Package ‘dse’

February 26, 2020
Version 2020.2-1

Title Dynamic Systems Estimation (Time Series Package)

Description Tools for multivariate, linear, time-invariant,
time series models. This includes ARMA and state-space representations,
and methods for converting between them. It also includes simulation
methods and several estimation functions. The package has functions
for looking at model roots, stability, and forecasts at different
horizons. The ARMA model representation is general, so that VAR, VARX,
ARIMA, ARMAX, ARIMAX can all be considered to be special cases. Kalman
filter and smoother estimates can be obtained from the state space
model, and state-space model reduction techniques are implemented.
An introduction and User's Guide is available in a vignette.

Depends R (>=2.5.0), tfplot

Imports tframe (>= 2007.5-3), stats, utils, graphics, grDevices,
setRNG (>= 2004.4-1)

LazyLoad yes
License GPL-2

Copyright 1993-1996,1998-2011 Bank of Canada. 1997,2012-2014 Paul
Gilbert

Author Paul Gilbert <pgilbert.ttv9z@ncf.ca>
Maintainer Paul Gilbert <pgilbert.ttv9z@ncf.ca>

URL http://tsanalysis.r-forge.r-project.org/
NeedsCompilation yes

Repository CRAN

Date/Publication 2020-02-26 07:10:02 UTC

R topics documented:

dse-package e e
00.dsedIntro e e
addPIotROOtS e

http://tsanalysis.r-forge.r-project.org/

R topics documented:

ARMA . e e e e e 7
balanceMittnik L e 9
bestTSestModel e 10
checkBalance e e e 11
checkBalanceMittnik 12
checkConsistentDimensions e 13
checkResiduals e e 14
coef.TSmodel e e 15
CombINe e e e e 16
combine.forecastCov e 17
combine.TSdata e 18
DSEflags e e 18
DSEversion e e e 19
egl.DSE.data 19
eglofF.1dec93.data 20
estBlackBox 21
estBlackBox1 e 22
estBlackBox2 e e e 23
estBlackBox3 e e e 24
estBlackBox4 e 25
estimateModels e e e 27
estimatorsHorizonForecastsWRTdata 28
estMaxLik e 29
estSSfromVARX e 30
estSSMittnik L e e e 31
estVARXar e e e 32
estVARXIs e e 34
estWtVariables e e 35
excludeForecastCov e 36
extractforecastCov e e 37
featherForecasts 38
fixConstants e e e e e e e e e e e e e 39
AXF . e e e 40
forecast e 41
forecastCov e e e e 42
forecastCovEstimatorsWRTdata 44
forecastCovEstimatorsWRTtrue 45
forecastCovReductionsWRTtrue 46
forecastCovWRTtrue e e 47
forecasts e e e 49
SMAP .+ o e e e e e e e e e e e e e e e e 50
horizonForecasts e e e 50
horizonForecastsCompiled 52
informationTests 53
informationTestsCalculations 54
inputData e e e e e 55
is.forecastCovEstimatorsWRTdata.subsets 56

R topics documented: 3

LARMA . . . e 57
LSS e 59
markovParms Lo 61
McMillanDegree e 62
minForecastCov 63
minimumStartupLag Lo 64
MittnikReducedModels 65
MittnikReduction 65
nseries.featherForecasts L 67
nserieslnput 68
DSTALES . . . ¢ v oo e e e e e e e e e e 69
observability e 69
outOfSample.forecastCovEstimatorsWRTdata 70
percentChange. TSdata 71
PEIMULE o e e e e e e e e e e e e e 72
phasePlots L 73
PlOtroots 74
Polynomials L e 75
Portmanteau 76
print.forecastCov L 76
print. TSdata L 77
print. TSestModel e e 77
reachability 78
residualStatso oL 79
Riccati o 80
TOOES © © o o i e e e e e e e e e e e e e 81
roots.estimatedModelso 82
scaleTSdata 83
selectForecastCov L e 85
seriesNames. TSdata L 86
seriesNamesInput 87
seriesNamesInput.forecast e 88
shockDecomposition L e 88
simulate 89
SmMoother L e e 92
S e e 93
stability e 95
SEALE 96
SHPMINE e e e e e 97
summary.forecastCov e 99
summary. TSdata 100
SUMSEITOT .+ . v v v vt o e 101
testEqual,ARMA 102
testEqual.forecast 102
tfplot.forecast L 103
tiplot.forecastCov e 104
tiplot. TSdata 106

tframed. TSdata e 107

4 dse-package
tOARMA . . e e 108
Tobs. TSdata e e 109
TobsInput 109
0SS . e 111
toSSChol e 112
tOSSINNOV e e e 113
toSSOform e e e 114
totalForecastCov e e 115
TSdata e 116
TSdata.forecastCov e e 117
TSdata.object 118
TSestModel e 118
TSmodel e e e e 119
Index 121
dse-package Dynamic Systems Estimation - Multivariate Time Series Package
Description
Functions for time series modeling, including multi-variate state-space and ARMA (VAR, ARIMA,
ARIMAX) models.
Details

A Brief User’s Guide is distributed with dse as a vignette. The package implements an R/S style
object approach to time series modeling. This means that different model and data representations
can be implemented with fairly simple extensions to the package.

The package includes methods for simulating, estimating, and converting among different model
representations. These are mainly in dse. Package EvalEst has methods for studying estimation
techniques and for examining the forecasting properties of models. There are also functions for
forecasting and for evaluating the performance of forecasting models, as well as functions for eval-
uating model estimation techniques.

Package: dse

Depends: R, setRNG, tframe

License: free, see LICENSE file for details.
URL: http://tsanalysis.r-forge.r-project.org/

The main objects are:

TSdata time series input and output data structure

TSmodel a DSE model structure

TSestModel model, data and some estimation information

The main general methods are:

dse-package 5

TSdata create, extract a DSE data structure
TSmodel create, extract a DSE model structure
simulate simulate a model to produce artifical data
toSS convert to a state-space model

toARMA convert to an ARMA model

ARMA construct an ARMA model

SS construct a state-space model

1 evaluate a model with data

smoother calculate the smoothed state estimate
The main estimation methods are:

estVARXIs estimate an ARMA model with least squares

estVARXar estimate an ARMA model with ar

estSSfromVARX calculate a state-space model from an estimated VAR model
bft a (usually) good “black-box” estimated model

estMaxLik estimate a model using maximum likelihood
The main diagnositic methods are:

checkResiduals autocorrelation diagnostics

informationTests calculate several information tests for a model
McMillanDegree calculate the McMillanDegree of a model
stability calculate the stability of a model

roots calculate the roots of a model
The methods for producing and evaluating forecasts are:

1 evaluate a model with data (and simple forecasts)

forecast calculate forecasts

featherForecasts calculate forecasts starting at different periods
horizonForecasts calculate forecasts at different horizons
forecastCov calculate the covariance of forecasts

MonteCarloSimulations multiple simulations
The methods for evaluating estimation methods are:
EstEval evaluate estimation methods

The functions described in the Brief User’s Guide and examples in the help pages should work fairly
reliably (since they are tested regularly), however, the code is distributed on an “as-is” basis. This is
a compromise which allows me to make the software available with minimum effort. This software
is not a commercial product. It is the by-product of ongoing research. Error reports, constructive
suggestions, and comments are welcomed.

6 addPlotRoots

Usage

library("dse")
library("EvalEst")

References

Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. Prentice-Hall.

Gilbert, P. D. (1993) State space and ARMA models: An overview of the equivalence. Working pa-
per 93-4, Bank of Canada. Available athttp://www.bankofcanada.ca/1993/03/publications/
research/working-paper-199/

Gilbert, P. D. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions. J. of Forecasting: Special Issue on VAR Modelling. 14:229-250.

Gilbert, P.D. (2000) A note on the computation of time series model roots. Applied Economics
Letters, T, 423-424

Jazwinski, A. H. (1970) Stochastic Processes and Filtering Theory. Academic Press.

See Also

TSdata, TSmodel, TSestModel.object

00.dse.Intro Dynamic Systems Estimation - Multivariate Time Series Package

Description

Functions for multivariate time series modeling

Details

See dse-package (in the help system use package?dse or ?"dse-package") for an overview.

addPlotRoots Add Model Roots to a plot

Description

Calculate and plot roots of a model.

Usage

addPlotRoots(v, pch='x' 6 fuzz=0)

http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/
http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/

ARMA 7

Arguments

v An object containing a TSmodel.

pch Character to use for plotting.

fuzz If non-zero then roots within fuzz distance are considered equal.
Value

The eigenvalues of the state transition matrix or the inverse of the roots of the determinant of the
AR polynomial are returned invisibly.
Side Effects

The roots are addeded to an existing plot.

See Also

plot.roots

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
plot(roots(model))

addPlotRoots (toSS(model))

ARMA ARMA Model Constructor

Description

Constructs an ARMA TSmodel object as used by the DSE package.

Usage
ARMA(A=NULL, B=NULL, C=NULL, TREND=NULL,
constants=NULL,
description=NULL, names=NULL, input.names=NULL, output.names=NULL)
is.ARMA(obj)
Arguments
A The auto-regressive polynomial, an axpxp array.
B The moving-average polynomial, an bxpxp array.
C The input polynomial, an cxpxm array. C should be NULL if there is no input

TREND A matrix, p-vector, or NULL.

8 ARMA

constants NULL or a list of logical arrays with the same names as arrays above, indicating
which elements should be considered constants.

description An arbitrary string.

names A list with elements input and output, each a vector of strings. Arguments in-

put.names and output.names should not be used if argument names is used.
input.names A vector of strings.
output.names A vector of strings.

obj Any object.

Details

The ARMA model is defined by:
AL)y(t) = B(L)w(t) + C(L)u(t) + TREND(t)

where

A (axpxp) is the auto-regressive polynomial array.

B (bxpxp) is the moving-average polynomial array.

C (cxpxm) is the input polynomial array. C should be NULL if there is no input
y is the p dimensional output data.

u is the m dimensional control (input) data.

TREND is a matrix the same dimension as y, a p-vector (which gets replicated for each time
period), or NULL.

This is sometime called a vector ARMA (VARMA) model, but the univariate case is also handled
by this structure. VAR models are a special case where B(L) = I. ARIMA models are also special
cases where the polynomial arrays have unit roots, but these are not distinguished in a separate term
as is sometimes done in other programs.

The name of last term, TREND, is misleading. If it is NULL it is treated as zero. If it is a p-vector,
then this constant vector is added to the the p-vector y(t) at each period. For a stable model this
would give the none zero mean, and might more appropriately be called the constant or intercept
rather than trend. If the model is for differenced data, then this mean is the trend of the undifferenced
model. The more general case is when TREND is a time series matrix of the same dimension as y.
In this case it is added to y. This allows for a very general deterministic component, which may or
may not be a traditional trend.

By default, elements in parameter arrays are treated as constants if they are exactly 1.0 or 0.0, and
as parameters otherwise. A value of 1.001 would be treated as a parameter, and this is the easiest
way to initialize an element which is not to be treated as a constant of value 1.0. Any array elements
can be fixed to constants by specifying the list constants. Arrays which are not specified in the list
will be treated in the default way. An alternative for fixing constants is the function fixConstants.

The function ARMA sets up a model but does not estimate it. See estVARX1s for one possibility for
estimating VAR models and estMaxLik for one possibility for estimating ARMA models.

Value

An ARMA TSmodel

balanceMittnik 9

See Also

TSmodel, simulate.ARMA, fixConstants estVARX1ls estMaxLik

Examples

mod1 <- ARMA(A=array(c(1,-.25,-.05), c(3,1,1)), B=array(1,c(1,1,1)))
AR <- array(c(1, .5, .3, 0, .2, .1, @, .2, .05, 1, .5, .3) ,c(3,2,2))
VAR <- ARMA(A=AR, B=diag(1,2))

C <- array(c(0.5,0,0,0.2),c(1,2,2))

VARX <- ARMA(A=AR, B=diag(1,2), C=C)

MA <- array(c(1, .2, @, .1, @, 9, 1, .3), c(2,2,2))

ARMA <- ARMA(A=AR, B=MA, C=NULL)

ARMAX <- ARMA(A=AR, B=MA, C=C)

balanceMittnik Balance a state space model

Description

Balance a state space model a la Mittnik.

Usage
balanceMittnik(model, n=NULL)
SVDbalanceMittnik(M, m, n=NULL)
Arguments
model An TSmodel object.
M a matrix. See details in MittnikReduction.
m an integer indicating the number of input series in the model.
n see details
Details

balanceMittnik calculate a state space model balance a la Mittnik. n is intended primarily for
producing a state space model from the markov parameters of an ARMA model, but if it is supplied
with an SS model the result will be a model with state dimension n based on the n largest singular
values of the svd of a Hankel matrix of markov parameters generated by the original model. If n is
not supplied then the singular values are printed and the program prompts for n. balanceMittnik
calls SVDbalanceMittnik

SVDbalanceMittnik calculates a nested-balanced state space model by svd a la Mittnik. If state
dim n is supplied then svd criteria are not calculated and the given n is used. Otherwise, the singular
values are printed and the program prompts for n. M is a matrix with p x (m+p) blocks giving the
markov parameters, that is, the first row of the Hankel matrix. It can be generated from the model as
in the function markovParms, or from the data, as in the function estSSMittnik. m is the dimension
of input series, which is needed to decompose M. The output dimension p is taken from nrow(M).

See also MittnikReduction and references.

10 bestTSestModel

Value

A state space model in a TSestModel object.

References

See references for MittnikReduction.

See Also

estVARXls, estVARXar MittnikReduction

Examples

data("egl1.DSE.data.diff", package="dse")

model <- toSS(TSmodel(estVARX1ls(egl.DSE.data.diff)))

this prints information about singular values and prompts with
#Enter the number of singular values to use for balanced model:
newmodel <-balanceMittnik(model)

18 might be a good choice in this example.

newmodel <-balanceMittnik(model, n=18)

bestTSestModel Select Best Model

Description

Select the best model.

Usage

bestTSestModel (models, sample.start=10, sample.end=NULL,
criterion='aic', verbose=TRUE)

Arguments

models a list of TSestModels.

sample.start the starting point to use for calculating information criteria.

sample.end the end point to use for calculating information criteria.

criterion Criterion to be used for model selection. see informationTestsCalculations.
’taic’ would be a better default but this is not available for VAR and ARMA
models.

verbose if TRUE then additional information is printed.

checkBalance

Details

Information criteria are calculated and return the best model from ... according to criterion mod-
els should be a list of TSestModel’s. models[[i]]$estimates$pred is not recalculated but a sub-
sample identified by sample.start and sample.end is used and the likelihood is recalculated. If
sample.end=NULL data is used to the end of the sample. taic might be a better default selection

criteria but it is not available for ARMA models.

Value

A TSestModel

See Also

estBlackBox1, estBlackBox2 estBlackBox3 estBlackBox4 informationTestsCalculations

Examples

data("egl.DSE.data.diff"”, package="dse")

models <- list(estVARX1ls(egl.DSE.data.diff), estVARXar(egl.DSE.data.diff))

z <- bestTSestModel(models)

checkBalance Check Balance of a TSmodel

Description

Calculate the difference between observability and reachability gramians.

Usage

checkBalance(model)

S3 method for class 'SS'
checkBalance(model)

S3 method for class 'ARMA'
checkBalance(model)

S3 method for class 'TSestModel'
checkBalance(model)

Arguments

model A TSmodel object.

Details

Balanced models should have equal observability and reachability gramians.

12 checkBalanceMittnik

Value

No value is returned.

Side Effects

Differences between the observability and reachability gramians are printed.

See Also

checkBalanceMittnik MittnikReduction

Examples

data("egl1.DSE.data.diff", package="dse")
model <- toSS(estVARXls(egl.DSE.data.diff))
checkBalance(model)

checkBalanceMittnik Check Balance of a TSmodel

Description

Calculate the difference between observability and reachability gramians of the model transformed
to Mittnik’s form.

Usage

checkBalanceMittnik(model)

S3 method for class 'ARMA'
checkBalanceMittnik(model)

S3 method for class 'SS'
checkBalanceMittnik(model)

S3 method for class 'TSestModel'
checkBalanceMittnik(model)

Arguments

model An object of class TSmodel.

Details

Balanced models should have equal observability and reachability gramians.

Value

No value is returned.

checkConsistentDimensions 13

Side Effects

Differences between the observability and reachability gramians are printed.

See Also

checkBalance MittnikReduction

Examples

data("egl1.DSE.data.diff", package="dse")
model <- toSS(estVARXls(egl.DSE.data.diff))
checkBalanceMittnik(model)

checkConsistentDimensions
Check Consistent Dimensions

Description

Check that dimensions of a model and data agree.

Usage

checkConsistentDimensions(obj1, obj2=NULL)
Default S3 method:
checkConsistentDimensions(obj1, obj2=NULL)
S3 method for class 'ARMA'
checkConsistentDimensions(obj1, obj2=NULL)
S3 method for class 'SS'
checkConsistentDimensions(obj1, obj2=NULL)
S3 method for class 'TSdata'
checkConsistentDimensions(obj1, obj2=NULL)
S3 method for class 'TSestModel'
checkConsistentDimensions(obj1, obj2=NULL)

Arguments
obj1 An object containing a TSmodel, TSdata, or TSestModel, depending on the
method
obj2 Another object containing TSdata corresponding to the TSmodel in objl, or a
TSmodel corresponding to the TSdata in obj1.
Details

Check that dimensions of a model and data agree. If obj1 is a TSestModel then if obj2 is
NULL, TSdata is taken from obj1.

14 checkResiduals

Value
logical

Examples
data(”egl1.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
checkConsistentDimensions(model)

checkResiduals Autocorrelations Diagnostics
Description

Calculate autocorrelation diagnostics of a time series matrix or TSdata or residuals of a TSestModel

Usage

checkResiduals(obj, ...)
Default S3 method:
checkResiduals(obj, ac=TRUE, pac=TRUE, select=seq(nseries(obj)),

drop=NULL, plot.=TRUE, graphs.per.page=5, verbose=FALSE, ...)
S3 method for class 'TSdata’
checkResiduals(obj, ...)
S3 method for class 'TSestModel'
checkResiduals(obj, ...)
Arguments
obj An TSestModel or TSdata object.
ac If TRUE the auto-correlation function is plotted.
pac If TRUE the partial auto-correlation function is plotted.
select Is used to indicate a subset of the residual series. By default all residuals are
used.
drop Is used to indicate a subset of the residual time periods to drop. All residuals are
used with the default (NULL).Typically this can be used to get rid of bad initial
conditions (eg. drop=seq(10)) or outliers.
plot. If FALSE then plots are not produced.

graphs.per.page
Integer indicating number of graphs to place on a page.

verbose If TRUE then the auto-correlations and partial auto-correlations are printed if
they are calculated.

arguments passed to other methods.

coef. TSmodel 15

Details

This is a generic function. The default method works for a time series matrix which is treated as
if it were a matrix of residuals. However, in a Box-Jenkins type of analysis the matrix may be
data which is being evaluated to determine a model. The method for a TSestModel evaluates the
residuals calculated by subtracting the output data from the model predictions.

Value
A list with residual diagnostic information: residuals, mean, cov, acf= autocorrelations, pacf= par-
tial autocorrelations.

Side Effects
Diagnostic information is printed and plotted if a device is available. Output graphics can be paused
between pages by setting par(ask=TRUE).

See Also

informationTests, Portmanteau

Examples

data("egl1.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
checkResiduals(model)

coef.TSmodel Extract or set Model Parameters

Description

Set or extract coefficients (parameter values) of model objects.

Usage
S3 method for class 'TSmodel'
coef(object, ...)
S3 method for class 'TSestModel'
coef(object, ...)

coef(object) <- value
Default S3 replacement method:
coef(object) <- value

Arguments
object An object of class TSmodel or TSestModel.
value value to be assigned to object.

(further arguments, currently disregarded).

16 combine

Value

A vector of parameter values.

Examples

data("egl.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
coef (model)

coef(model) <- 0.1 + coef(model)

combine Combine two objects.

Description
This is a generic method to combine two objects of the same class to make a single object of that
class.

Usage

combine(el, e2)
Default S3 method:
combine(el, e2)

Arguments

el, e2 TSdata objects.

Value

An object of the same class as the argument but containing both el and e2.

See Also

tbind, combine.TSdata, combine.forecastCov

Examples

data("egl.DSE.data.diff"”, package="dse")
data("egl.DSE.data", package="dse")
new.data.set <- combine(egl.DSE.data.diff, egl.DSE.data)

combine.forecastCov 17

combine. forecastCov Combine 2 Forecast Cov Objects

Description

Combine 2 forecastCov type objects.

Usage

S3 method for class 'forecastCov'
combine(el, e2)

S3 method for class 'forecastCovEstimatorsWRTdata'
combine(el, e2)

S3 method for class 'forecastCovEstimatorsWRTtrue'
combine(el, e2)

Arguments

el, e2 Objects as returned by functions which calculate forecast covariances.

Details
Functions which calculate forecast covariances return lists. Usually multiple estimation techniques

or models will be combined together when the object is first formed. However, it is sometimes
useful to add results calculated later without re-doing the initial object.

Value

An object as returned by functions which calculate forecast covariances.

See Also

combine, forecastCovEstimatorsWRTdata, forecastCovEstimatorsWRTtrue forecastCov

Examples

#z <- combine(obj1, obj2)

18 DSEflags

combine.TSdata Combine series from two TSdata objects.

Description

Combine series from two TSdata objects.

Usage

S3 method for class 'TSdata'
combine(el, e2)

Arguments

el, e2 TSdata objects.

Value

An object of class TSdata which includes series from both el and e2.

See Also
tbind

Examples

data("egl.DSE.data.diff"”, package="dse")
data("egl.DSE.data"”, package="dse")
new.data.set <- combine(egl.DSE.data.diff, egl.DSE.data)

DSEflags Flags to Indicate Use of Compiled Code

Description

Determines if compiled code should be used or not.

Usage
.DSEflags(new)

Arguments

new A list which must have elements COMPILED and DUP.

DSEversion 19

Details

Setting flags with this function is primarily for debugging. It should not normally be needed by
users. If called with no arguments, .DSEflags() returns the current setting. Several dse functions
which call compiled fortran or C code will use the equivalent S/R version if the . DSEflags () $COMPILED
returns FALSE.

Side Effects

The flag setting affects whether compiled fortran or C code is called.

Examples

.DSEflags(list (COMPILED=TRUE))

.DSEflags () $COMPILED
DSEversion Print Version Information
Description

Print version information.

Usage

DSEversion()

Examples

DSEversion()

egl1.DSE.data Four Time Series used in Gilbert (1993)

Description
Data is for Canada. The series start in March 1961 (April 1961 for eg1.DSE.data.diff) and end
in June 1991, giving 364 observations on each variable (363 for eg1.DSE.data.diff).
The input series is 90-day interest rates (R90) in both eg1.DSE.data and eg1.DSE.data.diff.

The output series are M1, GDP lagged two months, and CPI. M1, GDP and CPI were all season-
ally adjusted data. These are not transformed in eg1.DSE.data and are first difference of logs in
egl.DSE.data.diff.

GDP is lagged because it is not available on as timely a basis. (The data was used in an example
where the intent was to build a model for timely monitoring.)

The Statistics Canada series identifiers are B14017, B1627, 137026, and B820200.
The data for M1 (B1627) were taken prior to revisions made in December 1993.
The file eg1.dat contains the same data as eg1.DSE.data in a simple ASCII file.

20 egJofF.1dec93.data

Usage

data(egl.DSE.data)
data(egl.DSE.data.diff)

Format

The objects eg1.DSE.data and eg1.DSE.data.diff are TSdata objects. The file egl.dat is an
ASCII file with 5 columns, the first enumerating the observations, the second giving the input series,
and the third to fifth giving the output series. The input series name is "R90" and the output series
names are "M1", "GDPI2" and "CPI". GDPI2 is GDP lagged two months

Source

Statistics Canada, Bank of Canada.

References

Gilbert, PD. (1993) State Space and ARMA Models: An Overview of the Equivalence. Bank of
Canada Working Paper 93-4. Available at http: //www.bankofcanada.ca/1993/03/publications/
research/working-paper-199/.

See Also

TSdata

egJofF.1dec93.data Eleven Time Series used in Gilbert (1995)

Description
Data is for Canada unless otherwise indicated. The series start in February 1974 and end in Septem-
ber 1993 (236 observations on each variable).

The input series is 90 day interest rates (R90) and the ten output variables are CPI, GDP, M1,
long run interest rates (RL), the Toronto stock exchange 300 index (TSE300), employment, the
Canada/US exchange rate (PFX), a commodity price index in US dollars, US industrial production,
and US CPL

R90, RL and TSE are differenced. All other variables are in terms of percent change.

R90 is the 3 month prime corporate paper rate. While it is not set directly by the Bank of Canada,
Bank policy influences it directly and it is often thought of as a proxy "policy variable."

The Statistics Canada identifiers are B14017 (R90), P484549 (CPI), 137026 (GDP), B1627 (M1),
B14013 (RL), B4237 (TSE300), D767608 (employment), B3400 (PFX).

M.BCPI (commodity price index) is published by the Bank of Canada. JQIND (US industrial
production), and CUSAO (US CPI) are DRI identifiers.

The data for M1 (B1627) were taken prior to revisions made in December 1993.

http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/
http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/

estBlackBox 21

Usage

data(egJofF.1dec93.data)

Format

This data is a TSdata object. The input series name is "R90" and the output series names are "CPI",
"GDP", "M1", "RL", "TSE300", "employment", "PFX", "commod.price index", "US ind.prod." and
"US CPI"

Source

Statistics Canada, Bank of Canada, DRI.

References

Gilbert, P.D. 1995 "Combining VAR Estimation and State Space Model Reduction for Simple Good
Predictions" J. of Forecasting: Special Issue on VAR Modelling. 14:229-250

See Also

TSdata

estBlackBox Estimate a TSmodel

Description

Estimate a TSmodel.

Usage
estBlackBox(data,...)
Arguments
data Data in an object of class TSdata.
Optional arguments depent on the function which is eventually called.
Details

The function makes a call to estBlackBox4, also called bft, which seems the most reliable of
functions estBlackBox1, estBlackBox2, estBlackBox4. My research in this area is no longer
active, but the actual routine called could change if better methods appear.

To reduce load on the CRAN check servers, the example below uses max.lag=3 rather than the
default 12 used in Gilbert (1995).

22 estBlackBox1

Value

A state space model in an object of class TSestModel.

References

Gilbert, P. D. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions. J. of Forecasting: Special Issue on VAR Modelling, 14, 229-250.

Examples

data("egJofF.1dec93.data”, package="dse")
goodmodel <- estBlackBox(egJofF.1dec93.data, max.lag=3)

estBlackBox1 Estimate a TSmodel

Description

Estimate a TSmodel.

Usage

estBlackBox1(data, estimation="estVARX1ls",
reduction="MittnikReduction”,
criterion="taic", trend=FALSE, subtract.means=FALSE,
verbose=TRUE, max.lag=6)

Arguments
data Data in an object of class TSdata.
estimation Initial estimation method to be used.
reduction Reduction method to be used.
criterion Criterion to be used for model selection. see informationTestsCalculations.
trend logical indicating if a trend should be estimated.

subtract.means logical indicating if the mean should be subtracted from data before estimation.

verbose logical indicating if information should be printed during estimation.
max.lag integer indicating the maximum number of lags to consider.
Value

A state space model in an object of class TSestModel.

Side Effects

If verbose is TRUE then estimation information is printed and checkResiduals is run, which gives
plots of information about the residuals.

estBlackBox2 23

See Also

informationTestsCalculations

Examples

data("egJofF.1dec93.data”, package="dse")
goodmodel <- estBlackBox1(egJofF.1dec93.data)

estBlackBox2 Estimate a TSmodel

Description

Estimate a TSmodel.

Usage
estBlackBox2(data, estimation='estVARXls',
lag.weight=.9,
reduction='MittnikReduction',
criterion="'taic',
trend=FALSE,
subtract.means=FALSE, re.add.means=TRUE,
standardize=FALSE, verbose=TRUE, max.lag=12)
Arguments
data a TSdata object.
estimation a character string indicating the estimation method to use.
lag.weight weighting to apply to lagged observations.
reduction character string indicating reduction procedure to use.
criterion criterion to be used for model selection. see informationTestsCalculations.
trend if TRUE include a trend in the model.

subtract.means if TRUE the mean is subtracted from the data before estimation.

re.add.means if subtract.means is TRUE then if re.add.means is TRUE the estimated model is
converted back to a model for data without the mean subtracted.

standardize if TRUE the data is transformed so that all variables have the same variance.
verbose if TRUE then additional information from the estimation and reduction proce-
dures is printed.
max.lag The number of lags to include in the VAR estimation.
Details

A model is estimated and then a reduction procedure applied. The default estimation procedure is
least squares estimation of a VAR model with lagged values weighted. This procedure is discussed
in Gilbert (1995).

24 estBlackBox3

Value

A TSestModel.

References
Gilbert, PD. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions J. of Forecasting: Special Issue on VAR Modelling, 14, 229-250.

See Also

estBlackBox1, estBlackBox3 estBlackBox4 informationTestsCalculations

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- estBlackBox2(egl.DSE.data.diff)

estBlackBox3 Estimate a TSmodel

Description

Estimate a TSmodel.

Usage
estBlackBox3(data, estimation='estVARXls',
lag.weight=1.0,
reduction='MittnikReduction',
criterion='aic',
trend=FALSE,
subtract.means=FALSE, re.add.means=TRUE,
standardize=FALSE, verbose=TRUE, max.lag=12, sample.start=10)
Arguments
data A TSdata object.
estimation A character string indicating the estimation method to use.
lag.weight Weighting to apply to lagged observations.
reduction Character string indicating reduction procedure to use.
criterion Criterion to be used for model selection. see informationTestsCalculations.
taic might be a better default selection criteria but it is not available for ARMA
models.
trend If TRUE include a trend in the model.

subtract.means If TRUE the mean is subtracted from the data before estimation.

estBlackBox4 25

re.add.means If subtract.means is TRUE then if re.add.means is T the estimated model is con-
verted back to a model for data without the mean subtracted.

standardize If TRUE the data is transformed so that all variables have the same variance.

verbose If TRUE then additional information from the estimation and reduction proce-
dures is printed.

max.lag The number of lags to include in the VAR estimation.

sample.start The starting point to use for calculating information criteria.

Details

VAR models are estimated for each lag up to the specified max.lag. From these the best is selected
according to the specified criteria. The reduction procedure is then applied to this best model and
the best reduced model selected. The default estimation procedure is least squares estimation of a
VAR model.

Value

A TSestModel.

See Also

estBlackBox1, estBlackBox2 estBlackBox4 informationTestsCalculations

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- estBlackBox3(egl.DSE.data.diff)

estBlackBox4 Estimate a TSmodel

Description

Estimate a TSmodel with Brute Force Technique.

Usage

estBlackBox4(data, estimation="estVARX1s",
lag.weight=1.0, variable.weights=1,
reduction="MittnikReduction”,
criterion="taic",
trend=FALSE, subtract.means=FALSE, re.add.means=TRUE,
standardize=FALSE, verbose=TRUE, max.lag=12, sample.start=10, warn=TRUE)
bft(data, ...)

26 estBlackBox4

Arguments
data A TSdata object.
estimation a character string indicating the estimation method to use.
lag.weight weighting to apply to lagged observations.

variable.weights
weighting to apply to series if estimation method is estWtVariables.

reduction character string indicating reduction procedure to use.
criterion criterion to be used for model selection. see informationTestsCalculations.
trend if TRUE include a trend in the model.

subtract.means if TRUE the mean is subtracted from the data before estimation.

re.add.means if subtract.means is TRUE then if re.add.means is T the estimated model is con-
verted back to a model for data without the mean subtracted.

standardize if TRUE the data is transformed so that all variables have the same variance.

verbose if TRUE then additional information from the estimation and reduction proce-
dures is printed.

max.lag VAR estimation is done for each lag up to max.lag.
sample.start the starting point to use for calculating information criteria in the final selection.
warn logical indicating if warning messages should be suppressed.

arguments passed to estBlackBox4.

Details

For each lag up to max.lag a VAR model is estimated and then a reduction procedure applied to
select the best reduced model. Finally the best of the best reduced models is selected. The default
estimation procedure is least squares estimation of the VAR models. This procedure is described as
the brute force technique (bft) in Gilbert (1995).

Value

A TSestModel.

References
Gilbert, PD. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions J. of Forecasting: Special Issue on VAR Modelling, 14, 229-250.

See Also

estBlackBox1, estBlackBox2 estBlackBox3 informationTestsCalculations

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- bft(egl.DSE.data.diff)

estimateModels 27

estimateModels Estimate Models

Description

Estimate models using given estimation method

Usage
estimateModels(data, estimation.sample = NULL, trend =FALSE, quiet =FALSE,
estimation.methods = NULL)
is.estimatedModels(obj)
Arguments
data An object of class TSdata.

estimation.methods
A named list with the names indicating the estimation method and the value
associated with the name is a list of arguments for each the method indicated.
Its value should be NULL if no args are needed.

estimation.sample
An integer indicating the number of points in the sample to use for estimation.
If it is NULL the whole sample is used.

trend If trend is TRUE then a linear trend is calculated and returned as the element
trend. coef.
quiet If quiet is TRUE then most printing and some warning messages are suppressed.
obj An object.
Details

Estimate models from data with estimation methods indicated by estimation.methods. This is pri-
marily a utility for other functions.

Value

Element multi.model in the result is a list of the same length as estimation.methods with resulting
models as elements.

See Also

EstEval, outOfSample. forecastCovEstimatorsWRTdata

Examples

data("egl.DSE.data.diff", package="dse")

z <- estimateModels(egl1.DSE.data.diff, estimation.methods= list(
bft=1ist(verbose=FALSE),
estVARXar=list(max.lag=3)))

28 estimatorsHorizonForecasts WRTdata

estimatorsHorizonForecastsWRTdata
Estimate models and forecast at given horizons

Description

Estimate models and forecast at given horizons.

Usage
estimatorsHorizonForecastsWRTdata(data,
estimation.sample=.5, horizons=1:12,quiet=FALSE,
estimation.methods=NULL)
Arguments
data A TSdata object.

estimation.methods

A list of estimation methods to use. (See estimateModels.)
estimation.sample

The portion of the sample to use for estimation.

horizons The horizons for which forecasts are to be produced.
quiet If true no estimation information is printed.
Details

estimation.sample indicates the part of the data to use for estimation. If estimation.sample is less
than or equal 1.0 it is used to indicate the portion of points to use for estimation. Otherwise it should
be an integer and is used to indicate the number of points from the beginning of the sample to use
for estimation.

Value

A list of forecasts at different horizons as returned by horizonForecasts.

See Also

estimateModels, horizonForecasts

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- estimatorsHorizonForecastsWRTdata(egl.DSE.data.diff,
estimation.methods=1list(estVARX1ls=1list(max.lag=3),
estVARXar=list(max.lag=3)))

estMaxLik 29

estMaxLik Maximum Likelihood Estimation

Description

Maximum likelihood estimation.

Usage

estMaxLik(obj1, obj2=NULL, ...)
S3 method for class 'TSmodel'
estMaxLik(obj1, obj2, algorithm="optim",
algorithm.args=1list(method="BFGS", upper=Inf, lower=-Inf, hessian=TRUE),
L)
S3 method for class 'TSestModel'
estMaxLik(obj1, obj2=TSdata(obj1), ...)
S3 method for class 'TSdata'
estMaxLik(obj1, obj2, ...)

Arguments
objl an object of class TSmodel, TSdata or TSestModel
obj2 TSdata or a TSmodel to be fitted with obj1.
algorithm the algorithm (optim’, or *nlm’) to use for maximization.

algorithm.args arguments for the optimization algorithm.

arguments passed on to other methods.

Details

One of obj1 or obj2 should specify a TSmodel and the other TSdata. If obj1 is a TSestModel
and obj2 is NULL, then the data is extracted from obj1. The TSmodel object is used to specify
both the initial parameter values and the model structure (the placement of the parameters in the
various arrays of the TSmodel). Estimation attempts to minimimize the negative log likelihood (as
returned by 1) of the given model structure by adjusting the parameter values. A TSmodel can
also have constant values in some array elements, and these are not changed. (See SS, ARMA and
fixConstants regarding setting of constants.)

With the number of parameter typically used in multivariate time series models, the default max-
imum number of iterations may not be enough. Be sure to check for convergence (a warning is
printed at the end, or use summary on the result). The maximum iterations is passed to the esti-
mation algorithm with algorithm.args, but the elements of that list will depend on the specified
optimization algorithm (so see the help for the alogrithm). The example below is for the default
optim algorithm.

30 estSSfromVARX

Value

The value returned is an object of class TSestModel with additional elements est$converged,
which is TRUE or FALSE indicating convergence, est$converceCode, which is the code returned
by the estimation algorithm, and est$results, which are detailed results returned by the estimation
algorithm. The hessian and gradient in results could potentially be used for restarting in the case of
non-convergence, but that has not yet been implemented.

Warning

Maximum likelihood estimation of multivariate time series models tends to be problematic, even
when a good structure and good starting parameter values are known. This is especially true for state
space models. Also, it seems that in-sample fit is often obtained at the expense of out-of-sample
forecasting ability. If a prior model structure is not important then the bft estimation method may
be preferable.

See Also

optim, nlm, estVARX1s, bft, TSmodel, 1, SS, ARMA, fixConstants

Examples

true.model <- ARMA(A=c(1, 0.5), B=1)

est.model <- estMaxLik(true.model, simulate(true.model))

summary (est.model)

est.model

tfplot(est.model)

est.model <- estMaxLik(true.model, simulate(true.model),
algorithm.args=1list(method="BFGS", upper=Inf, lower=-Inf, hessian=TRUE,

control=list(maxit=10000)))

estSSfromVARX Estimate a state space TSmodel using VAR estimation

Description

Estimate a VAR TSmodel with (optionally) an exogenous input and convert to state space.

Usage
estSSfromVARX(data, warn=TRUE, ...)
Arguments
data An object with the structure of an object of class TSdata (see TSdata).
warn Logical indicating if warnings should be printed (TRUE) or suppressed (FALSE).

See arguements to estVARXIs

estSSMittnik 31

Details

This function uses the functions estVARXIs and toSS.

Value

A state space model in an object of class TSestModel.

References

Gilbert, P. D. (1993) State space and ARMA models: An overview of the equivalence. Working pa-
per 93-4, Bank of Canada. Available athttp://www.bankofcanada.ca/1993/03/publications/
research/working-paper-199/.

Gilbert, P. D. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions. J. of Forecasting: Special Issue on VAR Modelling. 14:229-250.
See Also

toSS estSSMittnik bft estVARX1s estMaxLik

Examples

data("egl.DSE.data.diff", package="dse")
model <-estSSfromVARX(egl.DSE.data.diff)

estSSMittnik Estimate a State Space Model

Description

Estimate a state space model using Mittnik’s markov parameter estimation.

Usage

estSSMittnik(data, max.lag=6, n=NULL, subtract.means=FALSE, normalize=FALSE)

Arguments
data A TSdata object.
max.lag The number of markov parameters to estimate.
n The state dimension.

subtract.means If TRUE subtract the means from the data before estimation.

normalize If TRUE normalize the data before estimation.

http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/
http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/

32 estVARXar

Details

Estimate a nested-balanced state space model by svd from least squares estimate of markov param-
eters a la Mittnik (1989, p1195). The quality of the estimate seems to be quite sensitive to max. lag,
and this is not properly resolved yet. If n is not supplied the svd criteria will be printed and n
prompted for. If subtract.means=T then the sample mean is subtracted. If normalize is T the
Isfit estimation is done with outputs normalize to cov=I (There still seems to be something wrong
here!!). The model is then re-transformed to the original scale.

See MittnikReduction and references cited there. If the state dimension is not specified then the
singular values of the Hankel matrix are printed and the user is prompted for the state dimension.

Value

A state space model in an object of class TSestModel.

References

See references for MittnikReduction.

See Also

MittnikReduction estVARX1ls bft

Examples

data("egJofF.1dec93.data", package="dse")

this prints information about singular values and prompts with
#Enter the number of singular values to use for balanced model:
model <- estSSMittnik(egJofF.1dec93.data)

the choice is difficult in this example.

model <- estSSMittnik(egJofF.1dec93.data, n=3)

estVARXar Estimate a VAR TSmodel

Description

Estimate a VAR TSmodel with (optionally) an exogenous input.

Usage

estVARXar (data, subtract.means=FALSE, re.add.means=TRUE, standardize=FALSE,
unstandardize=TRUE, aic=TRUE, max.lag=NULL, method="yule-walker", warn=TRUE)

estVARXar 33

Arguments

data A TSdata object.
subtract.means If TRUE subtract the means from the data before estimation.

re.add.means If TRUE the model is adjusted for the non-zero mean data when returned. If
subtract.means is also TRUE then the mean is added back to the data.

standardize Note that the mean is not subtracted unless subtract.means is TRUE. A VAR
model in an object of class TSestModel.

unstandardize If TRUE and standardize is TRUE then the returned model is adjusted to corre-
spond to the original data.

aic Passed to function ar.

max.lag The maximum number of lags that should be considered.

method Passed to function ar.

warn If TRUE certain warning message are suppressed.
Details

This function estimates a VAR model with exogenous variable using ar(). Residuals,etc, are calcu-
lated by evaluating the estimated model with ARMA. The procedure ar is used by combine exoge-
neous variables and endogenous variable and estimating as if all variables were endogenous. The
estVARXar method does not support trend estimation (as in estVARXIs).

If aic=TRUE the number of lags is determined by an AIC statistic (see ar). If an exogenous (input)
variable is supplied the input and output are combined (i.e.- both treated as outputs) for estimation,
and the resulting model is converted back by transposing the exogenous variable part of the polyno-
mial and discarding inappropriate blocks. Residuals,etc, are calculated by evaluating the estimated
model as a TSmodel/ARMA with the data (ie. residuals are not the residuals from the regression).

Note: ar uses a Yule-Walker approach (uses autocorrelations) so effectively the model is for data
with means removed. Thus subtract.means does not make much difference and re.add.means must
be TRUE to get back to a model for the original data.

The conventon for AR(0) and sign are changed to ARMA format. Data should be of class TSdata.
The exog. variable is shifted so contemporaneous effects enter. the model for the exog. variable (as
estimated by ar() is discarded.

Value

A TSestModel object containing an ARMA TSmodel object. The model has no MA portion so it is
a VAR model.

References

Gilbert, P. D. (1993) State space and ARMA models: An overview of the equivalence. Working pa-
per 93-4, Bank of Canada. Available athttp://www.bankofcanada.ca/1993/03/publications/
research/working-paper-199/

Gilbert, P. D. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions. J. of Forecasting: Special Issue on VAR Modelling. 14:229-250.

http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/
http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/

34

See Also

estVARXIs

estSSfromVARX estSSMittnik bft estVARX1s estMaxLik ar DSE.ar

Examples

data("egl.DSE.data.diff", package="dse")
model <- estVARXar(egl.DSE.data.diff)

estVARX1s

Estimate a VAR TSmodel

Description

Estimate a VAR TSmodel with (optionally) an exogenous input and (optionally) a trend.

Usage

estVARX1s(data, subtract.means=FALSE, re.add.means=TRUE, standardize=FALSE,
unstandardize=TRUE, max.lag=NULL, trend=FALSE, lag.weight=1.0, warn=TRUE)

Arguments

data
subtract.means

re.add.means

standardize

unstandardize

trend
max.lag

lag.weight

warn

Details

A TSdata object.
If TRUE subtract the means from the data before estimation.

If TRUE and subtract.means is TRUE then the mean is added back to the data
and the model is adjusted for the non-zero mean data when returned.

If TRUE divide each series by its sample standard deviation before estimation.
Note that the mean is not subtracted unless subtract.means is TRUE.

If TRUE and standardize is TRUE then the returned model is adjusted to corre-
spond to the original data.

If TRUE a trend is estimated.
Number of lags to be used.

Weight between 0 and 1 to be applied to lagged data. Lower weights mean
lagged data is less important (more noisy).

If TRUE a warning message is issued when missing data (NA) is detected and
the model predictions are reconstructed from the Isfit residuals.

A VAR model is fitted by least squares regression using Isfit. The argument max.lag determines the
number of lags. If it is not specified then six lags are used. This is an exceedingly naive approach,
so the max.lag argument really should be specified (or see bft for a more complete approach to
model selection.) If a trend is not estimated the function estVARXar may be preferred. Missing
data is allowed in Isfit, but not (yet) by ARMA which generates the model predictions, etc., based
on the estimated model and the data. (This is done to ensure the result is consistent with other

estWtVariables 35

estimation techniques.) In the case of missing data ARMA is not used and the model predictions,
etc., are generated by adding the data and the Isfit residual. This is slightly different from using
ARMA, especially with respect to initial conditions.

Value

A TSestModel object containing a TSmodel object which is a VAR model.

References

Gilbert, P. D. (1993) State space and ARMA models: An overview of the equivalence. Working pa-
per 93-4, Bank of Canada. Available athttp://www.bankofcanada.ca/1993/03/publications/
research/working-paper-199/

Gilbert, P. D. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions. J. of Forecasting: Special Issue on VAR Modelling. 14:229-250.
See Also

estSSfromVARX estSSMittnik bft estVARXar estMaxLik

Examples

data("egl.DSE.data.diff", package="dse")
model <- estVARXls(egl.DSE.data.diff)

estWtVariables Weighted Estimation

Description

estWtVariables

Usage

estWtVariables(data, variable.weights,
estimation="estVARX1ls", estimation.args=NULL)

Arguments

data A TSdata object.

variable.weights
weights to use for each output series.

estimation An estimation method.
estimation.args
An arguments for the estimation method.

http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/
http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/

36 excludeForecastCov

Details

Weight series so that some series residuals are more important than others. Each output variable
is scaled according to variable.weights, estimate is done, and then the estimated model unscaled.
Estmation is done the method specified by estimate and any arguments specified by estimation.args.
estimation.args should be NULL if no args are needed.

Value

A TSestModel.

See Also

estVARX1ls estBlackBox bft estMaxLik

excludeForecastCov Filter Object to Remove Forecasts

Description

Filter object to remove forecasts.

Usage
excludeForecastCov(obj, exclude.series=NULL)
Arguments
obj An object as returned by stripMine.

exclude.series An indication of series to which should be excluded.

Details
Exclude results which depend on the indicated series from a (forecastCovEstimatorsWRTdata.subsets
forecastCov) object.

Value
The returned result is a forecastCov object like obj, but filtered to remove any forecasts from models
which depend on the series which are indicated for exclusion.

See Also

minForecastCov, selectForecastCov

extractforecastCov 37

Examples

data("egl.DSE.data.diff"”, package="dse")

z <- stripMine(egl1.DSE.data.diff, essential.data=c(1,2),
estimation.methods=1ist(estVARXls=1ist(max.lag=3)))

z <- excludeForecastCov(z, exclude.series=3)

extractforecastCov Extract Forecast Covariance

Description

extract forecastCov from objects

Usage

extractforecastCov(e, n)

S3 method for class 'forecastCovEstimatorsWRTdata'
extractforecastCov(e, n)

S3 method for class 'forecastCovEstimatorsFromModel'
extractforecastCov(e, n)

Arguments
e A "forecastCovEstimatorsWRTdata", "forecastCov" object.
n A vector on integers.

Details

Select a subset of models and their forecast covariances from a larger object.

Value

A forecastCov object.

See Also

forecastCov

38 featherForecasts

featherForecasts Multiple Horizon-Step Ahead Forecasts

Description

Calculate multiple horizon-step ahead forecasts.

Usage
featherForecasts(obj, ...)
S3 method for class 'TSestModel'
featherForecasts(obj, data=NULL, ...)
S3 method for class 'TSdata'
featherForecasts(obj, model, ...)

S3 method for class 'TSmodel'
featherForecasts(obj, data, horizon=36,
from.periods =NULL, ...)
is.featherForecasts(obj)

Arguments
obj an object of class TSmodel.
data an object of class TSdata.
model an object of class TSmodel.

from.periods the starting points to use for forecasts.
horizon the number of periods to forecast.

for a TSmodel additional arguments are passed to 1()

Details

Calculate multiple horizon-step ahead forecasts ie. use the samples indicated by from.periods to
calculate forecasts for horizon periods. Thus, for example, the result of featherForecasts(model,
data, from.periods=c(200,250,300)) would be forecasts for 1 through 36 steps ahead (the default),
starting at the 200th,250th, and 300th point of outputData(data). This function assumes that input-
Data(data) (the exogenous variable) is as long as necessary for the most future forecast.

Value

The result s a list of class featherForecasts with elements model (a TSestModel), data, from.periods,
featherForecasts. The element featherForecasts is a list with length(from.periods) elements,
each of which is a tframed matrix. There is a plot method for this class.

See Also

forecast, horizonForecasts

fixConstants 39

Examples

data("egJofF.1dec93.data", package="dse")

model <- estVARX1ls(egJofF.1dec93.data)

pr <- featherForecasts(model, egJofF.1dec93.data)
tfplot(pr)

fixConstants Fix TSmodel Coefficients (Parameters) to Constants

Description

Fix specified coefficients to constant values or any coefficients within fuzz of 0.0 or 1.0 to exactly
0.0 or 1.0. This will not change the model much but will affect some estimation techniques and
information criteria results, as these are considered to be constants rather than coefficients.

Usage
fixConstants(model, fuzz=1e-5, constants=NULL)
Arguments
model an object of class TSmodel.
fuzz absolute difference to be considered equivalent.
constants NULL or a list of logical arrays.
Details

If constants is not NULL then parameters within fuzz of 0.0 or 1.0 are set as constants 0.0 or 1.0.
If constants is not NULL then it should be a list with logical arrays named F, G ..., with TRUE
corresponding to any array elements which are to be treated as constant.

Value

An object of class ’SS’ "TSmodel’ with some array entries set to constants 0.0 or 1.0.

See Also
fixF

Examples

f <- array(c(.5,.3,.2,.4),c(2,2))

h <- array(c(1,0,0,1),c(2,2))

k <- array(c(.5,.3,.2,.4),c(2,2))

ss <- SS(F=f,G=NULL,H=h,K=k)

Ss

coef(ss)

ss <- fixConstants(ss, constants=list(

40 fixF

F = matrix(c(TRUE, FALSE, FALSE, FALSE), 2,2)))
Ss
coef(ss)
data("egl.DSE.data.diff", package="dse")
model <- toARMA(toSS(estVARX1ls(egl.DSE.data.diff)))
model <- fixConstants(model)

fixF Set SS Model F Matrix to Constants

Description

Set any parameters of the F matrix to constants. The same values are retained but they are consid-
ered to be constants rather than parameters. This will not change the model but will affect some
estimation techniques and information criteria results.

Usage

fixF(model)

Arguments

model An object of class TSmodel.

Value

An SS TSmodel object.

See Also

fixConstants

Examples

data("egl.DSE.data.diff", package="dse")
model <- toSS(estVARX1s(egl.DSE.data.diff))
model <- fixF(model)

forecast 41

forecast Forecast Multiple Steps Ahead

Description

Calculate forecasts multiple steps ahead.

Usage

is.forecast(obj)
forecast(obj, ...)
S3 method for class 'TSmodel'
forecast(obj, data, horizon=36,
conditioning.inputs=NULL,

conditioning.inputs.forecasts=NULL, percent=NULL, ...)
S3 method for class 'TSestModel'
forecast(obj, ...)
S3 method for class 'TSdata'
forecast(obj, model, ...)
Arguments
obj An object of a class for which a specific method is available.
model An object of class TSmodel.
data An object of class TSdata.

conditioning.inputs
A time series matrix or list of time series matrices to use as input variables.
conditioning.inputs.forecasts

A time series matrix or list of time series matrices to append to input variables
for the forecast periods.

horizon The number of periods to forecast.
percent A vector indication percentages of the last input to use for forecast periods.

arguments passed to 1().

Details

Calculate (multiple) forecasts from the end of data to a horizon determined either from supplied
input data or the argument horizon (more details below). In the case of a model with no inputs
the horizon is determined by the argument horizon. In the case of models with inputs, on which
the forecasts are conditioned, the argument horizon is ignored (except when percent is specified)
and the actual horizon is determined by the inputs in the following way: If inputs are not speci-
fied by optional arguments (as below) then the default will be to use inputData(data). This will be
the same as the function 1() unless inputData(data) is longer than outputData(data) (after NAs are
trimmed from each separately). Otherwise, if conditioning.inputs is specified it is used for input-
Data(data). It must be a time series matrix or a list of time series matrices each of which is used

42 forecastCov

in turn as inputData(data). The default above is the same as forecast(model, trimNA(data), condi-
tioning.inputs=trimNA (inputData(data))) Otherwise, if conditioning.inputs.forecasts is specified it
is appended to inputData(data). It must be a time series matrix or a list of time series matrices each
of which is appended to inputData(data) and the concatenation used as conditioning.inputs. Both
conditioning.inputs and conditioning.inputs.forecasts should not be specified. Otherwise, if percent
is specified then conditioning.inputs.forecasts are set to percent/100 times the value of input cor-
responding to the last period of outputData(data) and used for horizon periods. percent can be a
vector, in which case each value is applied in turn. ie ¢(90,100,110) would would give results for
conditioning.input.forecasts 10 percent above and below the last value of input.

Value

The result is an object of class forecast which is a list with elements model, horizon, conditioning. inputs,
percent, pred and forecast. The element forecast is a list with TSdata objects as elements, one

for each element in the list conditioning.inputs. The element pred contains the one-step ahead
forecasts for the preiods when output data is available. There is a plot method for this class.

See Also

featherForecasts, horizonForecasts

Examples

data("egJofF.1dec93.data”, package="dse")

model <- estVARX1ls(window(egJofF.1dec93.data, end=c(1985,12)))

pr <- forecast(model, conditioning.inputs=inputData(egJofF.1dec93.data))
#tfplot(pr) Rbug 0.90.1

is.forecast(pr)

forecastCov Forecast covariance for different models

Description

Calculate the forecast covariance for different models.

Usage

is.forecastCov(obj)

forecastCov(obj, ..., data=NULL, horizons=1:12, discard.before=NULL,
zero=FALSE, trend=FALSE, estimation.sample= NULL,
compiled=.DSEflags()$COMPILED)

S3 method for class 'TSmodel'

forecastCov(obj, ..., data=NULL,

horizons=1:12, discard.before=NULL,
zero=FALSE, trend=FALSE, estimation.sample= Tobs(data),
compiled=.DSEflags()$COMPILED)

S3 method for class 'TSestModel'

forecastCov 43

forecastCov(obj, ..., data=TSdata(obj),
horizons=1:12, discard.before=NULL, zero=FALSE, trend=FALSE,
estimation.sample= Tobs(TSdata(obj)), compiled=.DSEflags()$COMPILED)

S3 method for class 'TSdata'

forecastCov(obj, ..., data=NULL,
horizons=1:12, discard.before=1,
zero=FALSE, trend=FALSE, estimation.sample= NULL,
compiled=.DSEflags () $COMPILED)

Arguments
obj TSdata or one or more TSmodels or TSestModels
data an object of class TSdata.
discard.before period before which forecasts should be discarded when calculating covariance.
horizons horizons for which forecast covariance should be calculated.
zero if TRUE the covariance is calculated for a forecast of zero.
trend if TRUE the covariance is calculated for a forecast of trend.

estimation.sample
portion of the sample to use for calculating the trend.

compiled a logical indicating if compiled code should be used. (Usually true except for
debugging.)

arguments passed to other methods.

Details

Calculate the forecast cov of obj relative to data. If obj is TSdata then the output data is used
as the forecast. For other classes of obj TSmodel(obj) is used with data to produce a forecast.
TSmodel() is also applied to each element of ... to extract a model. All models should work with
data. If obj is a TSestModel and data is NULL then TSdata(obj) is used as the data. This is multiple
applications of forecastCovSingleModel discard.before is an integer indicating the number of points
in the beginning of forecasts to discard before calculating covariances. If it is the default, NULL,
then the default (minimumStartupLag) will be used for each model and the default (1) will be used
for trend and zero. If zero is TRUE then forecastCov is also calculated for a forecast of zero. If
trend is TRUE then forecastCov is also calculated for a forecast of a linear trend using data to
estimation.sample.

Value

A list with the forecast covariance for supplied models on the given sample. This is in the element
forecastCov of the result. Other elements contain information in the arguments.

Examples

data("egl.DSE.data.diff", package="dse")

modell <- estVARXar(egl.DSE.data.diff)

model2 <- estVARX1s(egl.DSE.data.diff)

z <- forecastCov(modell, model2, data=trimNA(egl.DSE.data.diff))
is.forecastCov(z)

44 forecastCovEstimators WRTdata

forecastCovEstimatorsWRTdata
Calculate Forecast Cov of Estimators WRT Data

Description

forecast covariance of estimated models with respect to a given sample

Usage
forecastCovEstimatorsWRTdata(data, estimation.sample=NULL,
compiled=.DSEflags()$COMPILED, discard.before=10,
horizons=1:12, zero=FALSE, trend=FALSE,quiet=FALSE,
estimation.methods=NULL)
is.forecastCovEstimatorsWRTdata(obj)
Arguments
data an object of class TSdata.

estimation.methods
a list as used by estimateModels.

discard.before anintegerindicating the number of points in the beginning of forecasts to discard
for calculating covariances.

zero if TRUE then forecastCov is also calculated for a forecast of zero.
trend if TRUE then forecastCov is also calculated for a forecast of a linear trend.
estimation.sample

an integer indicating the number of points in the sample to use for estimation. If
it is NULL the whole sample is used.

horizons horizons for which forecast covariance should be calculated.
quiet if TRUE then estimation information is not printed.
compiled a logical indicating if the compiled version of the code should be used. (FALSE
would typically only be used for debugging.)
obj an object.
Details

Calculate the forecasts cov of models estimated from data with estimation methods indicated by
estimation.methods (see estimateModels). estimation.sample is an integer indicating the number of
points in the sample to use for estimation. If it is NULL the whole sample is used.

Value

A list with the forecast covariance for supplied models on the given sample. This is in the element
forecastCov of the result. Other elements contain information in the arguments.

forecastCovEstimators WRTtrue 45

See Also

outOfSample.forecastCovEstimatorsWRTdata, estimateModels

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- forecastCovEstimatorsWRTdata(egl.DSE.data.diff,
estimation.methods=1list(estVARX1ls=1list(max.lag=4)))

forecastCovEstimatorsWRTtrue
Compare Forecasts Cov Relative to True Model Output

Description

Compare covariance of the forecasts less the true model output

Usage
forecastCovEstimatorsWRTtrue(true.model, rng=NULL,
simulation.args=NULL,
est.replications = 2, pred.replications = 2,
discard.before = 10, horizons = 1:12, quiet =FALSE,
estimation.methods=NULL, compiled=.DSEflags()$COMPILED)
is.forecastCovEstimatorsWRTtrue(obj)
Arguments
true.model An object of class TSmodel.

estimation.methods
A list as used by estimateModels.
simulation.args
an arguments to be passed to simulate.
est.replications
An arguments to be passed to simulate.
pred.replications
An arguments to be passed to simulate.
discard.before An integer indicating the number of points in the beginning of forecasts to dis-
card for calculating covariances.

horizons Horizons for which forecast covariance should be calculated.

rng If specified then it is used to set RNG.

quiet If TRUE then some messages are not printed.

compiled a logical indicating if the compiled version of the code should be used. (FALSE

would typically only be used for debugging.)
obj an object.

46 forecastCovReductions WRTtrue

Details

Calculate the forecasts cov of models estimated from simulations of true.model with estimation
methods indicated by estimation.methods (see estimateModels). This function makes multiple calls
to forecastCovWRTtrue.

Value

The returned results has element forecastCov.true,forecastCov.zero,forecastCov.trend
containing covariances averaged over estimation replications and simulation replications (fore-
casts will not change but simulated data will). forecastCov a list of the same length as esti-
mation.methods with each element containing covariances averaged over estimation replications
and simulation replications. estimatedModels a list of length est.replications, with each elements
as returned by estimateModels, thus each element has multi.model as a subelement containing
models for different estimation techniques. So, eg. estimatedModels[[2]]1$multi.model[[1]]
in the result will be the model from the first estimation technique in the second replication.

See Also

forecastCovWRTtrue forecastCovEstimatorsWRTdata

Examples

data("egl1.DSE.data.diff"”, package="dse")

true.model <- estVARXls(egl.DSE.data.diff) # just to have a starting model

z <- forecastCovEstimatorsWRTtrue(true.model,
estimation.methods=1list(estVARX1s=list(max.lag=4)))

forecastCovReductionsWRTtrue
Forecast covariance for different models

Description

Calculate the forecast covariance for different models.

Usage

forecastCovReductionsWRTtrue(true.model, rng=NULL,
simulation.args=NULL,
est.replications=2, pred.replications=2,
discard.before=10, horizons=1:12,quiet=FALSE,
estimation.methods=NULL,
criteria=NULL, compiled=.DSEflags()$COMPILED)

forecastCovWRTtrue 47

Arguments

true.model An object of class TSmodel or TSestModel.

discard.before An integer indicating the number of points in the beginning of forecasts to dis-
card for calculating covariances.

est.replications
an interger indicating the number of times simulation and estimation are re-
peated.

pred.replications
an argument passed to forecastCovWRTtrue.

simulation.args

A list of any arguments which should be passed to simulate in order to simulate
the true model.

horizons Horizons for which forecast covariance should be calculated.
rng If specified then it is used to set RNG.
quiet If TRUE then some messages are not printed.

estimation.methods
a list as used by estimateModels.

criteria a..
compiled a logical indicating if compiled code should be used. (Usually true except for
debugging.)
Details

Calculate the forecasts cov of reduced models estimated from simulations of true.model with an
estimation method indicated by estimation.methods. (estimation.methods is as in estimation.models
BUT ONLY THE FIRST IS USED.) discard.before is an integer indicating 1+the number of points
in the beginning of forecasts to discard for calculating forecast covariances. criteria can be a vector
of criteria as in informationTests, (eg c("taic", "tbic") in which case the "best" model for each
criteria is accounted separately. (ie. it is added to the beginning of the list of estimated models)

Value

A list ...

forecastCovWRTtrue Compare Forecasts to True Model Output

Description

Generate forecasts and compare them against the output of a true model.

48

Usage

forecastCovWRTtrue

forecastCovWRTtrue(models, true.model,
pred.replications=1, simulation.args=NULL, quiet=FALSE, rng=NULL,
compiled=.DSEflags()$COMPILED,
horizons=1:12, discard.before=10, trend=NULL, zero=NULL)

is.forecastCovWRTdata(obj)

Arguments

models
true.model

discard.before

zero

trend

A list of objects of class TSmodel.
An object of class TSmodel or TSestModel.

An integer indicating the number of points in the beginning of forecasts to dis-
card for calculating covariances.

If TRUE then forecastCov is also calculated for a forecast of zero.

If TRUE then forecastCov is also calculated for a forecast of a linear trend.

pred.replications

simulation.args

horizons
rng
quiet

compiled

obj

Details

integer indicating the number of times simulated data is generated.

A list of any arguments which should be passed to simulate in order to simulate
the true model.

Horizons for which forecast covariance should be calculated.
If specified then it is used to set RNG.
If TRUE then some messages are not printed.

a logical indicating if compiled code should be used. (Usually true except for
debugging.)

an object.

The true model is used to generate data and for each generated data set the forecasts of the models
are evaluated against the simulated data. If trend is not null it is treated as a model output (forecast)
and should be the same dimension as a simulation of the models with simulation.args. If zero is
not null a zero forecast is also evaluated. If simulating the true model requires input data then a
convenient way to do this is for true.model to be a TSestModel. Otherwise, input data should be
passed in simulation.args

Value

A list with the forecast covariance for supplied models on samples generated by the given true
model. This is in the element forecastCov of the result. Other elements contain information in the

arguments.

See Also

forecastCovEstimatorsWRTdata simulate EstEval distribution MonteCarloSimulations

forecasts

Examples

data("egl.DSE.data.diff", package="dse")

true.model <- estVARXls(egl.DSE.data.diff) # A starting model TSestModel
data <- simulate(true.model)

models <- list(TSmodel(estVARXar(data)),TSmodel (estVARX1s(data)))

z <- forecastCovWRTtrue(models, true.model)

forecasts Extract Forecasts

Description

Extract forecasts from and object.

Usage
forecasts(obj)
S3 method for class 'forecast'
forecasts(obj)
S3 method for class 'featherForecasts'
forecasts(obj)
S3 method for class 'horizonForecasts'
forecasts(obj)
Arguments
obj An object which contains forecasts.
Details

This generic method extracts the forecasts (only) from objects returned by other methods that cal-
culate forecasts. Usually the objects returned by the methods which calculate forecasts contain

additional information which is not returned by this extractor.

Value

The forecasts from an object which contains forecasts.

See Also

forecast

Examples

data("egJofF.1dec93.data"”, package="dse")
model <- estVARX1ls(window(egJofF.1dec93.data, end=c(1985,12)))

pr <- forecast(model, conditioning.inputs=inputData(egJofF.1dec93.data))

z <- forecasts(pr)

50 horizonForecasts

gmap Basis Transformation of a Model.

Description

Transform the basis for the state by a given invertible matrix.

Usage
gmap(g, model)
Arguments
g An invertible matrix
model An object of class TSmodel.
Details

If the input model is in state space form g is a change of basis for the state. If the input model is in
ARMA form then the polynomials are premultiplied by g. If g is a scalar it is treated as a diagonal
matrix.

Value

An equivalent model transformed using g.

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- toSS(estVARX1s(egl.DSE.data.diff))
gmap(2, model)

horizonForecasts Calculate forecasts at specified horizons

Description

Calculate forecasts at specified horizons.

horizonForecasts 51

Usage

is.horizonForecasts(obj)

horizonForecasts(obj, ...)

S3 method for class 'TSmodel'
horizonForecasts(obj, data, horizons=1:4,
discard.before=minimumStartupLag(obj), compiled=.DSEflags()$COMPILED, ...)

S3 method for class 'TSestModel'
horizonForecasts(obj, data=NULL, ...)

S3 method for class 'TSdata'
horizonForecasts(obj, model, ...)

S3 method for class 'forecastCov'
horizonForecasts(obj,horizons=NULL,

discard.before=NULL, ...)
Arguments
obj an object of class TSmodel, TSdata, or TSestModel.
model an object of class TSmodel.
data an object of class TSdata
horizons a vector of integers indicating the horizon at which forecasts should be produced.

discard.before period before which forecasts are not calculated.
compiled if TRUE compiled code is called.

arguments passed to other methods.

Details

Calculate multiple *horizon’-step ahead forecasts ie. calculate forecasts but return only those indi-
cated by horizons. Thus, for example, the result of horizonForecasts(model, data horizons=c(1,5))
would be the one-step ahead and five step ahead forecasts.

Value

The result is a list of class horizonForecasts with elements model (a TSmodel), data, horizons, dis-

card.before, and horizonForecasts. horizonForecasts is an array with three dimension: c(length(horizons),dim(model$da
Projections are not calculated before discard.before or after the end of outputData(data). Each

horizon is aligned so that horizonForecasts[h,t,] contains the forecast for the data point output-

Data(data)[t,] (from horizon[h] periods prior).

See Also

featherForecasts

Examples

data("egl.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
z <- horizonForecasts(model, egl1.DSE.data.diff)

52 horizonForecastsCompiled

horizonForecastsCompiled
Calculate forecasts at specified horizons

Description

Calculate forecasts at specified horizons.

Usage

horizonForecastsCompiled(obj, data, horizons=1:4,

discard.before=minimumStartupLag(obj))

S3 method for class 'SS'
horizonForecastsCompiled(obj, data, horizons=1:4,
discard.before=minimumStartupLag(obj))

S3 method for class 'ARMA'
horizonForecastsCompiled(obj, data, horizons=1:4,

discard.before=minimumStartupLag(obj))

Arguments
obj see horizonForecasts.
data see horizonForecasts.
horizons see horizonForecasts.

discard.before see horizonForecasts.

Details

Internal function not to be called by users. See horizonForecasts.

Value

See horizonForecasts.

See Also

horizonForecasts

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARX1s(egl.DSE.data.diff)
z <- horizonForecasts(model, egl.DSE.data.diff)

informationTests 53

informationTests Tabulates selection criteria

Description

Tabulates several model selection criteria.

Usage

informationTests(..., sample.start=1,sample.end=NULL, Print=TRUE, warn=TRUE)

Arguments

At least one object of class TSestModel.
sample.start The start of the period to use for criteria calculations.

sample.end The end of the period to use for criteria calculations. If omitted the end of the
sample is used.

Print If FALSE then printing suppressed.
warn If FALSE then some warning messages are suppressed.
Value

A matrix of the value for each model on each test returned invisibly.

Side Effects

Criteria are tabulated for all models in the list.

See Also

informationTestsCalculations

Examples

data("egl1.DSE.data.diff", package="dse")
modell <- estVARXls(egl.DSE.data.diff)
model2 <- estVARXar(egl.DSE.data.diff)
informationTests(modell, model2)

54 informationTestsCalculations

informationTestsCalculations
Calculate selection criteria

Description

Calculates several model selection criteria.

Usage
informationTestsCalculations(lst, sample.start=1,sample.end=NULL, warn=TRUE)
Arguments
1st One or more objects of class TSestModel.

sample.start The start of the period to use for criteria calculations.

sample.end The end of the period to use for criteria calculations. If omitted the end of the
sample is used.

warn If FALSE then some warning messages are suppressed.

Value

The calculated values are returned in a vector with names: port, like, aic, bic, gvc, rice, fpe, taic,
tbic, tgvc, trice and tfpe. These correspond to values for the Portmanteau test, likelihood, Akaike
Information Criterion, Bayes Information Criterion, Generalized Cross Validation, Rice Criterion,
and Final Prediction Error. The preceeding 't indicates that the theoretical parameter space dimen-
sion has been used, rather than the number of coefficient (parameter) values. Methods which select a
model based on some information criterion calculated by informationTestsCalculations should
use the name of the vector element to specify the test value which is to be used.

See Also

informationTests

Examples

data("egl1.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
informationTestsCalculations(model)

inputData 55

inputData TSdata Series

Description

Extract or set input or output series in a TSdata object.

Usage

inputData(x, series=seqN(nseriesInput(x)))
Default S3 method:
inputData(x, series=segN(nseriesInput(x)))
S3 method for class 'TSdata'
inputData(x, series=seqN(nseriesInput(x)))
S3 method for class 'TSestModel'
inputData(x, series=segN(nseriesInput(x)))

outputData(x, series=segN(nseriesOutput(x)))

Default S3 method:
outputData(x, series=segN(nseriesOutput(x)))

S3 method for class 'TSdata'
outputData(x, series=segN(nseriesOutput(x)))

S3 method for class 'TSestModel'
outputData(x, series=segN(nseriesOutput(x)))

inputData(x) <- value
outputData(x) <- value

Arguments

X object of class TSdata.

value a time series matrix.

series vector of strings or integers indicating the series to select.
Value

The first usages returns the input or output series. The second usages assigns the input or output
series.

See Also

TSdata selectSeries

Examples

data("egl.DSE.data"”, package="dse")
outputData(egl.DSE.data)

56

is.forecastCovEstimatorsWRTdata.subsets
Check Inheritance

Description

Check inheritance.

Usage
is.forecastCovEstimatorsWRTdata.subsets(obj)
Arguments
obj Any object.
Details

This tests if an object isnherits from forecastCovEstimatorsWRTdata.subsets. This type of
object code be generated in different ways but the only current example is stripMine.

Value

logical

See Also

stripMine

1 Evaluate a TSmodel

Description

Evaluate a model with data.

Usage

1(obj1, obj2, ...)

S3 method for class 'TSdata'
1(obj1, obj2, ...)

S3 method for class 'TSestModel'
1(obj1, obj2, ...)

1., ARMA 57

Arguments
obj1l a TSmodel, TSdata, or TSestModel object.
obj2 a TSmodel or TSdata object.
arguments to be passed to other methods.
Details

For state space models 1.SS is called and for ARMA models 1.ARMA is called.

Value

Usually a TSestModel object is returned. Most methods allow an argument result which specifies
that a certain part of the object is returned. (This is passed in ...to another method in most cases.)
The likelihood can be returned by specifying result="like", which is useful for optimization routines.

See Also
1.SS, 1.ARMA

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- toSS(TSmodel(estVARX1s(egl.DSE.data.diff)))
evaluated.model <- 1(model, egl.DSE.data.diff)

1.ARMA Evaluate an ARMA TSmodel

Description

Evaluate an ARMA TSmodel.

Usage

S3 method for class 'ARMA'
1(obj1, obj2, sampleT=NULL, predictT=NULL,result=NULL,
error.weights=0, compiled=.DSEflags()$COMPILED, warn=TRUE,

return.debug.info=FALSE, ...)
Arguments
obj1 an ’ARMA’ "TSmodel’ object.
obj2 a TSdata object.
sampleT an integer indicating the number of periods of data to use.

predictT an integer to what period forecasts should be extrapolated.

58 LLARMA
result if non-NULL then the returned value is only the sub-element indicated by result.
result can be a character string or integer.
error.weights a vector of weights to be applied to the squared prediction errors.
compiled indicates if a call should be made to the compiled code for computation. A
FALSE value is mainly for testing purposes.
warn if FALSE then certain warning messages are turned off.
return.debug.info
logical indicating if additional debugging information should be returned.
(further arguments, currently disregarded).
Details
This function is called by the function 1() when the argument to 1 is an ARMA model (see ARMA).
Using 1() is usually preferable to calling . ARMA directly. . ARMA calls a compiled program unless
compiled=FALSE. The compiled version is much faster.
sampleT is the length of data which should be used to calculate the one-step ahead predictions, and
likelihood value for the model: Output data must be at least as long as sampleT. If sampleT is not
supplied it is taken to be Tobs(data).
Input data must be at least as long as predictT. predictT must be at least as large as sampleT. If
predictT is not supplied it is taken to be sampleT.
If error.weights is greater than zero then weighted prediction errors are calculated up to the
horizon indicated by the length of error.weights. The weights are applied to the squared error at
each period ahead.
Value
An object of class TSestModel (see TSestModel) containing the calculated likelihood, prediction,
etc. for ARMA model.
See Also
ARMA 1, 1.SS TSmodel TSestModel.object
Examples

data(”egl1.DSE.data.diff", package="dse")
model <- TSmodel(estVARX1ls(egl.DSE.data.diff))
evaluated.model <- 1(model,egl.DSE.data.diff)

1SS

59

1.Ss

Evaluate a state space TSmodel

Description

Evaluate a state space TSmodel.

Usage

S3 method for class 'SS'
1(obj1, obj2, sampleT=NULL, predictT=NULL, error.weights=0,
return.state=FALSE, return.track=FALSE, result=NULL,
compiled=.DSEflags()$COMPILED,
warn=TRUE, return.debug.info=FALSE, ...)

Arguments
obj1
obj2

sampleT

predictT

error.weights

return.state

return.track

result

compiled

warn

An’SS’ *TSmodel’ object.
A TSdata object.

an integer indicating the last data point to use for one step ahead filter estimation.
If NULL all available data is used.

an integer indicating how far past the end of the sample predictions should be
made. For models with an input, input data must be provided up to predictT.
Output data is necessary only to sampleT. If NULL predictT is set to sampleT.

a vector of weights to be applied to the squared prediction errors.

if TRUE the element filter$state containing E[z(t)ly(t-1), u(t)] is returned as
part of the result. This can be a fairly large matrix.

if TRUE the element filter$track containing the expectation of the tracking
error given y(t-1) and u(t) is returned as part of the result. This can be an very
large array.

if result is not specified an object of class TSestModel is returned. Otherwise,
the specified element of TSestModel$estimates is returned.

if TRUE the compiled version of the code is used. Otherwise the S/R version is
used.

if FALSE then certain warning messages are turned off.

return.debug.info

logical indicating if additional debugging information should be returned.

(further arguments, currently disregarded).

60 LSS

Details

This function is called by the function I() when the argument to 1 is a state space model. Using 1() is
usually preferable to calling 1.SS directly. 1.SS calls a compiled program unless compiled=FALSE.
The compiled version is much faster than the S version.

Output data must be at least as long as sampleT. If sampleT is not supplied it is taken to be
Tobs(data).

Input data must be at least as long as predictT. predictT must be at least as large as sampleT. If
predictT is not supplied it is taken to be sampleT.

If error.weights is greater than zero then weighted prediction errors are calculated up to the
horizon indicated by the length of error.weights. The weights are applied to the squared error at
each period ahead.

sampleT is the length of data which should be used for calculating one step ahead predictions. y
must be at least as long as sampleT. If predictT is large than sampleT then the model is simulated
to predictT. y is used if it is long enough. u must be at least as long as predictT. The default
result=0 returns a list of all the results. Otherwise only the indicated list element is return (eg.
result=1 return the likelihood and result=3 returns the one step ahead predictions.

If z0 is supplied in the model object it is used as the estimate of the state at time 0. If not supplied
it is set to zero.

If rootPo is supplied in the model object then t(rootP0) %*% rootPO0 is used as PO. If P@ is supplied
or calculated from rootP0 in the model object, it is used as the initial tracking error P(t=11t=0). If
not supplied it is set to the identity matrix.

Additional objects in the result are Om is the estimated output cov matrix. pred is the time series of
the one-step ahead predictions, E[y(t)ly(t-1),u(t)]. The series of prediction error is given by y -pred
If error.weights is greater than zero then weighted prediction errors are calculated up to the horizon
indicated by the length of error.weights. The weights are applied to the squared error at each period
ahead. trackError is the time series of P, the one step ahead estimate of the state tracking error
matrix at each period, Cov(z(t)-E[z(t)It-1]) The tracking error can only be calculated if Q and R
are provided (i.e. non innovations form models). Using the Kalman Innov K directly these are not
necessary for the likelihood calculation, but the tracking error cannot be calculated.

Value

Usually an object of class TSestModel (see TSestModel), but see result above.

References

Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. Prentice-Hall. (note p.39,44.)

See Also

SS 1 1.ARMA TSmodel TSestModel TSestModel.object state smoother

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- toSS(TSmodel(estVARX1s(egl.DSE.data.diff)))
Imodel <- 1(model,egl.DSE.data.diff)

markovParms 61

summary (1model)

tfplot(1lmodel)

Imodel <- 1(model,egl.DSE.data.diff, return.state=TRUE)
tfplot(state(lmodel, filter=TRUE))

markovParms Markov Parameters

Description

Construct a Matrix of the Markov Parameters

Usage
markovParms(model, blocks=NULL)
Arguments
model An ARMA or SS TSmodel.
blocks Number of blocks to calculate.
Details

Construct a matrix with partitions [MOI...IMi] giving the Markov parameters Mi, i+1 = blocks where
each Mi is a p by (m+p) matrix, (m is the dimension of the exogeneous series and p is the dimension
of endogeneous series) ie. y(t) =e(t) + M [u’(t)ly’(t-1) | v’ (t-1)ly’(t-2)]" This requires that models be
transformed so that lagged endogeneous variables are inputs. See Mittnik p1190. If blocks=NULL
(the default) then at least 3 blocks are generated, and up to n+1, but the series is truncated if the
blocks are effectively zero. This will affect the size of the Hankel matrix.

Value

A matrix

References

See references for MittnikReduction.

See Also

SVDbalanceMittnik

Examples

data("egl.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
markovParms (model)

62

McMillanDegree

McMillanDegree Calculate McMillan Degree

Description

Calculate the McMillan degree of an ARMA TSmodel.

Usage

McMillanDegree(model, ...)
S3 method for class 'ARMA'
McMillanDegree(model, fuzz=1e-4, verbose=TRUE, warn=TRUE,
S3 method for class 'SS'
McMillanDegree(model, fuzz=le-4, ...)
S3 method for class 'TSestModel'
McMillanDegree(model, ...)

Arguments

model An object of class TSmodel.
fuzz Roots within fuzz distance are counted as equivalent.

verbose If TRUE roots are printed.

)

warn If FALSE then warnings about unit roots added for TREND are not printed.

arguments to be passed to other methods.

Value

A list with elements gross and distinct containing all roots and distinct roots.

Side Effects

The number of roots and distinct roots is printed if verbose is TRUE.

See Also

stability

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
McMillanDegree(model)

minForecastCov 63

minForecastCov Minimum Forecast Cov Models

Description

Extract the minimum forecastCov at each horizon

Usage
minForecastCov(obj, series=1, verbose=TRUE)
Arguments
obj An object as returned by stripMine.
series An indicator of the series which are to be used as the bases for selection.
verbose If true additional information is printed.
Details

Select the min covariance (for series only!) at each horizon and print. The returned object is a
vector indicating the element of forecastCov which was the min at each horizon. It is suitable as an
argument to plot eg: tfplot(obj, select.cov=minForecastCov(obj)) The results of this plot are similar
to the default results of tfplot(selectForecastCov(obj)). Covariance information and information
about the horizon where the model is optimal are given.

Value

The returned object is a vector indicating the element of forecastCov which was the min at each
horizon.

See Also

selectForecastCov, excludeForecastCov

Examples

data("egl.DSE.data.diff"”, package="dse")

z <- stripMine(egl1.DSE.data.diff, essential.data=c(1,2),
estimation.methods=1ist(estVARXls=1ist(max.lag=3)))

z <- minForecastCov(z)

64

minimumStartupLag

minimumStartuplLag Starting Periods Required

Description

Number of Starting Periods Required for a Model

Usage

minimumStartuplLag(model)

S3 method for class 'SS'
minimumStartupLag(model)

S3 method for class 'ARMA'
minimumStartuplLag(model)

S3 method for class 'TSestModel'
minimumStartupLag(model)

startShift(model,data, y@=NULL)

Arguments
model A TSmodel or object containing a TSmodel.
data A TSdata object.
yo initial condition ...

Details

For many time series models several starting data points are required before output from the model
can be calculated (or makes sense). This generic function extracts or calculates that number of

periods.

Value

An integer.

Note

There is some redundancy between this and startShift which should be cleaned up.

See Also

TSmodel

MittnikReducedModels 65

MittnikReducedModels Reduced Models via Mittnik SVD balancing

Description

Reduced Models via Mittnik SVD balancing.

Usage
MittnikReducedModels(largeModel)
Arguments
largeModel An SS TSmodel.
Details

The largeModel is balanced by the SVD method promoted by Mittnik (see MittnikReduction) and
then models for every state dimension up to the state dimension of the largeModel are return. Note
that this procedure does not result in smaller models which are balanced.

Value

A list of state space TSmodels with smaller state dimensions.

See Also

MittnikReduction

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- MittnikReducedModels(toSS(estVARX1s(egl.DSE.data.diff)))

MittnikReduction Balance and Reduce a Model

Description

Balance and reduce the state dimension of a state space model a la Mittnik.

Usage

MittnikReduction(model, data=NULL, criterion=NULL, verbose=TRUE,warn=TRUE)
MittnikReduction.from.Hankel (M, data=NULL, nMax=NULL,
criterion=NULL, verbose=TRUE, warn=TRUE)

66 MittnikReduction

Arguments
model An object of class TSmodel or TSestModel.
data If the supplied model is of class TSestModel and data is not supplied then it
is taken from the model. If the model is of class TSmodel then data must be
supplied.
criterion Criterion to be used for model selection. see informationTestsCalculations.
verbose logical indicating if information should be printed during estimation.
warn logical indicating if some warning messages should be suppressed.
M a matrix. See details.
nMax integer indicating the state dimension of the largest model considered.
Details

MittnikReduction gives nested-balanced state space model using reduction by svd of the Hankel
matrix generated from a model. If a state space model is supplied the max. state dimension for the
result is taken from the model. If an ARMA model is supplied then singular values will be printed
and the program prompts for the max. state dimension. criterion should be the name of one of the

non non

values returned by informationTests, that is, one of ("port","like","aic","bic","gvc", "rice","fpe", "taic",
"tbic","tgvc","trice","tfpe"). If criteria is not specified then the program prompts for the state di-
mension (n) to use for the returned model. The program requires data to calculate selection criteria.
(The program balanceMittnik calculates svd criteria only and can be used for reduction without

data.)

The function MittnikReduction. from.Hankel is called by MittnikReduction and typically not
by the user, but there are situations when the former might be called directly. It selects a reduced
state space model by svd a la Mittnik. Models and several criteria for all state dimensions up to the
max. state dim. specified are calculated. (If nMax is not supplied then svd criteria are printed and
the program prompts for nMax). The output dimension p is taken from nrow(M). M is a matrix with
p X (m+p) blocks giving the markov parameters, that is, the first row of the Hankel matrix. It can
be generated from the model as in the function markovParms, or from the data, as in the function
estSSMittnik.

data is necessary only if criteria (AIC,etc) are to be calculated.

Value

A state space model balance a la Mittnik in an object of class TSestModel.

References

Gilbert, P. D. (1993) State space and ARMA models: An overview of the equivalence. Working pa-
per 93-4, Bank of Canada. Available athttp://www.bankofcanada.ca/1993/03/publications/
research/working-paper-199/.

Gilbert, P. D. (1995) Combining VAR Estimation and State Space Model Reduction for Simple
Good Predictions. J. of Forecasting: Special Issue on VAR Modelling, 14, 229-250.

Mittnik, S. (1989), Multivariate Time Series Analysis With State Space Models. Computers Math
Appl. 17, 1189-1201.

http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/
http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/

nseries.featherForecasts 67

Mittnik, S. (1990), Macroeconomic Forecasting Experience With Balance State Space Models. In-
ternational Journal Of Forecasting, 6, 337-348.

Mittnik, S. (1990), Forecasting With Balanced State Space Representations of Multivariate Dis-
tributed Lag Models. J. of Forecasting, 9, 207-218.

See Also

estVARX1s bft balanceMittnik informationTests informationTestsCalculations

Examples

data("egJofF.1dec93.data”, package="dse")
model <- toSS(estVARX1s(egJofF.1dec93.data))
newmodel <-MittnikReduction(model, criterion="taic")

nseries.featherForecasts
Number of Series

Description

Return the number of series.

Usage
S3 method for class 'featherForecasts'
nseries(x)
Arguments
X A featherForecasts object.
Details

See the generic method.

Value

An integer.

68

nseriesInput

nseriesInput Number of Series in in Input or Output

Description

Number of input or output series in a TSdata object.

Usage

nseriesInput(x)

Default S3 method:
nseriesInput(x)

S3 method for class 'TSdata'
nseriesInput(x)

S3 method for class 'SS'
nseriesInput(x)

S3 method for class 'ARMA'
nseriesInput(x)

S3 method for class 'TSestModel'
nseriesInput(x)

nseriesOutput(x)

Default S3 method:
nseriesOutput(x)

S3 method for class 'TSdata'
nseriesOutput(x)

S3 method for class 'SS'
nseriesOutput(x)

S3 method for class 'ARMA'
nseriesOutput(x)

S3 method for class 'TSestModel'
nseriesOutput(x)

Arguments

X Object of class TSdata, TSmodel or TSestModel.

Value

An integer indicating the number of series.

See Also

seriesNamesInput seriesNamesOutput

nstates 69

Examples

data("egl.DSE.data"”, package="dse")
nseriesOutput(egl.DSE.data)

nstates State Dimension of a State Space Model

Description

Extract the state dimension of a state space model object.

Usage
nstates(x)
S3 method for class 'SS'
nstates(x)
S3 method for class 'ARMA'
nstates(x)
S3 method for class 'TSestModel'
nstates(x)
Arguments
X Object of class TSmodel or TSestModel.
Value

An integer indicating the state dimension.

See Also

nseriesInput

observability Calculate Model Observability Matrix

Description

Calculate the singular values of the observability matrix of a model.

70 outOfSample.forecastCovEstimatorsWRTdata

Usage

observability(model)

S3 method for class 'ARMA'
observability(model)

S3 method for class 'SS'
observability(model)

S3 method for class 'TSestModel'
observability(model)

Arguments

model An object containing a TSmodel.

Details

If all singular values are significantly different from zero the model is observable.

Value

The singular values of the observability matrix.

See Also

reachability, stability McMillanDegree

Examples

data("egl1.DSE.data.diff", package="dse")
model <- toSS(estVARX1s(egl.DSE.data.diff))
observability(model)

outOfSample.forecastCovEstimatorsWRTdata
Calculate Out-of-Sample Forecasts

Description

Calculate out-of-sample forecasts.

Usage

outOfSample. forecastCovEstimatorsWRTdata(data, zero=FALSE, trend=FALSE,
estimation.sample=.5, horizons=1:12,quiet=FALSE,
estimation.methods=NULL, compiled=.DSEflags()$COMPILED)

percentChange.TSdata 71

Arguments

data an object of class TSdata.

estimation.methods
a list as used by estimateModels.

zero if TRUE then forecastCov is also calculated for a forecast of zero.

trend if TRUE then forecastCov is also calculated for a forecast of a linear trend.
estimation.sample
indicates the portion of the data to use for estimation. If estimation.sample is an
integer then it is used to indicate the number of points in the sample to use for
estimation. If it is a fracton it is used to indicate the portion of points to use for
estimation. The remainder of the sample is used for evaluating forecasts.

horizons horizons for which forecast covariance should be calculated.
quiet if TRUE then estimation information is not printed.
compiled a logical indicating if compiled code should be used. (Usually true except for
debugging.)
Details

The data is slpit into a sub-sample used for estimation and another sub-sample used for calculating
the forecast covariance.
Value

An object as returned by forecastCovEstimatorsWRTdata.

See Also

forecastCovEstimatorsWRTdata, forecastCovEstimatorsWRTtrue, estimateModels

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- outOfSample.forecastCovEstimatorsWRTdata(egl.DSE.data.diff,
estimation.methods=1ist(estVARXls=1list(max.lag=4)))

percentChange.TSdata Calculate percent change

Description

Calculate the percent change relative to the data lag periods prior.

72 permute

Usage
S3 method for class 'TSdata'
percentChange(obj, base=NULL, lag=1, cumulate=FALSE, e=FALSE, ...)
S3 method for class 'TSestModel'
percentChange(obj, base=NULL, lag=1, cumulate=FALSE, e=FALSE, ...)
Arguments
obj An object of class TSdata or TSestModel
e see the default method.
base see the default method.
lag see the default method.
cumulate see the default method.
arguments passed to other methods.
Details

See percentChange.

Value

For an object of class TSdata the percent change calculation is done with the output data and the
result is an object of class TSdata (or a list of objects of class TSdata). For an object of class
TSestModel the percent change calculation is done with estimates$pred and the result is an object
of class TSdata (or a list of objects of class TSdata).

See Also

percentChange ytoypc

Examples

data("egl.DSE.data"”, package="dse")
z <- percentChange(outputData(egl.DSE.data))

permute Permute

Description
Return matrix with rows indicating all possible selections of elements from seq(M). O in the result
indicates omit. M is usually a positive integer. M=0 gives NULL. Neg. M give -permute(abs(M)).
Usage

permute (M)

phasePlots 73

Arguments

M An integer.

Value

A matrix.

Examples

permute(4)

phasePlots Calculate Phase Plots

Description

Calculate phase plots

Usage
phasePlots(data, max.lag=1,diff=FALSE)
Arguments
data A matrix, time series matrix, or an object of class TSdata.
max.lag The maximum number of shifts to plot
diff If TRUE the data is plotted against the difference with lagged values.
Details

Non-linearities may show up as a non-linear surface, but this is a projection so, for example, a
spherical space would not show up. Some sort of cross-section window would show this but require
even more plots. A good statistical test would be better!

Value

None

Side Effects

A plot of (the phase space) the data against (differenced) lagged values is produced.

Examples

data("egJofF.1dec93.data”, package="dse")
phasePlots(egJofF.1dec93.data)

74 plot.roots

plot.roots Plot Model Roots

Description

Calculate and plot roots of a model.

Usage
S3 method for class 'roots'
plot(x, pch='*', fuzz=0, ...)
Arguments
X An object of class roots (a vector of complex (or real) values as returned by the
function roots).
pch character to be used for the plot (passed to plot.default).
fuzz If non-zero then roots within fuzz distance are considered equal.
(further arguments, currently disregarded).
Value

The eigenvalues of the state transition matrix or the inverse of the roots of the determinant of the
AR polynomial are returned invisibly.
Side Effects

The roots and a unit circle are plotted on the complex plane.

See Also

addPlotRoots roots stability McMillanDegree

Examples

data("egl1.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
plot(roots(model))

Polynomials 75

Polynomials Polynomial Utilities

Description

Polynomial utility functions used by DSE.

Usage
characteristicPoly(a)
companionMatrix(a)
polyvalue(coef, z)
polydet(a)
polyprod(a, b)
polysum(a, b)
polyrootDet(a)
Arguments
a An array representing a matrix polynomial.
b An array representing a matrix polynomial.
coef Coefficients of a polynomial.
z Value at which the polynomial is to be evaluated.
Details

These are utility functions used in some ARMA model calculations such as root and stability cal-
culations.

Value

depends

See Also

polyroot roots stability

76 print.forecastCov

Portmanteau Calculate Portmanteau statistic

Description

Calculate Portmanteau statistic.

Usage
Portmanteau(res)
Arguments
res A matrix with time-series residuals in columns.
See Also
informationTests
Examples

require("stats")
Portmanteau(matrix(rnorm(200), 100,2)) # but typically with a residual

print.forecastCov Print Specific Methods

Description

See the generic function description.

Usage
S3 method for class 'estimatedModels'
print(x, digits=options()$digits, ...)
S3 method for class 'forecastCov'
print(x, digits=options()$digits, ...)
S3 method for class 'forecastCovEstimatorsWRTdata.subsets'
print(x, digits=options()$digits, ...)
S3 method for class 'forecastCovEstimatorsWRTtrue'
print(x, digits=options()$digits, ...)
Arguments
X an object to be printed.
digits a non-null value is used to indicate the number of significant digits. If digits

is NULL then the value of digits specified by options is used.

(further arguments, currently disregarded).

print. TSdata

See Also

print summary

77

print.TSdata Print Specific Methods

Description

See the generic function description.

Usage
S3 method for class 'TSdata'
print(x, ...)
Arguments
X An object of class TSdata.
arguments to be passed to other methods.
See Also

print summary

print.TSestModel Display TSmodel Arrays

Description

Display TSmodel arrays.

Usage

S3 method for class 'SS'
print(x, digits=options()$digits, latex=FALSE,
S3 method for class 'ARMA'

print(x, digits=options()$digits, latex=FALSE, L=TRUE,

S3 method for class 'TSestModel'
print(x, ...)

.2

fuzz=1e-10,

.2

78

Arguments

X
digits
L

latex

fuzz

Value

reachability

An object of class TSmodel or TSestModel.
the number of significant digits

logical if TRUE then ARMA model arrays are displayed as a polynomial matrix
with L indicating lags. Otherwise, each lag in the array is displayed as a matrix.

logical. If TRUE additional context is added to make the output suitable for
inclusion in a latex document.

ARMA model polynomial elements with absolute value less than fuzz are not
displayed (i.e.-as if they are zero)

arguments passed to other methods.

The object is returned invisibly.

Side Effects

The model arrays are displayed.

Note

BUG: digits cannot be controlled for some numbers (e.g.- 1.0 is printed as 0.9999999999)

See Also

print, summary

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARXls(egl.DSE.data.diff)

print(model)

print(model, digits=3)
print(model, digits=3, fuzz=0.001)
print(model, digits=3, fuzz=0.001, latex=TRUE)

reachability

Calculate Model Reachability Matrix

Description

Calculate the singular values of the reachability matrix of a model.

residualStats

Usage

reachability(model)

S3 method for class 'ARMA'
reachability(model)

S3 method for class 'SS'
reachability(model)

S3 method for class 'TSestModel'
reachability(model)

Arguments

model An object containing TSmodel.

Details

If all singular values are significantly different from zero the model is controllable.

Value

The singular values of the reachability matrix.

See Also

observability, stability roots McMillanDegree

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- toSS(estVARX1s(egl.DSE.data.diff))
reachability(model)

residualStats Calculate Residuals Statistics and Likelihood

Description

Calculate the residuals statistics and likelihood of a residual.

Usage
residualStats(pred, data, sampleT=nrow(pred), warn=TRUE)
Arguments
pred A matrix with columns representing time series.
data A matrix with columns representing time series.
sampleT An integer indicating the sample to use.

warn If FALSE certain warnings are suppressed.

80 Riccati

Details

Residuals are calculated as pred[1:sampleT,,drop=FALSE] - data[l:sampleT,,drop=FALSE] and
then statistics are calculated based on these residuals. If pred or data are NULL they are treated
as zero.

Value

A list with elements like, cov, pred, and sampleT. pred and sampleT are as supplied (and are returned
as this is a utility function called by other functions and it is convenient to pass them along). cov is
the covariance of the residual and like is a vector of four elements representing the total, constant,
determinant and covariance terms of the negative log likelihood function.

See Also
1

Examples

residualStats(matrix(rnorm(200), 100,2), NULL) # but typically used for a residual

Riccati Riccati Equation

Description

Solve a Matrix Riccati Equation

Usage
Riccati(A, B, fuzz=1e-10, iterative=FALSE)

Arguments

A A matrix.

B A matrix.

fuzz The tolerance used for testing convergence.

iterative If TRUE an iterative solution technique is used.
Details

Solve Riccati equation P = APA’ + B by eigenvalue decompostion of a symplectic matrix or by
iteration.

Value

XXX

roots 81

Note

This procedure has not been tested.

References

Vaccaro, R. J. and Vukina, T. (1993), A Solution to the Positivity Problem in the State-Space Ap-
proach to Modeling Vector-Valued Time Series. Journal of Economic Dynamics and Control, 17,
401-421.

Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. Prentice-Hall. (note sec 6.7.)

Vaughan, D. (1970) A Nonrecursive Algebraic Solution for the Discrete Riccati Equation. IEEE Tr
AC, 597-599.

Laub, A. J. (1983) Numerical Aspects of Solving Algebraic Riccati Equations Proc IEEE conf
Decision and Control, 183-186.

Gudmundsson T., Kenney, C., and Laub, A. J. (1992) Scaling of the Discrete-Time Algebraic Ric-
cati Equation to Enhance Stability of the Schur Solution Method /IEEE Tr AC, 37, 513-518.

See Also

eigen

roots Calculate Model Roots

Description

Calculate roots of a TSmodel.

Usage
roots(obj, ...)
S3 method for class 'SS'
roots(obj, fuzz=0, randomize=FALSE, ...)
S3 method for class 'ARMA'
roots(obj, fuzz=0, randomize=FALSE, warn=TRUE, by.poly=FALSE, ...)
S3 method for class 'TSestModel'
roots(obj, ...)
Arguments
obj An object of class TSmodel.
fuzz If non-zero then roots within fuzz distance are considered equal.
randomize Randomly arrange complex pairs of roots so the one with the positive imaginary

part is not always first (so random experiments are not biased).

warn If FALSE then warnings about unit roots added for TREND are not printed.

82 roots.estimatedModels

by.poly If TRUE then roots are calculated by expanding the determinant of the A poly-
nomial. Otherwise, they are calculated by converting to a state space represen-
tation and calculating the eigenvalues of F. This second method is preferable for
speed, accuracy, and because of a limitation in the degree of a polynomial which
can be handled by polyroot.

arguments passed to other methods.

Details

The equality of roots for equivalent state space and ARMA models is illustrated in Gilbert (1993).
The calculation of ARMA model roots is more stable if the model is converted to state space and
the roots calculated from the state transition matrix (see Gilbert,2000). The calculation is done this
way by default. If by . poly=TRUE then the determinant of the AR polynomial is expanded to get the
roots.

Value

The eigenvalues of the state transition matrix or the inverse of the roots of the determinant of the
AR polynomial are returned.

References

Gilbert, P. D. (1993) State space and ARMA models: An overview of the equivalence. Working pa-
per 93-4, Bank of Canada. Available athttp://www.bankofcanada.ca/1993/03/publications/
research/working-paper-199/

Gilbert, P.D. (2000) A note on the computation of time series model roots. Applied Economics
Letters, 7, 423-424

See Also

stability, McMillanDegree

Examples

data("egl.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
roots(model)

roots.estimatedModels Roots Specific Methods

Description

See the generic function description.

http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/
http://www.bankofcanada.ca/1993/03/publications/research/working-paper-199/

scale. TSdata 83

Usage

S3 method for class 'estimatedModels'
roots(obj, digits=options()$digits, mod =FALSE, ...)

S3 method for class 'forecastCovEstimatorsWRTtrue'
roots(obj, digits=options()$digits,

mod=FALSE, ...)
Arguments
obj an object from which roots are to be extracted or calculated and printed.
digits an integer indicating the number of significant digits to be printed (passed to the
print method).
mod if TRUE the modulus of the roots is calculated. Otherwise, a complex value may
result.
arguments to be passed to other methods.
Details

The methods ***.ee are intended mainly to be called from EstEval in the EvalEst as criterion for
evaluating an estimation method.

See Also

roots stability EstEval

scale.TSdata Scale Methods for TS objects

Description

Scale data or a model by a given factor.

Usage

S3 method for class 'TSdata'
scale(x, center=FALSE, scale=NULL)

S3 method for class 'TSestModel'
scale(x, center=FALSE, scale=NULL)

S3 method for class 'ARMA'
scale(x, center=FALSE, scale=NULL)

S3 method for class 'innov'
scale(x, center=FALSE, scale=NULL)

S3 method for class 'nonInnov'
scale(x, center=FALSE, scale=NULL)

checkScale(x, scale)

84

scale. TSdata

S3 method for class 'TSestModel'
checkScale(x, scale)

S3 method for class 'TSmodel'
checkScale(x, scale)

Arguments

center

scale

Value

TSdata, TSmodel or an object containing these.
to match generic arguments, not currently used.

A list with two matrices or vectors, named input and output, giving the multi-
plication factor for inputs and outputs. Vectors are treated as diagonal matrices.
scale$input can be NULL if no transformation is to be applied (or the data or
model has no input.)

The resulting data or model is different from the original in proportion to scale. ie. if S and T are
output and input scaling matrices then y’(t) = S y(t) where y’ is the new output u’(t) = S u(t) where

u’ is the new input

For models the result has inputs and outputs (and innovations) which are scaled as if data scaling
had been applied to them as above. Thus if the input and output scales are diagonal matrices
or scalars the plot of the predictions and residuals for 1(scale(model,scale=somescale), scale(data,
scale=somescale)) while have the same appearance as 1(model, data) but will be scaled differently.

See Also

scale

Examples

data("egl1.DSE.data.diff", package="dse")

This is a simple example. Usually scale would have something
to do with the magnitude of the data.

z <- scale(egl.DSE.data.diff,

scale=list(input=rep(2, nseriesInput(egl.DSE.data.diff)),

output=rep(2,nseriesOutput(egl.DSE.data.diff))))

model <- estVARX1ls(egl.DSE.data.diff)
model <- scale(model,

scale=list(input=rep(2, nseriesInput(egl.DSE.data.diff)),

output=rep(2,nseriesOutput(egl.DSE.data.diff))))

selectForecastCov 85

selectForecastCov Select Forecast Covariances Meeting Criteria

Description

Select forecast covariances meeting given criteria.

Usage
selectForecastCov(obj, series=1,
select.cov.best=1,
select.cov.bound=NULL,
ranked.on.cov.bound=NULL,
verbose=TRUE)
Arguments
obj an object as returned by stripMine.
series an indication of series to which the tests should be applied.

select.cov.best

the number of ’best’ forecasts to select.
select.cov.bound

a bound to use as criteria for selection.
ranked.on.cov.bound

see details.
verbose if verbose=TRUE then summary results are printed.

Details

Select models with forecast covariance for series meeting criteria. The default select.cov.best=1
selects the best model at each horizon. select.cov.best=3 would select the best 3 models at
each horizon. If select. cov.bound is not NULL then select.cov.best is ignored and any model
which is better than the bound at all horizons is selected. select.cov.bound can be a vector of the
same length as series, in which case corresponding elements are applied to the different series.
Any model which is better than the bound at all horizons is selected. ranked.on.cov.bound is is
used if it is not NULL and select.cov.bound is NULL. In this case select.cov.best is ignored.
ranked.on.cov.bound should be a positive integer. The forecast covariances are ranked by there
maximum over the horizon and the lowest number up to ranked. on. cov.bound are selected. This
amounts to adjusting the covariance bound to allow for the given number of models to be selected. If
series is a vector the results are the best up to the given number on any series! select.cov.bound
can be a vector of the same length as series, in which case corresponding elements are applied
to the different series. If verbose=TRUE then summary results are printed. The returned result is a
forecastCov object like obj, but filtered to remove models which do not meet criteria.

Value

The returned result is a forecastCov object like obj, but filtered to remove models which do not meet
criteria.

86 seriesNames.TSdata

See Also

minForecastCov, excludeForecastCov

Examples

data("egl.DSE.data.diff"”, package="dse")

z <- stripMine(eg1.DSE.data.diff, essential.data=c(1,2),
estimation.methods=1ist(estVARX1s=1list(max.lag=3)))

z <- selectForecastCov(z)

tfplot(selectForecastCov(z, select.cov.bound=20000))

tfplot(selectForecastCov(z, select.cov.best=1))

seriesNames.TSdata Series Names Specific Methods

Description

See the generic function description.

Usage
S3 method for class 'TSdata'
seriesNames(x)
S3 method for class 'TSmodel'
seriesNames(x)
S3 method for class 'TSestModel'
seriesNames(x)

S3 replacement method for class 'TSdata'
seriesNames(x) <- value

S3 replacement method for class 'TSmodel'
seriesNames(x) <- value

S3 replacement method for class 'TSestModel'
seriesNames(x) <- value

Arguments
X an object from which series names can be extracted or to which series names are
to be assigned.
value series names to be assigned to data.
See Also

seriesNames

seriesNamesInput 87

seriesNamesInput TSdata Series Names

Description

Extract or set names of input or output series in a TSdata object.

Usage
seriesNamesInput(x)
S3 method for class 'TSdata'
seriesNamesInput(x)
S3 method for class 'TSmodel'
seriesNamesInput(x)
S3 method for class 'TSestModel'
seriesNamesInput(x)
seriesNamesOutput (x)
S3 method for class 'TSdata'
seriesNamesOutput (x)
S3 method for class 'TSmodel'
seriesNamesOutput (x)
S3 method for class 'TSestModel'
seriesNamesOutput (x)
seriesNamesInput(x) <- value
seriesNamesOutput(x) <- value
Arguments
X Object of class TSdata, TSmodel or TSestModel.
value value to be assigned to object.
Value

The first usages gives a vector of strings with the series names. The second usages assigns a vector
of strings to be the series names of data.
See Also

seriesNames

Examples

data("egl.DSE.data", package="dse")
seriesNamesOutput(egl.DSE.data)

88 shockDecomposition

seriesNamesInput.forecast
TS Input and Output Specific Methods

Description

See the generic function description.

Usage
S3 method for class 'forecast'’
seriesNamesInput(x)
S3 method for class 'featherForecasts'
seriesNamesInput(x)
S3 method for class 'forecast'
seriesNamesOutput (x)
S3 method for class 'featherForecasts'
seriesNamesOutput (x)
Arguments
X an object from which to extract the names of the input or output series.
shockDecomposition Shock Decomposition
Description

Graphs of the effect of shocks are plotted.

Usage
shockDecomposition(model, horizon=30, shock=rep(1,horizon))
Arguments
model An object of class TSmodel or TSestModel.
horizon The number of periods for which to calculate the effect of shocks.
shock data to be used model output. See details.
Details

All output data is set to zero and then each output in turn is switched to a value of shock (default
1.0) for all periods.

simulate

Value

None

Side Effects

89

Graphs of the effect of shocks are plotted.

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARX1s(egl.DSE.data.diff)
shockDecomposition(model)

simulate

Simulate a TSmodel

Description

Simulate a model to produce artificial data.

Usage

simulate(model, ...)
S3 method for class 'ARMA'
simulate(model, y@=NULL, input=NULL, input@=NULL,
start=NULL, freq=NULL, sampleT=100, noise=NULL, sd=1, Cov=NULL,
rng=NULL, noise.model=NULL, compiled=.DSEflags()$COMPILED, ...)
S3 method for class 'SS'
simulate(model, input=NULL,
start=NULL, freq=NULL,sampleT=100, noise=NULL, sd=1, Cov=NULL,
rng=NULL, compiled=.DSEflags()$COMPILED, ...)
S3 method for class 'TSestModel'
simulate(model, input=inputData(model),

sd=NULL, Cov=NULL, ...)
Arguments
model An object of class TSmodel or TSestModel.
input Data for the exogenous variable if specified in the model.
sampleT The length of the sample to simulate.
start start date for resulting data.
freq freq for resulting data.
y0, input®@ Lagged values prior to t=1 for y and u, in reverse order so y0[1,] and inputO[1,]correspond

to t=0. These arguments are not implemented for state space models. If not
specified initial values are set to zero.

90

simulate

noise Noise can be supplied. Otherwise it will be generated. If supplied it should be a
list as described below in details.

Cov The covariance of the noise process. If this is specified then sd is ignored. A vec-

tor or scalar is treated as a diagonal matrix. For an object of class TSestModel,
if neither Cov nor sd are specified, then Cov is set to the estimated covariance
(model$estimates$cov).

sd The standard deviation of the noise. This can be a vector.

noise.model A TSmodel to be used for generating noise (not yet supported by SS methods).

rng The random number generator information needed to regenerate a simulation.

compiled Specifies the compiled version of the code should be used (instead of the S code
version).

arguments passed to other methods.

Details

A state space or ARMA model (see TSmodel, ARMA, and SS for more details) is simulated with
pseudo random noise (The default noise is a normally distributed processes. An object of class
TSdata is returned. This can be used as input to estimation algorithms. If start and freq are specified,
or if input or noise$w (in that order) have time series properties, these are given to the output.

If noise is not supplied then random values will be generated using other supplied information or
defaults. The rng will be set first if it is specified.

The default noise generation will be N(0,I) If Q is not square in a non innovations state space model
(i.e. the system noise has a dimension less than the state dimension), then it is padded with zeros,
so generated noise of higher dimension has no effect. If sd is supplied, then w as describe below
will be N(0,sqr(sd)). sd can be a vector of p elements corresponding to each of the p outputs.

If noise is supplied it should be a list of the necessary noise processes. For non-innovation form
state space models the list must have elements w, e, and w@. (w@ is w for t=0 in state space model
and prior lags in ARMA models.) For innovation form state space models and ARMA models with
MA components the list should have elements w and w@, but if w@ is not specified it is set to zero.
For ARMA models with no MA components (i.e. VAR models) the list needs only w. In this case,
and in the innovations form state space model with w@=0, a matrix may be supplied in place of a
list. w should be a sampleT by p matrix giving the noise for t=1 to sampleT. If noise is specified
sampleT will be set to the number of periods in w.

If noise$w@ is a matrix (rather than a vector) for a state space model simulation (as it is for ARMA
simulations) then it is set to a vector of zeros. This provides compatability with VAR models
(ARMA models with no lags in B).

Input must be specified for ARMA models with mode1$C not NULL and state space models with
model$G not NULL..

In general ARMA and SS simulations will not produce exactly the same results because it is impos-
sible to determine necessary transformation of initial conditions and wo.

Value

The value returned is an object of class TSdata which can be supplied as an argument to estimation
routines. (See TSdata). In addition to the usual elements (see the description of a TSdata object)

simulate 91

there are some additional elements: model- the generating model, rng - the initial RNG and seed,
version - the version of S used (random number generators may vary) Cov as specified sd as spec-
ified noise - the noise details as provided in the argument or as generated. state - the state variable
for state space models.

See Also

makeTSnoise, TSmodel, TSdata, ARMA, SS

Examples

modl <- ARMA(A=array(c(1,-.25,-.05), c(3,1,1)), B=array(1,c(1,1,1)))

AR <- array(c(1, .5, .3, 0, .2, .1, @0, .2, .05, 1, .5, .3) ,c(3,2,2))
VAR <- ARMA(A=AR, B=diag(1,2))

print(VAR)

simData <- simulate(VAR)

C <- array(c(0.5,0,0,0.2),c(1,2,2))
VARX <- ARMA(A=AR, B=diag(1,2), C=C)
simData <- simulate(VARX, sampleT=150, input=matrix(rnorm(300),1590,2))

MA <- array(c(1, .2, 0, .1, 0, 0, 1, .3), c(2,2,2))
ARMA <- ARMA(A=AR, B=MA, C=NULL)
simData <- simulate(ARMA, sampleT=200)

ARMAX <- ARMA(A=AR, B=MA, C=C)
simData <- simulate(ARMAX, sampleT=150, input=matrix(rnorm(300),150,2))

data("egl1.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
simData <- simulate(model)

ss <- SS(F=array(c(.5, .3, .2, .4), c(2,2)),
H=array(c(1, 0, 0, 1), c(2,2)),
K=array(c(.5, .3, .2, .4), c(2,2)))

print(ss)
simData <- simulate(ss)

testEqual(simData, simulate(ss))
testEqual(simData, simulate(ss, rng=setRNG::getRNG(simData)))

simData2 <- simulate(ss,
noise=list(w=matrix(runif(300), 150,2), w@=runif(2)))

simData3 <- simulate(ss, noise=matrix(runif(400), 200,2))

92 smoother

smoother Evaluate a smoother with a TSmodel

Description

Evaluate a state space model.

Usage

smoother (model, data, compiled=.DSEflags()$COMPILED)
S3 method for class 'nonInnov'
smoother (model, data, compiled=.DSEflags()$COMPILED)
S3 method for class 'TSmodel'
smoother (model, data, compiled=.DSEflags()$COMPILED)
S3 method for class 'TSestModel'
smoother (model, data=TSdata(model),
compiled=.DSEflags()$COMPILED)

Arguments
model An object of class “TSestModel’ or "TSmodel’ with a model of class ‘nonlnnov’
’SS’ *TSmodel’. If filter informatin is not provided (i.e. in a TSestModel) then
smoother runs the Kalman filter (1.SS) first.
data A TSdata object..
compiled If TRUE the compiled version of the code is used. Otherwise the S version is
used.
Details

Calculate fixed interval smoother state values for a model. Smoother first runs the filter and uses
the filtered state to calculate a smoothed estimate of the state (sometimes called a two sided filter).
The smoother requires an non-innovations form model. The method for a TSmodel gives an error
message if the model does not inherit from class nonInnov.

Note: this does not allow the same option as 1.SS for calculating over a sub-sample. Smoothing is
done over the length of the available filter data (which will be calculated to the length of the data if
not supplied). For models with an input, smoothing will only be done over the input data period if
that is shorter than the filter data.

See SS for details of the model:
z(t) = Fz(t-1) + Gu(t) + Qe(t) y(t) = Hz(t) + Rw(t)

Value

An object of class TSestModel with an additional element smooth. smooth is a list of state, the
smoothed state, and track, the smoothed tracking error. The result will also contain the element
filter with state and track (which may or may not have been in the original arguement).

SS 93

References

Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. Prentice-Hall.

Shumway R. H. and Stoffer D.S. (1982) An Approach to Time Series Smoothing and Forecasting
Using the EM Algorithm. J. of Time Series Analysis, 3, 253-264 (note appendix).

Jazwinski, A. H. (1970) Stochastic Processes and Filtering Theory. Academic Press.

See Also

state, 1, SS 1.SS TSmodel TSestModel.object

Examples

data("egl.DSE.data.diff"”, package="dse")

#smoother requires an non-innovations form model

model <- TSmodel (toSSChol(estVARX1s(egl1.DSE.data.diff)))

smoothed.model <- smoother(model, egl.DSE.data.diff, compiled=FALSE)
tfplot(state(smoothed.model))

tfplot(state(smoothed.model, filter=TRUE))

#compare

tfplot(state(smoothed.model, smoother=TRUE), state(smoothed.model, filter=TRUE))

SS State Space Models

Description

Construct a

Usage

SS(F.=NULL, G=NULL, H=NULL, K=NULL, Q=NULL, R=NULL, z@=NULL, P@=NULL, rootP@=NULL,
constants=NULL,
description=NULL, names=NULL, input.names=NULL, output.names=NULL)
is.SS(obj)
is.innov.SS(obj)
is.nonInnov.SS(obj)

Arguments

(nxn) state transition matrix.

(pxn) output matrix.

(nxn) matrix specifying the system noise distribution.

(pxp) matrix specifying the output (measurement) noise distribution.

(nxp) input (control) matrix. G should be NULL if there is no input.

A O VW O I M

(nxp) matrix specifying the Kalman gain.

94 SS

z0 vector indicating estimate of the state at time 0. Set to zero if not supplied.

rootPe@ matrix indicating a square root of the initial tracking error (e.g. chol(P0)).

Po matrix indicating initial tracking error P(t=11t=0). Set to I if rootPO or PO are not
supplied.

constants NULL or a list of logical matrices with the same names as matices above, indi-
cating which elements should be considered constants.

description String. An arbitrary description.

names A list with elements input and output, each a vector of strings. Arguments in-

put.names and output.names should not be used if argument names is used.
input.names A vector of character strings indicating input variable names.
output.names A vector of character strings indicating output variable names.

obj an object.

Details

State space models have a further sub-class: innov or non-innov, indicating an innovations form or
a non-innovations form.

The state space (SS) model is defined by:
z(t) =Fz(t-1) + Gu(t) + Qe(t)

y(t) = Hz(t) + Rw(t)

or the innovations model:

z(t) =Fz(t-1) + Gu(t) + Kw(t-1)

y(©) = Hz(t) + w(t)

Matrices are as specified above in the arguments, and

y is the p dimensional output data.
u is the m dimensional exogenous (input) data.

z is the n dimensional (estimated) state at time t, E[z(t)ly(t-1), u(t)] denoted E[z(t)It-1]. Note: In the
case where there is no input u this corresponds to what would usually be called the predicted
state - not the filtered state. An initial value for z can be specified as z0 and an initial one step
ahead state tracking error (for non-innovations models) as P0. In the object returned by 1.ss,
state is a time series matrix corresponding to z.

z0 An initial value for z can be specified as z0.

PO An initial one step ahead state tracking error (for non-innovations models) can be specified as
PO.

rootP0 Alternatively, a square root of PO can be specified. This can be an upper triangular matrix
so that only the required number of parameters are used.

K, Q, R For sub-class innov the Kalman gain K is specified but not Q and R. For sub-class
non-innov Q and R are specified but not the Kalman gain K.

eand w are typically assumed to be white noise in the non-innovations form, in which case the
covariance of the system noise is QQ’ and the covariance of the measurement noise is RR’.
The covariance of e and w can be specified otherwise in the simulate method simulate.SS
for this class of model, but the assumption is usually maintained when estimating models of
this form (although, not by all authors).

stability 95

Typically, an non-innovations form is harder to identify than an innovations form. Non-innovations
form would typically be choosen when there is considerable theoretical or physical knowledge of
the system (e.g. the system was built from known components with measured physical values).

By default, elements in parameter matrices are treated as constants if they are exactly 1.0 or 0.0,
and as parameters otherwise. A value of 1.001 would be treated as a parameter, and this is the
easiest way to initialize an element which is not to be treated as a constant of value 1.0. Any
matrix elements can be fixed to constants by specifying the list constants. Matrices which are
not specified in the list will be treated in the default way. An alternative for fixing constants is the
function fixConstants.

Value

An SS TSmodel

References

Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. Prentice-Hall. (note p.39,44.)

See Also

TSmodel ARMA simulate.SS 1.SS state smoother fixConstants

Examples

f <- array(c(.5,.3,.2,.4),c(2,2))
h <- array(c(1,0,0,1),c(2,2))

k <- array(c(.5,.3,.2,.4),c(2,2))
ss <- SS(F=f,G=NULL,H=h,K=k)
is.SS(ss)

Ss

stability Calculate Stability of a TSmodel

Description

Calculate roots and their modulus and indicate stability.

Usage

stability(obj, fuzz=1e-4, eps=le-15, digits=8, verbose=TRUE)
S3 method for class 'ARMA'
stability(obj, fuzz=1e-4, eps=le-15, digits=8, verbose=TRUE)
S3 method for class 'roots'
stability(obj, fuzz=1e-4, eps=le-15, digits=8, verbose=TRUE)
S3 method for class 'TSmodel'
stability(obj, fuzz=1e-4, eps=le-15, digits=8, verbose=TRUE)
S3 method for class 'TSestModel'
stability(obj, fuzz=1e-4, eps=le-15, digits=8, verbose=TRUE)

96 state

Arguments
obj An object of class TSmodel.
fuzz Roots within fuzz are considered equal.
eps Roots with modulus less than (1-eps) are considered stable.
digits Printing precision.
verbose Print roots and there moduli.
Details

The returned value is TRUE or FALSE, indicating if the model is stable or not. The result also has
an attribute roots which is a matrix with the first (complex) column indicating the eigenvalues of
the state transition matrix F for state space models, or the inverse of distinct roots of det(A(L)) for
ARMA models, and the second column indicating the moduli of the roots.

The argument eps is used to prevents the indication of a stable model when the largest root is within
rounding error of 1.0.
Value

TRUE or FALSE if the model is stable or not stable.

Side Effects
The eigenvalues of the state transition matrix or the roots of the determinant of the AR polynomial
are printed if verbose is T.

See Also

McMillanDegree

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARX1ls(egl.DSE.data.diff)
stability(model)

state Extract State

Description

Extract state information from estimated SS model.

Usage

state(obj, smoother=FALSE, filter=!smoother)

stripMine 97

Arguments
obj An object of class ‘TSestModel’” with state information (filter or smoother) or
containing an ’SS’ model from which to estimate the state.
smoother logical indicating if the smoother state should be returned..
filter logical indicating if the filtered state should be returned..
Details

One and only one of smoother and filter should be TRUE).

Value

A time series matrix of the estimated state series.

See Also

smoother, SS, 1.SS

stripMine Select a Data Subset and Model

Description

Select a data subset and model.

Usage
stripMine(all.data, essential.data=1,

estimation.sample=.5,
discard.before=1, horizons=1:12,quiet=FALSE,
estimation.methods=NULL,
step.size=NULL)

Arguments

all.data An object of class TSdata.

essential.data A vector indicating the important series.
estimation.sample
The portion of the data to use for estimation.

discard.before Period before which data should be disacrded when calculating the forecast co-

variances.
horizons Forecast horizons which should be considered.
quiet If T then estimation information is not printed. quiet=TRUE may also have to

be set in the arguments to estimation methods.

98 stripMine

estimation.methods
A list indicating the model estimation method to use. The list should contain one
element. The name of the element indicates the estimation method to use and
the value of the element is a list of arguments to pass to the estimation method.

step.size An integer indicting how many dta subset/model steps should be attempted. This
may be necessary to accommodate memory constraints on the system. (see be-
low.)
Details

Calculate the predictions cov for essential.data of models estimated with estimation methods in-
dicated by estimation.methods. estimation.methods is a list with syntax similar to programs for
comparing estimation methods (eg. estimateModels), BUT ONLY THE FIRST element (estima-
tion method) is considered. Essential.data indicates the subset of output variables to included in all
models. It should be a vector of the indices. All possible combinations of input series and other
output series data are considered. If omitted, essential.data is taken as the first output series. Only
forecast covariances for essential data are returned. discard.before is an integer indicating 1+the
number of points in the beginning of predictions to discard for calculating prediction covariances.
estimation.sample indicates the portion of the data to use for estimation. If estimation.sample is
an integer then it is used to indicate the number of points in the sample to use for estimation. If
it is a fracton it is used to indicate the portion of points to use for estimation. The remainder of
the sample is used for evaluating predictions. If step.size is NULL then all possible data permu-
tations are attempted. Because S has a hard-coded limit in the number of synchronize calls this is
not always possible (For loops call synchronize.) An error message: Error in synchronize(1): No
room in database table If step.size is not NULL it should be a positive integer. In this case variable
permutions are divided up into steps of the given size. The result returned by the function can be
used to continue from the last step: intermediate.result <- stripMine(data, ...) intermediate.result <-
stripMine(intermediate.result) intermediate.result <- stripMine(intermediate.result) result <- strip-
Mine(intermediate.result) This can be done either interactively or in a batch process, but cannot be
done in a function because the database table is not cleared until the top level expression is com-
plete. The class of an intermediate result is stripMine.intermediate.result and the class of the final
result is c¢(’forecastCovEstimatorsWRTdata.subsets’, ’forecastCov’) If the final result is used in a
call to stripMine then it is just returned, so extra calls do not cause errors and are very quick. This
is useful when you are too lazy to calculate the exact number of steps.

Value

The returned result contains a list (forecastCov) of the forecast covariance on the essential data for
the various models and data subsets. It can be plotted with the generic function tfplot. Additional
information in the result comes from the function arguments.

See Also

estBlackBox4

Examples

data("egl.DSE.data.diff"”, package="dse")
z <- stripMine(egl.DSE.data.diff,
estimation.methods=1list(bft=1list(max.lag=2, verbose=FALSE)))

summary.forecastCov 99

summary . forecastCov Summary Specific Methods

Description

See the generic function description.

Usage

S3 method for class 'forecastCov'
summary (object, horizons=object$horizons,

series=seq(nseriesOutput(object$data)), ...)
S3 method for class 'forecastCovEstimatorsWRTdata.subsets'
summary (object, ...)
S3 method for class 'forecastCovEstimatorsWRTtrue'
summary (object,
digits=options()$digits, ...)
S3 method for class 'estimatedModels'
summary (object, ...)

S3 method for class 'summary.forecastCov'

print(x, digits=options()$digits, ...)
S3 method for class 'summary.forecastCovEstimatorsWRTdata.subsets'
print(x,
digits=options()$digits, ...)
S3 method for class 'summary.forecastCovEstimatorsWRTtrue'
print(x,
digits=options()$digits, ...)
S3 method for class 'summary.estimatedModels'
print(x, digits=options()$digits, ...)
Arguments
object an object for which a summary is to be printed.
X an object for which a summary is to be printed.
digits a non-null value is used to indicate the number of significant digits. If digits
is NULL then the value of digits specified by options is used.
horizons optional integer vector indicating horizons at which the summary should be cal-
culated.
series The series which should be plotted. The default NULL gives all series.

arguments passed to other methods.

See Also

summary print

100

summary. TSdata

summary.TSdata Specific Methods for Summary

Description

See the generic function description.

Usage

S3 method for class
summary (object, ...)

S3 method for class
summary (object, ...)

S3 method for class
summary (object, ...)

S3 method for class
summary (object, ...)

S3 method for class

'TSdata’
155

"ARMA'
'TSestModel'’

"summary.TSdata'

print(x, digits=options()$digits, ...)

S3 method for class

'summary.SS'

print(x, digits=options()$digits, ...)

S3 method for class

"summary.ARMA'

print(x, digits=options()$digits, ...)

S3 method for class 'summary.TSestModel'

print(x, digits=options()$digits, ...)

Arguments

object an object to be summarized.

X a summary object to be printed.

digits number of significant digits to use for printing.

arguments passed to other methods.

See Also

print, summary

sumSqerror 101

sumSgerror Calculate sum of squared prediction errors

Description

Calculate a weighted sum squared prediction errors for a parameterization.

Usage

sumSgerror(coefficients, model=NULL, data=NULL, error.weights=NULL)

Arguments

coefficients A vector of coefficients (parameters).

model an object of class TSmodel which gives the structure of the model for which
coefficients are used. coef (model) should be the same length as coefficients.

data an object of class TSdata which gives the data with which the model is to be
evaluated.

error.weights a vector of weights to be applied to the squared prediction errors.

Details

This function is primarily for use in parameter optimization, which requires that an objective func-
tion be specified by a vector of parameters.It returns only the sum of the weighted squared errors
(eg.for optimization). The sample size is determined by TobsOutput(data).

Value

The value of the sum squared errors for a prediction horizon given by the length of error.weights.
Each period ahead is weighted by the corresponding weight in error.weights.

See Also

11.SS1.ARMA

Examples

data("egl.DSE.data.diff"”, package="dse")

model <- estVARX1s(egl.DSE.data.diff)

sumSgerror(1e-10 + coef(model), model=TSmodel(model),
data=TSdata(model), error.weights=c(1,1,10))

102 testEqual.forecast

testEqual.ARMA Specific Methods for Testing Equality

Description

See the generic function description.

Usage

S3 method for class 'ARMA'
testEqual(obj1, obj2, fuzz=0)

S3 method for class 'SS'
testEqual(obj1, obj2, fuzz=0)

S3 method for class 'TSdata'
testEqual(obj1, obj2, fuzz=1e-16)

S3 method for class 'TSmodel'
testEqual(obj1, obj2, fuzz=0)

S3 method for class 'TSestModel'
testEqual(obj1, obj2, fuzz=0)

Arguments
obj1 see generic method.
obj2 see generic method.
fuzz see generic method.
See Also
testEqual

testEqual.forecast Specific Methods for Testing Equality

Description

See the generic function description.

tfplot.forecast 103

Usage

S3 method for class 'forecast'
testEqual(obj1, obj2, fuzz=le-14)

S3 method for class 'forecastCov'
testEqual(obj1, obj2, fuzz=le-14)

S3 method for class 'horizonForecasts'
testEqual(obj1, obj2, fuzz=le-14)

S3 method for class 'estimatedModels'
testEqual(obj1, obj2, fuzz = 0)

Arguments
obj1 an object which is to be compared with the second object.
obj2 an object which is to be compared with the first object.
fuzz tolerance for numerical comparisons. Values within fuzz will be considered
equal.
See Also
testEqual
tfplot.forecast Specific Methods for tfplot
Description

See the generic function description.

Usage

S3 method for class 'forecast'
tfplot(x, tf=NULL, start=tfstart(tf), end=tfend(tf),
series = seq(length=nseriesOutput(x$data)),
Title="Predictions (dotted) and actual data (solid)”,
ylab = seriesNamesOutput(x$data),
graphs.per.page=5, mar=par()$mar, reset.screen=TRUE, ...)
S3 method for class 'featherForecasts'
tfplot(x, tf=NULL, start=tfstart(tf), end=tfend(tf),
series=seq(nseries(x)),
Title="Predictions (dotted) and actual data (solid)”,
ylab=seriesNamesOutput(x),
graphs.per.page=5, mar=par()$mar, reset.screen=TRUE, ...)
S3 method for class 'horizonForecasts'
tfplot(x, tf=NULL, start=tfstart(tf), end=tfend(tf),
series=seq(length=nseriesOutput(x$data)),
Title="Predictions (dotted) and actual data (solid)"”,

104 tfplot.forecastCov

ylab=seriesNamesOutput (x$data),

graphs.per.page=5, mar=par()$mar, reset.screen=TRUE, ...)
S3 method for class 'multiModelHorizonForecasts'
tfplot(x,
tf=NULL, start=tfstart(tf), end=tfend(tf), series=NULL, ...)
Arguments
X an object for which a tfplot is to be produced.
tf see tfplot.
start see tfplot.
end see tfplot.
Title string of characters to use for title.
ylab vector of strings for y axis labelling.

graphs.per.page

integer indicating number of graphs to place on a page.
reset.screen logical indicating if the plot window should be cleared before starting.
series integer or string indicating the series which should be plotted.
mar plot margins. See par.

arguments passed to other methods.

See Also

tfplot EstEval

tfplot.forecastCov Plots of Forecast Variance

Description

Generate plots of forecast variance calculated by forecastCov.

Usage

S3 method for class 'forecastCov'
tfplot(x, ...,
series = 1:dim(x$forecastCov[[1]1)[2],
select.cov = 1:length(x$forecastCov), select.true =TRUE,
select.zero =TRUE, select.trend =TRUE, y.limit = NULL, line.labels =FALSE,
1ty = NULL, Legend = NULL, Title = NULL,
graphs.per.page = 5, mar=par()$mar, reset.screen=TRUE)
S3 method for class 'forecastCovEstimatorsWRTdata'
tfplot(x,
series=1:dim(x$forecastCov[[11]1)[2],
select.cov=1:1length(x$forecastCov),
select.zero=TRUE, select.trend=TRUE,
graphs.per.page = 5, mar=par()$mar, reset.screen=TRUE, 1ty=NULL, ...)

tfplot.forecastCov 105

Arguments

X
series

select.

select.

select.

select.
graphs.

mar
reset.s
1ty
Legend
Title
y.limit

line.la

Details

The result of forecastCov.
integer or string indicating the series which should be plotted.

cov logical indicating that for the case of multiple models select the covariance to be
plotted.

true logical indicating that results from the forecast of the true model (if available)
should be plotted.

zero logical indicating that results from a forecast of zero should be plotted.

trend logical indicating that results from a forecast of trend should be plotted.

per.page
The number of graphs to put on a page.

plot margins (see par).
creen logical indicating if the plot window should be cleared before starting.
see details.
optional legend passed to legend.
optional legend passed to title (but see details).

optional limit on the y scale. Covariance values larger than y.limit will not be
shown.

bels logical indicating line labels should be printed.

For forecastCov objects this allows additional objects to be plotted. For fore-
castCovEstimatorsWRTdata ... are passed to other methods.

This function produces plots of the variance at different horizons. Output graphics can be paused

between

pages by setting par(ask=TRUE). If Ity is NULL (default) it is set to seq(length(select.cov)

+select.true+select.zero+select.trend), and corrected if these are TRUE but not in the object.
The Title is not put on the plot if the global option PlotTitles is FALSE. This can be set with

options
title may

Value

None

See Also

plot

Examples

(PlotTitles=FALSE). This provides a convenient mechanism to omit all titles when the
be added separately (e.g. in Latex).

data("egl1.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)

z <-

forecastCov(model, data=egl.DSE.data.diff)

tfplot(z)

106 tfplot. TSdata

tfplot.TSdata Tfplot Specific Methods

Description

See the generic function description.

Usage
S3 method for class 'TSdata'
tfplot(x, ...,
tf=NULL, start=tfstart(tf), end=tfend(tf),
select.inputs = seq(length=nseriesInput(x)),

select.outputs = seq(length=nseriesOutput(x)),
Title=NULL, xlab=NULL, ylab=NULL,

graphs.per.page=5, mar=par()$mar, reset.screen=TRUE)

S3 method for class 'TSestModel'

tfplot(x, ...,
tf=NULL, start=tfstart(tf), end=tfend(tf),
select.inputs=NULL, select.outputs=NULL,
Title=NULL, xlab=NULL, ylab=NULL,
graphs.per.page=5, mar=par()$mar, reset.screen=TRUE)

Arguments
X object to be plotted.
additional objects to be plotted.
start start of plot.
end end of plot.
tf an alternate way to specify start and end of plot.

select.inputs series to be plotted. (passed to selectSeries)
select.outputs series to be plotted. (passed to selectSeries)

Title string to use for plot title (passed to plot - see tfplot).
xlab string to use for x label (passed to plot).
ylab string to use for y label (passed to plot).

graphs.per.page
integer indicating number of graphs to place on a page.
mar margins passed to plot. See par.)

reset.screen logical indicating if the plot window should be cleared before starting. If this is
not TRUE then mar values will have no effect.

See Also
tfplot

tframed.TSdata 107

tframed.TSdata Specific Methods for tframed Data

Description

See the generic function description.

Usage

S3 method for class 'TSdata'

tframed(x, tf=NULL, names=NULL, ...)
S3 replacement method for class 'TSdata'

tframe(x) <- value
S3 method for class 'TSdata'

tfwindow(x, tf=NULL, start=tfstart(tf), end=tfend(tf), warn=TRUE)
S3 method for class 'TSdata'

tbind(x, d2, ..., pad.start=TRUE, pad.end=TRUE, warn=TRUE)
S3 method for class 'TSdata'

trimNA(x, startNAs=TRUE, endNAs=TRUE)
S3 method for class 'TSdata'

window(x, start=NULL, end=NULL, tf=NULL, warn=TRUE, ...)
Arguments
X See the generic function.
tf a time frame. See the generic function.
value a time frame to associate with x.
names A list with elements input and output which are strings passed as names to the
default method.
start See the generic function.
startNAs See the generic function.
end See the generic function.
endNAs See the generic function.
d2 See the generic function.
pad.start See the generic function.
pad.end See the generic function.
warn logical indicating if some warning messages should be suppressed.

arguments passed to other functions.

Details

The generic function is applied to input and to output data.

See Also

tframed, tfwindow, tbind, trimNA

108 toARMA

t0ARMA Convert to an ARMA Model

Description

Convert a state space model to an ARMA representation. The state is eliminated by a method
which uses an equivalence that can be demonstrated by the Cayley Hamilton theorem. It is not very

parsimonious.
Usage
toARMA(model, ...)
S3 method for class 'ARMA'
toARMA(model, ...)
S3 method for class 'SS'
toARMA(model, fuzz=1e-10, ...)
S3 method for class 'TSestModel'
toARMA(model, ...)
Arguments
model An object of class TSmodel.
fuzz Parameters closer than fuzz to one or zero are set to 1.0 or 0.0 respectively
arguments to be passed to other methods.
Value

An object of class ’”ARMA’ *"TSmodel’ containing an ARMA model.

References

See, for example, Aoki, M. (1990) State Space Modelling of Time Series. 2d ed. rev. and enl.,
Springer-Verlag.

Aoki, M. and Havenner, A. (1991) State Space Modeling of Multiple Time Series. Econometric
Reviews, 10, 1-59.

See Also

toSS fixConstants

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- toSS(estVARX1s(egl.DSE.data.diff))
model <- toARMA(model)

Tobs.TSdata

109

Tobs.TSdata Specific Methods for tframed Data

Description

See the generic function description.

Usage
S3 method for class 'TSdata'
Tobs(x, ...)
S3 method for class 'TSestModel'
Tobs(x)
S3 method for class 'TSdata'
start(x, ...)
S3 method for class 'TSestModel'
start(x, ...)
S3 method for class 'TSdata'
end(x, ...)
S3 method for class 'TSestModel'
end(x, ...)
S3 method for class 'TSdata'
frequency(x, ...)
S3 method for class 'TSestModel'
frequency(x, ...)
Arguments
X a time series object.
(further arguments, currently disregarded).
See Also

Tobs, tfstart, tfend, tffrequency start, end, frequency

TobsInput TSdata Periods

Description

Apply a method to the input or output data.

110 TobsInput

Usage

TobsInput(x)

S3 method for class 'TSdata'
TobsInput(x)

S3 method for class 'TSestModel'
TobsInput(x)

TobsOutput (x)

S3 method for class 'TSdata'
TobsOutput (x)

S3 method for class 'TSestModel'
TobsOutput(x)

startInput(x)

S3 method for class 'TSdata'
startInput(x)

S3 method for class 'TSestModel'
startInput(x)

startOutput(x)

S3 method for class 'TSdata'
startOutput(x)

S3 method for class 'TSestModel'
startOutput (x)

endInput(x)

S3 method for class 'TSdata'
endInput(x)

S3 method for class 'TSestModel'
endInput(x)

endOutput (x)

S3 method for class 'TSdata'
endOutput (x)

S3 method for class 'TSestModel'
endOutput (x)

frequencyInput(x)

S3 method for class 'TSdata'
frequencyInput(x)

S3 method for class 'TSestModel'
frequencyInput(x)

frequencyOutput (x)

S3 method for class 'TSdata'
frequencyOutput (x)

S3 method for class 'TSestModel'
frequencyOutput (x)

toSS 111

Arguments

X An object containing TSdata.

Details

Apply a method to the input or output data so, for example, TobsInput(x) in theory does Tobs(inputData(x)),
which returns the number of observation periods in input data. The actual implementation may not

do Tobs(inputData(x)). For example, with TSPADIdata inputData(x) requires a database retrieval
which may be fairly slow, while the number of periods may be available much more quickly.

Value

Depends.

Examples

data("egl1.DSE.data.diff", package="dse")
TobsOutput (egl.DSE.data.diff)

toSS Convert to State Space Model

Description

Convert a model to state space form.

Usage

toSS(model, ...)

S3 method for class 'ARMA'
toSS(model, ...)

S3 method for class 'SS'
toSS(model, ...)

S3 method for class 'TSestModel'
toSS(model, ...)

toSSaugment(model, ...)

S3 method for class 'ARMA'
toSSaugment (model, fuzz=1e-14, ...)

S3 method for class 'TSestModel'
toSSaugment (model, ...)

toSSnested(model, ...)

S3 method for class 'ARMA'
toSSnested(model, n=NULL, Aoki=FALSE, ...)

112 toSSChol

S3 method for class 'SS'

toSSnested(model, n=NULL, Aoki=FALSE, ...)
S3 method for class 'TSestModel'
toSSnested(model, ...)
Arguments

model An object of class TSmodel.

n If n is specified then it is used as the state dimension when the markov parameter
conversion technique is required.

Aoki logical indicating if Aoki’s method (which does not work in general) should be
tried.

fuzz if the zero lag term of polynomials A and B are within fuzz of the identitity

matrix then they are not inverted. (i.e. they are assumed to be identity.)

arguments to be passed to other methods.

Details

If the order of the AR polynomial equals or exceeds the MA polynomial (and the input polynomial)
then the model is converted by state augmentation. Otherwise, it is converted by approximating the
markov coefficients a la Mittnik. (This may not always work very well. Compare the results to
check.)

Value

A state space model in an object of class ’SS’ "TSmodel’.

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARX1s(egl.DSE.data.diff)
model <- toSS(model)

toSSChol Convert to Non-Innovation State Space Model

Description

This function may not be working properly.

Convert to a non-innovations state space representation using the given matrix (Om) as the mea-
surement noise covariance. Om would typically be an estimate of the output noise, such as returned
in $estimates$cov of the function 1 (1.SS or 1.ARMA). This assumes that the noise processes in
the arbitrary SS representation are white and uncorrelated.

toSSinnov 113

Usage

toSSChol (model, ...)
S3 method for class 'TSmodel'

toSSChol (model, Om=diag(1,nseriesOutput(model)), ...)
S3 method for class 'TSestModel'

toSSChol (model, Om=NULL, ...)

Arguments

model An object of class TSmodel.

Om a matrix to be used as the measurement noise covariance. If Om is not sup-
plied and model is of class TSestModel then model$estimates$cov is used.
Otherwise, Om is set to the identity matrix.

arguments to be passed to other methods.

Details
Convert to a non-innovations SS representation using a Cholesky decomposition of Om as the co-
efficient matrix of the output noise.

Value

An object of class ’SS’ *"TSmodel” containing a state space model which is not in innovations form.

See Also

toSSinnov

Examples

data("egl1.DSE.data.diff", package="dse")
model <- estVARXls(egl.DSE.data.diff)
model <- toSSChol(model)

toSSinnov Convert to State Space Innovations Model

Description

Convert to a state space innovations representation.

Usage

toSSinnov(model, ...)

114 toSSOform

Arguments
model an object of class TSmodel.
arguments passed to other methods.
Value

If the argument is a TSmodel then the result is an object of class ’SS’ *TSmodel’ If the argument
is a TSestModel then the converted model is evaluated with the data an a TSestModel is returned.
The TSmodel is an innovations state space representation.

This assumes that the noise processes in the arbitrary SS representation are white and uncorrelated.

See Also
toSS, toSSOform toSSChol

Examples

data("egl.DSE.data.diff"”, package="dse")
model <- estVARX1s(egl.DSE.data.diff)
model <- toSSinnov(model)

summary (model)

model2 <- SS(F=diag(1,3), H=matrix(c(1,90,0,1,0,0),2,3),
Q=diag(@.5, 3, 3), R=diag(1.1, 2,2),

description="test model”, output.names=c("output 1", "output 2"))
model2 <- toSSinnov(model?2)
summary (model2)
toSSOform Convert to Oform
Description

Convert a state space model to (observability?) form.

Usage

toSSOform(model)

S3 method for class 'TSmodel'
toSSOform(model)

S3 method for class 'TSestModel'
toSSOform(model)

Arguments

model An object of class TSmodel.

totalForecastCov 115

Details

WARNING: This function does not work properly.

Convert to a SS innovations representation with a minimum number of parameters by converting as
much of H as possible to I matrix. Any remaining reductions are done by converting part of ?? to L.
It seems there should remain n(m+2p) free parameters in F,G,H,K, and Om is determined implicitly
by the residual.

Value
An object of class ’SS’ "TSmodel’ containing a state space model in observability form (more or
less).

See Also

toSSinnov

Examples

data("egl1.DSE.data.diff", package="dse")
model <- estVARX1ls(egl.DSE.data.diff)

totalForecastCov Sum covariance of forecasts across all series

Description

Sum covariance of forecasts across all series.

Usage
totalForecastCov(obj, select=NULL)
Arguments
obj An object as returned by forecastCov.
select Series to be select for summation. With the default all series are selected.
Value

An object similar to that returned by forecastCov, with the covariance summed over all selected
series.

116 TSdata

Examples

data("egl.DSE.data.diff"”, package="dse")

modell <- estVARXar(egl.DSE.data.diff)

model2 <- estVARX1s(egl.DSE.data.diff)

z <- totalForecastCov(forecastCov(modell, model2,
data=trimNA(egl1.DSE.data.diff)))

TSdata Construct TSdata time series object

Description

Constructor for constructing or extracting a TSdata object (use by TSmodels).

Usage

TSdata(data=NULL, ...)

Default S3 method:
TSdata(data=NULL, input=NULL, output=NULL, ...)

S3 method for class 'TSdata'
TSdata(data, ...)

S3 method for class 'TSestModel'
TSdata(data, ...)

is.TSdata(obj)

as.TSdata(d)

Arguments

data object of class TSdata, TSestModel, matrix, list with input and output matrices,
or another object for which a constructor or TSdata extraction method has been
defined.

input a matrix of time series data.
output a matrix of time series data.

arguments to be passed to other methods.
obj an object.

d an object from which a TSdata object can be extracted. See below.

Details

Generic method to construct or extract a TSdata object. The default method constructs a TSdata
object. Specific methods extract the TSdata from other objects (which must contain TSdata). The
function is.TSdata(data) returns TRUE if data inherits from TSdata and FALSE otherwise.

The function as.TSdata uses the elements input and output directly and strips away other class
information and parts of the object (and does not make use of inputData(data) or outputData(data)
which may do something special for certain classes.

TSdata.forecastCov

See Also

TSdata.object, TSmodel, TSestModel.object

Examples

rain <- matrix(rnorm(86x17), 86,17)
radar <- matrix(rnorm(86%5), 86,5)
mydata <- TSdata(input=radar, output=rain)

117

TSdata. forecastCov TS Extractor Specific Methods

Description

See the generic function description.

Usage
S3 method for class 'forecastCov'
TSdata(data, ...)
S3 method for class 'forecastCov'
TSmodel(obj, select=1, ...)
Arguments
data an object from which to extract the TSdata.
obj an object from which to extract the TSmodel or TSestModel.
select an integer indicating which of multiple models to extract.
arguments to be passed to other methods.
See Also

TSdata TSestModel TSmodel

118 TSestModel

TSdata.object time series data object

Description

Class TSdata of time series data objects for use with TSmodels.

Generation
This class of objects is returned by specific methods of the function TSdata or can be built according
to the description below.
Methods
The TSdata class of objects has methods for the generic functions print,plot,start,end, ..., testEqual, seriesNames,
Also, the function is.TSdata is supported.
Inheritance

Other data classes inherit from the class TSdata.

Structure

Objects are a list with class the most general class TSdata. The native form for this package has
elements input and output. Any other elements are ignored. input and output are matrices (or
tframe or time series matrices) of the input and output data, with each series in a column. It is
possible to populate this structure directly from a time series database. See the TSdbi package for
more details.

See Also

TSdata, TSmodel, TSestModel.object

TSestModel Estimated Time Series Model

Description

Object containing a time series model, data, and estimation information.

Usage
TSestModel (obj)
S3 method for class 'TSestModel'
TSestModel (obj)

is.TSestModel(obj)

TSmodel 119

Arguments
obj in the first usage an object from which a TSestModel object can be extracted (or
constructed).
Details

The TSestModel class of objects are generated by estimation methods. See, for example, estVARX1s.
They contains a time series model (TSmodel), data (TSdata), and information obtained by evaluat-
ing the model with the data in an element called estimates containing:

like The negative log likelihood function value (a vector of the total, constant, the det part, and the
cov part)

cov The estimated residual covariance.

pred The one step ahead predictions (see predictT below). These are aligned with output data so
that residuals are pred[1:sampleT,] - output[1:sampleT,]

sampleT The end of the period (starting from 1) for which output is used for calculating one step
ahead predictions.

predictT The end of the period for which the model is simulated. sampleT must be less than or
equal predictT. If predictT is greater than sampleT then each step ahead beyond sampleT is
based on the prediction of the previous step and not corrected by the prediction error.

The element estimates may optionally also contain and element filter which may have

state The one step ahead (filter) estimate of the state E[z(t)ly(t-1), u(t)]. Note: In the case where
there is no input u this corresponds to what would usually be called the predicted state - not
the filtered state.

track The estimated state tracking error P(tlt-1). Again note, this corresponds to the predicted
tracking eror not the filtered tracking error. This is NULL for innovations models.

smooth a list of:
state The smoother (two sided filter) estimate of the state E[z(t)l sampleT].

track The smoothed estimate of the state tracking error P(tlsampleT). This is NULL for innovations
models.

See Also

estVARX1s, TSmodel, TSdata

TSmodel Time Series Models

Description

Construct or extract a "TSmodel" from objects.

120 TSmodel

Usage
TSmodel (obj, ...)
S3 method for class 'TSmodel'
TSmodel(obj, ...)
S3 method for class 'TSestModel'
TSmodel(obj, ...)
is.TSmodel (obj)
Arguments
obj An object containing an object of class TSmodel or a list containing the infor-
mation necessary to build an object of class TSmodel.
arguments passed to other methods.
Details

This is a generic method which will extract a TSmodel from an object (e.g. a TSestModel. The
default method will try to build an ARMA or state-space TSmodel from a list, which must contain
the necessary information.

This class of objects is returned by estimation methods or can be built according to the description
for specific sub-classes (e.g. ARMA, SS).

The TSmodel class of objects has methods for the generic functions print, testEqual, seriesNames, seriesNamesInput,s

Also, the function is.TSmodel and the functions toSS, toARMA, to.troll are supported. Other
model classes inherit from the class TSmodel.

This class of objects contains a time series model. It is the class of objects expected by many of the
functions in this package.

Sub-class (e.g. ARMA and SS for linear, time-invariant ARMA and state space models.) are
documented individually. Many of the functions in this package are designed for estimating and
converting among various representations of these types of models.

See Also

ARMA, SS, TSestModel, TSdata

Index

+Topic algebra
markovParms, 61
Riccati, 80

+Topic datasets
egl1.DSE.data, 19
egJofF.1dec93.data, 20

+Topic package
00.dse.Intro, 6

+Topic programming
DSEflags, 18
nseries.featherForecasts, 67

*Topic ts
addPlotRoots, 6
ARMA, 77
balanceMittnik, 9
bestTSestModel, 10
checkBalance, 11
checkBalanceMittnik, 12
checkConsistentDimensions, 13
checkResiduals, 14
coef.TSmodel, 15
combine, 16
combine. forecastCov, 17
combine.TSdata, 18
dse-package, 4
DSEversion, 19
estBlackBox, 21
estBlackBox1, 22
estBlackBox2, 23
estBlackBox3, 24
estBlackBox4, 25
estimateModels, 27
estimatorsHorizonForecastsWRTdata,

28

estMaxLik, 29
estSSfromVARX, 30
estSSMittnik, 31
estVARXar, 32
estVARX1s, 34

121

estWtVariables, 35

excludeForecastCov, 36

extractforecastCov, 37

featherForecasts, 38

fixConstants, 39

fixF, 40

forecast, 41

forecastCov, 42

forecastCovEstimatorsWRTdata, 44

forecastCovEstimatorsWRTtrue, 45

forecastCovReductionsWRTtrue, 46

forecastCovWRTtrue, 47

forecasts, 49

gmap, 50

horizonForecasts, 50

horizonForecastsCompiled, 52

informationTests, 53

informationTestsCalculations, 54

inputData, 55

is.forecastCovEstimatorsWRTdata. subsets,
56

1, 56

1.ARMA, 57

1.SS, 59

markovParms, 61

McMillanDegree, 62

minForecastCov, 63

minimumStartuplLag, 64

MittnikReducedModels, 65

MittnikReduction, 65

nseries.featherForecasts, 67

nseriesInput, 68

nstates, 69

observability, 69

outOfSample. forecastCovEstimatorsWRTdata,
70

percentChange.TSdata, 71

permute, 72

phasePlots, 73

122

plot.roots, 74
Polynomials, 75
Portmanteau, 76
print.forecastCov, 76
print.TSdata, 77
print.TSestModel, 77
reachability, 78
residualStats, 79
Riccati, 80

roots, 81
roots.estimatedModels, 82
scale.TSdata, 83
selectForecastCov, 85
seriesNames.TSdata, 86
seriesNamesInput, 87
seriesNamesInput.forecast, 88
shockDecomposition, 88
simulate, 89
smoother, 92

SS, 93

stability, 95

state, 96

stripMine, 97
summary . forecastCov, 99
summary.TSdata, 100
sumSgerror, 101
testEqual.ARMA, 102
testEqual. forecast, 102
tfplot.forecast, 103
tfplot.forecastCov, 104
tfplot.TSdata, 106
tframed.TSdata, 107
toARMA, 108
Tobs.TSdata, 109
TobsInput, 109

toSS, 111

toSSChol, 112
toSSinnov, 113
toSSOform, 114
totalForecastCov, 115
TSdata, 116
TSdata.forecastCov, 117
TSdata.object, 118
TSestModel, 118
TSmodel, 119

*Topic utilities

nseries.featherForecasts, 67

.DSEflags (DSEflags), 18

INDEX

00.dse.Intro, 6

addPlotRoots, 6, 74

ar, 34

ARMA, 5,7, 30, 58, 90, 91, 95, 120
as.TSdata (TSdata), 116

balanceMittnik, 9, 67
bestTSestModel, 10

bft, 5, 30-32, 34-36, 67
bft (estBlackBox4), 25

characteristicPoly (Polynomials), 75
checkBalance, 11, 13
checkBalanceMittnik, 12, 12
checkConsistentDimensions, 13
checkResiduals, 5, 14
checkScale (scale.TSdata), 83
coef.TSestModel (coef.TSmodel), 15
coef.TSmodel, 15
coef<- (coef.TSmodel), 15
combine, 16, 17
combine.forecastCov, 17
combine.forecastCovEstimatorsWRTdata
(combine.forecastCov), 17
combine. forecastCovEstimatorsWRTtrue
(combine.forecastCov), 17
combine.TSdata, 18
companionMatrix (Polynomials), 75

distribution, 48

dse (dse-package), 4
dse-package, 4

DSE.ar, 34

dse.Intro (dse-package), 4
DSEflags, 18
DSEversion, 19

egl.dat (eg1.DSE.data), 19
egl.DSE.data, 19
egJofF.1dec93.data, 20
eigen, 81

end, 109

end.TSdata (Tobs.TSdata), 109
end.TSestModel (Tobs.TSdata), 109
endInput (TobsInput), 109
endOutput (TobsInput), 109
estBlackBox, 21, 36
estBlackBox1, /1,22, 24-26

INDEX

estBlackBox2, /1, 23, 25, 26
estBlackBox3, /1, 24, 24, 26
estBlackBox4, 11, 24, 25, 25, 98
EstEval, 5, 27,48, 83, 104
estimateModels, 27, 28, 45, 71
estimatorsHorizonForecastsWRTdata, 28
estMaxLik, 5,8, 9, 29, 31, 34-36
estSSfromVARX, 5, 30, 34, 35
estSSMittnik, 317, 31, 34, 35
estVARXar, 5, 10, 32, 35

estVARX1s, 5, 8-10, 30-32, 34, 34, 36, 67, 119
estWtVariables, 35
excludeForecastCov, 36, 63, 86
extractforecastCov, 37

featherForecasts, 5, 38,42, 51

fixConstants, 9, 30, 39, 40, 95, 108

fixF, 39, 40

forecast, 5, 38, 41, 49

forecastCov, 5, 17, 37,42

forecastCovEstimatorsWRTdata, /7, 44, 46,
48,71

forecastCovEstimatorsWRTtrue, 17,45, 71

forecastCovReductionsWRTtrue, 46

forecastCovWRTtrue, 46, 47

forecasts, 49

frequency, 109

frequency.TSdata (Tobs.TSdata), 109

frequency.TSestModel (Tobs.TSdata), 109

frequencyInput (TobsInput), 109

frequencyOutput (TobsInput), 109

gmap, 50

horizonForecasts, 3, 28, 38, 42, 50, 52
horizonForecastsCompiled, 52

informationTests, 5, 15, 53, 54, 67, 76

informationTestsCalculations, 11, 23-26,
53,54, 67

inputData, 55

inputData<- (inputData), 55

is.ARMA (ARMA), 7

is.estimatedModels (estimateModels), 27

is.featherForecasts (featherForecasts),
38

is.forecast (forecast), 41

is.forecastCov (forecastCov), 42

123

is.forecastCovEstimatorsWRTdata
(forecastCovEstimatorsWRTdata),
44

is.forecastCovEstimatorsWRTdata. subsets,
56

is.forecastCovEstimatorsWRTtrue
(forecastCovEstimatorsWRTtrue),
45

is.forecastCovWRTdata
(forecastCovWRTtrue), 47

is.horizonForecasts (horizonForecasts),
50

is.innov.SS (SS), 93

is.nonInnov.SS (SS), 93

is.SS (SS), 93

is.TSdata (TSdata), 116

is.TSestModel (TSestModel), 118

is.TSmodel (TSmodel), 119

1,5, 30, 56, 58, 60, 80, 93, 101
1.ARMA, 57,57, 60, 101
1.SS,57, 58,59, 93,95, 97, 101

makeTSnoise, 91

markovParms, 61
McMillanDegree, 5, 62, 70, 74, 79, 82, 96
minForecastCov, 36, 63, 86
minimumStartuplLag, 64
MittnikReducedModels, 65
MittnikReduction, 10, 12, 13, 32, 61, 65, 65
MonteCarloSimulations, 5, 48

nlm, 30
nseries.featherForecasts, 67
nseriesInput, 68, 69
nseriesOutput (nseriesInput), 68
nstates, 69

observability, 69, 79

old.estVARXar (estVARXar), 32

optim, 30

outOfSample. forecastCovEstimatorsWRTdata,
27,45,70

outputData (inputData), 55

outputData<- (inputData), 55

percentChange, 72

percentChange.TSdata, 71

percentChange.TSestModel
(percentChange.TSdata), 71

124

permute, 72

phasePlots, 73

plot, 105

plot.roots, 7, 74

polydet (Polynomials), 75

Polynomials, 75

polyprod (Polynomials), 75

polyroot, 75

polyrootDet (Polynomials), 75

polysum (Polynomials), 75

polyvalue (Polynomials), 75

Portmanteau, 15, 76

print, 77, 78, 99, 100

print.ARMA (print.TSestModel), 77

print.estimatedModels
(print.forecastCov), 76

print.forecastCov, 76

print.forecastCovEstimatorsWRTdata.subsets
(print.forecastCov), 76

print.forecastCovEstimatorsWRTtrue
(print.forecastCov), 76

print.SS (print.TSestModel), 77

print.summary.ARMA (summary.TSdata), 100

print.summary.estimatedModels
(summary . forecastCov), 99

print.summary.forecastCov
(summary.forecastCov), 99

print.summary.forecastCovEstimatorsWRTdata.subsets

(summary . forecastCov), 99
print.summary.forecastCovEstimatorsWRTtrue
(summary . forecastCov), 99
print.summary.SS (summary.TSdata), 100
print.summary.TSdata (summary.TSdata),
100
print.summary.TSestModel
(summary.TSdata), 100
print.TSdata, 77
print.TSestModel, 77

reachability, 70, 78

residualStats, 79

Riccati, 80

roots, 5,74, 75, 79, 81, 83

roots.estimatedModels, 82

roots.forecastCovEstimatorsWRTtrue
(roots.estimatedModels), 82

scale, 84
scale.ARMA (scale.TSdata), 83

INDEX

scale.innov (scale.TSdata), 83

scale.nonlnnov (scale.TSdata), 83

scale.TSdata, 83

scale.TSestModel (scale.TSdata), 83

selectForecastCov, 36, 63, 85

selectSeries, 55

seriesNames, 86, 87

seriesNames.TSdata, 86

seriesNames.TSestModel
(seriesNames.TSdata), 86

seriesNames.TSmodel
(seriesNames.TSdata), 86

seriesNames<-.TSdata
(seriesNames.TSdata), 86

seriesNames<-.TSestModel
(seriesNames.TSdata), 86

seriesNames<-.TSmodel
(seriesNames.TSdata), 86

seriesNamesInput, 68, 87

seriesNamesInput.featherForecasts
(seriesNamesInput.forecast), 88

seriesNamesInput.forecast, 88

seriesNamesInput<- (seriesNamesInput),
87

seriesNamesOutput, 68

seriesNamesOutput (seriesNamesInput), 87

seriesNamesOutput.featherForecasts

(seriesNamesInput.forecast), 88

seriesNamesOutput.forecast
(seriesNamesInput.forecast), 88

seriesNamesOutput<- (seriesNamesInput),
87

shockDecomposition, 88

simulate, 5, 48, 89

simulate.ARMA, 9

simulate.SS, 95

smoother, 5, 60, 92, 95, 97

SS, 5, 30, 60, 90-93, 93, 97, 120

stability, 5, 62, 70, 74, 75, 79, 82, 83, 95

start, 109

start.TSdata (Tobs.TSdata), 109

start.TSestModel (Tobs.TSdata), 109

startInput (TobsInput), 109

startOutput (TobsInput), 109

startShift (minimumStartuplLag), 64

state, 60, 93, 95, 96

stripMine, 56, 97

summary, 77, 78, 99, 100

INDEX

summary .ARMA (summary.TSdata), 100

summary.estimatedModels
(summary . forecastCov), 99

summary . forecastCov, 99

summary . forecastCovEstimatorsWRTdata. subsets

(summary . forecastCov), 99
summary . forecastCovEstimatorsWRTtrue

(summary . forecastCov), 99
summary.SS (summary.TSdata), 100
summary.TSdata, 100

summary.TSestModel (summary.TSdata), 100

sumSgerror, 101
SVDbalanceMittnik, 61
SVDbalanceMittnik (balanceMittnik), 9

tbind, 107
tbind.TSdata (tframed.TSdata), 107
testEqual, 102, 103
testEqual.ARMA, 102
testEqual.estimatedModels
(testEqual.forecast), 102
testEqual.forecast, 102
testEqual. forecastCov
(testEqual.forecast), 102
testEqual.horizonForecasts
(testEqual.forecast), 102
testEqual.SS (testEqual.ARMA), 102
testEqual.TSdata (testEqual.ARMA), 102
testEqual.TSestModel (testEqual.ARMA),
102
testEqual.TSmodel (testEqual.ARMA), 102
tfend, 109
tffrequency, 109
tfplot, 104, 106
tfplot.featherForecasts
(tfplot.forecast), 103
tfplot.forecast, 103
tfplot.forecastCov, 104
tfplot.forecastCovEstimatorsWRTdata
(tfplot.forecastCov), 104
tfplot.horizonForecasts
(tfplot.forecast), 103
tfplot.multiModelHorizonForecasts
(tfplot.forecast), 103
tfplot.TSdata, 106
tfplot.TSestModel (tfplot.TSdata), 106
tframe<-.TSdata (tframed.TSdata), 107
tframed, 107
tframed.TSdata, 107

125

tfstart, 109
tfwindow, 107
tfwindow.TSdata (tframed.TSdata), 107
toARMA, 5, 108
Tobs, 109
Tobs.TSdata, 109
Tobs.TSestModel (Tobs.TSdata), 109
TobsInput, 109
TobsOutput (TobsInput), 109
toSS, 5,31, 108, 111, 114
toSSaugment (toSS), 111
toSSChol, 112, 114
toSSinnov, 713,113,115
toSSnested (toSS), 111
toSSOform, /14, 114
totalForecastCov, 115
trimNA, 107
trimNA.TSdata (tframed.TSdata), 107
TSdata, 4-6, 20, 21, 55, 91, 116, 117-120
TSdata.forecastCov, 117
TSdata.object, 117,118
TSestModel, 4, 60, 117, 118, 120
TSestModel.object, 6, 58, 60, 93, 117, 118
TSmodel, 4-6, 9, 30, 58, 60, 64, 91, 93, 95,
117-119, 119
TSmodel. forecastCov
(TSdata. forecastCov), 117

window.TSdata (tframed.TSdata), 107

ytoypc, 72

	dse-package
	00.dse.Intro
	addPlotRoots
	ARMA
	balanceMittnik
	bestTSestModel
	checkBalance
	checkBalanceMittnik
	checkConsistentDimensions
	checkResiduals
	coef.TSmodel
	combine
	combine.forecastCov
	combine.TSdata
	DSEflags
	DSEversion
	eg1.DSE.data
	egJofF.1dec93.data
	estBlackBox
	estBlackBox1
	estBlackBox2
	estBlackBox3
	estBlackBox4
	estimateModels
	estimatorsHorizonForecastsWRTdata
	estMaxLik
	estSSfromVARX
	estSSMittnik
	estVARXar
	estVARXls
	estWtVariables
	excludeForecastCov
	extractforecastCov
	featherForecasts
	fixConstants
	fixF
	forecast
	forecastCov
	forecastCovEstimatorsWRTdata
	forecastCovEstimatorsWRTtrue
	forecastCovReductionsWRTtrue
	forecastCovWRTtrue
	forecasts
	gmap
	horizonForecasts
	horizonForecastsCompiled
	informationTests
	informationTestsCalculations
	inputData
	is.forecastCovEstimatorsWRTdata.subsets
	l
	l.ARMA
	l.SS
	markovParms
	McMillanDegree
	minForecastCov
	minimumStartupLag
	MittnikReducedModels
	MittnikReduction
	nseries.featherForecasts
	nseriesInput
	nstates
	observability
	outOfSample.forecastCovEstimatorsWRTdata
	percentChange.TSdata
	permute
	phasePlots
	plot.roots
	Polynomials
	Portmanteau
	print.forecastCov
	print.TSdata
	print.TSestModel
	reachability
	residualStats
	Riccati
	roots
	roots.estimatedModels
	scale.TSdata
	selectForecastCov
	seriesNames.TSdata
	seriesNamesInput
	seriesNamesInput.forecast
	shockDecomposition
	simulate
	smoother
	SS
	stability
	state
	stripMine
	summary.forecastCov
	summary.TSdata
	sumSqerror
	testEqual.ARMA
	testEqual.forecast
	tfplot.forecast
	tfplot.forecastCov
	tfplot.TSdata
	tframed.TSdata
	toARMA
	Tobs.TSdata
	TobsInput
	toSS
	toSSChol
	toSSinnov
	toSSOform
	totalForecastCov
	TSdata
	TSdata.forecastCov
	TSdata.object
	TSestModel
	TSmodel
	Index

