
Elastic computing with R and Redis

Bryan W. Lewis
blewis@illposed.net

January 28, 2020

1 Introduction

The doRedis package defines a foreach parallel computing adapter using Redis and the redux package. It lets users
easily run parallel jobs across multiple R sessions over one or more computers.

Steve Weston’s foreach package is a remarkable parallel computing framework for the R language, similar to lapply-
like functions but structured as a for loop. Similarly to R’s native parLapply and mclapply functions, foreach lets
you do this in parallel across multiple CPU cores and computers, abstracting the parallel computing details away
into modular adapters. Code written using foreach works sequentially in the absence of a parallel adapter, and works
uniformly across different adapters, allowing programmers to write code independently of specific parallel computing
implementations. The foreach package has many nice features outlined in its package documentation.

Redis is a fast, persistent, networked in-memory key/value database with many innovative features, among them
a blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight adapter for
parallel computing. The redux package defines an R interface to Redis based on the hiredis C library.

1.1 Why doRedis?

Why write a doRedis package? After all, the foreach package already has available many parallel adapter packages,
including doMC, doSNOW and doMPI.

The key features of doRedis are elasticity, fault-tolerance, and portability across operating system platforms. The
doRedis package is well-suited to small to medium-sized parallel computing jobs, especially across ad hoc collections
of computing resources.

� doRedis allows for dynamic pools of workers. New workers may be added at any time, even in the middle of
running computations. This feature is geared for modern cloud computing environments. Users can make an
economic decision to “turn on” more computing resources at any time in order to accelerate running compu-
tations. Similarly, modern cluster resource allocation systems can dynamically schedule R workers as cluster
resources become available.

� doRedis computations are partially fault tolerant. Failure of worker R processes (for example due to a ma-
chine crash or simply scaling back elastic resources) are automatically detected and the affected tasks are
automatically re-submitted.

� doRedis makes it particularly easy to run parallel jobs across different operating systems. It works equally
well on GNU/Linux, Mac OS X, and Windows systems, and should work well on most POSIX systems. Back

The doRedis Package

end parallel R worker processes are effectively anonymous–they may run anywhere as long as all the R package
dependencies required by the task at hand are available.

� The foreach package generally allows intermediate results to be aggregated incrementally and in- or out-of
order, significantly reducing required memory overhead for problems that return large data (not all foreach
adapters support this but doRedis does).

� The key benefit of the foreach package is clear separation of program and run-time parallel computing depen-
dencies. This allows R scripts and packages to indicate code that can benefit from parallel computation, while
leaving the particular choice of implementation up to users at run-time.

2 Obtaining and Configuring the Redis server

Redis is an extremely popular open source networked key/value database, and operating system-specific packages
are available for all major operating systems, including Windows.

For more information see: http://redis.io/download.

The Redis server is completely configured by the file redis.conf. It’s important to make sure that the timeout

setting is set to 0 in the redis.conf file when using doRedis. You may wish to peruse the rest of the configuration
file and experiment with the other server settings. In particular if you plan to contact Redis from more than one
computer make sure that it’s configured to listen on all appropriate network interfaces.

3 doRedis Examples

Let’s start by exploring the operation of some doRedis features through a few examples. Unless otherwise noted, we
assume that Redis is installed and running on the local computer (“localhost”).

3.1 A Really Simple Example

The simple example below is one version of a Monte Carlo approximation of π. Variations on this example are often
used to illustrate parallel programming ideas.

> library("doRedis")

> registerDoRedis("RJOBS")

> startLocalWorkers(n=2, queue="RJOBS")

> foreach(icount(10), .combine=sum,

+ .multicombine=TRUE, .inorder=FALSE) %dopar%

+ 4 * sum((runif(1000000) ^ 2 + runif(1000000) ^ 2) < 1) / 10000000

>

> # [1] 3.144212

2

http://redis.io/download

The doRedis Package

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●
●

● ●
●

●

● ●●

● ●

●

●

●

●

●
●

●

●

The figure illustrates how the method works. We randomly choose points in the unit square. The ratio of points that
lie inside the arc of the unit circle (green) to the total number of points provides an approximation of the area of 1/4
the area of the unit circle–that is, an approximation of π/4. Each one of the 10 iterations (“tasks” in doRedis) of
the loop computes a scaled approximation of π using 1,000,000 such points. We then sum up each of the 10 results
to get an approximation of π using all 10,000,000 points.

The doRedis package uses the idea of a “work queue” to dole out jobs to available resources. Each doRedis job is
composed of a set of one or more tasks. Each task consists of one or more foreach loop iterations. Worker R processes
listen on the work queue for new jobs. The line

registerDoRedis("RJOBS")

registers the doRedis adapter with the foreach %dopar% operator using the user-specified work queue name“RJOBS”
(you are free to use any name you wish for the work queue). R can issue work to a work queue even if there aren’t
any workers yet.

The next line:

startLocalWorkers(n=2, queue="RJOBS")

starts up two worker R sessions on the local computer, both listening for work on the queue named “RJOBS” The
worker sessions display only minimal messages by default. The startLocalWorkers function can instruct the workers
to log messages to output files or stdout if desired. You can verify that workers are in fact waiting for work with:

getDoParWorkers()

which should return 2, for the two workers we just started. Note that the number of workers may change over time
(unlike most other parallel back ends for foreach). The getDoParWorkers function returns the current number of
workers in the pool, but the number returned should only be considered to be an estimate of the actual number of
available workers.

The next lines actually run the Monte Carlo code:

foreach(icount(10), .combine=sum, .multicombine=TRUE, .inorder=FALSE) %dopar%

3

The doRedis Package

4 * sum((runif(1000000) ^ 2 + runif(1000000) ^ 2) < 1) / 10000000

This parallel loop consists of 10 iterations (tasks in this example) using the icount iterator function. We specify that
the results from each task should be passed to the sum function with .combine=sum. Setting the .multicombine

option to TRUE tells foreach that the .combine function accepts an arbitrary number of function arguments (some
aggregation functions only work on two arguments). The .inorder=FALSE option tells foreach that results may be
passed to the .combine function as they arrive, in any order. The %dopar% operator instructs foreach to use the
doRedis adapter that we previously registered to place each task in the work queue. Finally, each iteration runs the
scaled estimation of π using 1,000,000 points.

3.2 Fault tolerance

Parallel computations managed by doRedis tolerate failures among the worker R processes. Examples of failures
include crashed worker R sessions, operating system crash or reboot, and power outages. Fault tolerance enables
elasticity–the pool of workers can be reduced at any time by simply turning them off without disturbing the running
computation. When a failure is detected, affected tasks are automatically re-submitted to the work queue. The
option ftinterval sets an upper bound on how frequently doRedis checks for failure. The default value is 30
seconds, and the minimum allowed value is three seconds. (Very frequent checks for failure increase overhead and
will slow computations down–the default value is usually reasonable.)

The following code listing presents a contrived but self-contained example of fault tolerance.

> require("doRedis")

> registerDoRedis("RJOBS", ftinterval=5, chunkSize=2)

> startLocalWorkers(n=4, queue="RJOBS", linger=1)

> cat("Workers started.\n")

> start <- Sys.time()

> x <- foreach(j=1:4, .combine=sum) %dopar%

+ {

+ if(difftime(Sys.time(),start) < 5) quit(save="no") else j

+ }

> removeQueue("RJOBS")

The example starts up four local worker processes and submits two tasks to the work queue “jobs.” (There are four
loop iterations–j=1,2,3,4, but the chunkSize option splits them into two tasks of two iterations each.) The parallel
code block in the foreach loop instructs worker processes to quit if less than 5 seconds have elapsed since the start
of the program. Note that the start variable is defined by the master process and automatically exported to the
worker process R environment by foreach–a really nice feature! The termination criterion will affect the first two
workers that get tasks, resulting in their immediate exit and simulating crashed R sessions.

Meanwhile, the master process has a fault check period set to 5 seconds (the ftinterval=5 parameter), and after
that interval will detect the fault and re-submit the failed tasks.

The remaining two worker processes pick up the re-submitted tasks, and since the time interval will be sufficiently
past the start, they will finish the tasks and return their results.

The fault detection method is simple but fairly robust. It’s described in detail in Section 4.

4

The doRedis Package

3.3 A Parallel boot Function

The code listing below presents a parallel-capable variation of the boot function from the boot package. The
bootForEach function uses foreach to distributed bootstrap processing to available workers. It has two more
arguments than the standard boot function: chunks and verbose. Set verbose=TRUE to enabled worker process
debugging. The bootstrap resampling replicates will be divided into chunks tasks for processing by foreach. The
example also illustrates the use of a custom combine function in the foreach loop.

> bootForEach <- function (data, statistic, R, sim="ordinary",

+ stype="i", strata=rep(1, n), L=NULL, m=0,

+ weights=NULL, ran.gen=function(d, p) d,

+ mle=NULL, simple=FALSE, chunks=1,

+ verbose=FALSE, ...)

+ {

+ thisCall <- match.call()

+ n <- if (length(dim(data)) == 2) nrow(data)

+ else length(data)

+ if(R < 2) stop("R must be greater than 1")

+ Rm1 <- R - 1

+ RB <- floor(Rm1 / chunks)

+

+ combo <- function(...)

+ {

+ al <- list(...)

+ out <- al[[1]]

+ t <- lapply(al, "[[", "t")

+ out$t <- do.call("rbind", t)

+ out$R <- R

+ out$call <- thisCall

+ class(out) <- "boot"

+ out

+ }

+

+ # We define an initial bootstrap replicate locally. We use this

+ # to set up all the components of the bootstrap output object

+ # that don't vary from run to run. This is more efficient for

+ # large data sets than letting the workers return this information.

+ binit <- boot(data, statistic, 1, sim = sim, stype = stype,

+ strata = strata, L = L, m = m, weights = weights,

+ ran.gen = ran.gen, mle=mle, ...)

+

+ foreach(j=icount(chunks), .inorder=FALSE, .combine=combo,

+ .init=binit, .packages=c("boot","foreach"),

+ .multicombine=TRUE, .verbose=verbose) %dopar% {

+ if(j == chunks) RB <- RB + Rm1 %% chunks

+ res <- boot(data, statistic, RB, sim = sim, stype = stype,

+ strata = strata, L = L, m = m, weights = weights,

+ ran.gen = ran.gen, mle=mle, ...)

+ list(t=res$t)

+ }

+ }

5

The doRedis Package

4 Technical Details

A foreach loop iteration is a parameterized R expression that represents a unit of work. The expression is the body
of the foreach loop and the parameters, if they exist, are the loop variables. It’s also possible to use foreach non-
parametrically with an anonymous iterator to simply replicate the loop body expression a number of times similar
to replicate. The iterations are enumerated so that foreach can put the results together in order if required.

A task is a collection of one or more loop iterations. The number of iterations per task is at most chunkSize.

A job is a collection of one or more tasks that covers all the iterations required by a single foreach loop. Each job
is assigned a unique identifier.

Jobs are submitted as a sequence of tasks to a work queue–technically, a special Redis value called a “list” that
supports blocking reads. Users choose the name of the work queue in the registerDoRedis function. Master R
programs that issue jobs wait for results on yet another blocking Redis list, a result queue associated with the job.

R workers listen on work queues for tasks using blocking reads. As shown in the last section the number of workers
is dynamic. It’s possible for workers to listen on queues before any jobs exist, or for masters to issue jobs to queues
without any workers available.

4.1 Job control functions

The package includes a few convenience functions for monitoring and controlling doRedis work. The simplest,
setProgress(TRUE), turns on a standard R progress indicator for subsequent doRedis foreach loops. It’s a handy
way to monitor progress at a glance.

Because the controlling R program blocks while it waits for doRedis tasks to finish, most other job monitoring and
control functions must be run from a different R session. They include:

� jobs() returns a data frame that lists all running jobs and information about them

� tasks() returns a data frame of running tasks

� removeQueue() remove Redis keys associated with a doRedis work queue

� removeJob() remove all remaining tasks associated with a specified job in the work queue

The tasks() function lists the Redis queue name of each running task, the job id associated with it, the user running
the job, from which computer I.P. address the job was submitted, the I.P. address of the computer on which the task
is running, which loop iterations make up the task, and the user and process ID if the R process running the task.

Note that tasks may linger in the task list for a brief period after they are finished running.

The removeQueue() function removes all the Redis keys associated with the specified work queue. doRedis workers
listening on that queue will then eventually quit after they are finished processing their running jobs, and after the
queue linger period has elapsed.

The removeJob() function works similarly, but only prunes keys and remaining work items associated with a specific
job ID.

Note that in-flight loop iterations will continue to run to completion, even if their associated job or work queue has
be removed. If you really need to stop a worker R process, you can identify its process ID and computer IP address
from the tasks() function and manually terminate it.

6

The doRedis Package

4.2 Redis Key Organization

The “work queue” name specified in the registerDoRedis and redisWorker functions is used as the root name for
a family of Redis keys used to organize computation. Figure 2 illustrates example Redis keys used by a master and
worker R processes for a work queue named “myjobs”, described in detail below.

Figure 1: Example doRedis keys for an example work queue named “myjobs”

The name of the work queue illustrated in Figure 2 is “myjobs.” The corresponding Redis key is also named
“myjobs” and it’s a Redis list value type (that is, a queue). Such a queue can be set up, for example, with
registerDoRedis(queue="myjobs").

Removal of the “jobs.live” key serves as a signal that the work queue has been removed, for example with the
removeQueue("myjobs") function. After this happens, R workers listening on the queue will clean up any Redis
keys that they created and terminate after a timeout period.

A counter key named “myjobs.count” enumerates the number of R worker processes registered on the queue. It is
only an estimate of the number of workers currently registered to accept work on the queue.

foreach assigns every job an R environment with state required to execute the loop expression. The example in
Figure 2 illustrates a job environment for the “myjobs” queue and the “jobID” job called “myjobs.env.jobID” R worker
processes working on “jobID” will download this environment key once (independently of the number of tasks they
run for the job).

doRedis pushes the tasks (loop iterations) associated with“jobID” into the“myjobs”queue using the labels “jobID.n”,
where n is the number of each task, n=1, 2,

R workers listen on the “myjobs” queue for tasks. It’s a blocking queue, but the workers periodically time out. After
each time out they check to see if the “myjobs.live” key still exists, and if it doesn’t they clean up their Redis keys
and terminate. If it’s still there, they loop and listen again for jobs.

7

The doRedis Package

When a job/task announcement arrives in the “myjobs” queue, a worker downloads the new task from the “myjobs”
queue. The worker then:

1. Checks the job ID to see if it already has the job environment. If it doesn’t it downloads it (from
“myjobs.env.jobID” in the example) and initializes a new R environment specific to this job ID.

2. The R worker process initializes a task started key, illustrated in Figure 2 as “myjobs.start.jobID.taskID”.

3. The R worker process initializes a thread that maintains a task liveness key, illustrated in Figure 2 as
“myjobs.alive.jobID.taskID”.

4. When a task completes, the worker places the result in a job result queue for that job ID, shown in Figure 2
as “myjobs.out.jobID”, and then removes its corresponding start and alive keys.

Meanwhile, the R master process is listening for results on the job result queue, shown in Figure 2 as“myjobs.out.jobID”
Results arrive from the workers as R lists of the form list(id=result), where id corresponds to the task ID number
and result to the computed task result. foreach can use the task ID number to cache and order results, unless the
option .inorder=FALSE was specified.

4.3 Worker Fault Detection and Recovery

While running, each task is associated with two keys described in the last section: a task “start” key and a task
“alive” key. The “start” key is created by an R worker process when a task is downloaded. The “alive” key is a Redis
ephemeral key with a relatively short time out (after which it disappears). Each R worker processes maintains a
background thread that keeps the ephemeral “alive” key active while the task runs. If for some reason the R worker
process crashes, or the work system crashes or reboots, or the network fails, then the “alive” key will time out and
be removed from Redis.

After foreach sets up a job, the master R process listens for results on the associated job ID results queue. It’s
a blocking read, but the master R process periodically times out. After each time out, the master examines all
the “start” and “alive” keys associated with the job. If it finds an imbalance in the keys (a start key without a
corresponding alive key), then the master R process assumes that task has failed and resubmits the failed task to
the work queue.

It’s possible that a wayward R worker process might return after its task has been declared lost. This might occur,
for example, under intermittent network failure. In such cases, results for tasks might be returned more than once
in the result queue, but doRedis is prepared for this and simply discards repeated results for the same task ID.

Another possible failure may occur if a worker consumes and completes a task but is somehow unable to push its
results into the results queue. When all the tasks in a queue have been consumed by workers, the master checks for
such “lost” results–tasks whose results have not been received nor exhibit a corresponding “start” key indicating that
they are in process. If such a task imbalance is found, affected tasks are re-submitted.

4.4 Random Number Generator Seeds

The initialization of pseudorandom number generators is an important consideration, especially when running simu-
lations in parallel. By default, workers use the L’Ecuyer-CMRG method from R’s parallel package. Each foreach

loop iteration is assigned a L’Ecuyer stream making parallel random number generation reproducible regardless of
the number of workers or chunk size settings. Simply set the random seed prior to a foreach loop as you would do
in a sequential program.

8

The doRedis Package

Note that, although doRedis uses the L’Ecuyer random number generator internally, it records and restores the state
and kind of random number generator in use in your R session prior to the foreach loop.

Although the standard L’Ecuyer-CMRG method is preferred for typical operation, the doRedis package includes a
mechanism to define an arbitrary random seed initialization function. Such a function could be used, for example,
with the SPRNG library or with the doRNG package for foreach, or for manual experimentation.

The user-defined random seed initialization function must be called set.seed.worker, take one argument and must
be exported to the workers explicitly in the foreach loop. The example shown below illustrates a simple user-defined
seed function.

> startLocalWorkers(n=5, queue="jobs")

> registerDoRedis("jobs")

> # Make all the workers use the same random seed initialization and the old

> # "Super-Duper" RNG:

> set.seed.worker <- function(n) {

+ RNGkind("Super-Duper")

+ set.seed(55)

+ }

> foreach(j=1:5, .combine="c", .export="set.seed.worker") %dopar% runif(1)

>

> #[1] 0.2115148 0.2115148 0.2115148 0.2115148 0.2115148

4.5 Known Problems and Limitations

If CTRL+C (or the RStudio ”Stop” button) is pressed while a foreach loop is running, connection to the Redis
server may be lost or enter an undefined state. An R session can reset connection to a Redis server at any time by
issuing redisClose() followed by re-registering the doRedis back end.

Redis limits database values to less than 512 MB. Neither the foreach loop parameters nor the job environment
may exceed this size. If you need to work on chunks of data larger than this, see the Advanced Topics section for
examples of working on already distributed data in place.

5 Advanced Topics

Let’s start this section by dealing with the 512 MB Redis value size limit. Problems will come along in which you’ll
need to get more than 512 MB of data to the R worker processes. There are several approaches that one might take:

1. Distribute the data outside of Redis, for example through a shared distributed file system like PVFS or Lustre,
or through another database.

2. Break the data up into chunks that each fit into Redis and use Redis to distribute the data.

The first approach is often a good one, but is outside of the scope of this vignette. We illustrate the second approach
in the following example. For the purposes of illustration, the example matrix is tiny and we break it up into only
two chunks. But the idea extends directly to very large problems.

> registerDoRedis("jobs")

> set.seed(1)

9

The doRedis Package

> A <- matrix(rnorm(100), nrow=10) # (Imagine that A is really big.)

> # Partition the matrix into parts small enough to fit into Redis values

> # (less than 512 MB). We partition our example matrix into two parts:

>

> A1 <- A[1:5,] # First five rows

> A2 <- A[6:10,] # Last five rows

> # Let's explicitly assign these sub-matrices as Redis values. Manually breaking

> # up the data like this helps avoid putting too much data in the R environment

> # exported by foreach.

>

> redisSet("A1", A1)

> redisSet("A2", A2)

> ans <- foreach(j=1:2, .combine=c) %dopar% {

+ chunk <- sprintf("A%d", j)

+ mychunk <- redisGet(chunk)

+ sum(mychunk)

+ }

> print(ans)

>

> # [1] 6.216482 4.672254

The point of the example above is that the workers explicitly download just their portion of the data inside the
foreach loop. This avoids putting the data into the exported R environment, which could exceed the Redis 2 GB
value size limit. The example also avoids sending data to workers that they don’t need. Each worker downloads just
the data it needs and nothing more.

5.1 Canceling jobs

When a master R session is interrupted, for example by CTRL+C or by pressing the “stop” button in RStudio (or
by pressing the Escape key on some systems), foreach will perform the following steps:

1. Delete all tasks associated with the active job in the corresponding work queue

2. Stop collecting results for the active job

3. Return control to the R console

Importantly, interrupting a running job only prevents future work from running on the worker processes. Any in-
process tasks on the workers will continue to run until they finish. A possible side-effect is that tasks from running
jobs may place their result in orphaned result queues (Redis keys) at some point after the job has been cancelled.
Spurious output may be manually cleaned up by deleting keys associated with the task queue and job ID.

5.2 worker.init

If you explicitly export a function named worker.init that takes no arguments, it will be run by the workers once
just after downloading a new job environment. The function may contain any worker initialization code not be
appropriate for the body of the foreach loop that only needs to run once per job, independently of the number of
tasks that might run on a particular worker.

10

The doRedis Package

5.3 Worker queues

Worker R processes consume work from work queues on a first-come, first-served basis. Tasks are evaluated in an
environment specific to each submitted job, thus it is possible and normal for workers to interleave tasks for multiple
jobs submitted to a given work queue.

Worker R processes can also block on multiple work queues, pulling first available tasks as they arrive, see ?re-

disWorker and ?startLocalWorkers for details. The advantage of using multiple work queues is that they can be
managed independently, for example making multi-user use of shared R workers somewhat simpler to administrate.

6 All doRedis foreach options

All options can be set using the standard foreach interface (example shown below) or by using the special setProgress(),
setChunkSize(), setFtinterval, setStream and setReduce() functions. Additionally, the package defines two
special functions to explicitly set variable exports and packages: setExport() and setPackages().

Thus,

foreach(j=1:10, .options.redis = list(chunksize=5))

is equivalent to

setChunkSize(5)

foreach(j=1:10)

The package provides the extra set* functions to facilitate working with R packages that use foreach internally.
In such cases it might not be practical to directly supply arguments to the foreach invocation (used within the
package). The set* functions provide a way to register an external foreach adapter and control its behavior. When
both forms of setting options are used, the set* functions take precedence (which lets you override the default
behavior in another R package, for example).

Here is a list of all doRedis-specific options and what they do.

� chunksize (integer) break the loop iterations up into chunks of at most the specified size, equivalent to
chunkSize

� progress (logical) display an R progress bar

� ftinterval (integer) fault tolerance check interval in seconds, not allowed to be less than 3

� reduce (function) optional per-task reduction function

11

	Introduction
	Why doRedis?

	Obtaining and Configuring the Redis server
	doRedis Examples
	A Really Simple Example
	Fault tolerance
	A Parallel boot Function

	Technical Details
	Job control functions
	Redis Key Organization
	Worker Fault Detection and Recovery
	Random Number Generator Seeds
	Known Problems and Limitations

	Advanced Topics
	Canceling jobs
	worker.init
	Worker queues

	All doRedis foreach options

