
Overview of durmod

Simen Gaure
Ragnar Frisch Centre for Economic Research, Oslo, Norway

June 30, 2019

Abstract

This is a walkthrough of an estimation of a generated dataset with the durmod package.
Also, various tunable parameters and details are provided.

1 A dataset

The durmod package fits a mixed proportional hazard model with competing risks to duration data.
The model is the one from [Gaure et al., 2007], which was developed in [Heckman and Singer, 1984]
based on results in [Lindsay, 1983a, Lindsay, 1983b].

Let’s have a look at a generated dataset which simulates an unemployment register with two
competing risks. It was generated by durdata <- datagen(5000,400).

library(durmod)

data(durdata)

head(durdata,15)

id x1 x2 alpha d duration state

1: 1 -0.3317134 -1.34060625 0 job 0.230954 unemp

2: 2 -0.6737615 -0.46594276 0 none 13.327312 unemp

3: 2 -1.6495569 1.54143453 0 none 44.964614 unemp

4: 2 -2.4295179 0.37094254 0 none 103.924002 unemp

5: 2 -1.6927724 1.43136302 0 none 28.231373 unemp

6: 2 -1.7235513 -0.15882989 0 none 9.888351 unemp

7: 2 -2.7544434 1.51210768 0 none 70.451252 unemp

8: 2 -4.3062211 3.40174960 0 none 24.068327 unemp

9: 3 0.7160858 0.07710256 0 program 5.759026 unemp

10: 3 0.7160858 0.07710256 1 none 2.085667 onprogram

11: 3 -0.5252669 -0.05042386 1 none 4.710827 onprogram

12: 3 -1.7092856 -0.24886947 1 job 2.305123 onprogram

13: 4 -1.4664934 -1.62605988 0 job 1.591296 unemp

14: 5 -0.3070180 1.63896593 0 none 0.704823 unemp

15: 5 -1.5294205 0.81822933 0 none 24.497315 unemp

There is an id which identifies an individual. The individuals have been through a process. At
the outset they are all unemployed, this is recorded by the factor state. As unemployed they face
two hazards, i.e. probabilites per time unit. Either they can get a job, or they can enter a labour
market programme, like a subsidized wage job or similar.

These transitions are recorded in the d factor. In our simulation, individuals who transition
to "job", exit the dataset. If a transition to labour market programme occurs, the state variable
changes to "onprogram", and the dummy alpha changes to 1. It is also possible to do a "none"

transition, this is typically necessary if a covariate changes, since the model has piecewise constant
explanatory covariates. Also, when on a programme, one of the hazards disappear, it is no longer
possible to make a transition to a programme, we’re already on it.

Each row of the dataset has a duration, this is the time until the transition marked in d occurs.

1

The rows of an individual are independent, they can be reordered, but the dataset must be
sorted on individuals, i.e. the rows for an individual must be together. I suggest using data tables
(from the data.table package), then it is easy to sort on individuals: setorder(data,id). If you
have factors with hundreds or thousands of levels, it can be time-consuming to compute the Fisher-
matrix. However, the algorithm which creates the Fisher matrix is more efficient if individuals with
almost the same values for these factors (e.g. county, or company) are close to each other in the
dataset.

In our dataset, we have an observation period of 400, and the individuals enter the dataset at a
random time in this period. When they reach the end of the observation period they are no longer
observed. That means that some individuals do not exit the dataset by doing a transition, but
with a d=="none".

2 The mixed proportional hazard competing risk model

There are two covariates, x1 and x2. These are assumed to influence the two hazards. We also
assume the alpha enters the hazard.

We model the baseline hazard for transition to job as,

hj(µj) = exp(x1β
j
1 + x2β

j
2 + αβj

3 + µj) (1)

The hazard for transition to programme is,

hp(µp) = exp(x1β
p
1 + x2β

p
2 + µp) (2)

Here we have included an “intercept”, a µ, it could equally well have been written as a multi-
plicative factor exp(µ) instead. This exp(µ)-term is the “proportional hazard”.

The likelihood for a single observation k consists of two parts. Let H(µ) = hj(µj) + hp(µp) be
the sum of the hazards, where µ is the vector (µj , µp).

For an observation k there is a survival probability/density up until the transition:

sk(µ) = exp(−tkH(µ)), (3)

where tk is the duration of the period.
If there is a transition, s(µ) is multiplied by the transition hazard, hd(µ), where d is either p

or j. If there is no transition, hd(µ) is taken to be 1. Taken together, all the observations for an
individual i yields an individual likelihood. We call it `i(µ).

`i(µ) =
∏
k∈Ki

hdk(µ)sk(µ), (4)

where Ki is the set of observations for individual i.
However, there is also a mixture part, designed to account for unobserved individual hetero-

geneity. The µ-vector is stochastic with a discrete distribution. That is, there is an n, a set of
probabilites pj , and vectors µj , for j = 1..n. Of course, we have

∑n
j=1 pj = 1.

The mixture likelihood for an individual i is Li =
∑

j pj`i(µj).
The log-likelihood for the dataset is thus, L =

∑
i log(Li).

The L must be maximized with respect to the five βs, the n, the probabilites pj , and the vectors
µj for j = 1..n.

3 Estimation

The estimation proceeds as follows. We start with n = 1, estimate the βs and the two µs. Then we
increase n to 2, let p2 = 0, and find a vector µ2 such that the derivative of the log-likelihood in the
direction of positive p2 is positive. This is used as starting point for a new likelihood maximization.
Then n is increased to 3, and we proceed in this fashion, adding masspoints to the distribution
until we are no longer able to increase the likelihood. Note that even if we are not able to find
a point with positive derivative (as in [Lindsay, 1983a, Theorem 4.1]), we anyway use the closest

2

we have found, and do another round optimizing the full model. The reason is that the theorem
assumes the coefficients for the covariates have been found, but in practice they may still change,
creating an opportunity for another point.

In durmod we use the mphcrm function for this purpose. Here is an example. First we create a
“riskset”, a specification of which hazards are experienced in various states:

risksets <- list(unemp=c('job','program'), onprogram='job')

Note that the names of the list risksets are the same as the levels in the factor state. And
that the entries in the list are levels of the factor d, i.e. possible transitions.

Then we create a set of control parameters. Since this vignette is to be created by the busy
CRAN repository, we limit ourselves to 4 iterations, i.e. no more than 4 masspoints in the distri-
bution. For the same reason we also limit to 1 cpu, or threads, in the computation. The default is
to use all the available cpus/cores.

ctrl <- mphcrm.control(iters=4, threads=1)

Then we are ready to estimate. There are a couple of special terms in the formula we use:

set.seed(42) # for reproducibility

opt <- mphcrm(d ~ x1 + x2 +

C(job, alpha) + ID(id) + D(duration) + S(state),

data=durdata, risksets=risksets, control=ctrl)

mphcrm 09:44:47 i:1 p:1 L:-23397.2902 g:1.67e-05 mp:1 rc:0.024 e:-0.0000 t:0.6s

mphcrm 09:44:48 i:2 p:2 L:-22568.1711 g:6.05e-06 mp:0.33279 rc:0.01 e:0.6361 t:1.1s

mphcrm 09:44:52 i:3 p:3 L:-22483.5537 g:1.08e-05 mp:0.074596 rc:0.0014 e:0.9029 t:4.0s

mphcrm 09:44:56 i:4 p:4 L:-22469.0497 g:2.62e-05 mp:0.031328 rc:0.00022 e:1.1030 t:4.6s

The left hand side of the formula, d, is the outcome, the transition that is taken. The C(job,

alpha) term is a list of conditional covariates, the alpha should only explain the "job" transition.
The ID(id) specifies that the covariate id identifies individuals. The D(duration) specifies that
the covariate duration contains the durations of the observations. Finally, the S(state) term
specifies that the covariate state is a factor which indexes into the risksets argument. In this
application, we could as well have replaced C(job,alpha) with C(job,state) in the formula, since
these two covariates are essentially the same.

mphcrm writes diagnostic output, one line per iteration. It contains potentially useful informa-
tion. There is a time stamp, the iteration number, the number of masspoints, the resulting log
likelihood, the 2-norm of the gradient, the smallest probability in the masspoint distribution, the
reciprocal condition number of the Fisher matrix, the entropy of the masspoint distribution, and
the time used in the iteration.

mphcrm returns a list with one entry for each iteration, it has a special print method which
sums up the estimation in reverse order:

print(opt)

iter4: estimate with 4 points, log-likelihood: -22469.0497

##

job.x1 job.x2 job.alpha program.x1 program.x2

0.9964333 -0.9752032 -0.0402971 1.0106482 0.3441593

##

Proportional hazard distribution

prob job program

point 1 0.51260712 0.11689178 0.07037033

point 2 0.29869519 0.03138931 0.03095598

point 3 0.15736986 0.41290599 0.24906807

point 4 0.03132783 0.00926154 0.00557658

3

##

iter3: estimate with 3 points, log-likelihood: -22483.5537

iter2: estimate with 2 points, log-likelihood: -22568.1711

iter1: estimate with 1 points, log-likelihood: -23397.2902

nullmodel: estimate with 1 points, log-likelihood: -28974.1282

Unless something has gone wrong, you will normally be interested in the first entry, the one
with the largest likelihood. We can look at a summary:

best <- opt[[1]]

summary(best)

$loglik

[1] -22469.05

##

$coefs

value se t Pr(>|t|)

job.x1 0.9964333 0.01836658 54.2525201 0.000000e+00

job.x2 -0.9752032 0.02086101 -46.7476405 0.000000e+00

job.alpha -0.0402971 0.04567200 -0.8823152 3.776256e-01

program.x1 1.0106482 0.02322823 43.5094774 0.000000e+00

program.x2 0.3441593 0.02532524 13.5895787 1.001321e-41

##

$moments

mean variance sd

job 0.13456450 0.016023689 0.12658471

program 0.08468925 0.005415783 0.07359201

It has three entries, "loglik", which is simply the log likelihood, "coefs" which is the values
and standard errors of the estimated coefficients. And "moments", which is the first and second
moments of the proportional hazard distribution.

We can see how the alpha changes with more points:

t(sapply(opt, function(o) summary(o)$coefs["job.alpha",]))

value se t Pr(>|t|)

iter4 -0.04029710 0.04567200 -0.8823152 0.377625621

iter3 -0.04614334 0.04348011 -1.0612515 0.288598886

iter2 -0.03352000 0.03936906 -0.8514298 0.394549132

iter1 -0.08024691 0.02459507 -3.2627236 0.001106833

nullmodel 0.00000000 NA NA NA

Here is a pre-made fit:

summary(fit[[1]])

$loglik

[1] -22444.41

##

$coefs

value se t Pr(>|t|)

job.x1 1.0008735 0.01953029 51.247230 0.000000e+00

job.x2 -1.0325680 0.02423803 -42.601146 0.000000e+00

job.alpha 0.2639588 0.07260225 3.635683 2.785089e-04

program.x1 1.0277278 0.02595800 39.591941 1.256903e-320

program.x2 0.4615064 0.03425654 13.472069 4.824799e-41

##

4

$moments

mean variance sd

job 0.13617702 0.028997653 0.17028697

program 0.08489246 0.009307573 0.09647576

The full estimation can be rerun with the commands:

library(durmod)

data(durdata)

newfit <- eval(attr(fit,'call'))

There are also some functions for extracting the proportional hazard distribution:

round(mphdist(fit[[1]]),6)

prob job program

point 1 0.295516 0.181172 0.049529

point 2 0.175513 0.029290 0.019901

point 3 0.143208 0.067335 0.103531

point 4 0.132564 0.065707 0.027457

point 5 0.073408 0.023677 0.115193

point 6 0.063346 0.155159 0.336856

point 7 0.037025 0.515057 0.386386

point 8 0.027400 0.590028 0.114730

point 9 0.024802 0.006909 0.036665

point 10 0.017977 0.010285 0.002475

point 11 0.009242 1.296720 0.010676

and the moments,

mphmoments(fit[[1]])

mean variance sd

job 0.13617702 0.028997653 0.17028697

program 0.08489246 0.009307573 0.09647576

and covariance matrix

mphcov(fit[[1]])

job program

job 0.028997653 0.005300171

program 0.005300171 0.009307573

and some pseudo R2

pseudoR2(fit)

mcfadden adjmcfadden coxsnell ncu

iter11 0.2253638 0.2240868 0.9266042 0.9266127

iter10 0.2253580 0.2241846 0.9265992 0.9266078

iter9 0.2253543 0.2242844 0.9265961 0.9266047

iter8 0.2253491 0.2243827 0.9265916 0.9266002

iter7 0.2253142 0.2244514 0.9265620 0.9265706

iter6 0.2251987 0.2244394 0.9264636 0.9264721

iter5 0.2247808 0.2241250 0.9261065 0.9261151

iter4 0.2244687 0.2239165 0.9258388 0.9258474

iter3 0.2240128 0.2235641 0.9254459 0.9254544

iter2 0.2210923 0.2207472 0.9228792 0.9228878

iter1 0.1924765 0.1922349 0.8925506 0.8925589

5

The true values used to generate the dataset was job.x1=1, job.x2=-1, job.alpha=0.2,
program.x1=1, and program.x2=0.5. The true proportional hazard moments are for convenience
stored as attributes in the dataset

attributes(durdata)[c('means','cov')]

$means

job program

0.13819404 0.08270112

##

$cov

job program

job 0.030584053 0.005931508

program 0.005931508 0.010850049

In this case the estimated mixture has moments fairly close to the true ones, but beware that
the estimation process sometimes finds a couple of points with very low probability and very high
hazard. If these very low probabilities are imprecisely estimated, so that they should really have
been an order of magnitude smaller (10−6 instead of 10−5), the moments of the mixture distribution
can be way off. It is good practice to inspect the mixture distribution for such extreme points, and
go back to a previous iteration (which has slightly worse likelihood) without such extreme points.

3.1 Overparameterization?

We did note in [Gaure et al., 2007] that picking the number of points which yields the lowest AIC
yields satisfactory results. We did not, however, have any theoretical justification for doing this,
and still don’t. It is easy to look at the estimates with the lowest AIC:

summary(fit[[which.min(sapply(fit,AIC))]])

$loglik

[1] -22445.84

##

$coefs

value se t Pr(>|t|)

job.x1 1.0001819 0.01910274 52.358024 0.000000e+00

job.x2 -1.0263325 0.02356950 -43.544939 0.000000e+00

job.alpha 0.2405894 0.06952164 3.460641 5.409340e-04

program.x1 1.0261267 0.02570300 39.922443 0.000000e+00

program.x2 0.4512076 0.03273131 13.785200 7.098126e-43

##

$moments

mean variance sd

job 0.13471732 0.023595274 0.15360753

program 0.08443194 0.008140664 0.09022563

AIC is generally used to pick a model which is parsimonious, but still explains the data well,
i.e. to avoid overparameterization. AIC has an interpretation as the distance between the model
and reality, see e.g. [Burnham and Anderson, 2002]. However, since the points are not found in
a canonical order, the AIC is really not well defined in these models. Another estimation of the
same data may find the points in a different order, with different log likelihoods along the way,
resulting in another set of points having the lowest AIC in the new estimation.

Also, keep in mind that the method of using a discrete distribution in this way is not an
“approximation”. When the likelihood can’t be improved by adding more points, we have actually
reached the likelihood which would result if we were to integrate with the true distribution, be it
discrete or continuous. This is the content of [Lindsay, 1983a, Theorems 3.1 and 4.1]. Thus, there
is really no theoretical risk of adding “too many” points in the distribution, save for those which
may result from numerical problems.

6

The drawback with the method is that when the likelihood can’t be improved by adding more
points, the purely technical reason is that something degenerates, i.e. something breaks down, at
least the Fisher matrix. That is, we will necessarily run into numerical problems at the end of
the estimation, and this may result in irrelevant points with very low probabilities being added,
because they seem to increase the likelihood by some small amount due to numerical inaccuracies.
This may be the case if the algorithm has run several iterations at the end which barely moved
the likelihood.

4 More options

4.1 Interval timing

The example above had exactly recorded time. For some applications we do have that, while in
other applications we only have a time interval when the transition is known to have taken place.
The data above is actually a prime example, perhaps we only have labour data on a monthly basis.
When a transition takes place, it is only registered at the end of the month, and there is no record
of the day. In this case, the duration would be 1 for every observation, and one should use the
timing="interval" argument in mphcrm. The observation likelihood is replaced by,

hdk(µ)

H(µ)
(1− exp(−tkH(µ)). (5)

If the hazards are small and we use unit intervals, the difference between the interval and exact
model is quite small, so one may opt for using the exact model instead.

4.2 No timing

In some applications there isn’t any time. A transition occurs, or not. In this case the specification
timing="none" can be used. It will use a logit model for the transition probabilities.

4.3 Factors

mphcrm treats factors specially. There is, I hope, nothing special to see, but internally mphcrm does
not create a large model matrix filled with dummy variables. This means that factors with many
levels are quite fast to estimate, there is no wasteful multiplication by zero.

mphcrm removes factor levels as explanatory for a transition if they are not observed in any state
with a risk for this transition. There can, however, be problems with what the contrasts/references
should be if you interact a factor in one transition, but keeps it uninteracted in another transition.
For the purpose of automatic removal of reference levels in factors, it is assumed that all terms
in all transitions are present everywhere. If this problem occurs, you can create a copy with a
different name, so it looks like different factors in different transitions. This may be fixed in a later
version, if I find a sensible way to do it.

5 Control parameters

There are many control parameters. Rather than scattering more or less arbitrary constants around
the program, I have collected them here with their defaults. Some of them you may want to tinker
with.

• threads=getOption("durmod.threads"). An integer. The number of parallel threads used
by mphcrm. The default is taken from getOption("durmod.threads"), which is initial-
ized from the environment variable DURMOD THREADS, OMP NUM THREADS, OMP THREAD LIMIT,
NUMBER OF PROCESSORS, or else from parallel::detectCores().

It is not always true that the estimation runs twice as fast on twice as many cpus. This
depends on the cpu- and memory architecture of your computer, as well as on the implemen-
tation of OpenMP in the compiler used to compile the C++ parts of durmod. Besides, not

7

all parts of durmod run in parallel, so by Amdahl’s law you may not expect linear speedup
when the number of cpus tends to infinity.

Also, if you intend to use your computer for something else while mphcrm runs, you should
not give it all your cpus, but save one or two for your other work. If one of the 16 threads
in mphcrm shares a cpu with your mail program trying to sort your inbox, the speed may be
halved.

For creation of the Fisher matrix, mphcrm calls into the BLAS from a single thread. For large
datasets with many coefficients to estimate, there can be some benefit from linking R with a
highly optimized and parallel BLAS, like mkl from Intel. See the R documentation for how
to do this.

In case you run on a cluster (see the cluster control parameter), the threads parameter is
the number of threads on each node in the cluster. In this case, threads can be a vector of
integers, if you have different number of cpus on each node.

• iters=50. An integer. The number of iterations to perform. The estimation may stop
earlier, if neither the log likelihood nor the entropy improves.

• ll.improve=0.001. A numeric. The amount the log-likelihood must increase with to be
considered an improvement.

• e.improve=0.001. A numeric. The amount the entropy of the hazard distribution must
change with to be considered an improvement.

• gdiff=TRUE. A logical. When searching for a new point, should we try one with zero prob-
ability, and positive derivative in the direction of positive probability? This usually works,
but in case of problems with finding new points, it can be set to FALSE, and a search for a
location with a small probability is done instead. See newprob.

• startprob=10−4. A numeric. When a location point has been found with zero probability,
we can not use a zero probability for further optimization due to our parametrization of
probabilities which do not allow it. We must set it to some small value startprob. Setting
it too small will make it difficult to move away from it.

• overshoot=0.001. A numeric. When searching for a positive directional derivative, this is
the threshold we must be above. It is positive to avoid marginally positive derivatives due
to numerical inaccuracies.

• newprob=10−4. A numeric. When searching for a new masspoint with gdiff=FALSE, a new
support point is added to the distribution with a small probability, then a search is done for a
location for this probability which increases the likelihood. newprob is this small probability.
If the search fails, the new probability is set to zero, and a search for a positive directional
derivative of the likelihood (in the direction of positive probability) is done.

If mphcrm after optimization seems to find a series of points with probability equal to newprob,
it has perhaps got stuck for numerical reasons. Try to increase it to find higher probability
points first.

• minprob=10−20. A numeric. Masspoints with probability below this are removed.

• eqtol=0.001. A numeric. It sometimes happens that two location points in the mixed
proportional hazard distribution turns out to be equal. One of them can then be removed.
eqtol is the threshold below which the distance between two location points is so small that
the two points are thought to be equal. The “distance” is the maximum of pointwise relative
differences, i.e. with two vectors {ai}i and {bi}i, the distance is maxi |ai − bi|/(|ai|+ |bi|).

• newpoint.maxtime=120. A numeric. When searching for a new location point, a global
search algorithm from package nloptr is used. newpoint.maxtime is its time limit in seconds.
Should be increased if mphcrm repeatedly complains about not being able to find a new point.
However, when there are no new points to be found at the end of the estimation, this will
necessarily happen. See also lowint.

8

• addmultiple=∞. A positive numeric. The algorithm tries to add more points to the distri-
bution without optimizing the structural parameters as long as the improvement from the
last point is larger than addmultiple. If the improvement is less, all parameters are opti-
mized before more points are attempted. Setting addmultiple=1 or smaller may save some
time if there are many structural parameters, but setting it too small risks ending up with
too many points which later may be discarded, and possible convergence problems.

• callback=mphcrm.callback. A function. If the one-line diagnostic from mphcrm is insuffi-
cient, it is possible to write your own. It will replace the default callback (which you can call
from your function). In this way you can e.g. get diagnostics on particular coefficients, save
intermediate results to file, or other partakings. See mphcrm.callback.

• jobname="mphcrm". A character string. The initial portion of the one-line diagnostic. Useful
if you e.g. use parallel::mclapply to run several estimations in parallel. They can have
individual names so you can see the progress.

• tspec="%T". A character string. The format of the time stamp in the one-line diagnostic,
as described in help(format.POSIXct). Use "%c" to get both date and time.

• trap.interrupt=interactive(). A logical. If you decide to interrupt an interactive esti-
mation before it has terminated, either because you don’t want to wait, or because it seems
to have run astray, the default behaviour for mphcrm is to catch the interrupt, and return
gracefully with the result of the estimation so far. This behaviour can be switched off with
trap.interrupt=FALSE.

• tol=10−4. A numeric. The (absolute) tolerance for the log-likelihood maximization.

• itfac=20. An integer. The maximum number of iterations in the BFGS-method is itfac*K,
where K is the number of parameters to estimate.

• fishblock=128. An integer. The Fisher matrix is created by calling the BLAS dsyrk with
blocks of individual gradients. This is the size of the blocks. The optimal size depends on
the BLAS version and details of your computing contraption. If memory use is an issue with
a large number of coefficients to estimate, it can be lowered, typically to some other power
of two.

• lowint=4. A numeric, possibly a vector of length the number of transitions. When searching
for the location of a new point, an interval centered at the mean of the old points is used.
lowint is how far from the mean (in log units) the interval goes to the left. mphcrm makes
no effort at analyzing where the location points may lie, as described in [Lindsay, 1983b], but
does a brute force search in a (hyper)rectangle. Setting this parameter too high, increases
the risk of finding numerically unfavourable points, in particular large ones (if highint is
too large), but if mphrcm repeatedly complains about not being able to find new points, it
can be increased. See also newpoint.maxtime.

• highint=2. A numeric. Like lowint, but to the right.

• method="BFGS". A character string. The default is the most robust method. In case of con-
vergence problems, or for fun, one may try one of the local gradient based NLOPT-methods:
"TNEWTON PRECOND", "TNEWTON", "SLSQP", "MMA", "TNEWTON RESTART", "TNEWTON PRECOND RESTART",

"VAR1", "VAR2". The Newton-methods can achieve a smaller gradient than BFGS. For these,
it could be a good idea to increase itfac.

• cluster=NULL. Cluster specification from package parallel or snow. In addition to utilizing all
the cores/cpus on a computer, mphcrm may also spread across several computers. It supports
running on a cluster from package parallel or snow. The dataset will be split among the
cluster nodes, with approximately equally many observations on each. The nodes will then
do their share of the likelihood computations. If using a cluster, the threads parameter will
be the number of cpus used on each cluster node. It can also be a vector, different number
of threads on each node, in which case the dataset will be split unevenly to approximately
match the number of threads.

9

If running on a professional cluster with a resource manager such as SLURM, TORQUE
or similar, it is usually possible to pick up information about the cluster nodes from the
resource manager, typically from environment variables. With SLURM you can e.g. obtain
the number of allocated cpus on each node of your job with something like threads <-

clusterEvalQ(cluster, as.integer(Sys.getenv("SLURM CPUS ON NODE"))). In general,
you will have to check local documentation for how this can be done, and how to best set up
a cluster with package parallel. (There can be some catches, in particular with MPI which
spin-waits to lower latency, and thus takes up a CPU for the “dormant” master process.)

In general, when using parallelization, one should make sure that the cpus are not overbooked
and that the nodes you are running on are approximately equally fast. There is some overhead
when distributing the computation among many nodes, depending on how the nodes are
interconnected, and due to somewhat sub-optimal implementations in package parallel which
e.g. does not utilize collective MPI-calls. mphcrm will usually run faster if using threads

on a single node, or few nodes, both because the thread algorithm uses shared memory and
because the division of data between the threads are dynamic.

• nodeshares=NULL. A numeric vector. When running on a cluster, the default is to share the
data equally among the nodes, or in the case threads is a vector of node-specific threads,
equally among the threads on each node. If this is unsatisfactory, e.g. because the nodes
have different computing speeds, you can specify a vector of node specific shares of the data
set.

Say you have 4 nodes in the cluster, but the last two are half as fast as the first two, just specify
nodeshares=c(2,2,1,1), and the last two nodes will get half as much data as the first two.
If in addition, the first two have 8 cpus, and the last two have four, specify: threads=c(8,

8, 4, 4), and nodeshares=c(2*8, 2*8, 4, 4). The entries in the nodeshares vector will
be divided by their sum, so it is not necessary that they sum to 1, it is their relative sizes
which matter.

• fisher=TRUE. A logical. Should the Fisher matrix be computed? You will normally want
this, it is used to compute the standard errors. However, it may take some time if you have a
large number of covariates. If you do not need standard errors, e.g. if you do a bootstrap or
Monte Carlo simulation or similar, you may switch off the computation of the Fisher matrix
and save some time.

• gradient=TRUE. A logical. As fisher, but for the gradient. I doubt much time can be saved
by switching this off.

References

[Burnham and Anderson, 2002] Burnham, K. P. and Anderson, D. R. (2002). Model selection and
multimodel inference. Springer, New York, 2nd edition.

[Gaure et al., 2007] Gaure, S., Røed, K., and Zhang, T. (2007). Time and causality: A Monte
Carlo assessment of the timing-of-events approach. Journal of Econometrics, 141(2):1159 –
1195.

[Heckman and Singer, 1984] Heckman, J. and Singer, B. (1984). A method for minimizing the
impact of distributional assumptions in econometric models for duration data. Econometrica,
52(2):271–320.

[Lindsay, 1983a] Lindsay, B. G. (1983a). The geometry of mixture likelihoods: A general theory.
The Annals of Statistics, 11(1):86–94.

[Lindsay, 1983b] Lindsay, B. G. (1983b). The geometry of mixture likelihoods, part II: The expo-
nential family. The Annals of Statistics, 11(3):783–792.

10

