
Package ‘dynamichazard’
October 14, 2019

Type Package

Title Dynamic Hazard Models using State Space Models

Version 0.6.6

Description Contains functions that lets you fit dynamic hazard models using
state space models. The first implemented model is described in Fahrmeir
(1992) <doi:10.1080/01621459.1992.10475232> and Fahrmeir (1994)
<doi:10.1093/biomet/81.2.317>. Extensions hereof are available where the
Extended Kalman filter is replaced by an unscented Kalman filter and other
options including particle filters. The implemented particle filters support
more general state space models.

License GPL-2

LazyData TRUE

LinkingTo Rcpp, RcppArmadillo

Imports parallel, Rcpp (>= 0.12.6), boot

Depends R (>= 3.5.0), stats, graphics, utils, survival

RoxygenNote 6.1.1

Suggests testthat, knitr, rmarkdown, timereg, captioner, biglm, httr,
mgcv, shiny, formatR, R.rsp, speedglm, dichromat, colorspace,
plyr, gsl, mvtnorm, nloptr (>= 1.2.0)

VignetteBuilder knitr, R.rsp

BugReports https://github.com/boennecd/dynamichazard/issues

SystemRequirements C++11

URL https://github.com/boennecd/dynamichazard

Encoding UTF-8

NeedsCompilation yes

Author Benjamin Christoffersen [cre, aut],
Alan Miller [cph],
Anthony Williams [cph],
Boost developers [cph],
R-core [cph]

1

https://github.com/boennecd/dynamichazard/issues
https://github.com/boennecd/dynamichazard

2 ddFixed

Maintainer Benjamin Christoffersen <boennecd@gmail.com>

Repository CRAN

Date/Publication 2019-10-14 08:50:02 UTC

R topics documented:
ddFixed . 2
ddhazard . 3
ddhazard_app . 6
ddhazard_boot . 6
ddhazard_control . 7
get_cloud_means . 9
get_cloud_quantiles . 10
get_Q_0 . 10
get_risk_obj . 11
get_survival_case_weights_and_data . 12
hatvalues.ddhazard . 14
hds . 15
logLik.ddhazard . 16
logLik.PF_EM . 17
PF_control . 18
PF_EM . 20
PF_forward_filter . 26
PF_get_score_n_hess . 29
plot.ddhazard . 31
plot.ddhazard_space_errors . 32
plot.ddsurvcurve . 33
plot.PF_clouds . 36
plot.PF_EM . 37
predict.ddhazard . 37
print.ddhazard_boot . 39
print.summary.ddhazard . 40
residuals.ddhazard . 40
static_glm . 42

Index 44

ddFixed Auxiliary Functions for Fixed Effects

Description

Functions used in formula of ddhazard for time-invariant effects. ddFixed_intercept is only used
for the intercept.

ddhazard 3

Usage

ddFixed(object)

ddFixed_intercept(random_intercept = FALSE)

Arguments

object expression that would be used in formula. E.g. x or poly(x,degree = 3).
random_intercept

TRUE if a zero mean time-varying process should be included at as an additional
term. Only relevant in stationary models. See the type argument in PF_EM.

Examples

we can get a time-invariant effect of `x1` by
Not run:
ddhazard(Surv(stop, event) ~ ddFixed(x1), data)

End(Not run)

all of the calls below will yield the same result with a time-invariant
intercept:
Not run:
ddhazard(Surv(stop, event) ~ ddFixed_intercept() + x1, data)
ddhazard(Surv(stop, event) ~ -1 + ddFixed_intercept() + x1, data)

End(Not run)

ddhazard Fitting Dynamic Hazard Models

Description

Function to fit dynamic hazard models using state space models.

Usage

ddhazard(formula, data, model = "logit", by, max_T, id, a_0, Q_0,
Q = Q_0, order = 1, weights, control = ddhazard_control(),
verbose = F)

Arguments

formula coxph like formula with Surv(tstart,tstop,event) on the left hand site of
~.

data data.frame or environment containing the outcome and covariates.

4 ddhazard

model "logit", "cloglog", or "exponential" for respectively the logistic link func-
tion with discrete outcomes, the inverse cloglog link function with discrete out-
comes, or for the continuous time model with piecewise constant exponentially
distributed arrival times.

by interval length of the bins in which parameters are fixed.

max_T end of the last interval interval.

id vector of ids for each row of the in the design matrix.

a_0 vector a0 for the initial coefficient vector for the first iteration (optional). Default
is estimates from static model (see static_glm).

Q_0 covariance matrix for the prior distribution.

Q initial covariance matrix for the state equation.

order order of the random walk.

weights weights to use if e.g. a skewed sample is used.

control list of control variables from ddhazard_control.

verbose TRUE if you want status messages during execution.

Details

This function can be used to estimate survival models where the regression parameters follows a
given order random walk. The order is specified by the order argument. 1. and 2. order random
walks is implemented. The regression parameters are updated at time by, 2by, ..., max_T. See the
vignette("ddhazard","dynamichazard") for details.

All filter methods needs a state covariance matrix Q_0 and state vector a_0. An estimate from
a time-invariant model is used for a_0 if it is not supplied (the same model you would get from
static_glm). A diagonal matrix with large entries is recommended for Q_0. What is large depen-
dents on the data set and model. Further, a covariance matrix for the first iteration Q is needed. The
Q and a_0 are estimated with an EM-algorithm.

The model is specified through the model argument. The discrete outcome models are where out-
comes are binned into the intervals. Be aware that there can be "loss" of information due to binning
if outcomes are not discrete to start with. It is key for these models that the id argument is pro-
vided if individuals in the data set have time-varying covariates. The the exponential model use a
piecewise constant exponential distribution for the arrival times where there is no "loss" information
due to binning. Though, one of the assumptions of the model is not satisfied if outcomes are only
observed in discrete time intervals.

It is recommended to see the Shiny app demo for this function by calling ddhazard_app().

Value

A list with class ddhazard. The list contains

formula the passed formula.

call the matched call.

state_vecs 2D matrix with the estimated state vectors (regression parameters) in each bin.

state_vars 3D array with smoothed variance estimates for each state vector.

ddhazard 5

lag_one_cov 3D array with lagged correlation matrix for each for each change in the state
vector. Only present when the model is logit and the method is EKF.

n_risk the number of observations in each interval.

times the interval borders.

risk_set the object from get_risk_obj if saved.

data the data argument if saved.

weights weights used in estimation if saved.

id ids used to match rows in data to individuals.

order order of the random walk.

F_ matrix which map from one state vector to the next.

method method used in the E-step.

est_Q_0 TRUE if Q_0 was estimated in the EM-algorithm.

family Rcpp Module with C++ functions used for estimation given the model argument.
discrete_hazard_func

the hazard function corresponding to the model argument.

terms the terms object used.
has_fixed_intercept

TRUE if the model has a time-invariant intercept.

xlev a record of the levels of the factors used in fitting.

References

Fahrmeir, Ludwig. Dynamic modelling and penalized likelihood estimation for discrete time sur-
vival data. Biometrika 81.2 (1994): 317-330.

Durbin, James, and Siem Jan Koopman. Time series analysis by state space methods. No. 38.
Oxford University Press, 2012.

See Also

plot, residuals, predict, static_glm, ddhazard_app, ddhazard_boot

Examples

example with first order model
library(dynamichazard)
fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3600,
Q_0 = diag(1, 2), Q = diag(1e-4, 2), by = 50,
control = ddhazard_control(method = "GMA"))

plot(fit)

example with second order model
fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3600,
Q_0 = diag(1, 4), Q = diag(1e-4, 2), by = 50,

6 ddhazard_boot

control = ddhazard_control(method = "GMA"),
order = 2)

plot(fit)

ddhazard_app ddhazard Demo

Description

ddhazard_app runs a shiny app with demonstration of models.

Usage

ddhazard_app(quietly = F, ...)

Arguments

quietly TRUE if no messages should be printed when the app is run.

... starting values for the shiny app.

Details

Runs a shiny app where you try different model specifications on simulated data.

Examples

Not run:
dynamichazard::ddhazard_app()
dynamichazard::ddhazard_app(seed = 1, more_options = TRUE)

End(Not run)

ddhazard_boot Bootstrap for ddhazard Object

Description

See the vignette vignette("Bootstrap_illustration","dynamichazard"). The do_stratify_with_event
may be useful when either cases or non-cases are very rare to ensure that the model estimation suc-
ceeds.

Usage

ddhazard_boot(ddhazard_fit, strata, unique_id, R = 100,
do_stratify_with_event = F, do_sample_weights = F,
LRs = ddhazard_fit$control$LR * 2^(0:(-4)), print_errors = F)

ddhazard_control 7

Arguments

ddhazard_fit returned object from a ddhazard call.

strata strata to sample within. These need to be on an individual by individual basis
and not rows in the design matrix.

unique_id unique ids where entries match entries of strata.

R number of bootstrap estimates.
do_stratify_with_event

TRUE if sampling should be by strata of whether the individual has an event. An
interaction factor will be made if strata is provided.

do_sample_weights

TRUE if weights should be sampled instead of individuals.

LRs learning rates in decreasing order which will be used to estimate the model.

print_errors TRUE if errors should be printed when estimations fails.

Value

An object like from the boot function.

See Also

ddhazard, plot

Examples

Not run:
library(dynamichazard)
set.seed(56219373)
fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3000,
Q_0 = diag(1, 2), Q = diag(1e-4, 2), by = 100,
control = ddhazard_control(method = "GMA"))

bt <- ddhazard_boot(fit, R = 999)
plot(fit, ddhazard_boot = bt, level = .9)

End(Not run)

ddhazard_control Auxiliary for Controlling Dynamic Hazard Models

Description

Auxiliary for additional settings with ddhazard.

8 ddhazard_control

Usage

ddhazard_control(kappa = NULL, alpha = 1, beta = 0, NR_eps = NULL,
LR = 1, n_max = 10^2, eps = 0.001, est_Q_0 = F, method = "EKF",
save_risk_set = T, save_data = T, eps_fixed_parems = 1e-04,
fixed_parems_start = NULL,
n_threads = getOption("ddhazard_max_threads"), denom_term = 1e-05,
fixed_terms_method = "E_step", Q_0_term_for_fixed_E_step = NULL,
permu = if (!is.null(method)) method == "SMA" else F,
posterior_version = "cholesky", GMA_max_rep = 25,
GMA_NR_eps = 1e-04, est_a_0 = TRUE, ...)

Arguments

kappa hyper parameter κ in the unscented Kalman Filter.

alpha hyper parameter α in the unscented Kalman Filter.

beta hyper parameter β in the unscented Kalman Filter.

NR_eps tolerance for the Extended Kalman filter. Default is NULL which means that no
extra iteration is made in the correction step.

LR learning rate.

n_max maximum number of iteration in the EM-algorithm.

eps tolerance parameter for the EM-algorithm

est_Q_0 TRUE if you want the EM-algorithm to estimate Q_0. Default is FALSE.

method set to the method to use in the E-step. Either "EKF" for the Extended Kalman
Filter, "UKF" for the Unscented Kalman Filter, "SMA" for the sequential poste-
rior mode approximation method or "GMA" for the global mode approximation
method. "EKF" is the default.

save_risk_set TRUE if you want to save the list from get_risk_obj used to estimate the model.
It may be needed for later calls to e.g., residuals, plot and logLike.

save_data TRUE if you want to keep the data argument. It may be needed for later calls to
e.g., residuals, plot and logLike.

eps_fixed_parems

tolerance used in the M-step of the Fisher’s scoring algorithm for the fixed ef-
fects

fixed_parems_start

starting value for fixed terms.

n_threads maximum number of threads to use.

denom_term term added to denominators in either the EKF or UKF.
fixed_terms_method

the method used to estimate the fixed effects. Either 'M_step' or 'E_step' for
estimation in the M-step or E-step respectively.

Q_0_term_for_fixed_E_step

the diagonal value of the initial covariance matrix, Q_0, for the fixed effects if
fixed effects are estimated in the E-step.

get_cloud_means 9

permu TRUE if the risk sets should be permutated before computation. This is TRUE
by default for posterior mode approximation method and FALSE for all other
methods.

posterior_version

the implementation version of the posterior approximation method. Either "woodbury"
or "cholesky".

GMA_max_rep maximum number of iterations in the correction step if method = 'GMA'.
GMA_NR_eps tolerance for the convergence criteria for the relative change in the norm of the

coefficients in the correction step if method = 'GMA'.
est_a_0 FALSE if the starting value of the state model should be fixed.
... additional undocumented arguments.

Value

A list with components named as the arguments.

See Also

ddhazard

get_cloud_means Compute Mean Estimates from Particle Cloud

Description

Computes the estimated means from a particle cloud.

Usage

get_cloud_means(object, ...)

S3 method for class 'PF_EM'
get_cloud_means(object, ...)

S3 method for class 'PF_clouds'
get_cloud_means(object, cov_index = NULL,
type = c("smoothed_clouds", "forward_clouds", "backward_clouds"), ...)

Arguments

object object with class PF_EM or PF_clouds.
... named arguments to pass to the PF_clouds method.
cov_index integer vector with indices of the random effect to include.
type character with the type of cloud to compute means for.

Value

A matrix which rows are time indices and columns are random effect indices.

10 get_Q_0

get_cloud_quantiles Compute Quantile Estimates from Particle Cloud

Description

Computes the estimated quantiles from a particle cloud.

Usage

get_cloud_quantiles(object, ...)

S3 method for class 'PF_EM'
get_cloud_quantiles(object, ...)

S3 method for class 'PF_clouds'
get_cloud_quantiles(object, cov_index = NULL,
qlvls = c(0.05, 0.5, 0.95), type = c("smoothed_clouds",
"forward_clouds", "backward_clouds"), ...)

Arguments

object object with class PF_EM or PF_clouds.

... named arguments to pass to the PF_clouds method.

cov_index integer vector with indices of the random effect to include.

qlvls numeric vector with values in [0, 1] with the quantiles to compute.

type character with the type of cloud to compute quantiles for.

Value

A 3 dimensional array where the first dimension is the quantiles, the second dimension is the random
effect, and the third dimension is the time.

get_Q_0 Compute Time-Invariant Covariance Matrix

Description

Computes the invariant covariance matrix for a vector autoregression model.

Usage

get_Q_0(Qmat, Fmat)

get_risk_obj 11

Arguments

Qmat covariance matrix in transition density.

Fmat coefficients in transition density.

Value

The invariant covariance matrix.

Examples

Fmat <- matrix(c(.8, .4, .1, .5), 2, 2)
Qmat <- matrix(c(1, .5, .5, 2), 2)

x1 <- get_Q_0(Qmat = Qmat, Fmat = Fmat)
x2 <- Qmat
for(i in 1:101)

x2 <- tcrossprod(Fmat %*% x2, Fmat) + Qmat
stopifnot(isTRUE(all.equal(x1, x2)))

get_risk_obj Risk Set on an Equidistant Distant Grid

Description

Get the risk set at each bin over an equidistant distant grid.

Usage

get_risk_obj(Y, by, max_T, id, is_for_discrete_model = T,
n_threads = 1, min_chunk = 5000)

Arguments

Y vector of outcome variable returned from Surv.

by length of each bin.

max_T last observed time.

id vector with ids where entries match with outcomes Y.
is_for_discrete_model

TRUE if the model outcome is discrete. For example, a logit model is discrete
whereas what is is referred to as the exponential model in this package is a
dynamic model.

n_threads set to a value greater than one to use mclapply to find the risk object.

min_chunk minimum chunk size of ids to use when parallel version is used.

12 get_survival_case_weights_and_data

Value

a list with the following elements

risk_sets list of lists with one for each bin. Each of the sub lists have indices that corre-
sponds to the entries of Y that are at risk in the bin.

min_start start time of the first bin.

I_len length of each bin.

d number of bins.

is_event_in indices for which bin an observation Y is an event. -1 if the individual does not
die in any of the bins.

is_for_discrete_model

value of is_for_discrete_model argument.

Examples

small toy example with time-varying covariates
dat <- data.frame(
id = c(1, 1, 2, 2),
tstart = c(0, 4, 0, 2),
tstop = c(4, 6, 2, 4),
event = c(0, 1, 0, 0))

with(dat, get_risk_obj(Surv(tstart, tstop, event), by = 1, max_T = 6, id = id))

get_survival_case_weights_and_data

Get data.frame for Discrete Time Survival Models

Description

Function used to get data.frame with weights for a static fit for survivals.

Usage

get_survival_case_weights_and_data(formula, data, by, max_T, id,
init_weights, risk_obj, use_weights = T, is_for_discrete_model = T,
c_outcome = "Y", c_weights = "weights", c_end_t = "t")

Arguments

formula coxph like formula with Surv(tstart,tstop,event) on the left hand site of
~.

data data.frame or environment containing the outcome and covariates.

by interval length of the bins in which parameters are fixed.

get_survival_case_weights_and_data 13

max_T end of the last interval interval.

id vector of ids for each row of the in the design matrix.

init_weights weights for the rows in data. Useful e.g., with skewed sampling.

risk_obj a pre-computed result from a get_risk_obj. Will be used to skip some compu-
tations.

use_weights TRUE if weights should be used. See details.
is_for_discrete_model

TRUE if the model is for a discrete hazard model is used like the logistic model.
c_outcome, c_weights, c_end_t

alternative names to use for the added columns described in the return section.
Useful if you already have a column named Y, t or weights.

Details

This function is used to get the data.frame for e.g. a glm fit that is comparable to a ddhazard fit
in the sense that it is a static version. For example, say that we bin our time periods into (0,1],
(1,2] and (2,3]. Next, consider an individual who dies at time 2.5. He should be a control in the
the first two bins and should be a case in the last bin. Thus the rows in the final data frame for this
individual is c(Y = 1,...,weights = 1) and c(Y = 0,...,weights = 2) where Y is the outcome,
... is the covariates and weights is the weights for the regression. Consider another individual
who does not die and we observe him for all three periods. Thus, he will yield one row with c(Y =
0,...,weights = 3).

This function use similar logic as the ddhazard for individuals with time varying covariates (see
the vignette vignette("ddhazard","dynamichazard") for details).

If use_weights = FALSE then the two previously mentioned individuals will yield three rows each.
The first individual will have c(Y = 0,t = 1,...,weights = 1), c(Y = 0,t = 2,...,weights = 1),
c(Y = 1,t = 3,...,weights = 1) while the latter will have three rows c(Y = 0,t = 1,...,weights
= 1), c(Y = 0,t = 2,...,weights = 1), c(Y = 0,t = 3,...,weights = 1). This kind of data frame
is useful if you want to make a fit with e.g. gam function in the mgcv package as described en Tutz
et. al (2016).

Value

Returns a data.frame where the following is added (column names will differ if you specified
them): column Y for the binary outcome, column weights for weights of each row and additional
rows if applicable. A column t is added for the stop time of the bin if use_weights = FALSE. An
element Y with the used Surv object is added if is_for_discrete_model = FALSE.

References

Tutz, Gerhard, and Matthias Schmid. Nonparametric Modeling and Smooth Effects. Modeling
Discrete Time-to-Event Data. Springer International Publishing, 2016. 105-127.

See Also

ddhazard, static_glm

14 hatvalues.ddhazard

Examples

library(dynamichazard)
small toy example with time-varying covariates
dat <- data.frame(
id = c(1, 1, 2, 2),
tstart = c(0, 4, 0, 2),
tstop = c(4, 6, 2, 6),
event = c(0, 1, 0, 0),
x1 = c(1.09, 1.29, 0, -1.16))

get_survival_case_weights_and_data(
Surv(tstart, tstop, event) ~ x1, dat, by = 1, id = dat$id)$X

get_survival_case_weights_and_data(
Surv(tstart, tstop, event) ~ x1, dat, by = 1, id = dat$id,
use_weights = FALSE)$X

hatvalues.ddhazard Hat Values for ddhazard Object

Description

Computes hat-"like" values from usual L2 penalized binary regression.

Usage

S3 method for class 'ddhazard'
hatvalues(model, ...)

Arguments

model a fit from ddhazard.

... not used.

Details

Computes hat-"like" values in each interval for each individual at risk in the interval. See the
vignette("ddhazard","dynamichazard") vignette for details.

Value

A list of matrices. Each matrix has three columns: the hat values, the row number of the original
data point and the id the row belongs to.

See Also

ddhazard

hds 15

Examples

library(dynamichazard)
fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3000,
Q_0 = diag(1, 2), Q = diag(1e-4, 2), by = 100,
control = ddhazard_control(method = "GMA"))

hvs <- hatvalues(fit)
head(hvs[[1]])
head(hvs[[2]])

hds Hard Drive Failures

Description

A data set containing hard drive failures data from Backblaze in the start-stop format used in the
survival package.

Usage

hds

Format

A data.frame with the following columns:

serial_number Serial number for the hard disk which the row belongs to.

model hard disk model.

manufacturer manufacturer of the hard disk model.

tstart,tstop start and stop times on the SMART 9 attribute scale.

fails 1 if the hard disk fails at tstop.

size_tb hard disk size in terabytes.

smart_x the raw SMART attribute x value. E.g., smart_12 is the power cycle count.

smart_x_bin 1 if the SMART attribute x value is non-zero.

..._cumsum cumulative sum of the prefix

n_fails number of failures in the original data. Hard disk should only fail once but this is not the
case in the raw data.

n_records number of records in the original source.

min_date,max_date first and last date in the original source.

min_hours,max_hours smallest and largest value of the SMART 9 attribute in the original source.

16 logLik.ddhazard

Details

Details about the the SMART attributes can be found on https://en.wikipedia.org/wiki/S.M.
A.R.T.. As stated in the original source

"Reported stats for the same SMART stat can vary in meaning based on the drive manufacturer
and the drive model. Make sure you are comparing apples-to-apples as drive manufacturers don’t
generally disclose what their specific numbers mean."

There are some notes on https://en.wikipedia.org/wiki/S.M.A.R.T. regarding which at-
tributes that have vendor specific raw value. Further,

"The values in the files are the values reported by the drives. Sometimes, those values are out of
whack. For example, in a few cases the RAW value of SMART 9 (Drive life in hours) reported a
value that would make a drive 10+ years old, which was not possible. In other words, it’s a good
idea to have bounds checks when you process the data."

See this github page for the processing steps https://github.com/boennecd/backblaze_survival_
analysis_prep.

Source

Raw data from https://www.backblaze.com/b2/hard-drive-test-data.html. Data have been
processed to get a start-stop data.frame format.

logLik.ddhazard Log Likelihood of Mean Path of ddhazard Object

Description

Computes the log likelihood of (a potentially new) data set given the estimated:

Eθ(α1|y1:d), Eθ(α2|y1:d), ..., Eθ(αd|y1:d)

of the ddhazard object. Note that this is not the log likelihood of the observed data given the
outcome.

Usage

S3 method for class 'ddhazard'
logLik(object, data = NULL, id, ...)

Arguments

object an object of class ddhazard.

data new data to evaluate the likelihood for.

id the individual identifiers as in ddhazard.

... unused.

https://en.wikipedia.org/wiki/S.M.A.R.T.
https://en.wikipedia.org/wiki/S.M.A.R.T.
https://en.wikipedia.org/wiki/S.M.A.R.T.
https://github.com/boennecd/backblaze_survival_analysis_prep
https://github.com/boennecd/backblaze_survival_analysis_prep
https://www.backblaze.com/b2/hard-drive-test-data.html

logLik.PF_EM 17

Examples

library(dynamichazard)
fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3600,
Q_0 = diag(1, 2), Q = diag(1e-4, 2), by = 50,
control = ddhazard_control(method = "GMA"))

logLik(fit)

logLik.PF_EM Approximate Log-Likelihood from a Particle Filter

Description

Computes the approximate log-likelihood using the forward filter clouds. See the vignette("Particle_filtering","dynamichazard")
for details.

Usage

S3 method for class 'PF_EM'
logLik(object, ...)

S3 method for class 'PF_clouds'
logLik(object, df = NA_real_, nobs = NA_integer_,
...)

Arguments

object an object of class PF_clouds or PF_EM.

... unused.

df degrees of freedom used in the model.

nobs integer with number of individuals used to estimate the model.

Value

The approximate log-likelihood value given the observed data and set of parameter used when
simulating the clouds. An attribute "P(y_t|y_{1:(t-1)})" has the P (yt|y1:(t−1)) terms.

18 PF_control

PF_control Auxiliary for Controlling Particle Fitting

Description

Auxiliary for additional settings with PF_EM.

Usage

PF_control(N_fw_n_bw = NULL, N_smooth = NULL, N_first = NULL,
eps = 0.01, forward_backward_ESS_threshold = NULL,
method = "AUX_normal_approx_w_cloud_mean", n_max = 25,
n_threads = getOption("ddhazard_max_threads"),
smoother = "Fearnhead_O_N", Q_tilde = NULL, est_a_0 = TRUE,
N_smooth_final = N_smooth, nu = 0L, covar_fac = -1,
ftol_rel = 1e-08, averaging_start = -1L, fix_seed = TRUE)

Arguments

N_fw_n_bw number of particles to use in forward and backward filter.

N_smooth number of particles to use in particle smoother.

N_first number of particles to use at time 0 and time d+ 1.

eps convergence threshold in EM method.
forward_backward_ESS_threshold

required effective sample size to not re-sample in the particle filters.

method method for forward, backward and smoothing filter.

n_max maximum number of iterations of the EM algorithm.

n_threads maximum number threads to use in the computations.

smoother smoother to use.

Q_tilde covariance matrix of additional error term to add to the proposal distributions.
NULL implies no additional error term.

est_a_0 FALSE if the starting value of the state model should be fixed. Does not apply
for type = "VAR".

N_smooth_final number of particles to sample with replacement from the smoothed particle
cloud with N_smooth particles using the particles’ weights. This causes addi-
tional sampling error but decreases the computation time in the M-step.

nu integer with degrees of freedom to use in the (multivariate) t-distribution used
as the proposal distribution. A (multivariate) normal distribution is used if it is
zero.

covar_fac factor to scale the covariance matrix with. Ignored if the values is less than or
equal to zero.

ftol_rel relative convergence tolerance of the mode objective in mode approximation.

PF_control 19

averaging_start

index to start averaging. Values less then or equal to zero yields no averaging.

fix_seed TRUE if the same seed should be used. E.g., in PF_EM the same seed will be used
in each iteration of the E-step of the MCEM algorithm.

Details

The method argument can take the following values

• bootstrap_filter for a bootstrap filter.

• PF_normal_approx_w_cloud_mean for a particle filter where a Gaussian approximation is
used using a Taylor approximation made at the mean for the current particle given the mean
of the parent particles and/or mean of the child particles.

• AUX_normal_approx_w_cloud_mean for an auxiliary particle filter version of PF_normal_approx_w_cloud_mean.

• PF_normal_approx_w_particles for a filter similar to PF_normal_approx_w_cloud_mean
and differs by making a Taylor approximation at a mean given each sampled parent and/or
child particle.

• AUX_normal_approx_w_particles for an auxiliary particle filter version of PF_normal_approx_w_particles.

The smoother argument can take the following values

• Fearnhead_O_N for the smoother in Fearnhead, Wyncoll, and Tawn (2010).

• Brier_O_N_square for the smoother in Briers, Doucet, and Maskell (2010).

Value

A list with components named as the arguments.

References

Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993) Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing), (Vol. 140, No. 2,
pp. 107-113). IET Digital Library.

Pitt, M. K., and Shephard, N. (1999) Filtering via simulation: Auxiliary particle filters. Journal of
the American statistical association, 94(446), 590-599.

Fearnhead, P., Wyncoll, D., and Tawn, J. (2010) A sequential smoothing algorithm with linear
computational cost. Biometrika, 97(2), 447-464.

Briers, M., Doucet, A., and Maskell, S. (2010) Smoothing algorithms for state-space models. An-
nals of the Institute of Statistical Mathematics, 62(1), 61.

See Also

PF_EM

20 PF_EM

PF_EM EM Estimation with Particle Filters and Smoothers

Description

Method to estimate the hyper parameters with an EM algorithm.

Usage

PF_EM(formula, data, model = "logit", by, max_T, id, a_0, Q_0, Q,
order = 1, control = PF_control(...), trace = 0, seed = NULL,
type = "RW", fixed = NULL, random = NULL, Fmat, fixed_effects, G,
theta, J, K, psi, phi, ...)

Arguments

formula coxph like formula with Surv(tstart,tstop,event) on the left hand site of
~.

data data.frame or environment containing the outcome and covariates.

model either 'logit' for binary outcomes with the logistic link function, 'cloglog'
for binary outcomes with the inverse cloglog link function, or 'exponential'
for piecewise constant exponential distributed arrival times.

by interval length of the bins in which parameters are fixed.

max_T end of the last interval interval.

id vector of ids for each row of the in the design matrix.

a_0 vector a0 for the initial coefficient vector for the first iteration (optional). Default
is estimates from static model (see static_glm).

Q_0 covariance matrix for the prior distribution.

Q initial covariance matrix for the state equation.

order order of the random walk.

control see PF_control.

trace argument to get progress information. Zero will yield no info and larger integer
values will yield incrementally more information.

seed seed to set at the start of every EM iteration. See set.seed.

type type of state model. Either "RW" for a [R]andom [W]alk or "VAR" for [V]ector
[A]uto[R]egression.

fixed two-sided formula to be used with random instead of formula. It is of the form
Surv(tstart,tstop,event) ~ x or Surv(tstart,tstop,event) ~ -1 for no
fixed effects.

random one-sided formula to be used with fixed instead of formula. It is of the form
~ z.

Fmat starting value for F when type = "VAR". See ’Details’ in PF_EM.

PF_EM 21

fixed_effects starting values for fixed effects if any. See ddFixed.
G, theta, J, K, psi, phi

parameters for a restricted type = "VAR" model. See the vignette mentioned in
’Details’ of PF_EM and the examples linked to in ’See Also’.

... optional way to pass arguments to control.

Details

Estimates a state model of the form

αt = Fαt +Rεt, εt ∼ N(0, Q)

where F ∈ IRp×p has full rank, αt ∈ IRp, εt ∈ IRr, r ≤ p, and R = (el1 , el2 , . . . , elr) where ek
is column from the p dimensional identity matrix and l1 < l2 < . . . < lr. The time zero state is
drawn from

α0 ∼ N(a0, Q0)

with Q0 ∈ IRp×p. The latent states, αt, are related to the output through the linear predictors

ηit = Xt(R
+αt) + Ztβ

where Xt ∈ IRnt×r and ZtIRnt×c are design matrices and the outcome for a individual i at time t
is distributed according to an exponential family member given ηit. β are constant coefficients.

See vignette("Particle_filtering","dynamichazard") for details.

Value

An object of class PF_EM.

Warning

The function is still under development so the output and API may change.

See Also

PF_forward_filter to get a more precise estimate of the final log-likelihood.

See the examples at https://github.com/boennecd/dynamichazard/tree/master/examples.

Examples

Not run:
#####
Fit model with lung data set from survival
Warning: long-ish computation time

library(dynamichazard)
.lung <- lung[!is.na(lung$ph.ecog),]

22 PF_EM

standardize
.lung$age <- scale(.lung$age)

fit
set.seed(43588155)
pf_fit <- PF_EM(
Surv(time, status == 2) ~ ddFixed(ph.ecog) + age,
data = .lung, by = 50, id = 1:nrow(.lung),
Q_0 = diag(1, 2), Q = diag(.5^2, 2),
max_T = 800,
control = PF_control(

N_fw_n_bw = 500, N_first = 2500, N_smooth = 5000,
n_max = 50, eps = .001, Q_tilde = diag(.2^2, 2), est_a_0 = FALSE,
n_threads = max(parallel::detectCores(logical = FALSE), 1)))

Plot state vector estimates
plot(pf_fit, cov_index = 1)
plot(pf_fit, cov_index = 2)

Plot log-likelihood
plot(pf_fit$log_likes)

End(Not run)
Not run:
######
example with fixed intercept

prepare data
temp <- subset(pbc, id <= 312, select=c(id, sex, time, status, edema, age))
pbc2 <- tmerge(temp, temp, id=id, death = event(time, status))
pbc2 <- tmerge(pbc2, pbcseq, id=id, albumin = tdc(day, albumin),

protime = tdc(day, protime), bili = tdc(day, bili))
pbc2 <- pbc2[, c("id", "tstart", "tstop", "death", "sex", "edema",

"age", "albumin", "protime", "bili")]
pbc2 <- within(pbc2, {
log_albumin <- log(albumin)
log_protime <- log(protime)
log_bili <- log(bili)

})

standardize
for(c. in c("age", "log_albumin", "log_protime", "log_bili"))
pbc2[[c.]] <- drop(scale(pbc2[[c.]]))

fit model with extended Kalman filter
ddfit <- ddhazard(
Surv(tstart, tstop, death == 2) ~ ddFixed_intercept() + ddFixed(age) +
ddFixed(edema) + ddFixed(log_albumin) + ddFixed(log_protime) + log_bili,

pbc2, Q_0 = 100, Q = 1e-2, by = 100, id = pbc2$id,
model = "exponential", max_T = 3600,
control = ddhazard_control(eps = 1e-5, NR_eps = 1e-4, n_max = 1e4))

summary(ddfit)

PF_EM 23

fit model with particle filter
set.seed(88235076)
pf_fit <- PF_EM(

Surv(tstart, tstop, death == 2) ~ ddFixed_intercept() + ddFixed(age) +
ddFixed(edema) + ddFixed(log_albumin) + ddFixed(log_protime) + log_bili,

pbc2, Q_0 = 2^2, Q = ddfit$Q * 100, # use estimate from before
by = 100, id = pbc2$id,
model = "exponential", max_T = 3600,
control = PF_control(

N_fw_n_bw = 500, N_smooth = 2500, N_first = 1000, eps = 1e-3,
method = "AUX_normal_approx_w_cloud_mean", est_a_0 = FALSE,
Q_tilde = as.matrix(.1^2),
n_max = 25, # just take a few iterations as an example
n_threads = max(parallel::detectCores(logical = FALSE), 1)))

compare results
plot(ddfit)
plot(pf_fit)
sqrt(ddfit$Q * 100)
sqrt(pf_fit$Q)
rbind(ddfit$fixed_effects, pf_fit$fixed_effects)

End(Not run)
Not run:
#####
simulation example with `random` and `fixed` argument and a restricted
model

g groups with k individuals in each
g <- 3L
k <- 400L

matrices for state equation
p <- g + 1L
G <- matrix(0., p^2, 2L)
for(i in 1:p)

G[i + (i - 1L) * p, 1L + (i == p)] <- 1L

theta <- c(.9, .8)
coefficients in transition density
(F. <- matrix(as.vector(G %*% theta), 4L, 4L))

J <- matrix(0., ncol = 2L, nrow = p)
J[-p, 1L] <- J[p, 2L] <- 1
psi <- c(log(c(.3, .1)))

K <- matrix(0., p * (p - 1L) / 2L, 2L)
j <- 0L
for(i in (p - 1L):1L){

j <- j + i
K[j, 2L] <- 1

}
K[K[, 2L] < 1, 1L] <- 1

24 PF_EM

phi <- log(-(c(.8, .3) + 1) / (c(.8, .3) - 1))

V <- diag(exp(drop(J %*% psi)))
C <- diag(1, ncol(V))
C[lower.tri(C)] <- 2/(1 + exp(-drop(K %*% phi))) - 1
C[upper.tri(C)] <- t(C)[upper.tri(C)]
(Q <- V %*% C %*% V) # covariance matrix in transition density
cov2cor(Q)

Q_0 <- get_Q_0(Q, F.) # time-invariant covariance matrix
beta <- c(rep(-6, g), 0) # all groups have the same long run mean intercept

simulate state variables
set.seed(56219373)
n_periods <- 300L
alphas <- matrix(nrow = n_periods + 1L, ncol = p)
alphas[1L,] <- rnorm(p) %*% chol(Q_0)
for(i in 1:n_periods + 1L)

alphas[i,] <- F. %*% alphas[i - 1L,] + drop(rnorm(p) %*% chol(Q))

alphas <- t(t(alphas) + beta)

plot state variables
matplot(alphas, type = "l", lty = 1)

simulate individuals' outcome
n_obs <- g * k
df <- lapply(1:n_obs, function(i){

find the group
grp <- (i - 1L) %/% (n_obs / g) + 1L

left-censoring
tstart <- max(0L, sample.int((n_periods - 1L) * 2L, 1) - n_periods + 1L)

covariates
x <- c(1, rnorm(1))

outcome (stop time and event indicator)
osa <- NULL
oso <- NULL
osx <- NULL
y <- FALSE
for(tstop in (tstart + 1L):n_periods){
sigmoid <- 1 / (1 + exp(- drop(x %*% alphas[tstop + 1L, c(grp, p)])))
if(sigmoid > runif(1)){

y <- TRUE
break

}
if(.01 > runif(1L) && tstop < n_periods){

sample new covariate
osa <- c(osa, tstart)
tstart <- tstop
oso <- c(oso, tstop)

PF_EM 25

osx <- c(osx, x[2])
x[2] <- rnorm(1)

}
}

cbind(
tstart = c(osa, tstart), tstop = c(oso, tstop),
x = c(osx, x[2]), y = c(rep(FALSE, length(osa)), y), grp = grp,
id = i)

})
df <- data.frame(do.call(rbind, df))
df$grp <- factor(df$grp)

fit model. Start with "cheap" iterations
fit <- PF_EM(

fixed = Surv(tstart, tstop, y) ~ x, random = ~ grp + x - 1,
data = df, model = "logit", by = 1L, max_T = max(df$tstop),
Q_0 = diag(1.5^2, p), id = df$id, type = "VAR",
G = G, theta = c(.5, .5), J = J, psi = log(c(.1, .1)),
K = K, phi = log(-(c(.4, 0) + 1) / (c(.4, 0) - 1)),
control = PF_control(
N_fw_n_bw = 100L, N_smooth = 100L, N_first = 500L,
method = "AUX_normal_approx_w_cloud_mean",
nu = 5L, # sample from multivariate t-distribution
n_max = 100L, averaging_start = 50L,
smoother = "Fearnhead_O_N", eps = 1e-4, covar_fac = 1.2,
n_threads = 4L # depends on your cpu(s)

),
trace = 1L)

plot(fit$log_likes) # log-likelihood approximation at each iterations

take more iterations with more particles
cl <- fit$call
ctrl <- cl[["control"]]
ctrl[c("N_fw_n_bw", "N_smooth", "N_first", "n_max",

"averaging_start")] <- list(500L, 2000L, 5000L, 200L, 30L)
cl[["control"]] <- ctrl
cl[c("phi", "psi", "theta")] <- list(fitphi, fitpsi, fit$theta)
fit_extra <- eval(cl)

plot(fit_extra$log_likes) # log-likelihood approximation at each iteration

check estimates
sqrt(diag(fit_extra$Q))
sqrt(diag(Q))
cov2cor(fit_extra$Q)
cov2cor(Q)
fit_extra$F
F.

plot predicted state variables
for(i in 1:p){

plot(fit_extra, cov_index = i)

26 PF_forward_filter

abline(h = 0, lty = 2)
lines(1:nrow(alphas) - 1, alphas[, i] - beta[i], lty = 3)

}

End(Not run)

PF_forward_filter Forward Particle Filter

Description

Functions to only use the forward particle filter. Useful for log-likelihood evaluation though there
is anO(d2) variance of the estimate where d is the number of time periods. The number of particles
specified in the control argument has no effect.

The function does not alter the .Random.seed to make sure the same rng.kind is kept after the
call. See PF_EM for model details.

Usage

PF_forward_filter(x, N_fw, N_first, ...)

S3 method for class 'PF_EM'
PF_forward_filter(x, N_fw, N_first, seed, ...)

S3 method for class 'formula'
PF_forward_filter(x, N_fw, N_first, data,
model = "logit", by, max_T, id, a_0, Q_0, Q, fixed_effects,
control = PF_control(...), seed = NULL, trace = 0, G, theta, J, K,
psi, phi, type = "RW", Fmat, ...)

S3 method for class 'data.frame'
PF_forward_filter(x, N_fw, N_first, formula,
model = "logit", by, max_T, id, a_0, Q_0, Q, fixed_effects,
control = PF_control(...), seed = NULL, trace = 0, fixed = NULL,
random = NULL, G, theta, J, K, psi, phi, type = "RW", Fmat,
order = 1, ...)

Arguments

x an PF_EM or formula object.

N_fw number of particles.

N_first number of time zero particles to draw.

... optional way to pass arguments to control.

seed .GlobalEnv$.Random.seed to set. Not seed as in set.seed function. Can be
used with the .Random.seed returned by PF_EM.

data data.frame or environment containing the outcome and covariates.

PF_forward_filter 27

model either 'logit' for binary outcomes with the logistic link function, 'cloglog'
for binary outcomes with the inverse cloglog link function, or 'exponential'
for piecewise constant exponential distributed arrival times.

by interval length of the bins in which parameters are fixed.

max_T end of the last interval interval.

id vector of ids for each row of the in the design matrix.

a_0 vector a0 for the initial coefficient vector for the first iteration (optional). Default
is estimates from static model (see static_glm).

Q_0 covariance matrix for the prior distribution.

Q initial covariance matrix for the state equation.

fixed_effects values for the fixed parameters.

control see PF_control.

trace argument to get progress information. Zero will yield no info and larger integer
values will yield incrementally more information.

G, theta, J, K, psi, phi

parameters for a restricted type = "VAR" model. See the vignette mentioned in
’Details’ of PF_EM and the examples linked to in ’See Also’.

type type of state model. Either "RW" for a [R]andom [W]alk or "VAR" for [V]ector
[A]uto[R]egression.

Fmat starting value for F when type = "VAR". See ’Details’ in PF_EM.

formula coxph like formula with Surv(tstart,tstop,event) on the left hand site of
~.

fixed two-sided formula to be used with random instead of formula. It is of the form
Surv(tstart,tstop,event) ~ x or Surv(tstart,tstop,event) ~ -1 for no
fixed effects.

random one-sided formula to be used with fixed instead of formula. It is of the form
~ z.

order order of the random walk.

Value

An object of class PF_clouds.

Methods (by class)

• PF_EM: Forward particle filter using the estimates of an PF_EM call.

• formula: Forward particle filter with formula input.

• data.frame: Forward particle filter with data.frame data input as x instead of data. Can be
used with fixed and random argument.

Warning

The function is still under development so the output and API may change.

28 PF_forward_filter

Examples

Not run:
head-and-neck cancer study data. See Efron, B. (1988) doi:10.2307/2288857
is_censored <- c(

6, 27, 34, 36, 42, 46, 48:51, 51 + c(15, 30:28, 33, 35:37, 39, 40, 42:45))
head_neck_cancer <- data.frame(

id = 1:96,
stop = c(
1, 2, 2, rep(3, 6), 4, 4, rep(5, 8),
rep(6, 7), 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 14, 14, 14, 15, 18, 18, 20,
20, 37, 37, 38, 41, 45, 47, 47,
2, 2, 3, rep(4, 4), rep(5, 5), rep(6, 5),
7, 7, 7, 9, 10, 11, 12, 15, 16, 18, 18, 18, 21,
21, 24, 25, 27, 36, 41, 44, 52, 54, 59, 59, 63, 67, 71, 76),

event = !(1:96 %in% is_censored),
group = factor(c(rep(1, 45 + 6), rep(2, 45))))

fit model
set.seed(61364778)
ctrl <- PF_control(

N_fw_n_bw = 500, N_smooth = 2500, N_first = 2000,
n_max = 1, # set to one as an example
n_threads = max(parallel::detectCores(logical = FALSE), 1),
eps = .001, Q_tilde = as.matrix(.3^2), est_a_0 = FALSE)

pf_fit <- suppressWarnings(
PF_EM(

survival::Surv(stop, event) ~ ddFixed(group),
data = head_neck_cancer, by = 1, Q_0 = 1, Q = 0.1^2, control = ctrl,
max_T = 30))

the log-likelihood in the final iteration
(end_log_like <- logLik(pf_fit))

gives the same
fw_ps <- PF_forward_filter(

survival::Surv(stop, event) ~ ddFixed(group), N_fw = 500, N_first = 2000,
data = head_neck_cancer, by = 1, Q_0 = 1, Q = 0.1^2,
a_0 = pf_fit$a_0, fixed_effects = -0.5370051,
control = ctrl, max_T = 30, seed = pf_fit$seed)

all.equal(c(end_log_like), c(logLik(fw_ps)))

will differ since we use different number of particles
fw_ps <- PF_forward_filter(

survival::Surv(stop, event) ~ ddFixed(group), N_fw = 1000, N_first = 3000,
data = head_neck_cancer, by = 1, Q_0 = 1, Q = 0.1^2,
a_0 = pf_fit$a_0, fixed_effects = -0.5370051,
control = ctrl, max_T = 30, seed = pf_fit$seed)

all.equal(c(end_log_like), c(logLik(fw_ps)))

will differ since we use the final estimates
fw_ps <- PF_forward_filter(pf_fit, N_fw = 500, N_first = 2000)
all.equal(c(end_log_like), c(logLik(fw_ps)))

PF_get_score_n_hess 29

End(Not run)

PF_get_score_n_hess Approximate Observed Information Matrix and Score Vector

Description

Returns a list of functions to approximate the observed information matrix and score vector.

Usage

PF_get_score_n_hess(object, debug = FALSE, use_O_n_sq = FALSE)

Arguments

object object of class PF_EM.

debug TRUE if debug information should be printed to the console.

use_O_n_sq TRUE if the method from Poyiadjis et al. (2011) should be used.

Details

The score vector and observed information matrix are computed with the (forward) particle filter.
This comes at an O(d2) variance where d is the number of periods. Thus, the approximation may
be poor for long series. The score vector can be used to perform stochastic gradient descent.

If use_O_n_sq is TRUE then the method in Poyiadjis et al. (2011) is used. This may only have a
variance which is linear in the number of time periods. However, the present implementation is
O(N2) where N is the number of particles. The method uses a particle filter as in Section 3.1
of Lin et al. (2005). There is no need to call run_particle_filter unless one wants a new
approximation of the log-likelihood as a separate filter is run with get_get_score_n_hess when
use_O_n_sq is TRUE.

Value

A list with the following functions as elements

run_particle_filter

function to run particle filter as with PF_forward_filter.

set_parameters function to set the parameters in the model. The first argument is a vectorized
version of F matrix and Q matrix. The second argument is the fixed effect
coefficients.

set_n_particles

sets the number of particles to use in run_particle_filter and get_get_score_n_hess
when use_O_n_sq is TRUE.

get_get_score_n_hess

approximate the observed information matrix and score vector. The argument
toggles whether or not to approximate the observed information matrix. The last
particle cloud from run_particle_filter is used when use_O_n_sq is FALSE.

30 PF_get_score_n_hess

Warning

The function is still under development so the output and API may change.

References

Cappe, O. and Moulines, E. (2005) Recursive Computation of the Score and Observed Information
Matrix in Hidden Markov Models. IEEE/SP 13th Workshop on Statistical Signal Processing.

Cappe, O., Moulines, E. and Ryden, T. (2005) Inference in Hidden Markov Models (Springer Series
in Statistics). Springer-Verlag.

Doucet, A., and Tadić, V. B. (2003) Parameter Estimation in General State-Space Models Using
Particle Methods. Annals of the Institute of Statistical Mathematics, 55(2), 409–422.

Lin, M. T., Zhang, J. L., Cheng, Q. and Chen, R. (2005) Independent Particle Filters. Journal of the
American Statistical Association, 100(472), 1412-1421.

Poyiadjis, G., Doucet, A. and Singh, S. S. (2011) Particle Approximations of the Score and Ob-
served Information Matrix in State Space Models with Application to Parameter Estimation. Biometrika,
98(1), 65–80.

See Also

See the examples at https://github.com/boennecd/dynamichazard/tree/master/examples.

Examples

Not run:
library(dynamichazard)
.lung <- lung[!is.na(lung$ph.ecog),]
standardize
.lung$age <- scale(.lung$age)

fit model
set.seed(43588155)
pf_fit <- PF_EM(

fixed = Surv(time, status == 2) ~ ph.ecog + age,
random = ~ 1, model = "exponential",
data = .lung, by = 50, id = 1:nrow(.lung),
Q_0 = as.matrix(1), Q = as.matrix(.5^2), type = "VAR",
max_T = 800, Fmat = as.matrix(.5),
control = PF_control(
N_fw_n_bw = 250, N_first = 2000, N_smooth = 500, covar_fac = 1.1,
nu = 6, n_max = 1000L, eps = 1e-4, averaging_start = 200L,
n_threads = max(parallel::detectCores(logical = FALSE), 1)))

compute score and observed information matrix
comp_obj <- PF_get_score_n_hess(pf_fit)
comp_obj$set_n_particles(N_fw = 10000L, N_first = 10000L)
comp_obj$run_particle_filter()
(o1 <- comp_obj$get_get_score_n_hess())

O(N^2) method with lower variance as a function of time
comp_obj <- PF_get_score_n_hess(pf_fit, use_O_n_sq = TRUE)

plot.ddhazard 31

comp_obj$set_n_particles(N_fw = 2500L, N_first = 2500L)
(o2 <- comp_obj$get_get_score_n_hess())

approximations may have large variance
o3 <- replicate(10L, {

runif(1)
pf_fit$seed <- .Random.seed
comp_obj <- PF_get_score_n_hess(pf_fit)
comp_obj$set_n_particles(N_fw = 10000L, N_first = 10000L)
comp_obj$run_particle_filter()
comp_obj$get_get_score_n_hess()

}, simplify = FALSE)
sapply(o3, function(x) x$score)
sapply(o3, function(x) sqrt(diag(solve(x$obs_info))))

End(Not run)

plot.ddhazard Plots for ddhazard Object

Description

Plot of estimated state space variables from a ddhazard fit.

Usage

S3 method for class 'ddhazard'
plot(x, xlab = "Time", ylab = "Hazard",
type = "cov", plot_type = "l", cov_index, ylim, col = "black",
add = F, do_alter_mfcol = T, level = 0.95, ddhazard_boot, ...)

Arguments

x result of ddhazard call.
xlab, ylab, ylim, col

arguments to override defaults set in the function.

type type of plot. Currently, only "cov" is available for plot of the state space param-
eters.

plot_type the type argument passed to plot.

cov_index the index (indices) of the state space parameter(s) to plot.

add FALSE if you want to make a new plot.

do_alter_mfcol TRUE if the function should alter par(mfcol) in case that cov_index has more
than one element.

level level (fraction) for confidence bounds.

ddhazard_boot object from a ddhazard_boot call which confidence bounds will be based on
and where bootstrap samples will be printed with a transparent color.

... arguments passed to plot.default or lines depending on the value of add.

32 plot.ddhazard_space_errors

Details

Creates a plot of state variables or adds state variables to a plot with indices cov_index. Pointwise
1.96 std. confidence intervals are provided with the smoothed co-variance matrices from the fit.

Examples

library(dynamichazard)
fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3600,
Q_0 = diag(1, 2), Q = diag(1e-4, 2), by = 50,
control = ddhazard_control(method = "GMA"))

plot(fit)
plot(fit, cov_index = 2)

plot.ddhazard_space_errors

State Space Error Plot

Description

Plot function for state space errors from ddhazard fit.

Usage

S3 method for class 'ddhazard_space_errors'
plot(x, mod, cov_index = NA,
t_index = NA, p_cex = par()$cex * 0.2, pch = 16,
ylab = "Std. state space error", x_tick_loc = NA, x_tick_mark = NA,
xlab = "Time", ...)

Arguments

x result of residuals with a ‘type‘ argument which yields state space errors.

mod the ddhazard result used in the residuals call.

cov_index the indices of state vector errors to plot. Default is to use all.

t_index the bin indices to plot. Default is to use all bins.

p_cex cex argument for the points

pch, ylab, xlab arguments to override defaults set in the function.
x_tick_loc, x_tick_mark

at and labels arguments passed to axis.

... arguments passed to plot.default.

plot.ddsurvcurve 33

plot.ddsurvcurve Create and plot survival curves

Description

The function creates a predicted survival curve for a new observation using a estimated ddhazard
model from ddhazard. The predicted curve is based on the predicted mean path of the state vector.
Thus, the survival curve will not be a "mean" curve due to the non-linear relation between the
probability of an event and the state vector.

Usage

S3 method for class 'ddsurvcurve'
plot(x, y, xlab = "Time", ylab = "Survival",
ylim, xaxs = "i", yaxs = "i", ...)

S3 method for class 'ddsurvcurve'
lines(x, col = "Black", lty = 1,
lwd = par()$lwd, ...)

ddsurvcurve(object, new_data, tstart = "", tstop = "")

Arguments

x a ddsurvcurve object.

y not used.

xlab xlab passed to plot.

ylab ylab passed to plot.

ylim ylim passed to plot.

xaxs xaxs passed to plot.

yaxs yaxs passed to plot.

... not used.

col col passed to lines.

lty lty passed to lines.

lwd lwd passed to lines.

object a ddhazard object.

new_data a data.frame with the new data for the observation who the survival curve
should be for. It can have more rows if tstart and tstop is supplied. The rows
need to be consecutive and non-overlapping time intervals.

tstart name of the start time column in new_data. It must be on the same time scale
as the tstart used in the Surv(tstart,tstop,event) in the formula passed
to ddhazard.

tstop same as tstart for the stop argument.

34 plot.ddsurvcurve

Value

ddsurvcurve returns an object of class ddsurvcurve. It elements are the predicted discrete sur-
vival curve, time points for the survival curve, point of the first time period, the call, the discrete
probabilities of an event in each interval conditional on survival up to that point, and the name of
the distribution family. It should be seen as a plug-in estimate.

Methods (by generic)

• plot: method for plotting survival curve.

• lines: Method for adding survival curve to a plot.

plot.ddsurvcurve

Returns the same as lines.ddsurvcurve.

lines.ddsurvcurve

Either returns the objects used in the call to segments for discrete time hazard models, or the time
points and survival function used to draw the survival curve.

See Also

ddhazard, and predict.ddhazard.

Examples

#####
example with continuous time model
setup data set. See `vignette("timedep", "survival")`
library(dynamichazard)
temp <- subset(pbc, id <= 312, select=c(id:sex, stage))
pbc2 <- tmerge(temp, temp, id=id, death = event(time, status))
pbc2 <- tmerge(pbc2, pbcseq, id = id, bili = tdc(day, bili))

fit model
f1 <- ddhazard(

Surv(tstart, tstop, death == 2) ~ ddFixed(log(bili)), pbc2, id = pbc2$id,
max_T = 3600, Q_0 = 1, Q = 1e-2, by = 100, model = "exponential",
control = ddhazard_control(method = "EKF", eps = 1e-4, n_max = 1000,

fixed_terms_method = "M_step"))

predict with default which is all covariates set to zero
ddcurve <- ddsurvcurve(f1)
par(mar = c(4.5, 4, .5, .5))
plot(ddcurve, col = "DarkBlue", lwd = 2)

compare with cox model
f2 <- coxph(Surv(tstart, tstop, death == 2) ~ log(bili), data = pbc2)
nw <- data.frame(bili = 1, tstart = 0, tstop = 3000)
lines(survfit(f2, newdata = nw))

plot.ddsurvcurve 35

same as above but with bili = 3
nw <- data.frame(bili = 3)
lines(ddsurvcurve(f1, new_data = nw), col = "DarkBlue")
lines(survfit(f2, newdata = nw))

change to time-varying slope
f3 <- ddhazard(

Surv(tstart, tstop, death == 2) ~ log(bili), pbc2, id = pbc2$id,
max_T = 3600, Q_0 = diag(1, 2), Q = diag(1e-2, 2), by = 100, model = "exponential",
control = ddhazard_control(method = "EKF", eps = 1e-4, n_max = 1000))

example with time-varying coefficient
nw <- data.frame(

bili = c(2.1, 1.9, 3.3, 3.9, 3.8, 3.6, 4, 4.9, 4.2, 5.7, 10.2),
tstart = c(0L, 225L, 407L, 750L, 1122L, 1479L, 1849L, 2193L, 2564L, 2913L,

3284L),
tstop = c(225L, 407L, 750L, 1122L, 1479L, 1849L, 2193L, 2564L, 2913L,

3284L, 3600L))
ddcurve <- ddsurvcurve(f3, new_data = nw, tstart = "tstart", tstop = "tstop")
lines(ddcurve, "darkorange", lwd = 2)

can condition on survival up to some time
ddcurve <- ddsurvcurve(f3, new_data = nw[-(1:5),], tstart = "tstart",

tstop = "tstop")
lines(ddcurve, lty = 2, lwd = 2)

#####
example with discrete time model
head-and-neck cancer study data. See Efron, B. (1988) doi:10.2307/2288857
is_censored <- c(

6, 27, 34, 36, 42, 46, 48:51, 51 + c(15, 30:28, 33, 35:37, 39, 40, 42:45))
head_neck_cancer <- data.frame(

id = 1:96,
stop = c(
1, 2, 2, rep(3, 6), 4, 4, rep(5, 8),
rep(6, 7), 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 14, 14, 14, 15, 18, 18, 20,
20, 37, 37, 38, 41, 45, 47, 47,
2, 2, 3, rep(4, 4), rep(5, 5), rep(6, 5),
7, 7, 7, 9, 10, 11, 12, 15, 16, 18, 18, 18, 21,
21, 24, 25, 27, 36, 41, 44, 52, 54, 59, 59, 63, 67, 71, 76),

event = !(1:96 %in% is_censored),
group = factor(c(rep(1, 45 + 6), rep(2, 45))))

fit model
h1 <- ddhazard(

Surv(stop, event) ~ group, head_neck_cancer, by = 1, max_T = 45,
Q_0 = diag(2^2, 2), Q = diag(.01^2, 2), control = ddhazard_control(

method = "GMA", eps = 1e-4, n_max = 200))

plot predicted survival curve. Notice the steps since the model is discrete
nw <- data.frame(group = factor(1, levels = 1:2), tstart = 0, tstop = 30)
ddcurve <- ddsurvcurve(h1, new_data = nw, tstart = "tstart",

tstop = "tstop")

36 plot.PF_clouds

plot(ddcurve, col = "Darkblue")

nw$group <- factor(2, levels = 1:2)
ddcurve <- ddsurvcurve(h1, new_data = nw, tstart = "tstart",

tstop = "tstop")
lines(ddcurve, col = "DarkOrange")

compare with KM
lines(survfit(Surv(stop, event) ~ 1, head_neck_cancer, subset = group == 1),

col = "DarkBlue")
lines(survfit(Surv(stop, event) ~ 1, head_neck_cancer, subset = group == 2),

col = "DarkOrange")

plot.PF_clouds Plot of Clouds from a PF_clouds Object

Description

Plots mean curve along with quantiles through time for the forward, backward or smoothed clouds.

Usage

S3 method for class 'PF_clouds'
plot(x, y, type = c("smoothed_clouds",
"forward_clouds", "backward_clouds"), ylim, add = FALSE,
qlvls = c(0.05, 0.5, 0.95), pch = 4, lty = 1, col, ..., cov_index,
qtype = c("points", "lines"))

Arguments

x an object of class PF_clouds.

y unused.

type parameter to specify which cloud to plot.

ylim ylim passed to matplot.

add TRUE if a new plot should not be made.

qlvls vector of quantile levels to be plotted.

pch pch argument for the quantile points.

lty lty argument for the mean curves.

col col argument to matplot and matpoints or matlines.

... unused.

cov_index indices of the state vector to plot. All are plotted if this argument is omitted.

qtype character specifying how to show quantiles. Either "points" for crosses or
"lines" for dashed lines.

plot.PF_EM 37

Value

List with quantile levels and mean curve.

plot.PF_EM Plot for a PF_EM Object

Description

Short hand to call plot.PF_clouds.

Usage

S3 method for class 'PF_EM'
plot(x, y, ...)

Arguments

x an object of class PF_EM.

y unused.

... arguments to plot.PF_clouds.

Value

See plot.PF_clouds

predict.ddhazard Predict Method for ddhazard Object

Description

Predict method for ddhazard.

Usage

S3 method for class 'ddhazard'
predict(object, new_data, type = c("response",
"term"), tstart = "start", tstop = "stop", use_parallel, sds = F,
max_threads, ...)

38 predict.ddhazard

Arguments

object result of a ddhazard call.

new_data new data to base predictions on.

type either "response" for predicted probability of an event or "term" for predicted
terms in the linear predictor.

tstart name of the start time column in new_data. It must be on the same time scale
as the tstart used in the Surv(tstart,tstop,event) in the formula passed
to ddhazard.

tstop same as tstart for the stop argument.

use_parallel not longer supported.

sds TRUE if point wise standard deviation should be computed. Convenient if you
use functions like ns and you only want one term per term in the right hand site
of the formula used in ddhazard.

max_threads not longer supported.

... not used.

Details

The function check if there are columns in new_data which names match tstart and tstop. If
matched, then the bins are found which the start time to the stop time are in. If tstart and tstop
are not matched then all the bins used in the estimation method will be used.

Term

The result with type = "term" is a lists of list each having length equal to nrow(new_data). The
lists are

terms It’s elements are matrices where the first dimension is time and the second dimension is the
terms.

sds similar to terms for the point-wise confidence intervals using the smoothed co-variance matri-
ces. Only added if sds = TRUE.

fixed_terms contains the fixed (non-time-varying) effect.

varcov similar to sds but differs by containing the whole covariance matrix for the terms. It is a
3D array where the third dimension is time. Only added if sds = TRUE.

start numeric vector with start time for each time-varying term.

tstop numeric vector with stop time for each time-varying term.

Response

The result with type = "response" is a list with the elements below. If tstart and tstop are
matched in columns in new_data, then the probability will be for having an event between tstart
and tstop conditional on no events before tstart.

fits fitted probability of an event.

istart numeric vector with start time for each element in fits.

istop numeric vector with stop time for each element in fits.

print.ddhazard_boot 39

Examples

fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3600,
Q_0 = diag(1, 2), Q = diag(1e-4, 2), by = 50,
control = ddhazard_control(method = "GMA"))

predict(fit, type = "response", new_data =
data.frame(time = 0, status = 2, bili = 3))

predict(fit, type = "term", new_data =
data.frame(time = 0, status = 2, bili = 3))

probability of an event between time 0 and 2000 with bili = 3
predict(fit, type = "response", new_data =

data.frame(time = 0, status = 2, bili = 3, tstart = 0, tstop = 2000),
tstart = "tstart", tstop = "tstop")

print.ddhazard_boot Summary Statistics for a ddhazard_boot Object

Description

Arguments have the same effects as for an object from a boot call. See print.

Usage

S3 method for class 'ddhazard_boot'
print(x, digits = getOption("digits"),
index = 1L:ncol(boot.out$t), ...)

Arguments

x returned object from a ddhazard_boot call.

digits the number of digits to be printed in the summary statistics.

index indices indicating for which elements of the bootstrap output summary statistics
are required.

... not used.

See Also

ddhazard_boot

40 residuals.ddhazard

print.summary.ddhazard

Summarizing Dynamic Hazard Models Fits

Description

The sd printed for time-varying effects are point-wise standard deviations from the smoothed co-
variance matrices.

Usage

S3 method for class 'summary.ddhazard'
print(x, digits = getOption("digits"), ...)

S3 method for class 'ddhazard'
summary(object,
var_indices = 1:ncol(object$state_vecs), max_print = 10, ...)

Arguments

x object returned from summary.ddhazard.

digits number of digits to print.

... not used.

object object returned from ddhazard.

var_indices variable indices to print for time-varying effects.

max_print maximum number of time points to print coefficients at.

residuals.ddhazard Residuals Method for ddhazard Object

Description

Residuals method for the result of a ddhazard call.

Usage

S3 method for class 'ddhazard'
residuals(object, type = c("std_space_error",
"space_error", "pearson", "raw"), data = NULL, ...)

residuals.ddhazard 41

Arguments

object result of ddhazard call.

type type of residuals. Four possible values: "std_space_error", "space_error",
"pearson" and "raw". See the sections below for details.

data data.frame with data for the Pearson or raw residuals. This is only needed if
the data set is not saved with the object. Must be the same data set used in the
initial call to ddhazard.

... not used.

Pearson and raw residuals

Is the result of a call with a type argument of either "pearson" or "raw" for Pearson residuals or
raw residuals. Returns a list with class "ddhazard_residual" with the following elements.

residuals list of residuals for each bin. Each element of the list contains a 2D array where the
rows corresponds to the passed data and columns are the residuals (residuals), estimated
probability of death (p_est), outcome (Y) and row number in the initial data set (row_num).
The data rows will only have a residuals in a given risk list if they are at risk in that risk set.

type the type of residual.

State space errors

Is the result of a call with a type argument of either "std_space_error" or "space_error". The
former is for standardized residuals while the latter is non-standardized. Returns a list with class.
"ddhazard_space_errors" with the following elements:

residuals 2D array with either standardized or non-standardized state space errors. The row are
bins and the columns are the parameters in the regression.

standardize TRUE if standardized state space errors.

Covariances 3D array with the smoothed co-variance matrix for each set of the state space errors.

Examples

library(dynamichazard)
fit <- ddhazard(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3600,
Q_0 = diag(1, 2), Q = diag(1e-4, 2), by = 50,
control = ddhazard_control(method = "GMA"))
resids <- residuals(fit, type = "pearson")$residuals
head(resids[[1]])
head(resids[[2]])

42 static_glm

static_glm Static glm Fit

Description

Method to fit a static model corresponding to a ddhazard fit. The method uses weights to ease the
memory requirements. See get_survival_case_weights_and_data for details on weights.

The parallelglm_quick and parallelglm_QR methods are similar to two methods used in bam
function in the mgcv package (see the `use.chol` argument or Wood et al. 2015). parallelglm_QR
is more stable but slower. See Golub (2013) section 5.3 for a comparison of the Cholesky decom-
position method and the QR method.

Usage

static_glm(formula, data, by, max_T, ..., id, family = "logit",
model = F, weights, risk_obj = NULL, speedglm = F,
only_coef = FALSE, mf, method_use = c("glm", "speedglm",
"parallelglm_quick", "parallelglm_QR"),
n_threads = getOption("ddhazard_max_threads"))

Arguments

formula coxph like formula with Surv(tstart,tstop,event) on the left hand site of
~.

data data.frame or environment containing the outcome and covariates.

by interval length of the bins in which parameters are fixed.

max_T end of the last interval interval.

... arguments passed to glm or speedglm. If only_coef = TRUE then the arguments
are passed to glm.control if glm is used.

id vector of ids for each row of the in the design matrix.

family "logit", "cloglog", or "exponential" for a static equivalent model of ddhazard.

model TRUE if you want to save the design matrix used in glm.

weights weights to use if e.g. a skewed sample is used.

risk_obj a pre-computed result from a get_risk_obj. Will be used to skip some compu-
tations.

speedglm depreciated.

only_coef TRUE if only coefficients should be returned. This will only call the speedglm::speedglm.wfit
or glm.fit which will be faster.

mf model matrix for regression. Needed when only_coef = TRUE

method_use method to use for estimation. glm uses glm.fit, speedglm::speedglm uses
speedglm::speedglm.wfit and parallelglm_quick and parallelglm_QR uses
a parallel C++ estimation method.

n_threads number of threads to use when method_use is "parallelglm".

static_glm 43

Value

The returned list from the glm call or just coefficients depending on the value of only_coef.

References

Wood, S.N., Goude, Y. & Shaw S. (2015) Generalized additive models for large datasets. Journal
of the Royal Statistical Society, Series C 64(1): 139-155.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). JHU Press.

Examples

library(dynamichazard)
fit <- static_glm(
Surv(time, status == 2) ~ log(bili), pbc, id = pbc$id, max_T = 3600,
by = 50)

fit$coefficients

Index

∗Topic datasets
hds, 15

.Random.seed, 26

boot, 7, 39

coxph, 3, 12, 20, 27, 42

ddFixed, 2, 21
ddFixed_intercept (ddFixed), 2
ddhazard, 2, 3, 7, 9, 13, 14, 16, 31–34, 37, 38,

40–42
ddhazard_app, 4, 5, 6
ddhazard_boot, 5, 6, 31, 39
ddhazard_control, 4, 7
ddsurvcurve (plot.ddsurvcurve), 33

formula, 20, 27

gam, 13
get_cloud_means, 9
get_cloud_quantiles, 10
get_Q_0, 10
get_risk_obj, 5, 8, 11, 13, 42
get_survival_case_weights_and_data, 12,

42
glm, 42, 43
glm.control, 42
glm.fit, 42

hatvalues.ddhazard, 14
hds, 15

lines.ddsurvcurve (plot.ddsurvcurve), 33
logLik.ddhazard, 16
logLik.PF_clouds (logLik.PF_EM), 17
logLik.PF_EM, 17

matlines, 36
matplot, 36
matpoints, 36

mclapply, 11
Module, 5

ns, 38

PF_control, 18, 20, 27
PF_EM, 3, 18–20, 20, 21, 26, 27, 29
PF_forward_filter, 21, 26, 29
PF_get_score_n_hess, 29
plot, 5, 7
plot.ddhazard, 31
plot.ddhazard_space_errors, 32
plot.ddsurvcurve, 33
plot.default, 31, 32
plot.PF_clouds, 36, 37
plot.PF_EM, 37
predict, 5
predict.ddhazard, 34, 37
print, 39
print.ddhazard_boot, 39
print.summary.ddhazard, 40

residuals, 5, 32
residuals.ddhazard, 40

segments, 34
set.seed, 20, 26
speedglm, 42
static_glm, 4, 5, 13, 20, 27, 42
summary.ddhazard

(print.summary.ddhazard), 40
Surv, 3, 11, 12, 20, 27, 33, 38, 42

terms, 5

44

	ddFixed
	ddhazard
	ddhazard_app
	ddhazard_boot
	ddhazard_control
	get_cloud_means
	get_cloud_quantiles
	get_Q_0
	get_risk_obj
	get_survival_case_weights_and_data
	hatvalues.ddhazard
	hds
	logLik.ddhazard
	logLik.PF_EM
	PF_control
	PF_EM
	PF_forward_filter
	PF_get_score_n_hess
	plot.ddhazard
	plot.ddhazard_space_errors
	plot.ddsurvcurve
	plot.PF_clouds
	plot.PF_EM
	predict.ddhazard
	print.ddhazard_boot
	print.summary.ddhazard
	residuals.ddhazard
	static_glm
	Index

