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1This document is included as a vignette (a LATEX document created using the R function Sweave()) of the package
dlnm. It is automatically downloaded together with the package and can be simply accessed through R by typing
vignette("dlnmOverview") .

1



1 Preamble

The R package dlnm offers some facilities to run distributed lag non-linear models (DLNMs), a modelling
framework to describe simultaneously non-linear and delayed effects between predictors and an out-
come, a dependency defined as exposure-lag-response association. These include previously described
distributed lag models (DLMs) for linear relationships as special cases. This document complements the
description of the package provided in Gasparrini [2011] (freely available at http://www.jstatsoft.

org/v43/i08/), which represents the main reference to the package. The DLMs/DLNMs methodol-
ogy has been previously described in Gasparrini [2014], Gasparrini and Armstrong [2013], Gasparrini
et al. [2010, 2017], together with a detailed algebraical development. This framework was originally
conceived and proposed to investigate the health effects of temperature by Armstrong [2006].

This document dlnmOverview is the main of four vignettes documenting the package. Its aim is to
describe the methodology and to provide an overview of the main functions. Three other vignettes
offer more specific examples, as detailed below. Each vignette, included in the package installation,
can be opened in R by typing vignette("namevignette") .

The dlnm package is available on the Comprehensive R Archive Network (CRAN), with info at
the related web page (CRAN.R-project.org/package=dlnm). A development website is available on
GitHub (github.com/gasparrini/dlnm). General information on the development and applications of
the DLM/DLNM modelling framework, together with an updated version of the R scripts for running
the examples in published papers, can be found on GitHub (github.com/gasparrini) or at the personal
web page of the package maintainer (www.ag-myresearch.com).

Type citation("dlnm") in R to cite the dlnm package after installation (see Section 2).

Please send comments or suggestions and report bugs to antonio.gasparrini@lshtm.ac.uk.

2 Installation

The last version of the dlnm package officially released on CRAN can be downloaded and installed
following standard procedures, for example by typing:

> install.packages("dlnm")

or directly through the R or RStudio menu. The package can be alternatively installed from its
webpage within CRAN (https://CRAN.R-project.org/package=dlnm), using the source code (.tar.gz)
or binaries for Windows or MacOS. In this case, also the other packages which functions in dlnm are
dependent from, defined by the fields Imports and Suggests of description, must be installed.

The package is loaded in the R session by:

> library(dlnm)

A list of changes included in the current and previous versions can be found typing:

> news(package="dlnm")

3 Methodology and applications

The conceptual and methodological development of distributed lag linear and non-linear models (DLMs
and DLNMs) is thoroughly described in a series of publications. Here I provide a brief summary,
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focusing also on specific extensions and applications of the methodology and software. The user can
refer to the articles and vignettes provided below for a more detailed description.

3.1 The DLM and DLNM framework

The modelling class of DLMs and DLNMs is applied to describe associations in which the dependency
between an exposure and an outcome is lagged in time. This lag dimension represents a new space
over which the association is defined, by describing a lag-response relationship in addition to the
usual exposure-response relationship over the space of the predictor. The dependency, characterized
in the bi-dimensional space of predictor and lag, is defined here as exposure-lag-response association
[Gasparrini, 2014], revising a terminology previously proposed by Thomas [1988].

A statistical development of DLMs and DLNMs is based on the application of basis functions for
parameterizing the exposure history, namely the set of lagged exposures. Specifically, two set of basis
functions are chosen independently for modelling the exposure and lag-response relationships. These
are then combined through a special tensor product defined by bi-dimensional cross-basis functions
[Gasparrini, 2014, Gasparrini et al., 2010]. The choice of the two sets of functions determines the
shape of the relationship in each dimension. DLMs can be considered special cases of the more general
DLNMs, when the exposure-response is assumed linear.

Estimation is performed using standard regression models and R functions, simply including the matrix
storing the cross-basis variables in a model formula. Result can be interpreted by building a grid of
predictions for each lag and for suitable values of the predictor, using 3-D plots to provide an overall
picture of the association varying along the two dimensions [Gasparrini et al., 2010]. Also, summaries of
the bi-dimensional association can be derived, namely exposure-reponses at specific lags, lag-responses
at specific predictor values, and the overall cumulative exposure-response as the net effect across the
whole lag period [Gasparrini and Armstrong, 2013]. These summaries can be interpreted using either
a forward or backward interpretation, as explained in Gasparrini and Leone [2014].

3.2 Standard application in time series analysis

Simpler DLMs were firstly conceived in econometric time series analysis long ago [Almon, 1965], and
then re-proposed in time series data within environmental epidemiology Schwartz [2000]. The full ex-
tension to DLNMs was conceived by Armstrong [2006]. A conceptual and methodological re-evaluation
of this modelling framework for time series data is given in Gasparrini et al. [2010]. DLMs and DLNMs
are now commonly used in time series analysis, and the functions in the package dlnm offer a simple
way for deriving the complex parameterization and for producing predictions and plots, as illustrated
in Gasparrini [2011].

The vignette dlnmTS provides a thorough overview of the use of the dlnm package for performing
DLMs and DLNMs in time series analysis.

3.3 Generalization beyond time series design

Interestingly, models for such exposure-lag-response associations have been proposed in different re-
search fields. The general idea is to weight past exposures through specific functions whose parameters
are estimated by the data. Models for linear-exposure-response relationships similar to DLMs were
illustrated in cancer epidemiology [Hauptmann et al., 2000, Langholz et al., 1999, Richardson, 2009,
Thomas, 1983, Vacek, 1997] and pharmaco-epidemiology [Abrahamowicz et al., 2012, Sylvestre and
Abrahamowicz, 2009]. Extensions to non-linear exposure-responses have also been proposed [Abra-
hamowicz and MacKenzie, 2007, Berhane et al., 2008, Vacek, 1997]. A general unifying framework
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based on DLMs and DLNMs is described in Gasparrini [2014].

The vignette dlnmExtended illustrates this extension and the application of the dlnm software in
study designs and data structures beyond time series.

3.4 A penalized version of DLMs and DLNMs

In the standard definition of the DLM/DLNM modelling framework, models are fitted with common
regression methods, such as generalized linear models (GLMs) or Cox proportional hazard models.
Here, the bi-dimensional shape of the exposure-lag-response relationship depends entirely on the para-
metric form of the basis functions applied in each of the two spaces of predictor and lag. Recently,
Gasparrini et al. [2017] has described an extension of DLNMs based on the use of penalized splines
through generalized additive models (GAMs), where potentially flexible shapes are smoothed with the
application of specific penalties [Wood, 2006]. This extension generalizes similar methods previously
proposed for simpler models assuming linear [Obermeier et al., 2015, Zanobetti et al., 2000] and linear
threshold [Muggeo, 2008] exposure-response shapes.

The vignette dlnmPenalized offers an overview of the implementation of penalized DLMs and DL-
NMs in the dlnm package and the use of the functions in illustrative examples.

3.5 A general tool for regression analysis

The functions in the dlnm package can be used more generally to facilitate the computation and
interpretation of associations estimated from regression models, beyod the specific case of distributed
lag modelling. Specifically, the functions can be applied to obtain predictions and plots of point
estimates and measures of uncertainty for linear or non-linear unlagged relationships, estimated from
either unpenalized (e.g., GLMs and Cox models) or penalized (GAMs) models.

The vignette dlnmExtended provides examples of the use of the functions to derive predictions and
plots of exposure-response associations from standard regression models.

4 Functions and data in the package dlnm

This section describes the main functions and data included in the package dlnm. The functions are
grouped consistently with the various steps in the definition, estimation and interpretation of DLMs
and DLNMs. Only a general summary is provided here. For details on the usage of the functions and
for real-data examples, the user can refer to the related help pages and the other vignettes, respectively.

4.1 Basis functions

The first step for performing DLMs or DLNMs consists of the choice of two sets of basis functions for
modelling the exposure-lag-response association. Any kind of function determining completely known
parametric transformations of the predictor can be used, and several options are available in the dlnm
package. All the functions below are meant to be called internally by onebasis() and crossbasis()

(see sections below) and not directly run by the users.

First, the package contains basic functions to specify standard relationships. Specifically, the functions
strata(), thr() and poly() can be applied to obtain indicator variables defining intervals through
dummy parameterization, high, low or double-threshold relationships, and polynomial variables, re-
spectively. The function lin() returns the un-transformed predictor variable and it is applied to
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specify simple DLMs, while the function integer() produces indicator variables for each integer value
and it is used in unconstrained DLMs and DLNMs [Gasparrini et al., 2010]. These functions are not
exported to the namespace in order to prevent conflicts with other existing functions in recommended
packages.

Functions from other packages can also be called for deriving more complex transformations. For
instance, the functions ns() and bs() from the recommended package splines can be called for deriving
spline parameterizations. In addition, the functions ps() and cr(), available in dlnm, are used to
specify penalized splines, as described in Section 4.4 and in the vignette dlnmPenalized.

More generally, user-defined functions defining any type of basis transformations can also be used
within dlnm. The only requirements is that the function returns a matrix of basis variables univocally
determined by its arguments, and that all these parameters are stored as attributes in order to re-
produce exactly the same transformations. The vignette dlnmExtended provides more details and
some examples.

The user can refer to the related help pages of these functions for further info on their usage (for
instance, type ?strata or ?bs in R).

4.2 The function onebasis()

This function represents the workhorse for basis transformation in dlnm. It has replaced the old
functions mkbasis() and mklagbasis() since version 1.5.1 of the package. Its main role is to apply
chosen transformations and generate basis matrices in a format suitable for other functions such as
crossbasis() and crosspred().

Since version 2.0.0 of dlnm, onebasis() simply acts as a wrapper to other functions, such as those
described in Section 4.1. The function has a first argument x for the predictor variable, and another
argument fun for specifying the basis function to be called internally, whose arguments are passed
through the ellipsis argument ’...’.

Interestingly, onebasis() can also be used more generally for generating uni-dimensional functions in
regression models, with predictions and graphs derived by crosspred() (see Section 4.5) and plotting
methods (see Section 4.7). Examples are provided in the vignette dlnmExtended.

The function onebasis() returns a basis matrix with additional class ”onebasis”, with attributes
determining the chosen parameterization. See ?onebasis for further info.

4.3 The function crossbasis()

This is the main function in the package dlnm. It calls onebasis() internally to generate the basis
matrices for exposure-response and lag-response relationships, and combines them through a special
tensor product in order to create the cross-basis, which specifies the exposure-lag-response dependency
simultaneously in the two dimensions. See Gasparrini [2014, Sections 2.1–2.2], Gasparrini et al. [2010,
Sections 4.1–4.2], and Gasparrini et al. [2017, Section 2] for details.

The class of the first argument x of crossbasis() defines how the data are interpreted. If a vector, x
is assumed to represent an equally-spaced, complete and ordered series of observations in a time series
framework. If a matrix, x is assumed to represent a series of exposure histories for each observation
(rows) and lag (columns). This second format can be used to extend DLNMs beyond time series data,
as illustrated in the vignette dlnmExtended. The lag period can be defined through the second
argument lag. The two arguments argvar and arglag contain lists of arguments, each of them to be
passed to onebasis() to build the matrices for the exposure-response and lag-response relationships
respectively (see Sections 4.1–4.2). The additional argument group, used only for time series data,
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defines groups of observations to be considered as individual unrelated series, and may be useful for
example in seasonal analyses (see the vignette dlnmTS).

The usage of crossbasis() has repeatedly changed in different versions of the package dlnm. The
user is advised to follow the usage in the last available version.

The function returns a matrix object of class ”crossbasis”, with attributes storing information on the
original variable and the parameters of the chosen parameterization in the two spaces. See ?crossbasis
for further info. The cross-basis matrix needs to be included in a regression model formula in order to
fit a model.

4.4 Functions for penalized models

More flexible versions of DLMs and DLNMs can be specified through penalized splines by embedding
functions of the packages dlnm and mgcv [Gasparrini et al., 2017]. Here I briefly introduce the functions
available in dlnm, while a more comprehensive overview is provided in the vignette dlnmExtended.

There are two approaches for defining penalized DLMs and DLNMs. Using the external method, the
cross-basis parameterization is derived as usual by calling the function ps() and/or cr() through
crossbasis(). These two functions (see Section 4.1) create a basis matrix with specific spline param-
eterizations, and a related penalty matrix stored as an additional attribute S. The function cbPen()

is then called on the cross-basis object to generate the bi-dimensional penalty matrices using consis-
tent tensor product transformations. Additional penalties on the lag dimension can be added through
the argument addSlag of cbPen(). The models are fitted by the regression function gam() of mgcv,
including the cross-basis object in the formula and the penalty matrices as the argument paraPen.

Using instead the internal method, the cross-basis transformation is not generated by crossbasis(),
but using the function smooth.construct.cb.smooth.spec() available in dlnm. This smooth con-
structor is called internally as a smooth term using s(X,L,bs="cb",...) within the formula of the
regression function gam() of mgcv, with X and L as a matrix of exposure histories and a matrix of lags,
respectively. Additional info can be passed to the constructor using a named list as the argument xt

of s(), for instance lists argvar and arglag to define othe types of transformations in the two spaces,
and addSlag for additional penalties on the lag dimension.

Note that, in both methods, it is possible to define unpenalized functions in either the predictor or lag
space through argvar and arglag. Indeed, the function lin() can be called through the former for
performing penalized DLMs.

The user can refer to the help pages for additional details, and to the vignette dlnmPenalized for
an overview of penalized DLMs and DLNMs using the package dlnm.

4.5 The function crosspred()

The interpretation of estimated parameters is usually complex for non-trivial basis transformations
in DLMs, and virtually impossible in bi-dimensional DLNMs. The function crosspred() facilitates
the interpretation by predicting the association for a grid of predictor and lag values, chosen by
default or directly by the user. The function creates the same basis or cross-basis functions for the
chosen predictor and lag values, extracts the related parameters estimated in the regression model, and
generates predictions with associated standard errors and confidence intervals (see Gasparrini [2014,
Section 2.3] and Gasparrini et al. [2010, Section 4.3] for algebraic details).

The first two arguments basis and model of crosspred() are usually the cross-basis matrix and
the fitted model object. When using the internal method for penalized models (see Section 4.4), the
argument basis must be a character string identifying the first argument of s() in gam(). The function
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crosspred() automatically extract the parameters related to the cross-basis from several regression
functions, or alternatively these can be directly inputted using the arguments coef and vcov. The
predictor values used for prediction can be selected with the argument at or alternatively with from-
to-by. The arguments lag and bylag determine instead the range and increment of the sequence of
lag values. Predictions are computed versus a reference value, with default values dependent on the
function used for modelling the exposure-response, or manually set through the argument cen.

An alternative use of crosspred() is to predict the results for specific sets of lagged exposures.
This can be achieved by inputting a matrix of exposure histories as the argument at. The function
exphist() can be used to simplify the computation (see the vignette dlnmExtended for example of
these extended prediction summaries).

Multiple cross-basis matrices associated with different predictors may be included in model, and predic-
tions for each of them can be computed with crosspred(). More generally, the function crosspred()

can be used to predict estimated effects from regression models defining standard uni-dimensional
exposure-response relationships with no lag, either as penalized functions in gam() or in other regres-
sion functions through onebasis() (see the vignette dlnmExtended for some examples).

The function returns a list object of class ”crosspred”, with components storing the predictions and
other information about the model. The user can refer to help(crosspred) for a complete list of
argument and returned list components.

4.6 The function crossreduce()

As described in Section 3.1, results from DLMs and DLNMs can be expressed as one-dimensional sum-
maries, namely overall cumulative exposure-responses, lag-specific exposure-responses, or predictor-
specific lag-responses. The function crossreduce() reduces the fit of DLMs and DLNMs consistently
with these summaries, and re-expresses it in terms of modified parameters of the one-dimensional basis
functions chosen for that space. Algebraic details are provided in Gasparrini and Armstrong [2013].

The function works very similarly to crosspred() (see Section 4.5), with similar usage and arguments.
The type of reduction is defined by type, with options "overall"-"lag"-"var" for summarizing over-
all cumulative exposure-responses, lag-specific exposure-responses or predictor-specific lag-responses,
respectively. The single value of predictor or lags for which predictor-specific or lag-specific summaries
must be defined is chosen by the argument value. The other arguments have the same meaning and
specification as in crosspred() (see Section 4.5 and ?crossreduce).

The function returns a list object of class ”crossreduce”, againg similar to that returned by crosspred().
An illustrative example of the use of the function in given in the vignette dlnmTS.

4.7 Plotting functions

Interpretation of one-dimensional or bi-dimensional associations is aided by graphical representation.
High and low-level plotting functions are provided through the method functions plot(), lines()

and points() for classes ”crosspred” and ”crossreduce”. These methods have replaced the old function
crossplot() since version 1.3.0.

The plot() method can produce different types of plots through the argument ptype. Specifi-
cally, it can generate 3-D or countour graphs of the entire bi-dimensional exposure-lag-response as-
sociation (ptype="3d" and ptype="contour" calling persp() and filled.contour() internally, re-
spectively), or uni-dimensional exposure-response or lag-response summaries defined in Section 3.1
(ptype="slices" calling default plot() functions). Methods lines() and points() for may be used
as low-level plotting functions to add lines or points to an existing plot.
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The argument ci (with options "area", the default, and "bars" and "lines") and ci.arg can be used
to add a graphical representation of confidence intervals. Exponentiated predictions are automatically
plotted if generated in the predictions, or forced with the argument exp=TRUE. Additional arguments
of plotting functions called internally can be specified through the ellipsis argument ’...’, allowing
complete flexibility in the choices of colours, axes, labels and other graphical parameters.

4.8 Other functions

The two functions equalknots() and logknots() are used to select knots or cut-off values for spline or
strata functions at equally-spaced values and log-values, respectively. In particular, the latter is used
to select knots for lag-response spline functions following the default used up to version 2.0.0 of dlnm,
based on equally-spaced log values of lags. The function exphist(), mentioned in Section 4.5, builds a
matrix of exposure histories given an exposure profile, and is used in particular for data management
tasks in applications beyond time series analysis (see the vignette dlnmExtended).

The package dlnm also contains a set of functions which are called internally by the other functions
illustrated above, in particular onebasis(), crossbasis() and crosspred(). Some of these functions
are documented, and help pages are opened with the usual call (results not shown):

> help(getcoef)

The users bold enough to go through the source code of dlnm can access internal documented and
undocumented functions through the use of the triple colon operator ’:::’ or through the function
getAnywhere(). For example (results not shown):

> dlnm:::fci

> getAnywhere(fci)

Other method functions, such as summary(), coef() and vcov(), are provided for objects of class
”crossbasis”, ”onebasis”, ”crosspred” and ”crossreduce”.

4.9 Data

This version the package includes the three data sets chicagoNMMAPS, nested and drug. The former
is used to illustrate the use of DLMs and DLNMs in time series analysis (in particular in the vignette
dlnmTS), while the other two are used in examples of the extension of the methodology and package
in other study designs (in particular in the vignette dlnmExtended).

The data set chicagoNMMAPS contains daily mortality (all causes, CVD, respiratory), weather (tem-
perature, dew point temperature, relative humidity) and pollution data (PM10 and ozone) for Chicago
in the period 1987-2000. The data were assembled from publicly available data sources as part of the
National Morbidity, Mortality, and Air Pollution Study (NMMAPS) sponsored by the Health Effects
Institute [Samet et al., 2000a,b]. They used to be downloadable from the package NMMAPSlite (now
archived) and from Internet-based Health and Air Pollution Surveillance System (iHAPSS) website
(www.ihapss.jhsph.edu).

The data set nested contains simulated data from an hypothetical nested case-control study on the
association between a time-varying occupational exposure and a cancer outcome. The study includes
250 risk sets, each with a case and a control matched by age year. The data on the exposure is collected
on 5-year age intervals between 15 and 65 years.
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The data set drug contains simulated data from an hypothetical randomized controlled trial on the
effect of time-varying doses of a drug. The study includes 200 randomized subject, each receiving daily
doses of drug for 28 days, varying each week. The exposure level is reported on 7-day intervals.

5 Changes in the package dlnm

A GitHub page of the package dlnm (github.com/gasparrini/dlnm) includes information on ongoing
developments. In addition, changes in the last version 2.4.2, and in previous ones since the first version
0.1.0 uploaded on CRAN on the 1st of July 2009, are documented in the NEWS file, visualized with:

> news(package="dlnm")

In some versions, new functions have been added and existing functions replaced, and, more impor-
tantly, the usage of some of them has changed. These important changes are detailed more extensively
in three additional documents, accessed through:

> file.show(system.file("Changesince151", package="dlnm"))

> file.show(system.file("Changesince200", package="dlnm"))

> file.show(system.file("Changesince220", package="dlnm"))

In particular, some of the changes may cause some of the R code written for old versions to produce
different results with the updated versions. This applies also to code included as supplementary
material of published papers. An updated version of published code is available at the GitHub page
(github.com/gasparrini) or personal web page (www.ag-myresearch.com) of the package maintainer.

Such changes became unavoidable for the development of the dlnm package. Although further changes
cannot be excluded in future versions, these will become less likely as long as the the package will take
a definite structure.
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