter and let

q
(
αt

∣∣∣α(j)
t−1,yt

)
= φ

(
αt

∣∣∣Fα(j)
t−1,Q

)
(5)

which we can sample from in O
(
Np2

)
time if we have a pre-computed Cholesky de-

composition of Q. This is computationally cheap compared to optimal solution which is
O
(
Np2 + p3 + nmaxp

2
)
but it is not optimal.

5

Backward filter (Algorithm 3)

We need to specify the artificial prior γt (αt) for our artificial backward distribution. Briers
et al. (2009, p. 69-70) provides recommendation on the selection. One suggestion is the
artificial density function

γt (αt) = φ
(
αt

∣∣∣←−mt,
←−
P t

)

←−mt = Ftµ0

←−
P t =

{
Q0 t = 0

F
←−
P t−1F

⊤ +Q t > 0

(6)

The backward arrows are added to stress that these are means and covariance matrices
which we use in the artificial distribution we target in the backward particle filter. The
artificial distribution we target in backward particle filters has the following conditional
density functions

p̃ (αt:d|yt:d) ∝ γt (αt)

d∏

i=t

gi (yi|αi)

d−1∏

i=t

f (αi+1|αi)

p̃
(
αt

∣∣y(t+1):d

)
∝ γt(αt)

∫
p̃
(
at+1

∣∣y(t+1):d

) f (at+1|αt)

γt+1(at+1)
dat+1

p̃ (αt|yt:d) ∝ gt (yt|αt) p̃
(
αt

∣∣y(t+1):d

)

p̃ (αt|αt+1) =
f (αt+1|αt) γt(αt)

γt+1(αt+1)
(7)

where we have left out some of the normalization constants. Sampling from this artificial
distribution turns out to be useful as it gives us an approximation of a conditional density
we need up to a constant (see Section 6). To derive the re-sampling weight, we first find an
expression for the density p̃ (αt|αt+1). We can observe that

log p̃ (αt|αt+1) = log f (αt|αt+1) + log γt(αt) + . . .

= −
1

2
α⊤

t

←−
S−1

t αt −α
⊤
t

←−
S−1

t
←−a t(αt+1) + . . .

←−
S t =

(
P−1

t + F⊤Q−1F
)−1

←−a t(x) =
←−
S t

(
P−1

t mt + F⊤Q−1x
)

so
p̃ (αt|αt+1) = φ

(
αt

∣∣∣←−a t(αt+1),
←−
S t

)
(8)

.
As shown by Fearnhead et al. (2010), we can show that

←−
S t =

←−
P tF

⊤←−P−1
t+1QF−⊤ (9)

←−a t(x) =
←−
P tF

⊤←−P−1
t+1x+

←−
S t
←−
P−1

t
←−mt

6

e.g., by
(←−
P tF

⊤←−P−1
t+1QF−⊤

)−1 (
P−1

t + F⊤Q−1F
)−1

= F⊤Q−1←−P t+1F
−⊤←−P−1

t

(
P−1

t + F⊤QF
)−1

= F⊤Q−1←−P t+1F
−⊤←−P−1

t

(
←−
P t −

←−
P tF

⊤
(
Q+ F

←−
P tF

⊤
)−1

F
←−
P t

)

= F⊤Q−1←−P t+1F
−⊤
(
I− F⊤←−P−1

t+1F
←−
P t

)

= F⊤Q−1←−P t+1F
−⊤ − F⊤Q−1F

←−
P t

= F⊤Q−1
(
F
←−
P tF

⊤ +Q
)
F−⊤ − F⊤Q−1F

←−
P t

= I

where we assume that all matrices are non-singular and we use the Woodbury matrix iden-
tity. Similar arguments can be used for ←−a t(x). Using the above, we can find that the
optimal re-sampling weights are

β̃
(k)
t ∝ p̃

(
yt

∣∣∣α̃(k)
t+1

)
w̃

(k)
t+1 (10)

∝

∫
gt (yi|at) p̃

(
at

∣∣∣α̃(k)
t+1

)
datw̃

(k)
t+1

= φ
(
yt

∣∣∣Xt
←−a t(α̃

(k)
t+1) + ht,Xt

←−
S tX

⊤
t +Ht

)
w̃

(k)
t+1

or we can set the re-sampling weights proportional to β̃
(k)
t ∝ w̃

(k)
t+1 and get a sequential

importance re-sampling like algorithm. As for the proposal distribution, the optimal density
is

log q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)
= log γt (αt) + log gt (yt|αt) + log f

(
α

(k)
t+1

∣∣∣αt

)
+ . . .

= −
1

2
α⊤

t

←−
Σ−1

t αt +α
⊤
t

←−
Σ−1

t
←−µ (α̃

(k)
t+1) + . . .

←−
Σt =

(
P−1

t + F⊤Q−1F+X⊤
t H

−1
t Xt

)−1

←−µ t(x) = Σt

(
P−1

t mt + F⊤Q−1x+X⊤
t H

−1
t (yt − ht)

)

Thus, we set

q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)
= φ

(
αt

∣∣∣←−µ t(α̃
(k)
t+1),

←−
Σt

)

A computationally simpler but non-optimal option is to use a method like the bootstrap
filter and set

q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)
= p̃

(
αt

∣∣∣α̃(k)
t+1

)
(11)

Combining / smoothing (Algorithm 1)

We end this example with the conditional Gaussian observable outcome model with the
proposal distribution needed for Algorithm 1. We want to select

q
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= p

(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)

∝ g (yt|αt) f
(
αt

∣∣∣α(j)
t−1

)
f
(
α̃

(k)
t+1

∣∣∣αt

)

7

Looking at the log density as we did before, we find that

log q
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)

= log g (yt|αt) + log f
(
αt

∣∣∣α(j)
t−1

)
+ log f

(
α̃

(k)
t+1

∣∣∣αt

)
+ . . .

= −
1

2
α⊤

t

←→
Σ −1

t αt +α
⊤
t

←→
Σ −1

t
←→µ (α

(j)
t−1, α̃

(k)
t+1) + . . .

←→
Σ t =

(
Q−1 + F⊤Q−1F+X⊤

t H
−1Xt

)−1
(12)

←→µ t(x,
←−x) = Σt

(
Q−1Fx+ F⊤Q−1←−x +X⊤

t H
−1
t (yt − ht)

)
(13)

so that
q
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
= φ

(
αt

∣∣∣←→µ t(α
(j)
t−1, α̃

(k)
t+1),Σt

)

Alternatively, we can use a method like the bootstrap filter with a proposal distribution
with

←→
Σ t =

(
Q−1 + F⊤Q−1F

)−1

←→µ t(x,
←−x) = Σt

(
Q−1Fx+ F⊤Q−1←−x

) (14)

This is not optimal but faster.

8

Algorithm 1 O (N) particle smoother using the method in Fearnhead et al. (2010).

Input:
Q,Q0,a0,X1, . . . ,Xd,Z1, . . . ,Zd,o1, . . . ,od,y1, . . . ,yd, R1, . . . , Rd,ω
Proposal distribution with density

q
(
αt

∣∣∣α(j)
t−1,yt, α̃

(k)
t+1

)
(15)

1: procedure Filter forward

2: Run a forward particle filter to get particle clouds
{
α

(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating the density p (αt|y1:t) for t = 0, 1, . . . , d. See Algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to get
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,N

approximating the

artificial density p̃ (αt|yt:d) for t = d+ 1, d, d− 1, . . . , 1. See Algorithm 3.

5: procedure Smooth (combine)
6: for t = 1, . . . , d do

Re-sample
7: Sample i = 1, 2, . . . , Ns pairs of (ji, ki) ∈ N2 where each component is

independently sampled using re-sampling weights β
(j)
t and β̃

(k)
t .

Propagate

8: Sample particles α̂
(i)
t from the proposal distribution q̃

(
·
∣∣∣α(ji)

t−1,yt, α̃
(ki)
t+1

)
.

Re-weight
9: Assign each particle a weight

ŵ
(i)
t ∝

f
(
α̂

(i)
t

∣∣∣α(ji)
t−1

)
gt

(
yt

∣∣∣α̂(i)
t

)
f
(
α̃

(ki)
t+1

∣∣∣α̂(i)
t

)
w

(ji)
t−1w̃

(ki)
t+1

q̃
(
α̂

(i)
t

∣∣∣α(ji)
t−1,yt, α̃

(ki)
t+1

)
β
(ji)
t β̃

(ki)
t γt+1

(
α̃

(ki)
t+1

) (16)

9

Algorithm 2 Forward filter as in Pitt and Shephard (1999). It is equivalent with Doucet
and Johansen (2009, p. 20 and 25). The version and notation below is from Fearnhead
et al. (2010, p. 449).

Input:
Proposal distribution with density

q
(
αt

∣∣∣α(j)
t−1,yt

)

Function h to compute re-sampling weights

β
(j)
t ∝ h(yt,α

(j)
t−1)w

(j)
t−1

1: Sample α
(1)
0 , . . . ,α

(Nf)
0 particles from N (µ0,Q0) and set the weights w

(1)
0 , . . . , w

(Nf)
0

to 1/Nf .
2: for t = 1, . . . , d do
3: procedure Re-sample

4: Compute re-sampling weights β
(j)
t using h and re-sample according to β

(j)
t to

get indices j1, . . . jN . If we do not re-sample then set β
(j)
t = 1/N or 1/Nf at time t = 1.

5: procedure Propagate

6: Sample new particles α
(i)
t using the proposal distribution q

(
αt

∣∣∣α(ji)
t−1,yt

)
.

7: procedure Re-weight
8: Re-weight particles using

w
(i)
t ∝

gt

(
yt

∣∣∣α(i)
t

)
f
(
α

(i)
t

∣∣∣α(ji)
t−1

)
w

(ji)
t−1

q
(
α

(i)
t

∣∣∣α(ji)
t−1,yt

)
β
(ji)
t

(17)

10

Algorithm 3 Backwards filter. See Briers et al. (2009) and Fearnhead et al. (2010).

Input:
An artificial distribution

p̃ (αt|yt:d) ∝ γt (αt) p (yt:d|αt) (18)

with an artificial prior distribution γt (αt).
Proposal distribution

q̃
(
αt

∣∣∣yt, α̃(k)
t+1

)

Function h to compute re-sampling weights

β̃
(k)
t ∝ h(yt, α̃

(k)
t+1)w̃

(k)
t+1

1: Sample α̃
(1)
d+1, . . . , α̃

(Nf)
d+1 particles from γd+1(·) and set the weights w̃

(1)
d+1, . . . , w

(Nf)
d+1 to

1/Nf .
2: for t = d, . . . , 1 do
3: procedure Re-sample

4: Compute re-sampling weights β̃
(k)
t using h and re-sample according to β̃

(k)
t to

get indices k1, . . . kN . If we do not re-sample then set β̃
(k)
t = 1/N or 1/Nf at time

t = d.
5: procedure Propagate

6: Sample new particles α̃
(i)
t using the proposal distribution q̃

(
αt

∣∣∣α̃(ki)
t+1 ,yt

)
.

7: procedure Re-weight
8: Re-weight particles using

w̃
(i)
t ∝

gt

(
yt

∣∣∣α̃(i)
t

)
f
(
α̃

(ki)
t+1

∣∣∣α̃(i)
t

)
γt

(
α̃

(i)
t

)
w̃

(ki)
t+1

q
(
α̃

(i)
t

∣∣∣α̃(ki)
t+1 ,yt

)
γt+1

(
α̃

(ki)
t+1

)
β
(ki)
t

(19)

11

2 Non-linear Conditional Observation Model

If we go back to the model in Equation (1) then yt | αt is not a multivariate normal dis-
tribution for the implemented models. In this case, we have no closed from solutions for
the optimal re-sampling weights, and we do not know the following conditional distribu-
tions: αt | yt,αt−1, αt | yt,αt+1 (in the artificial distribution P̃), and αt | yt,αt−1,αt+1.
However, assume that gt (yt|αt) is log-concave in αt. If this is true then it is easy to show
that all of the previous three conditional distributions are unimodal. Hence, we can make
a multivariate normal approximation as in Pitt and Shephard (1999). To do so, we make a
second order Taylor expansion around some value z to get

kt(αt) = log gt (yt|η(αt)) , η(αt) = Xtαt + ht

log gt (yt|αt) ≈ Dkt(z)(αt − z) +
1

2
(αt − z)

⊤Hkt(z)(αt − z) + . . .

= α⊤
t Dkt(z)

⊤ −
1

2
(αt − z)

⊤ (−Hkt(z)) (αt − z) + . . .

= α⊤
t (−Hkt(z))

(
z −Hkt(z)

−1Dkt(z)
⊤
)
−

1

2
α⊤

t (−Hkt(z))αt + . . .

where . . . includes the zero order term, Dkt is the Jacobian, and Hkt denotes the Hessian.
I add a subscript to D and H to which variable the Jacobian or Hessian is with respect to.
We still assume that we use a first order state space model such that r = p. We notice that

Hkt(z) = Dαt
η(z)⊤Hη log gt (yt|η(z))Dαt

η(z)

= X⊤
t (−Gt(z))Xt, Gt(z) = −Hη log gt (yt|η(z))

which follows from the chain rule and we use that Hαt
η(z) = 0. Thus,

log gt (yt|αt) ≈ α
⊤
t X

⊤
t Gt(z)ut(z)−

1

2
αtX

⊤
t Gt(z)Xtαt

ut(z) = Xtz −XtHkt(z)
−1Dkt(z)

⊤

This yields the following multivariate normal approximation

gt (yt|αt) ≈ φ
(
Xtαt

∣∣ut(z),Gt(z)
−1
)

The Taylor approximation is easily used in the proposal distributions. E.g., for given z,
we get the following mean and covariance matrix analogues to Equation (3) and (4) in the
proposal distribution in the forward particle filter

Σt(z) =
(
Q−1 +X⊤

t Gt(z)Xt

)−1

µt(x, z) = Σt(z)
(
Q−1Fx+X⊤

t Gt(z)ut(z)
)

12

As for the re-sampling weights, we can use

α̂ = µt(α
(j)
t−1, z)

β
(j)
t ∝ p

(
yt

∣∣∣α(j)
t−1

)
w

(j)
t−1

=
p
(
yt

∣∣∣α(j)
t−1

)

gt (yt|α̂) f
(
α̂

∣∣∣α(j)
t−1

)gt (yt|α̂) f
(
α̂

∣∣∣α(j)
t−1

)
w

(j)
t−1

=
gt (yt|α̂) f

(
α̂

∣∣∣α(j)
t−1

)
w

(j)
t−1

p
(
α̂

∣∣∣α(j)
t−1,yt

)

≈
gt (yt|α̂) f

(
α̂

∣∣∣α(j)
t−1

)
w

(j)
t−1

q
(
α̂

∣∣∣α(j)
t−1,yt

)

as in Fearnhead et al. (2010). We can approximate the backwards particle filter re-sampling
weights in equation (10) in a similar way

β̃
(k)
t ∝ p̃

(
yt

∣∣∣α̃(k)
t+1

)
w̃

(k)
t+1

≈
gt (yt|α̂) p̃

(
α̂

∣∣∣α̃(k)
t+1

)
w̃

(k)
t+1

q̃
(
α̂

∣∣∣yt, α̃(k)
t+1

)

=
gt (yt|α̂) f

(
α̃

(k)
t+1

∣∣∣α̂
)
γt(α̂)w̃

(k)
t+1

q̃
(
α̂

∣∣∣yt, α̃(k)
t+1

)
γt+1(α̃

(k)
t+1)

(20)

α̂ =←−µ (α̃
(k)
t+1, z)

←−µ (x, z) =
←−
Σt(z)

(
P−1

t mt + F⊤Q−1x+X⊤
t Gt(z)ut(z)

)
(21)

←−
Σt(z) =

(
P−1

t + F⊤Q−1F+X⊤
t Gt(z)Xt

)−1
(22)

We may also use a multivariate t-distribution for the proposal distribution to get heavier
tails than we do with the multivariate normal distribution. This is important as too light
tailed proposal distributions (relative to the target) can yield few large importance weights.

2.1 Where to Make the Expansion

An options is to make the Taylor expansion at a mode for each particle or particle pair in
the smoothing step. This yields

z(j) = argmax
z

gt (yt|z) f
(
z

∣∣∣α(j)
t−1

)

z(k) = argmax
z

gt (yt|z) γt(z)f
(
α̃

(k)
t+1

∣∣∣z
)

z(i) = argmax
z

f
(
z

∣∣∣α(ji)
t−1

)
gt (yt|z) f

(
α̃

(ki)
t+1

∣∣∣z
)

13

for respectively the forward particle filter, backward particle filter, and smoother. The
downside is a O

(
r2nmaxNS

)
or O

(
r2nmaxN

)
computational complexity at each time point

as we have to evaluate X⊤
t Gt(z)Xt for each particle or particle pair. Instead we can make

the approximation once at each time point at respectively
∑N

i=1 w
(j)
t−1α

(j)
t−1,

∑N
i=1 w̃

(j)
t+1α̃

(j)
t+1,

and
(
Q−1 + F⊤Q−1F

)−1

(
Q−1F

N∑

i=1

w
(j)
t−1α

(j)
t−1 + F⊤Q−1

N∑

i=1

w̃
(j)
t+1α̃

(j)
t+1

)

which will reduce the computational complexity at each time point toO (rnmaxNS + rpnmax)
or O (rnmaxN + rpnmax).

3 Higher Order State Space Models

Now, we will consider the case where p > r. Currently this is not supported in the package
but may be in the future. An example is a seconder order vector autoregression, VAR (2),
with 2r = p and

F =

(
F1 F2

Ir 0

)
, Fi ∈ R

r×r

αt =
(
ξ⊤t ξ⊤t−1

)⊤

Here

f (αt|αt−1) = δKFαt−1
(Kαt)φ

(
R+αt

∣∣R+Fαt−1,Q
)
, K =

(
0

Ip−r

)

= δξt−1
(Kαt)φ

(
ξt
∣∣R+Fαt−1,Q

)

the second equality follows in a seconder order vector autoregression. This is easily imple-
mented in the forward particle filter by sampling ξt | αt−1 and setting the remaining p− r
variables of αt to KFαt−1 (the last p−r rows of Fαt−1). It is not as easy for the backward
filter. To see this, consider the artificial transition density in Equation (7)

p̃ (αt|αt+1) =
f (αt+1|αt) γt(αt)

γt+1(αt+1)

=
δKFαt

(Kαt+1)φ (R+αt+1|R
+Fαt,Q) γt(αt)

γt+1(αt+1)

where the last equality holds in this example. This distribution is obviously degenerate as
it only has mass at the point ξt = KFαt in the VAR(2) model.

3.1 Backward Particle Filter

What we can do in the backward particle filter in a VAR (o) model with o > 1 is to sample

ξt at time t given α̃
(k)
t+o. Thus, we start Algorithm 3 by sampling αd+o. Further, we change

14

the artificial prior distribution density in Equation (6) to

γt (αt) = φ
(
αt

∣∣∣←−mt,
←−
P t

)

γt (ξt) = φ
(
αt

∣∣∣R+←−mt,R
+←−P tR

+⊤
)

←−mt = Ftµ0

←−
P t =

{
Q0 t = 0

F
←−
P t−1F

⊤ +RQR⊤ t > 0

Next, we find the conditional distribution α̃
(k)
t+o | ξt. To do so, we first find the join distri-

bution of (α⊤
t+o, ξ

⊤
t)

⊤. We can find that

ξk = R+Fkα0 +

k∑

i=1

G(k − i)ǫi

G(j) =

{
Ir j = 0∑min(j,o)

i=1 FiG(j − i) j > 0

Thus,

E (ξt) = R+Fkµ0 = R+mt

E (αt) =mt

Var (ξt) =

t∑

i=1

G(t− i)QG(t− i)⊤ +R+FtQ0F
t⊤R+⊤

= R+PtR
+⊤

Cov (ξk, ξl) =

l∑

i=1

G(k − i)QG(l − i)⊤ +R+FkQ0F
l⊤R+⊤, k > l

Var (αt) = Pt

with which we can find that the joint distribution is
(
αt+o

ξt

)
∼ N

((
mt+o

R+mt

)
,

(
Pt+o Cov (αt+o, ξt)

Cov (ξt,αt+o) R+PtR
+⊤

))

We are now able to compute

E (αt+o|ξt) = µαt+o|ξt =mt+o +Cov (αt+o, ξt)R
⊤P−1

t R
(
ξt −R+mt

)

= vt +Vtξt

Vt = Cov (αt+o, ξt)R
⊤P−1

t R

vt =mt+o −VtR
+mt

Var (αt+o|ξt) = Σαt+o|ξt = Pt+o − Cov (αt+o, ξt)R
⊤P−1

t RCov (ξt,αt+o)

Having found this conditional distribution then we can apply similar arguments as we
did before and find the following mean and covariance matrix in the proposal distribution

←−µ (α̃
(k)
t+o, z) =

←−
Σt(z)

(
R⊤P−1

t mt +V⊤
t Σ

−1
αt+o|ξt

(α̃
(k)
t+o − vt) +X⊤

t Gt(z)ut(z)
)

←−
Σt(z) =

(
R⊤P−1

t R+V⊤
t Σ

−1
αt+o|ξt

Vt +X⊤
t Gt(z)Xt

)−1

15

which replaces the mean and covariance matrix in Equation (21) and (22), zt ∈ R
r is the

value of ξt at which we make the Taylor expansion, and Gt and ut are defined in terms of
ξt.

3.2 Combining/Smoothing

Similarly, in Algorithm 1 we sample pairs of particles (α
(ji)
t−1, α̃

(ki)
t+o), and sample ξt given

each pair. We can replace the mean and covariance matrix in the proposal distribution in
Equation (13) and (12) with the approximation

←→
Σ t(z) =

(
Q−1 +V⊤

t Σ
−1
αt+o|ξt

Vt +X⊤
t Gt(z)Xt

)−1

←→µ t(α
(ji)
t−1, α̃

(ki)
t+o , z) =

Σt(z)
(
Q−1R+Fα

(ji)
t−1 +V⊤

t Σ
−1
αt+o|ξt

(α̃
(ki)
t+o − vt) +X⊤

t Gt(z)Xt

)

where z is the value of ξt that we make the Taylor expansion at.

4 Log-Likelihood Evaluation and Parameter Estimation

In this section, I show an example of parameter estimation in the first order random walk
using a Monte Carlo EM-algorithm. Then I cover the general vector autoregression model
and how one can estimate the fixed effects. See Kantas et al. (2015); Del Moral et al. (2010);
Schön et al. (2011) for a general coverage of parameter estimation with particle filters. Firstly
though, I will remark that we can approximate the log-likelihood for a particular value of
θ = {Q,Q0,µ0,F} as described in Doucet and Johansen (2009, p. 5) and Malik and Pitt
(2011, p. 193) using the forward particle filter shown in Algorithm 2. Details are omitted
here for the sake of brevity.

The formulas for parameter estimation for the first order random are particularly simple.
We need to estimate Q and a0 elements of ϕ = {Q,Q0,µ0}. We do this by running
Algorithm 1 for the current ϕ. This yields the following quantities from the E-step

t
(ϕ)
t ≈

Ns∑

i=1

α̂
(i)
t ŵ

(i)
t

T
(ϕ)
t ≈

Ns∑

i=1

(
α̂

(i)
t − Fα

(jit)
t−1

)(
α̂

(i)
t − Fα

(jit)
t−1

)⊤
ŵ

(i)
t

(23)

where we have extended the notation in Algorithm 1 such that superscript jit is the index
from forward cloud at time t − 1 matching with ith smoothed particle at time t. Then we
carry out the M-step by updating µ0 and Q given the summary statistics above

µ0 = t
(ϕ)
1 Q =

1

d− 1

d∑

t=2

R+T
(ϕ)
t R+⊤ (24)

We then take another iteration of the EM-algorithm with the new µ0 and Q and repeat
till a convergence criteria is satisfied.

16

4.1 Vector Autoregression Models

We start by defining the following matrices to cover estimation in general vector autoregres-
sion models for the latent space variable

N =
(
α̂

(1)
2 , . . . , α̂

(Ns)
2 , α̂

(1)
3 , . . . , α̂

(Ns)
3 , α̂

(1)
4 , . . . , α̂

(Ns)
d

)⊤
R+⊤

M =
(
α

(j12)
1 , . . . ,α

(jNs2)
1 ,α

(j13)
2 , . . . ,α

(jNs3)
2 ,α

(j14)
3 , . . . ,α

(jNsd)
d−1

)⊤

W = diag
(
ŵ

(1)
2 , . . . , ŵ

(Ns)
2 , ŵ

(1)
3 , . . . , ŵ

(Ns)
3 , ŵ

(1)
4 , . . . , ŵ

(Ns)
d

)

where diag (·) is a diagonal matrix. We suppress the dependence above on the result of the
E-step in a given iteration of the EM-algorithm to ease the notation. The goal is to estimate
F and Q in Equation (1). We can find that the M-step maximizers are

F̂⊤R+⊤ =
(
M⊤WM

)−1
M⊤WN (25)

Q̂ =
1

d− 1

(
N−R+F̂M

)⊤
W
(
N−R+F̂M

)
(26)

which are the typical vector autoregression estimators with weights. Equation (25) and
(26) can easily be computed in parallel using QR decompositions as in the bam function
in the mgcv package with a low memory footprint (see Wood et al., 2014). This is cur-
rently implemented. Though, the gains from a parallel implementation may be small as
the computational complexity is independent of the number of observations. Consequently,
the computation involved here is often fast relative to other part of the Monte Carlo EM-
algorithm as the dimension of the state vector is small.

4.2 Restricted Vector Autoregression Models

Suppose that we want to restrict some of the parameters of F and Q. Let

(s1, s2, . . . , sr)
⊤ = Jψ

(o21, o31, . . . , or1, o32, . . . , or2, o43, . . . , or,r−1)
⊤ = Kφ

Then we can restrict the model such that

σi = exp(si) ρij =
2

1 + exp(−oij)
− 1

vec
(
R+F

)
= Gθ Q = VCV

V =

σ1 0 · · · 0

0 σ2
. . . 0

...
. . .

. . .
...

0 . . . 0 σr

C =

1 ρ21 · · · ρr1

ρ21 1
. . . ρr2

...
. . .

. . .
...

ρr1 . . . ρr,r−1 1

17

and where vec (·) is the vectorization function which stacks the the columns of a matrix
from left to right. E.g.,

vec (A) = (a11, a21, a31, a12, a22, a32, a13, a23, a33)
⊤

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

G ∈ R
rp×g is a known matrix with g ≤ rp and we assume that it has full column rank.

Similarly, J ∈ R
r×l with l ≤ r and K ∈ R

r(r−1)/2×k with k ≤ r(r − 1)/2. Both are known
and have full column rank. We assume that G is such that F is non-singular for some θ
since Equation (9) used. Further, we assume that J and K are such that Q is a positive
definite matrix for some ψ and φ pair. V is a diagonal matrix containing the standard
deviations and C is the correlation matrix.

We cannot jointly maximize θ, ψ, and φ analytically but we can maximize θ analytically
conditional on ψ and φ. Hence, we can employ a Monte Carlo expectation conditional
maximization algorithm in which we take two so-called conditional maximization steps (see
Meng and Rubin, 1993, for the, non-Monte Carlo, expectation maximization algorithm).
The first conditional maximization step is

θ(i+1) = G+
(
Q(i) ⊗

(
M⊤WM

)−1
)
G+⊤G⊤vec

(
M⊤WNQ−(i)

)
(27)

where ⊗ is the Kronecker product and Q−(i) is the inverse of Q(i). Equation (27) is easily
computed with the QR decomposition we make to compute for Equation (25). Having

obtained the new θ(i+1), we update F and denote the new estimate F̂(i+1). The second
conditional maximization step which updates ψ and φ is

Z =
(
N−R+F̂(i+1)M

)⊤
W
(
N−R+F̂(i+1)M

)

ψ(i+1),φ(i+1) = argmax
ψ,φ

−(d− 1) log |Q(ψ,φ)| − tr
(
Q(ψ,φ)−1Z

)

which can be done numerically. We have made Q’s dependence on ψ and φ explicit to
emphasize which factors are affected. C may not be a valid correlation matrix for all
φ ∈ R

k for some choices of K. Thus, the numerical optimization algorithm is constrained
to valid correlation matrices. This completes the two conditional maximization steps. The
next E-step is then performed using θ(i+1), ψ(i+1), φ(i+1). Meng and Rubin (1993, see
the discussion) comments that it may be beneficial to perform an E-step between each
conditional maximization step when the E-step is relatively cheap. This is not the case here
since all the above computations are independent of the number observations, nmax. Thus,
if we have a moderately large number of observations at each time point relative to the
dimension of the state vector, then we will use most of the computation time performing
the E-step.

4.3 Estimating Fixed Effect Coefficients

Next, we turn to estimating the fixed effect coefficients, ω, in Equation (1). If we assume
that observations, yits, are from an exponential family then it is easy to show that the
M-step estimator amounts to generalized linear model with Ns observations for each yit

18

which differ only by an offset term and a weight. The offset term comes from the x⊤
itR

+α̂
(t)
j

term in Equation (1) for each of the j = 1, . . . , Ns smoothed particles. The corresponding

weights are the smoothed weights, ŵ
(t)
j . The problem can be solved in parallel using QR

decompositions as in Section 4.1. This is what is done in the current implementation.
Currently, I only take one iteration of the iteratively re-weighted least squares. I gather I have to repeat
till convergence though... This is however not nice computationally and the difference in the estimate from
one M-step iteration to the next is very minor when you only take one iteratively re-weighted least square
iteration...

5 Other Filter and Smoother Options

The O
(
N2
)
two-filter smoother in Fearnhead et al. (2010) is going to be computationally

expensive as an approximation is going to be needed for Equation (8) in their article. The
non-auxiliary version in Briers et al. (2009) is more feasible as it only requires evaluation of
f in the smoothing part of the generalized two-filter smoother (see Equation (46) in their
paper). Similar conclusions applies to the forward smoother in Del Moral et al. (2010)
and the backward smoother as presented in Kantas et al. (2015). Both have a O

(
N2
)

computational cost.
Despite the O

(
N2
)
cost of the method in Briers et al. (2009) and Del Moral et al. (2010)

they may still be useful as the computational cost in the smoothing step is independent of
the number of observations, nmax. Further, the computational cost can be reduced to
O (N log(N)) run times with approximations like in Klaas et al. (2006).

The method in Malik and Pitt (2011, see particularly section 6.2 on page 203) can be
used to do continuous likelihood approximations as a function of the unknown parameters.
Though, I am not sure how well this method scale with higher state dimensions, p.

Kantas et al. (2015) show empirically that it may be worth just using a forward filter.
However, the example is with an univariate outcome (nmax = 1 not to be confused with the
number of periods d). In the problems shown in this vignette, the computational complexity
of the forward filter is at least O (dNnmaxp). Every new particle yields an O (dnmaxp) cost
which is expensive due to the large number of outcomes, nmax. Thus, the considerations are
different and a O

(
dNnmaxp+N2

)
method will not make a big difference unless N is large.

6 Generalized Two-Filter Smoother

The O
(
N2
)
smother from Briers et al. (2009) is also implemented as it is feasible for a

moderate number of particles (though, we can use the approximations in Kantas et al.,
2015 to reduce the computational complexity). It is shown in Algorithm 4. The weights in
Equation (30) comes from the generalized two-filter formula. To motivate the smoother, we
use

p (yt:d|αt) = p̃ (yt:d)
p̃ (αt|yt:d)

γt(αt)

19

to generalize the two-filter formula in Kitagawa (1994) as follows

p (αt|y1:d) =
p (αt|y1:t−1) p (yt:d|αt)

p (yt:d|y1:t−1)
(28)

∝ p (αt|y1:t−1) p (yt:d|αt)

= p (αt|y1:t−1) p̃ (yt:d)
p̃ (αt|yt:d)

γt(αt)

∝ p (αt|y1:t−1)
p̃ (αt|yt:d)

γt(αt)

= p̃ (αt|yt:d)

[∫
p (αt−1|y1:t−1) f (αt|αt−1) dαt−1

]

γt(αt)

∝
∼

N∑

i=1

w̃
(i)
t δ

α̃
(i)
t

(αt)

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

γt

(
α̃

(i)
t

)

where ∝∼ means approximately proportional. Similar arguments leads to

p (αt−1:t|y1:d) ∝ p (αt−1:t|y1:t−1) p (yt:d|αt−1:t)

= f (αt|αt−1) p (αt−1|y1:t−1) p (yt:d|αt)

∝ f (αt|αt−1) p (αt−1|y1:t−1)
p̃ (αt|yt:d)

γt(αt)

∝
∼

N∑

i=1

N∑

j=1

w̃
(i)
t δ

α̃
(i)
t

(αt)

[∑N
k=1 w

(k)
t−1f

(
α̃

(i)
t

∣∣∣α(k)
t−1

)]

γt

(
α̃

(i)
t

)

·
w

(j)
t−1δα(j)

t−1
(αt−1) f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)

[∑N
k=1 w

(k)
t−1f

(
α̃

(i)
t

∣∣∣α(k)
t−1

)]

=
N∑

i=1

N∑

j=1

ŵ
(i,j)
t δ

α̃
(i)
t

(αt) δα(j)
t−1

(αt−1)

where

ŵ
(i,j)
t = ŵ

(i)
t

w
(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)] (29)

We need the latter for the Monte Carlo EM-algorithm.

20

Algorithm 4 O
(
N2
)
generalized two-filter smoother using the method suggested by Briers

et al. (2009).

Input:
Q,Q0,a0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd,ω

1: procedure Filter forward

2: Run a forward particle filter to get particle clouds
{
α

(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating p (αt|y1:t) for t = 0, 1, . . . , d. See Algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to get
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,N

approximating

p̃ (αt|yt:d) for t = d+ 1, d, d− 1, . . . , 1. See Algorithm 3.

5: procedure Smooth (combine)
6: for t = 1, . . . , d do
7: Assign each backward filter particle a smoothing weight given by

ŵ
(i)
t ∝ w̃

(i)
t

[∑N
j=1 w

(j)
t−1f

(
α̃

(i)
t

∣∣∣α(j)
t−1

)]

γt

(
α̃

(i)
t

) (30)

With the result above, we can show the arguments behind the smoother from Fearnhead
et al. (2010). Similar to Equation (28), we find that

p (αt|y1:d) ∝ p (αt|y1:t−1) p (yt:d|αt)

= p (αt|y1:t−1) gt (yt|αt) p (yt+1:d|αt)

=

∫
f (αt|αt−1) p (αt−1|y1:t−1) dαt−1gt (yt|αt)

·

∫
f (αt+1|αt) p (yt+1:d|αt+1) dαt+1

∝

∫
f (αt|αt−1) p (αt−1|y1:t−1) dαt−1gt (yt|αt)

·

∫
f (αt+1|αt)

p̃ (αt+1|yt+1:d)

γt+1(αt+1)
dαt+1

∝
∼

N∑

j=1

N∑

k=1

f
(
αt

∣∣∣α(j)
t−1

)
w

(j)
t−1gt (yt|αt) f

(
α̃

(k)
t+1

∣∣∣αt

) w̃
(k)
t+1

γt+1(α̃
(k)
t+1)

Thus, we can sample αt from a proposal distribution given the time t − 1 forward filter

particle, α
(j)
t−1, and time t+1 backward filter particle, α̃

(k)
t+1, for all N

2 particle pairs. Alter-
natively, we can sample the t−1 and t+1 particles independently which yields Algorithm 1.

21

Further, we can find that

p (αt−1:t|y1:d) = p (αt−1:t|y1:t−1) gt (yt|αt−1:t) p (yt+1:d|αt−1:t)

∝ f (αt|αt−1) p (αt−1|y1:t−1) gt (yt|αt)

·

∫
f (αt+1|αt)

p̃ (αt+1|yt+1:d)

γt+1(αt+1)
dαt+1

∝
∼

Ns∑

i=1

δ
α̂

(i)
t

(αt) δ
α
(ji)
t−1

(αt) f
(
α̂

(i)
t

∣∣∣α(ji)
t−1

)
w

(ji)
t−1gt

(
yt

∣∣∣α̂(i)
t

)

·

∫
f
(
αt+1

∣∣∣α̂(i)
t

) p̃ (αt+1|yt+1:d)

γt+1(αt+1)
dαt+1

∝
∼

Ns∑

i=1

ŵ
(i)
t δ

α̂
(i)
t

(αt) δ
α
(ji)
t−1

(αt)

where superscripts ji are used as in Algorithm 1 which implicitly dependent on t.

7 Gradient and Observed Information Matrix

An alternative to the Monte Carlo EM-algorithm is to approximate the gradient and use
it to perform the maximization with a gradient descent algorithm. Moreover, one may be
interested in the observed information matrix. Two methods are implemented in order to
make such approximations. The first method is the method covered in Cappé et al. (2005,
section 8.3 and chapter 11). It has the advantage that it uses the output from the forward
particle filter. However, the variance of the estimates increase at least quadratically in
time, d. An alternative is to use the method shown by Poyiadjis et al. (2011). Like the
smoothing algorithm from Briers et al. (2009), this method has the disadvantage of having
a computational complexity which is quadratic in the number of particles, N .

I will give a brief introduction to the two methods in this section. What is presented
here closely follow Poyiadjis et al. (2011). First, we will need some notation. We denote the
complete data log-likelihood by

c (y1:t,α0:t) = log h (y1:t,α0:t)

h (y1:t,α0:t) = ν (α0)

t∏

k=1

gk (yk|αk) f (αk|αk−1)

where ν is the density function of the state vector at time zero, all functions may implicitly
depend on the unknown parameters, and the dimension of the arguments to c and h is given
by the superscript of the arguments. A direct application of the results by Louis (1982)
shows that the gradient of the observed data log-likelihood

o (y1:t) = log

∫
h (y1:t,a0:t) da0:t

w.r.t. the unknown parameters are

∇o (y1:t) =
∂

∂θ
log

∫
h (y1:t,a0:t) da0:t =

∫
h′ (y1:t,a0:t) da0:t∫
h (y1:t,a0:t) da0:t

(31)

=

∫
c′ (y1:t,a0:t) p (a0:t|y1:t) da0:t

22

where θ are the unknown parameters in the model, derivatives are w.r.t. θ, and p (a0:t|y1:t)
is the conditional density function of a0:t given y1:t. Moreover, the Hessian is

∇2o (y1:t) =

∫
h′′ (y1:t,a0:t) da0:t∫
h (y1:t,a0:t) da0:t

−∇o (y1:t)∇o (y1:t)
⊤

=

∫
c′′ (y1:t,a0:t) p (a0:t|y1:t) da0:t (32)

+

∫
c′ (y1:t,a0:t) c

′ (y1:t,a0:t)
⊤
p (a0:t|y1:t) da0:t −∇o (y1:t)∇o (y1:t)

⊤

We can use that the forward particle filter yields not just an approximation of p (ad|y1:d)
but the entire path p (a0:d|y1:d). That is, we can use the weights at time d from Equation
(17) and make a discrete approximation of Equation (31) and (32) as shown in Cappé et al.
(2005). However, the variance of the estimates grows at-least quadratically in d as shown
by Poyiadjis et al. (2011). The issue is that for larger d, then few if not only one unique
value of the initial state vector values (αi with 0 ≤ i << d) are present in the discrete
approximation.

As an alternative, Poyiadjis et al. (2011) develop a marginal version of Equation (31)
and (32). That is,

c̃ (y1:t,αt) = log h̃ (y1:t,αt)

h̃ (y1:t,αt) =

{
gt (yt|αt)

∫
f (αt|at−1) h̃

(
y1:(t−1),at−1

)
dat−1 t > 0

ν (at) t = 0
(33)

∇o (y1:t) =

∫
c̃′ (y1:t,at) p (at|y1:t) dat (34)

∇2o (y1:t) =

∫
c̃′′ (y1:t,at) p (at|y1:t) dat

+

∫
c̃′ (y1:t,at) c̃

′ (y1:t,at)
⊤
p (at|y1:t) dat −∇o (y1:t)∇o (y1:t)

⊤

=

∫ (
h̃′′ (y1:t,at)

h̃ (y1:t,at)
− c̃′ (y1:t,at) c̃

′ (y1:t,at)
⊤

)
p (at|y1:t) dat (35)

+

∫
c̃′ (y1:t,at) c̃

′ (y1:t,at)
⊤
p (at|y1:t) dat −∇o (y1:t)∇o (y1:t)

⊤

While there is no analytical expression for the derivatives then one can establish a point-
wise approximation recursively for c′ (y1:t,at) and c′′ (y1:t,at) as suggested by Poyiadjis
et al. (2011). To see this, let

st (αt,αt−1) = log gt (yt|αt) + log f (αt|αt−1)

Then

h̃′ (y1:t,αt) = o (y1:t−1) gt (yt|αt)

∫
f (αt|at−1) p (at−1|y1:t−1) (36)

·
(
s′t (αt,at−1) + c̃′

(
y1:(t−1),at−1

))
dat−1

23

Taking the ratio of Equation (36) and (33) yields c̃′ (y1:t,αt) in Equation (34). Moreover,
for Equation (35)

h̃′′ (y1:t,αt) = o (y1:t−1) gt (yt|αt)

∫
f (αt|at−1) p (at−1|y1:t−1)

·

((
s′t (αt,at−1) + c̃′

(
y1:(t−1),at−1

)) (
s′t (αt,at−1) + c̃′

(
y1:(t−1),at−1

))⊤

+ s′′t (αt,at−1) + c̃′′
(
y1:(t−1),at−1

))
dat−1

where we again take the ratio with (33). Unlike before, we need to evaluate two ratios,
h̃′ (y1:t,at) /h̃ (y1:t,at) and h̃′′ (y1:t,at) /h̃ (y1:t,at), which require evaluation of expressions
of the form ∫

f (αt|at−1) p (at−1|y1:t−1)κt (αt,at−1) dat−1∫
f (αt|at−1) p (at−1|y1:t−1) dat−1

(37)

for some function κt. To do so, redefine the weights in Equation (17) in the forward particle
filter shown in Algorithm 2 to

w
(i)
t ∝

gt

(
yt

∣∣∣α(i)
t

)∑N
j=1 f

(
α

(i)
t

∣∣∣α(j)
t−1

)
w

(j)
t−1

q

(
α

(i)
t

∣∣∣∣
{(
α

(j)
t−1, w

(j)
t−1

)}
j=1,...,N

,yt

)

where we have made it explicit that the proposal distribution may depend on the previous
particle cloud and assume that we use the same number of particles at time 0. Further,
define the weights

w̄
(i,j)
t =

f
(
α

(i)
t

∣∣∣α(j)
t−1

)
w

(j)
t−1

∑N
k=1 f

(
α

(i)
t

∣∣∣α(k)
t−1

)
w

(k)
t−1

(38)

Now a discrete approximation of expression in Equation (37) is given by

N∑

j=1

w̄
(i,j)
t κt

(
α

(i)
t ,α

(j)
t−1

)

Thus, the recursive formula for the gradient approximation is

ζ
(i)
t =

N∑

j=1

w̄
(i,j)
t

(
s′t

(
α

(i)
t ,α

(j)
t−1

)
+ ζ

(j)
t−1

)
(39)

∇o (y1:t) ≈
N∑

i=1

w
(i)
t ζ

(i)
t

and for the Hessian we have

Υ
(i)
t =

N∑

j=1

w̄
(i,j)
t

((
s′t

(
α

(i)
t ,α

(j)
t−1

)
+ ζ

(j)
t−1

)(
s′t

(
α

(i)
t ,α

(j)
t−1

)
+ ζ

(j)
t−1

)⊤
(40)

+ s′′t

(
α

(i)
t ,α

(j)
t−1

)
+Υ

(j)
t−1

)
− ζ

(i)
t ζ

(i)⊤
t

24

such that

∇2o (y1:t) ≈
N∑

i=1

w
(i)
t

(
ζ
(i)
t ζ

(i)⊤
t +Υ

(i)
t

)
−∇o (y1:t)∇o (y1:t)

⊤

The issue with the latter method is that the method has an O
(
N2
)
computational

complexity because of the sums in Equation (38), (39), and (40). A particular type of
particle filters that are well suited for approximations like those in Equation (37) are the
so-called independent particle filters suggest by Lin et al. (2005). The key point in these
filters is that they use a proposal distribution which only depends on the observed outcome,
yt, or also the previous particle cloud but not any particular particle.

An alternative to the methods in the dynamichazard package is the mssm package. It
contains both the method shown in Cappé et al. (2005) and the method suggested by
Poyiadjis et al. (2011) but for more general models. Moreover, the mssm package has an
implementation of the dual k-d tree approximation method like in Klaas et al. (2006).
This reduces the average-case complexity to O (N logN) and thus it allows one to use
substantially more particles. Lastly, the mssm also allows for two types of antithetic variables
like those suggest by Durbin and Koopman (1997). This decreases the variance of the
estimates for the same computational cost.

25

References

Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for state–
space models. Annals of the Institute of Statistical Mathematics, 62(1):61, Jun 2009.
ISSN 1572-9052. doi: 10.1007/s10463-009-0236-2. URL https://doi.org/10.1007/

s10463-009-0236-2.

Olivier Cappé, Eric Moulines, and Tobias Ryden. Inference in Hidden Markov Models.
Springer-Verlag New York, 2005. ISBN 978-0-387-40264-2, 978-1-4419-2319-6.

Pierre Del Moral, Arnaud Doucet, and Sumeetpal Singh. Forward smoothing using sequen-
tial monte carlo. arXiv preprint arXiv:1012.5390, 2010.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the royal statistical society. Series B
(methodological), pages 1–38, 1977.

Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering.
In Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th
International Symposium on, pages 64–69. IEEE, 2005.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

J. Durbin and S. J. Koopman. Monte carlo maximum likelihood estimation for non-Gaussian
state space models. Biometrika, 84(3):669–684, 1997. ISSN 00063444. URL http://www.

jstor.org/stable/2337587.

Paul Fearnhead, David Wyncoll, and Jonathan Tawn. A sequential smoothing algorithm
with linear computational cost. Biometrika, 97(2):447–464, 2010.

Nikolas Kantas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, Nicolas Chopin, et al.
On particle methods for parameter estimation in state-space models. Statistical science,
30(3):328–351, 2015.

Genshiro Kitagawa. The two-filter formula for smoothing and an implementation of the
Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4):605–
623, Dec 1994. ISSN 1572-9052. doi: 10.1007/BF00773470. URL https://doi.org/10.

1007/BF00773470.

Genshiro Kitagawa. Monte carlo filter and smoother for non-Gaussian nonlinear state space
models. Journal of computational and graphical statistics, 5(1):1–25, 1996.

Mike Klaas, Mark Briers, Nando De Freitas, Arnaud Doucet, Simon Maskell, and Dustin
Lang. Fast particle smoothing: If i had a million particles. In Proceedings of the 23rd
international conference on Machine learning, pages 481–488. ACM, 2006.

Ming T. Lin, Junni L. Zhang, Qiansheng Cheng, and Rong Chen. Independent particle
filters. Journal of the American Statistical Association, 100(472):1412–1421, 2005. ISSN
01621459. URL http://www.jstor.org/stable/27590681.

Thomas A. Louis. Finding the observed information matrix when using the EM algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), 44(2):226–233, 1982.
ISSN 00359246. URL http://www.jstor.org/stable/2345828.

26

Sheheryar Malik and Michael K Pitt. Particle filters for continuous likelihood evaluation
and maximisation. Journal of Econometrics, 165(2):190–209, 2011.

Xiao-Li Meng and Donald B. Rubin. Maximum likelihood estimation via the ECM algo-
rithm: A general framework. Biometrika, 80(2):267–278, 1993. ISSN 00063444. URL
http://www.jstor.org/stable/2337198.

Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American statistical association, 94(446):590–599, 1999.

George Poyiadjis, Arnaud Doucet, and Sumeetpal S. Singh. Particle approximations of the
score and observed information matrix in state space models with application to parameter
estimation. Biometrika, 98(1):65–80, 2011. ISSN 00063444. URL http://www.jstor.

org/stable/29777165.

Thomas B Schön, Adrian Wills, and Brett Ninness. System identification of nonlinear
state-space models. Automatica, 47(1):39–49, 2011.

Simon Wood, Yannig Goude, and Simon Shaw. Generalized additive models for large data
sets. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64(1):139–
155, 2014. doi: 10.1111/rssc.12068. URL https://rss.onlinelibrary.wiley.com/doi/

abs/10.1111/rssc.12068.

27

	Method
	Overview
	Methods in the Package
	Proposal Distributions and Re-sampling Weights

	Non-linear Conditional Observation Model
	Where to Make the Expansion

	Higher Order State Space Models
	Backward Particle Filter
	Combining/Smoothing

	Log-Likelihood Evaluation and Parameter Estimation
	Vector Autoregression Models
	Restricted Vector Autoregression Models
	Estimating Fixed Effect Coefficients

	Other Filter and Smoother Options
	Generalized Two-Filter Smoother
	Gradient and Observed Information Matrix

