Package ‘dtw’

September 1, 2019

Type Package
Title Dynamic Time Warping Algorithms

Description
A comprehensive implementation of dynamic time warping (DTW) algorithms in R. DTW com-
putes the optimal (least cumulative distance) alignment between points of two time series. Com-
mon DTW variants covered include local (slope) and global (window) constraints, subse-
quence matches, arbitrary distance definitions, normalizations, minimum variance match-
ing, and so on. Provides cumulative distances, alignments, specialized plot styles, etc.

Author Toni Giorgino <toni.giorgino@gmail.com>,
Maintainer Toni Giorgino <toni.giorgino@gmail.com>
Version 1.21-3

Date 2019-8-17

Depends R (>=2.10.0), proxy

Imports graphics, grDevices, stats, utils

License GPL (>=2)

URL https://dynamictimewarping.github.io/,
http://dtw.r-forge.r-project.org/

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-09-01 06:50:02 UTC

R topics documented:

dtw-package L 2
AAM o e e e s 3
countPaths e e 5
AW e e e 6
dtwDist . . . e 11

https://dynamictimewarping.github.io/
http://dtw.r-forge.r-project.org/

2 dtw-package

dtwPlot 13
dtwPlotDensity e e e e e e e 15
dtwPlotThreeWay e e 16
dtwPlotTwoWay e e e e e 18
dtwWindowingFunctions 20
VI . 0 v v et e e e e e e e e e e e e e e e e 22
StepPattern L e e e e e e e e 23
WAID & v v o v e 28
WAIPATCA o v v e e e e e e e 30
Index 32
dtw-package Comprehensive implementation of Dynamic Time Warping (DTW) al-

gorithms in R.

Description

The DTW algorithm computes the stretch of the time axis which optimally maps one given time-
series (query) onto whole or part of another (reference). It yields the remaining cumulative distance
after the alignment and the point-by-point correspondence (warping function). DTW is widely used
e.g. for classification and clustering tasks in econometrics, chemometrics and general timeseries
mining.

Details

Please see documentation for function dtw(), which is the main entry point to the package.

The R implementation in dtw provides:

* arbitrary windowing functions (global constraints), eg. the Sakoe-Chiba band; see dtwWindowingFunctions()

e arbitrary transition types (also known as step patterns, slope constraints, local constraints, or
DP-recursion rules). This includes dozens of well-known types; see stepPattern():

all step patterns classified by Rabiner-Juang, Sakoe-Chiba, and Rabiner-Myers;

symmetric and asymmetric;

Rabiner’s smoothed variants;

arbitrary, user-defined slope constraints
* partial matches: open-begin, open-end, substring matches
* proper, pattern-dependent, normalization (exact average distance per step)
* the Minimum Variance Matching (MVM) algorithm (Latecki et al.)
Multivariate timeseries can be aligned with arbitrary local distance definitions, leveraging the proxy: :dist()
function of package proxy. DTW itself becomes a distance function with the dist semantics.
In addition to computing alignments, the package provides:

* methods for plotting alignments and warping functions in several classic styles (see plot
gallery);

aami 3

* graphical representation of step patterns;

* functions for applying a warping function, either direct or inverse; and more.

If you use this software, please cite it according to citation("dtw"). The package home page is
athttp://dtw.r-forge.r-project.org.

Author(s)

Toni Giorgino

References

* Toni Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw
Package. Journal of Statistical Software, 31(7), 1-24. http://www.jstatsoft.org/v31/
ie7/

* Tormene, P.; Giorgino, T.; Quaglini, S. & Stefanelli, M. Matching incomplete time series with
dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif
Intell Med, 2009, 45, 11-34

* Rabiner, L. R., & Juang, B.-H. (1993). Chapter 4 in Fundamentals of speech recognition.
Englewood Cliffs, NJ: Prentice Hall.
See Also

dtw() for the main entry point to the package; dtwWindowingFunctions() for global constraints;
stepPattern() for local constraints; analogue: :distance(), outer() for building a local cost
matrix with multivariate timeseries and custom distance functions.

Examples

library(dtw);
demo(dtw);

aami ANSI/AAMI EC13 Test Waveforms, 3a and 3b

Description

ANSI/AAMI EC13 Test Waveforms 3a and 3b, as obtained from the PhysioBank database.

Format

Time-series objects (class ts).

http://dtw.r-forge.r-project.org
http://www.jstatsoft.org/v31/i07/
http://www.jstatsoft.org/v31/i07/

4 aami

Details

The following text is reproduced (abridged) from PhysioBank, page https://www.physionet.
org/content/aami-ec13/1.0.0/. Other recordings belong to the dataset and can be obtained
from the same page.

The files in this set can be used for testing a variety of devices that monitor the electrocardiogram.
The recordings include both synthetic and real waveforms. For details on these test waveforms and
how to use them, please refer to section 5.1.2.1, paragraphs (e) and (g) in the reference below. Each
recording contains one ECG signal sampled at 720 Hz with 12-bit resolution.

Note

Timestamps in the datasets have been re-created at the indicated frequency of 720 Hz, whereas the
original timestamps in ms (at least in text format) only had three decimal digits’ precision, and were
therefore affected by substantial jittering.

Source

https://www.physionet.org/content/aami-ec13/1.0.0/

References

* Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE,
Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components
of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-
€220; 2000 (June 13).

¢ Cardiac monitors, heart rate meters, and alarms; American National Standard (ANSI/AAMI
EC13:2002). Arlington, VA: Association for the Advancement of Medical Instrumentation,
2002.

Examples

data(aami3a);
data(aami3b);

Plot both as a multivariate TS object
only extract the first 10 seconds

plot(main="ECG (mV)",
window(
cbind(aami3a,aami3b) ,end=10)
)

https://www.physionet.org/content/aami-ec13/1.0.0/
https://www.physionet.org/content/aami-ec13/1.0.0/
https://www.physionet.org/content/aami-ec13/1.0.0/

countPaths 5

countPaths Count the number of warping paths consistent with the constraints.

Description

Count how many possible warping paths exist in the alignment problem passed as an argument.
The object passed as an argument is used to look up the problem parameters such as the used step
pattern, windowing, open ends, and so on. The actual alignment is ignored.

Usage

countPaths(d, debug = FALSE)

Arguments
d an object of class dtw
debug return an intermediate result
Details

Note that the number of paths grows exponentially with problems size. The result may be approxi-
mate when windowing functions are used.

If debug=TRUE, a matrix used for the computation is returned instead of the final result.

Value

The number of paths.

Author(s)

Toni Giorgino

Examples

ds<-dtw(1:7+2,1:8,keep=TRUE, step=asymmetric);
countPaths(ds)
Result: 126

6 dtw

dtw Dynamic Time Warp

Description

Compute Dynamic Time Warp and find optimal alignment between two time series.

Usage
dtw(x, y = NULL, dist.method = "Euclidean”,
step.pattern = symmetric2, window.type = "none",
keep.internals = FALSE, distance.only = FALSE, open.end = FALSE,
open.begin = FALSE, ...)
is.dtw(d)

S3 method for class 'dtw'

print(x, ...)
Arguments
X query vector or local cost matrix
y reference vector, unused if x given as cost matrix
dist.method pointwise (local) distance function to use. See proxy::dist() in package

proxy

step.pattern a stepPattern object describing the local warping steps allowed with their cost
(see stepPattern())

window. type windowing function. Character: "none", "itakura", "sakoechiba", "slantedband",
or a function (see details).
keep.internals preserve the cumulative cost matrix, inputs, and other internal structures

distance.only only compute distance (no backtrack, faster)
open.begin, open.end
perform open-ended alignments

additional arguments, passed to window. type

d an arbitrary R object

Details

The function performs Dynamic Time Warp (DTW) and computes the optimal alignment between
two time series x and y, given as numeric vectors. The "optimal" alignment minimizes the sum of
distances between aligned elements. Lengths of x and y may differ.

The local distance between elements of x (query) and y (reference) can be computed in one of the
following ways:

dtw 7

1. if dist.method is a string, x and y are passed to the proxy::dist() function in package
proxy with the method given;

2. if dist.method is a function of two arguments, it invoked repeatedly on all pairs x[i],y[j]
to build the local cost matrix;

3. multivariate time series and arbitrary distance metrics can be handled by supplying a local-
distance matrix. Element [i, j] of the local-distance matrix is understood as the distance
between element x[i] and y[j]. The distance matrix has therefore n=1ength(x) rows and
m=length(y) columns (see note below).

Several common variants of the DTW recursion are supported via the step.pattern argument,
which defaults to symmetric2. Step patterns are commonly used to /locally constrain the slope of
the alignment function. See stepPattern() for details.

Windowing enforces a global constraint on the envelope of the warping path. It is selected by pass-
ing a string or function to the window. type argument. Commonly used windows are (abbreviations
allowed):

* "none"” No windowing (default)

* "sakoechiba” A band around main diagonal

* "slantedband” A band around slanted diagonal

* "itakura" So-called Itakura parallelogram
window. type can also be an user-defined windowing function. See dtwWindowingFunctions()
for all available windowing functions, details on user-defined windowing, and a discussion of the

(mis)naming of the "Itakura" parallelogram as a global constraint. Some windowing functions may
require parameters, such as the window. size argument.

Open-ended alignment, i.e. semi-unconstrained alignment, can be selected via the open. end switch.
Open-end DTW computes the alignment which best matches all of the query with a leading part of
the reference. This is proposed e.g. by Mori (2006), Sakoe (1979) and others. Similarly, open-begin
is enabled via open.begin; it makes sense when open.end is also enabled (subsequence finding).
Subsequence alignments are similar e.g. to UE2-1 algorithm by Rabiner (1978) and others. Please
find a review in Tormene et al. (2009).

If the warping function is not required, computation can be sped up enabling the distance.only=TRUE
switch, which skips the backtracking step. The output object will then lack the index{1,2,1s,2s}
and stepsTaken fields.

is.dtw tests whether the argument is of class dtw.

Value
An object of class dtw with the following items:

* distance the minimum global distance computed, not normalized.

* normalizedDistance distance computed, normalized for path length, if normalization is
known for chosen step pattern.

* N,M query and reference length
* call the function call that created the object

¢ index1 matched elements: indices in x

8 dtw

* index2 corresponding mapped indices in y

* stepPattern the stepPattern object used for the computation

¢ jmin last element of reference matched, if open.end=TRUE

e directionMatrix if keep.internals=TRUE, the directions of steps that would be taken at
each alignment pair (integers indexing production rules in the chosen step pattern)

* stepsTaken the list of steps taken from the beginning to the end of the alignment (integers
indexing chosen step pattern)

* index1s,index2s same as index1/2, excluding intermediate steps for multi-step patterns
like asymmetricP05()

e costMatrix if keep.internals=TRUE, the cumulative cost matrix

* query,reference if keep.internals=TRUE and passed as the x and y arguments, the query
and reference timeseries.

Note

Cost matrices (both input and output) have query elements arranged row-wise (first index), and
reference elements column-wise (second index). They print according to the usual convention, with
indexes increasing down- and rightwards. Many DTW papers and tutorials show matrices according
to plot-like conventions, i.e. reference index growing upwards. This may be confusing.

Author(s)

Toni Giorgino

References

1. Toni Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw
Package. Journal of Statistical Software, 31(7), 1-24. http://www.jstatsoft.org/v31/
ie7/

2. Tormene, P.; Giorgino, T.; Quaglini, S. & Stefanelli, M. Matching incomplete time series with
dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif
Intell Med, 2009, 45, 11-34. http://dx.doi.org/10.1016/j.artmed.2008.11.007

3. Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recog-
nition, Acoustics, Speech, and Signal Processing, IEEE Transactions on , vol.26, no.1, pp.
43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=1163055

4. Mori, A.; Uchida, S.; Kurazume, R.; Taniguchi, R.; Hasegawa, T. & Sakoe, H. Early Recog-
nition and Prediction of Gestures Proc. 18th International Conference on Pattern Recognition
ICPR 2006, 2006, 3, 560-563

5. Sakoe, H. Two-level DP-matching—A dynamic programming-based pattern matching algo-
rithm for connected word recognition Acoustics, Speech, and Signal Processing, IEEE Trans-
actions on, 1979, 27, 588-595

6. Rabiner L, Rosenberg A, Levinson S (1978). Considerations in dynamic time warping algo-
rithms for discrete word recognition. 1EEE Trans. Acoust., Speech, Signal Process., 26(6),
575-582. ISSN 0096-3518.
7. Muller M. Dynamic Time Warping in Information Retrieval for Music and Motion. Springer
Berlin Heidelberg; 2007. p. 69-84. http://link.springer.com/chapter/10.1007/978-3-540-74048-3_
4

http://www.jstatsoft.org/v31/i07/
http://www.jstatsoft.org/v31/i07/
http://dx.doi.org/10.1016/j.artmed.2008.11.007
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055
http://link.springer.com/chapter/10.1007/978-3-540-74048-3_4
http://link.springer.com/chapter/10.1007/978-3-540-74048-3_4

dtw 9

See Also

dtwDist(), for iterating dtw over a set of timeseries; dtwWindowingFunctions(), for window-
ing and global constraints; stepPattern(), step patterns and local constraints; plot.dtw(), plot
methods for DTW objects. To generate a local distance matrix, the functions proxy: :dist() in
package proxy, analogue: :distance() in package analogue, outer () may come handy.

Examples

A noisy sine wave as query
idx<-seq(0,6.28,1en=100);
query<-sin(idx)+runif(100)/10;

A cosine is for reference; sin and cos are offset by 25 samples
reference<-cos(idx)
plot(reference); lines(query,col="blue");

Find the best match
alignment<-dtw(query,reference);

Display the mapping, AKA warping function - may be multiple-valued
Equivalent to: plot(alignment,type="alignment")
plot(alignment$index1,alignment$index2,main="Warping function”);

Confirm: 25 samples off-diagonal alignment
lines(1:100-25,col="red")

HHHHH

#it

Partial alignments are allowed.
##

alignmentOBE <-
dtw(query[44:88],reference,
keep=TRUE, step=asymmetric,
open.end=TRUE, open.begin=TRUE);
plot(alignmentOBE, type="two",of f=1);

HHHHHH

#t

Subsetting allows warping and unwarping of
timeseries according to the warping curve.
See first example below.

##

Most useful: plot the warped query along with reference

10

plot(reference)
lines(query[alignment$index1]~alignment$index2,col="blue")

Plot the (unwarped) query and the inverse-warped reference
plot(query,type="1",col="blue")
points(reference[alignment$index2]~alignment$index1)

HHHHH

##

Contour plots of the cumulative cost matrix

similar to: plot(alignment,type="density") or

#it dtwPlotDensity(alignment)
See more plots in ?plot.dtw
##

keep = TRUE so we can look into the cost matrix
alignment<-dtw(query,reference,keep=TRUE);

contour(alignment$costMatrix,col=terrain.colors(100),x=1:100,y=1:100,
xlab="Query (noisy sine)",ylab="Reference (cosine)");

lines(alignment$index1,alignment$index2,col="red",1lwd=2);

S

##

An hand-checkable example
#H#

ldist<-matrix(1,nrow=6,ncol=6); # Matrix of ones
ldist[2,]1<-0; 1ldist[,5]<-0; # Mark a clear path of zeroes
ldist[2,5]<-.01; # Forcely cut the corner

ds<-dtw(ldist); # DTW with user-supplied local
cost matrix
da<-dtw(ldist,step=asymmetric); # Also compute the asymmetric
plot(ds$index1,ds$index2,pch=3); # Symmetric: alignment follows
the low-distance marked path
points(da$index1,da$index2,col="red"); # Asymmetric: visiting
1 is required twice

ds$distance;
das$distance;

dtw

dtwDist 11

dtwDist Compute a dissimilarity matrix

Description

Compute the dissimilarity matrix between a set of single-variate timeseries.

Usage
dtwDist(mx, my = mx, ...)
Arguments
mx numeric matrix, containing timeseries as rows
my numeric matrix, containing timeseries as rows (for cross-distance)
arguments passed to the dtw() call
Details

dtwDist computes a dissimilarity matrix, akin to dist(), based on the Dynamic Time Warping
definition of a distance between single-variate timeseries.

The dtwDist command is a synonym for the proxy: :dist() function of package proxy; the DTW
distance is registered as method="DTW" (see examples below).

The timeseries are stored as rows in the matrix argument m. In other words, if mis an N * T matrix,
dtwDist will build NN ordered pairs of timeseries, perform the corresponding NN dtw alignments,
and return all of the results in a matrix. Each of the timeseries is T elements long.

dtwDist returns a square matrix, whereas the dist object is lower-triangular. This makes sense
because in general the DTW "distance" is not symmetric (see e.g. asymmetric step patterns). To
make a square matrix with the proxy: :dist() function sematics, use the two-arguments call as
dist(m,m). This will return a square crossdist object.

Value
A square matrix whose element [i, j] holds the Dynamic Time Warp distance between row i
(query) and j (reference) of mx and my, i.e. dtw(mx[i,],my[j,])$distance.

Note
To convert a square cross-distance matrix (crossdist object) to a symmetric dist() object, use a
suitable conversion strategy (see examples).

Author(s)

Toni Giorgino

12 dtwDist

See Also

Other "distance" functions are: dist(), vegan: :vegdist () in package vegan, analogue: :distance()
in package analogue, etc.

Examples

Symmetric step pattern => symmetric dissimilarity matrix;
no problem coercing it to a dist object:

m <- matrix(@,ncol=3,nrow=4)
m <- row(m)
dist(m,method="DTW");

0ld-fashioned call style would be:
dtwDist(m)
as.dist(dtwDist(m))

Find the optimal warping _and_ scale factor at the same time.
(There may be a better, analytic way)

Prepare a query and a reference

query<-sin(seq(@,4*pi,len=100))
reference<-cos(seq(@,4*pi,len=100))

Make a set of several references, scaled from @ to 3 in .1 increments.
Put them in a matrix, in rows

scaleSet <- seq(@.1,3,by=.1)
referenceSet<-outer(1/scaleSet,reference)

The query has to be made into a 1-row matrix.
Perform all of the alignments at once, and normalize the result.

dist(t(query),referenceSet,meth="DTW")->distanceSet

The optimal scale for the reference is 1.0
plot(scaleSet,scaleSetxdistanceSet,
xlab="Reference scale factor (denominator)”,
ylab="DTW distance"”,type="0",
main="Sine vs scaled cosine alignment, @ to 4 pi")

Asymmetric step pattern: we can either disregard part of the pairs
(as.dist), or average with the transpose

dtwPlot 13

mm <- matrix(runif(12),ncol=3)
dm <- dist(mm,mm,method="DTW", step=asymmetric); # a crossdist object

Old-fashioned call style would be:
dm <- dtwDist(mm,step=asymmetric)
as.dist(dm)

Symmetrize by averaging:
(dm+t(dm))/2

check definition
stopifnot(dm[2,1]==dtw(mm[2,],mm[1,], step=asymmetric)$distance)

dtwPlot Plotting of dynamic time warp results

Description

Methods for plotting dynamic time warp alignment objects returned by dtw().

Usage

S3 method for class 'dtw'
plot(x, type = "alignment”, ...)

dtwPlotAlignment(d, xlab = "Query index"”, ylab = "Reference index”,

plot.type = "1", ...)
Arguments
X, d dtw object, usually result of call to dtw()
type general style for the plot, see below

additional arguments, passed to plotting functions
x1lab label for the query axis
ylab label for the reference axis

plot. type type of line to be drawn, used as the type argument in the underlying plot call

14 dtwPlot

Details

dtwPlot displays alignment contained in dtw objects.

Various plotting styles are available, passing strings to the type argument (may be abbreviated):

* alignment plots the warping curve in d;
* twoway plots a point-by-point comparison, with matching lines; see dtwPlotTwoWay ();
* threeway vis-a-vis inspection of the timeseries and their warping curve; see dtwPlotThreeWay();

* density displays the cumulative cost landscape with the warping path overimposed; see
dtwPlotDensity ()

Additional parameters are passed to the plotting functions: use with care.

Warning

These functions are incompatible with mechanisms for arranging plots on a device: par(mfrow),
layout and split.screen.

Author(s)

Toni Giorgino

See Also

dtwPlotTwoWay (), dtwPlotThreeWay () and dtwPlotDensity() for details on the respective plot-
ting styles.
Other plot: dtwPlotDensity, dtwPlotThreeWay, dtwPlotTwoWay

Examples

Same example as in dtw
idx<-seq(0,6.28,1en=100);
query<-sin(idx)+runif(100)/10;
reference<-cos(idx)
alignment<-dtw(query,reference,keep=TRUE);

A sample of the plot styles. See individual plotting functions for details

plot(alignment, type="alignment",
main="DTW sine/cosine: simple alignment plot")

plot(alignment, type="twoway",
main="DTW sine/cosine: dtwPlotTwoWay")

plot(alignment, type="threeway",
main="DTW sine/cosine: dtwPlotThreeWay")

plot(alignment, type="density”,

dtwPlotDensity 15

main="DTW sine/cosine: dtwPlotDensity")

dtwPlotDensity Display the cumulative cost density with the warping path overim-
posed

Description

The plot is based on the cumulative cost matrix. It displays the optimal alignment as a "ridge" in
the global cost landscape.

Usage
dtwPlotDensity(d, normalize = FALSE, xlab = "Query index",
ylab = "Reference index”", ...)
Arguments
d an alignment result, object of class dtw
normalize show per-step average cost instead of cumulative cost
xlab label for the query axis
ylab label for the reference axis

additional parameters forwarded to plotting functions

Details

The alignment must have been constructed with the keep. internals=TRUE parameter set.

If normalize is TRUE, the average cost per step is plotted instead of the cumulative one. Step
averaging depends on the stepPattern() used.

See Also

Other plot: dtwPlotThreeWay, dtwPlotTwoWay, dtwPlot

Examples

A study of the "Itakura” parallelogram

##

A widely held misconception is that the "Itakura parallelogram” (as
described in the original article) is a global constraint. Instead,
it arises from local slope restrictions. Anyway, an "itakuraWindow”,
is provided in this package. A comparison between the two follows.

The local constraint: three sides of the parallelogram are seen
idx<-seq(0,6.28,1en=100);

16 dtwPlotThree Way

query<-sin(idx)+runif(100)/10;
reference<-cos(idx)

ita <- dtw(query,reference,keep=TRUE, step=typelllc)
dtwPlotDensity(ita, main="Slope-limited asymmetric step (Itakura)")

Symmetric step with global parallelogram-shaped constraint. Note how
long (>2 steps) horizontal stretches are allowed within the window.

dtw(query, reference, keep=TRUE,window=itakuraWindow)->ita;
dtwPlotDensity(ita,
main="Symmetric step with Itakura parallelogram window")

dtwPlotThreeWay Plotting of dynamic time warp results: annotated warping function

Description

Display the query and reference time series and their warping curve, arranged for visual inspection.

Usage

dtwPlotThreeWay(d, xts = NULL, yts = NULL, type.align = "1",

type.ts = "1", match.indices =
inner.margin = 0.2, title.margin =

match.indices
margin
inner.margin
title.margin
xlab

ylab

main

NULL, margin = 4,
1.5, xlab = "Query index",

ylab = "Reference index”, main = "Timeseries alignment”, ...)
Arguments
d an alignment result, object of class dtw
xts query vector
yts reference vector
type.align line style for warping curve plot
type.ts line style for timeseries plot

indices for which to draw a visual guide
outer figure margin

inner figure margin

space on the top of figure

label for the query axis

label for the reference axis

main title

additional arguments, used for the warping curve

dtwPlotThree Way 17

Details

The query time series is plotted in the bottom panel, with indices growing rightwards and values
upwards. Reference is in the left panel, indices growing upwards and values leftwards. The warping
curve panel matches indices, and therefore element (1,1) will be at the lower left, (N,M) at the upper
right.

Argument match.indices is used to draw a visual guide to matches; if a vector is given, guides
are drawn for the corresponding indices in the warping curve (match lines). If integer, it is used as
the number of guides to be plotted. The corresponding style is customized via the match. col and
match.lty arguments.

If xts and yts are not supplied, they will be recovered from d, as long as it was created with the
two-argument call of dtw() with keep.internals=TRUE. Only single-variate time series can be
plotted.
Warning
The function is incompatible with mechanisms for arranging plots on a device: par (mfrow), layout
and split.screen. Appearance of the match lines and timeseries currently can not be customized.
Author(s)

Toni Giorgino

See Also

Other plot: dtwPlotDensity, dtwPlotTwoWay, dtwPlot

Examples

A noisy sine wave as query
A cosine is for reference; sin and cos are offset by 25 samples

idx<-seq(@,6.28,1en=100);
query<-sin(idx)+runif(100)/10;
reference<-cos(idx)

dtw(query, reference, keep=TRUE)->alignment;

Beware of the reference's y axis, may be confusing
Equivalent to plot(alignment,type="three");
dtwPlotThreeWay(alignment);

Highlight matches of chosen QUERY indices. We will do some index
arithmetics to recover the corresponding indices along the warping
curve

hg <- (0:8)/8
hg <- round(hqg*100) # indices in query for pi/4 .. 7/4 pi

18 dtwPlotTwoWay

hw <- (alignment$index1 %in% hq) # where are they on the w. curve?
hi <- (1:length(alignment$index1))[hw]; # get the indices of TRUE elems

dtwPlotThreeWay(alignment,match.indices=hi);

dtwPlotTwoWay Plotting of dynamic time warp results: pointwise comparison

Description

Display the query and reference time series and their alignment, arranged for visual inspection.

Usage

dtwPlotTwoWay(d, xts = NULL, yts = NULL, offset = @, ts.type = "1",
pch = 21, match.indices = NULL, match.col = "gray70",

match.1lty = 3, xlab = "Index", ylab = "Query value”, ...)
Arguments
d an alignment result, object of class dtw
xts query vector
yts reference vector
offset displacement between the timeseries, summed to reference
ts.type, pch graphical parameters for timeseries plotting, passed to matplot

match.indices indices for which to draw a visual guide
match.col, match.lty
color and line type of the match guide lines

xlab, ylab axis labels

additional arguments, passed to matplot

Details

The two vectors are displayed via the matplot () functions; their appearance can be customized via
the type and pch arguments (constants or vectors of two elements). If of fset is set, the reference
is shifted vertically by the given amount; this will be reflected by the right-hand axis.

Argument match.indices is used to draw a visual guide to matches; if a vector is given, guides
are drawn for the corresponding indices in the warping curve (match lines). If integer, it is used as
the number of guides to be plotted. The corresponding style is customized via the match.col and
match.1lty arguments.

If xts and yts are not supplied, they will be recovered from d, as long as it was created with the
two-argument call of dtw() with keep.internals=TRUE. Only single-variate time series can be
plotted this way.

dtwPlotTwoWay

Warning

19

The function is incompatible with mechanisms for arranging plots on a device: par (mfrow), layout
and split.screen.

Note

When of fset is set values on the left axis only apply to the query.

Author(s)

Toni Giorgino

See Also

dtwPlot () for other dtw plotting functions, matplot() for graphical parameters.
Other plot: dtwPlotDensity, dtwPlotThreeWay, dtwPlot

Examples

#it
#it

A noisy sine wave as query
A cosine is for reference; sin and cos are offset by 25 samples

idx<-seq(0,6.28,1en=100);

query<-sin(idx)+runif(100)/10;

reference<-cos(idx)
dtw(query,reference,step=asymmetricP1,keep=TRUE)->alignment;

#it

Equivalent to plot(alignment,type="two");

dtwPlotTwoWay(alignment);

#it
#it
#it

hq
hq

hw
hi

#it

Highlight matches of chosen QUERY indices. We will do some index
arithmetics to recover the corresponding indices along the warping
curve

<- (0:8)/8
<- round(hqg*100) # indices in query for pi/4 .. 7/4 pi
<- (alignment$index1 %in% hq) # where are they on the w. curve?

<- (1:length(alignment$index1))[hw]; # get the indices of TRUE elems

Beware of the reference's y axis, may be confusing

plot(alignment,offset=-2, type="two", 1lwd=3, match.col="grey50",

match.indices=hi,main="Match lines shown every pi/4 on query");

non

legend("topright”,c("Query"”,"Reference (rt. axis)"), pch=21, col=1:6)

20 dtwWindowingFunctions

dtwWindowingFunctions Global constraints and windowing functions for DTW

Description

Various global constraints (windows) which can be applied to the window. type argument of dtw(),
including the Sakoe-Chiba band, the Itakura parallelogram, and custom functions.

Usage
sakoeChibaWindow(iw, jw, window.size, ...)
slantedBandWindow(iw, jw, query.size, reference.size, window.size, ...)
itakuraWindow(iw, jw, query.size, reference.size, ...)
dtwWindow.plot(fun, query.size = 200, reference.size = 220, ...)
noWindow(iw, jw, ...)

Arguments
iw index in the query (row) — automatically set
jw index in the reference (column) — automatically set
window.size window size, used by some windowing functions — must be set

additional arguments passed to windowing functions

query.size size of the query time series — automatically set

reference.size size of the reference time series — automatically set

fun a windowing function

Details

Windowing functions can be passed to the window. type argument in dtw() to put a global con-
straint to the warping paths allowed. They take two integer arguments (plus optional parameters)
and must return a boolean value TRUE if the coordinates fall within the allowed region for warping
paths, FALSE otherwise.

User-defined functions can read variables reference.size, query.size and window. size; these
are pre-set upon invocation. Some functions require additional parameters which must be set (e.g.
window.size). User-defined functions are free to implement any window shape, as long as at least
one path is allowed between the initial and final alignment points, i.e., they are compatible with the
DTW constraints.

dtwWindowingFunctions 21

The sakoeChibaWindow function implements the Sakoe-Chiba band, i.e. window.size elements
around the main diagonal. If the window size is too small, i.e. if reference.size-query.size >
window.size, warping becomes impossible.

An itakuraWindow global constraint is still provided with this package. See example below for a
demonstration of the difference between a local the two.

The slantedBandWindow (package-specific) is a band centered around the (jagged) line segment
which joins element [1,1] to element [query.size,reference.size]l, and will be window. size
columns wide. In other words, the "diagonal" goes from one corner to the other of the possibly
rectangular cost matrix, therefore having a slope of M/N, not 1.

dtwWindow.plot visualizes a windowing function. By default it plots a 200 x 220 rectangular
region, which can be changed via reference.size and query.size arguments.

Value

Windowing functions return TRUE if the coordinates passed as arguments fall within the chosen
warping window, FALSE otherwise. User-defined functions should do the same.

Note

Although dtwWindow.plot resembles object-oriented notation, there is not a such a dtwWindow
class currently.

A widely held misconception is that the "Itakura parallelogram” (as described in reference 2) is a
global constraint, i.e. a window. To the author’s knowledge, it instead arises from the local slope
restrictions imposed to the warping path, such as the one implemented by the typeIIIc() step
pattern.

Author(s)

Toni Giorgino

References

1. Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recog-
nition, Acoustics, Speech, and Signal Processing, IEEE Transactions on , vol.26, no.1, pp. 43-
49, Feb 1978 URL: http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=1163055

2. Itakura, F., Minimum prediction residual principle applied to speech recognition, Acoustics,
Speech, and Signal Processing, IEEE Transactions on , vol.23, no.1, pp. 67-72, Feb 1975.
URL: http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=1162641

Examples

Display some windowing functions
dtwWindow.plot(itakuraWindow, main="So-called Itakura parallelogram window")
dtwWindow.plot(slantedBandWindow, window.size=2,

reference=13, query=17, main="The slantedBandWindow at window.size=2")

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1162641

22 mvm

Asymmetric step with Sakoe-Chiba band

idx<-seq(0,6.28,1en=100);
query<-sin(idx)+runif(100)/10;
reference<-cos(idx);

asyband<-dtw(query, reference, keep=TRUE,
step=asymmetric,
window. type=sakoeChibaWindow,
window.size=30);

dtwPlot (asyband, type="density"” ,main="Sine/cosine: asymmetric step, S-C window")

mvm Minimum Variance Matching algorithm

Description

Step patterns to compute the Minimum Variance Matching (MVM) correspondence between time
series

Usage

mvmStepPattern(elasticity = 20)

Arguments

elasticity integer: maximum consecutive reference elements skippable

Details

The Minimum Variance Matching algorithm (1) finds the non-contiguous parts of reference which
best match the query, allowing for arbitrarily long "stretches" of reference to be excluded from the
match. All elements of the query have to be matched. First and last elements of the query are
anchored at the boundaries of the reference.

The mvmStepPattern function creates a stepPattern object which implements this behavior, to
be used with the usual dtw() call (see example). MVM is computed as a special case of DTW, with
a very large, asymmetric-like step pattern.

The elasticity argument limits the maximum run length of reference which can be skipped at
once. If no limit is desired, set elasticity to an integer at least as large as the reference (compu-
tation time grows linearly).

Value

A step pattern object.

stepPattern 23

Author(s)

Toni Giorgino

References

Latecki, L. J.; Megalooikonomou, V.; Wang, Q. & Yu, D. An elastic partial shape matching
technique Pattern Recognition, 2007, 40, 3069-3080. http://dx.doi.org/10.1016/j.patcog.
2007 .03.004

See Also

Other objects in stepPattern().

Examples

The hand-checkable example given in Fig. 5, ref. [1] above
diffmx <- matrix(byrow=TRUE, nrow=5, c(
o, 1, 8, 2, 2, 4, 8,

1, o, 7, 1, 1, 3, 17,
-7, -6, 1, -5, -5, -3, 1,
-5, -4, 3, -3, -3, -1, 3,
-7, -6, 1, -5, -5, -3, 1)) ;

Cost matrix
costmx <- diffmx*2;

Compute the alignment
al <- dtw(costmx,step.pattern=mvmStepPattern(10))

Elements 4,5 are skipped
print(al$index2)

plot(al,main="Minimum Variance Matching alignment")

stepPattern Step patterns for DTW

Description

A stepPattern object lists the transitions allowed while searching for the minimum-distance
path. DTW variants are implemented by passing one of the objects described in this page to the
stepPattern argument of the dtw() call.

http://dx.doi.org/10.1016/j.patcog.2007.03.004
http://dx.doi.org/10.1016/j.patcog.2007.03.004

24 stepPattern

Usage

S3 method for class 'stepPattern'
t(x)

S3 method for class 'stepPattern'
plot(x, ...)

S3 method for class 'stepPattern'
print(x, ...)

rabinerJuangStepPattern(type, slope.weighting = "d", smoothed = FALSE)

Arguments
X a step pattern object
additional arguments to print().
type path specification, integer 1..7 (see (Rabiner1993), table 4.5)

slope.weighting
slope weighting rule: character "a"” to "d" (see (Rabiner1993), sec. 4.7.2.5)

smoothed logical, whether to use smoothing (see (Rabiner1993), fig. 4.44)

Details

A step pattern characterizes the matching model and slope constraint specific of a DTW vari-
ant. They also known as local- or slope-constraints, transition types, production or recursion rules
(GiorginoJSS).

Pre-defined step patterns

Well-known step patterns
symmetrici
symmetric2
asymmetric

Step patterns classified according to Rabiner-Juang (Rabiner1993)
rabinerJuangStepPattern(type, slope.weighting="d", smoothed=FALSE)

Slope-constrained step patterns from Sakoe-Chiba (Sakoe1978)
symmetricP@; asymmetricPo

symmetricP@5; asymmetricP@5

symmetricP1; asymmetricP1

symmetricP2; asymmetricP2

Step patterns classified according to Rabiner-Myers (Myers1980)
typela; typelb; typelc; typeld;

typelas; typelbs; typelcs; typelds; # smoothed

typella; typellb; typellc; typelld;

typelllc; typelVc;

stepPattern 25

Miscellaneous
mori20e6;
rigid;

A variety of classification schemes have been proposed for step patterns, including Sakoe-Chiba
(Sakoe1978); Rabiner-Juang (Rabiner1993); and Rabiner-Myers (Myers1980). The dtw package
implements all of the transition types found in those papers, with the exception of Itakura’s and
Velichko-Zagoruyko’s steps, which require subtly different algorithms (this may be rectified in the
future). Itakura recursion is almost, but not quite, equivalent to typeIIIc.

For convenience, we shall review pre-defined step patterns grouped by classification. Note that the
same pattern may be listed under different names. Refer to paper (GiorginoJSS) for full details.

1. Well-known step patterns
Common DTW implementations are based on one of the following transition types.

symmetric2 is the normalizable, symmetric, with no local slope constraints. Since one diagonal
step costs as much as the two equivalent steps along the sides, it can be normalized dividing by N+M
(query+reference lengths). It is widely used and the default.

asymmetric is asymmetric, slope constrained between 0 and 2. Matches each element of the query
time series exactly once, so the warping path index2~index1 is guaranteed to be single-valued.
Normalized by N (length of query).

symmetricl (or White-Neely) is quasi-symmetric, no local constraint, non-normalizable. It is bi-
ased in favor of oblique steps.

2. The Rabiner-Juang set

A comprehensive table of step patterns is proposed in Rabiner-Juang’s book (Rabiner1993), tab. 4.5.
All of them can be constructed through the rabinerJuangStepPattern(type, slope.weighting, smoothed)
function.

The classification foresees seven families, labelled with Roman numerals I-VII; here, they are
selected through the integer argument type. Each family has four slope weighting sub-types,
named in sec. 4.7.2.5 as "Type (a)" to "Type (d)"; they are selected passing a character argument
slope.weighting, as in the table below. Furthermore, each subtype can be either plain or smoothed
(figure 4.44); smoothing is enabled setting the logical argument smoothed. (Not all combinations
of arguments make sense.)

Subtype | Rule | Norm | Unbiased
-------- e Il B
a | min step | - | NO
b | max step | -= NO
c | Di step | N | VYES
d | Di+Dj step | N+M | YES

3. The Sakoe-Chiba set

Sakoe-Chiba (Sakoe1978) discuss a family of slope-constrained patterns; they are implemented
as shown in page 47, table 1. Here, they are called symmetricP<x> and asymmetricP<x>, where
<x> corresponds to Sakoe’s integer slope parameter P. Values available are accordingly: @ (no
constraint), 1, @5 (one half) and 2. See (Sakoe1978) for details.

26 stepPattern

4. The Rabiner-Myers set

The type<XX><y> step patterns follow the older Rabiner-Myers’ classification proposed in (My-
ers1980) and (MRR1980). Note that this is a subset of the Rabiner-Juang set (Rabiner1993), and
the latter should be preferred in order to avoid confusion. <XX> is a Roman numeral specifying
the shape of the transitions; <y> is a letter in the range a-d specifying the weighting used per step,
as above; typelIIx patterns also have a version ending in s, meaning the smoothing is used (which
does not permit skipping points). The typeId, typelIld and typelIlds are unbiased and symmetric.

5. Others

The rigid pattern enforces a fixed unitary slope. It only makes sense in combination with open.begin=TRUE,
open.end=TRUE to find gapless subsequences. It may be seen as the P->inf limiting case in Sakoe’s
classification.

mori2006 is Mori’s asymmetric step-constrained pattern (Mori2006). It is normalized by the matched
reference length.

mvmStepPattern() implements Latecki’s Minimum Variance Matching algorithm, and it is de-
scribed in its own page.

Methods

print.stepPattern prints an user-readable description of the recurrence equation defined by the
given pattern.

plot.stepPattern graphically displays the step patterns productions which can lead to element
(0,0). Weights are shown along the step leading to the corresponding element.

t.stepPattern transposes the productions and normalization hint so that roles of query and refer-
ence become reversed.

Note

Constructing stepPattern objects is tricky and thus undocumented. For a commented example
please see source code for symmetricP1.

Author(s)

Toni Giorgino

References

* (GiorginoJSS) Toni Giorgino. Computing and Visualizing Dynamic Time Warping Alignments
in R: The dtw Package. Journal of Statistical Software, 31(7), 1-24. http://www. jstatsoft.
org/v31/107/

o (Itakural975) Itakura, F., Minimum prediction residual principle applied to speech recog-
nition, Acoustics, Speech, and Signal Processing, IEEE Transactions on , vol.23, no.l1, pp.
67-72, Feb 1975. URL: http://dx.doi.org/10.1109/TASSP.1975.1162641

* (MRR1980) Myers, C.; Rabiner, L. & Rosenberg, A. Performance tradeoffs in dynamic time
warping algorithms for isolated word recognition, IEEE Trans. Acoust., Speech, Signal Pro-
cess., 1980, 28, 623-635. URL: http://dx.doi.org/10.1109/TASSP.1980.1163491

http://www.jstatsoft.org/v31/i07/
http://www.jstatsoft.org/v31/i07/
http://dx.doi.org/10.1109/TASSP.1975.1162641
http://dx.doi.org/10.1109/TASSP.1980.1163491

stepPattern 27

e (Mori2006) Mori, A.; Uchida, S.; Kurazume, R.; Taniguchi, R.; Hasegawa, T. & Sakoe, H.
Early Recognition and Prediction of Gestures Proc. 18th International Conference on Pat-
tern Recognition ICPR 2006, 2006, 3, 560-563. URL: http://dx.doi.org/10.1109/ICPR.
2006.467

* (Myers1980) Myers, Cory S. A Comparative Study Of Several Dynamic Time Warping Al-
gorithms For Speech Recognition, MS and BS thesis, Dept. of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, archived Jun 20 1980, http://
hdl.handle.net/1721.1/27909

* (Rabiner1993) Rabiner, L. R., & Juang, B.-H. (1993). Fundamentals of speech recognition.
Englewood Cliffs, NJ: Prentice Hall.

* (Sakoel978) Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spo-
ken word recognition, Acoustics, Speech, and Signal Processing, IEEE Transactions on ,
vol.26, no.1, pp. 43-49, Feb 1978 URL: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1163055

See Also

mvmStepPattern(), implementing Latecki’s Minimal Variance Matching algorithm.

Examples

HHHHHHHAEH

#H#

The usual (normalizable) symmetric step pattern
Step pattern recursion, defined as:

gli,j] = min(

it gli,j-11 + d[i,jd1 ,

#H gl[i-1,j-11 + 2 % d[i,j] ,
i gli-1,31 + d[i,3]1 ,
#H)

print(symmetric2) # or just "symmetric2”

fizizisizisisiziad
#H#
The well-known plotting style for step patterns

plot(symmetricP2,main="Sakoe's Symmetric P=2 recursion"”)

HHEHEHHHEE
##
Same example seen in ?dtw , now with asymmetric step pattern

idx<-seq(0,6.28,1en=100);
query<-sin(idx)+runif(100)/10;

http://dx.doi.org/10.1109/ICPR.2006.467
http://dx.doi.org/10.1109/ICPR.2006.467
http://hdl.handle.net/1721.1/27909
http://hdl.handle.net/1721.1/27909
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

28 warp

reference<-cos(idx);

Do the computation
asy<-dtw(query,reference, keep=TRUE, step=asymmetric);

dtwPlot(asy, type="density"”,main="Sine and cosine, asymmetric step”)

HHHHHHHEH

##

Hand-checkable example given in [Myers1980] p 61
#H#

“tmt <~
structure(c(1, 3, 4, 4, 5, 2, 2, 3, 3, 4, 3,1, 1,1, 3, 4, 2,
3! 3; 2; 5; 3; 4; 4; 1), .Dim = C(SL, SL))

warp Apply a warping to a given timeseries

Description
Returns the indexing required to apply the optimal warping curve to a given timeseries (warps either
into a query or into a reference).

Usage

warp(d, index.reference = FALSE)

Arguments

d dtw object specifying the warping curve to apply
index.reference
TRUE to warp a reference, FALSE to warp a query

Details

The warping is returned as a set of indices, which can be used to subscript the timeseries to be
warped (or rows in a matrix, if one wants to warp a multivariate time series). In other words, warp
converts the warping curve, or its inverse, into a function in the explicit form.

Multiple indices that would be mapped to a single point are averaged, with a warning. Gaps in the
index sequence are filled by linear interpolation.

Value

A list of indices to subscript the timeseries.

warp 29

Author(s)

Toni Giorgino

See Also

Examples in dtw() show how to graphically apply the warping via parametric plots.

Examples

idx<-seq(0,6.28,1en=100);
query<-sin(idx)+runif(100)/10;
reference<-cos(idx)

alignment<-dtw(query,reference);

wg<-warp(alignment,index.reference=FALSE);
wt<-warp(alignment,index.reference=TRUE);

old.par <- par(no.readonly = TRUE);
par(mfrow=c(2,1));

plot(reference,main="Warping query");
lines(query[wql,col="blue");

plot(query, type="1",col="blue",
main="Warping reference”);
points(referencel[wt]);

par(old.par);

HHHHHHEHEEE

##

Asymmetric step makes it "natural” to warp
the reference, because every query index has
exactly one image (gq->t is a function)

##

alignment<-dtw(query,reference,step=asymmetric)
wt<-warp(alignment, index.reference=TRUE);

plot(query,type="1",col="blue",
main="Warping reference, asymmetric step"”);
points(referencel[wt]);

30 warpArea

warpArea Compute Warping Path Area

Description

Compute the area between the warping function and the diagonal (no-warping) path, in unit steps.

Usage
warpArea(d)

Arguments

d an object of class dtw

Details

Above- and below- diagonal unit areas all count plus one (they do not cancel with each other).
The "diagonal" goes from one corner to the other of the possibly rectangular cost matrix, therefore
having a slope of M/N, not 1, as in slantedBandWindow().

The computation is approximate: points having multiple correspondences are averaged, and points
without a match are interpolated. Therefore, the area can be fractionary.

Value

The area, not normalized by path length or else.

Note

There could be alternative definitions to the area, including considering the envelope of the path.

Author(s)

Toni Giorgino
Examples

ds<-dtw(1:4,1:8);

plot(ds);lines(seq(1,8,len=4),col="red");

warpArea(ds)
Result: 6
index 2 is 2 while diag is 3.3 (+1.3)
3 3 5.7 (+2.7)
#it 4 4:8 (avg to 6) 8 +2)

o e

warpArea

#it

31

Index

+Topic datasets
aami, 3
+Topic hplot
dtwPlot, 13
dtwPlotThreeWay, 16
dtwPlotTwoWay, 18
+Topic package
dtw-package, 2
*Topic ts
countPaths, 5
dtw, 6
dtw-package, 2
dtwDist, 11
dtwPlot, 13
dtwWindowingFunctions, 20
mvm, 22
stepPattern, 23
warp, 28
warpArea, 30

aami, 3

aami3a (aami), 3

aami3b (aami), 3

analogue: :distance(), 3,9, 12
asymmetric (stepPattern), 23
asymmetricPo (stepPattern), 23
asymmetricPo5 (stepPattern), 23
asymmetricP05(), 8
asymmetricP1 (stepPattern), 23
asymmetricP2 (stepPattern), 23

countPaths, 5

dist(), 11, 12

dtw, 6

dtw(), 2, 3,11,13,17, 18, 20, 22, 23,29
dtw-package, 2

dtwDist, 11

dtwDist(), 9

dtwPlot, 13, 15, 17, 19

32

dtwPlot(), 19
dtwPlotAlignment (dtwPlot), 13
dtwPlotDensity, 14, 15,17, 19
dtwPlotDensity(), 14
dtwPlotThreeWay, 14, 15, 16, 19
dtwPlotThreeWay(), /4
dtwPlotTwoWay, /4, 15,17, 18
dtwPlotTwoWay (), 14
dtwWindow.plot (dtwWindowingFunctions),
20
dtwWindowingFunctions, 20
dtwWindowingFunctions(), 2, 3,7, 9

is.dtw (dtw), 6
is.stepPattern (stepPattern), 23

itakuraWindow (dtwWindowingFunctions),
20

matplot(), I8, 19
mori2@06 (stepPattern), 23
mvm, 22
mvmStepPattern (mvm), 22
mvmStepPattern(), 26, 27

noWindow (dtwWindowingFunctions), 20
outer(), 3,9

plot.dtw (dtwPlot), 13

plot.dtw(), 9

plot.stepPattern (stepPattern), 23
print(), 24

print.dtw (dtw), 6
print.stepPattern (stepPattern), 23
proxy::dist(),2,6,7,9,11

rabinerJuangStepPattern (stepPattern),
23
rigid (stepPattern), 23

sakoeChibaWindow
(dtwWindowingFunctions), 20

INDEX

slantedBandWindow
(dtwWindowingFunctions), 20
slantedBandWindow(), 30
stepPattern, 23
stepPattern(), 2, 3,6, 7,9, 15,23
symmetricl (stepPattern), 23
symmetric2 (stepPattern), 23
symmetricP@ (stepPattern), 23
symmetricP@5 (stepPattern), 23
symmetricP1 (stepPattern), 23
symmetricP2 (stepPattern), 23

t.stepPattern (stepPattern), 23
typela (stepPattern), 23
typelas (stepPattern), 23
typelb (stepPattern), 23
typelbs (stepPattern), 23
typelc (stepPattern), 23
typelcs (stepPattern), 23
typeld (stepPattern), 23
typelds (stepPattern), 23
typella (stepPattern), 23
typellb (stepPattern), 23
typellc (stepPattern), 23
typelld (stepPattern), 23
typelllc (stepPattern), 23
typelllc(), 21

typeIVc (stepPattern), 23

vegan: :vegdist(), 12

warp, 28
warpArea, 30

	dtw-package
	aami
	countPaths
	dtw
	dtwDist
	dtwPlot
	dtwPlotDensity
	dtwPlotThreeWay
	dtwPlotTwoWay
	dtwWindowingFunctions
	mvm
	stepPattern
	warp
	warpArea
	Index

