
Package ‘diyar’
June 13, 2020

Type Package

Title Multistage Record Linkage and Case Definition for
Epidemiological Analysis

Date 2020-06-11

Version 0.1.0

URL https://cran.r-project.org/package=diyar

BugReports https://github.com/OlisaNsonwu/diyar/issues

Author Olisaeloka Nsonwu

Maintainer Olisaeloka Nsonwu <olisa.nsonwu@gmail.com>

Description Perform multistage deterministic linkages, apply case definitions to datasets, and dedupli-
cate records.
Records (rows) from datasets are linked by different matching criteria and sub-
criteria (columns) in a specified order of certainty.
The linkage process handles missing data and conflicting matches based on this same or-
der of certainty.
For episode grouping, rows of dated events (e.g. sample collection) or inter-
val of events (e.g. hospital admission) are
grouped into chronological episodes beginning with a ``Case''. The process permits several op-
tions such as
episode lengths and recurrence periods which are used to build custom preferences for case as-
signment (definition).
The record linkage and episode grouping processes assign unique group IDs to match-
ing records or those grouped into episodes.
This then allows for record deduplication or sub-analysis within these groups.

License GPL-3

Encoding UTF-8

LazyData true

Imports methods, grDevices, graphics, utils, dplyr (>= 0.7.5)

RoxygenNote 6.1.1

Suggests stringdist, knitr, rmarkdown, testthat, covr

VignetteBuilder knitr

1

https://cran.r-project.org/package=diyar
https://github.com/OlisaNsonwu/diyar/issues

2 epid-class

Language en-GB

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-13 15:00:02 UTC

R topics documented:
epid-class . 2
episode_group . 3
number_line . 7
number_line-class . 10
overlaps . 12
pid-class . 14
record_group . 15
set_operations . 18
staff_records . 19
to_s4 . 20

Index 22

epid-class epid object

Description

S4 objects to store the results of fixed_episodes, rolling_episodes and episode_group

Usage

as.epid(x)

S3 method for class 'epid'
format(x, ...)

S3 method for class 'epid'
unique(x, ...)

S4 method for signature 'epid'
show(object)

S4 method for signature 'epid'
rep(x, ...)

S4 method for signature 'epid'
x[i, j, ..., drop = TRUE]

episode_group 3

S4 method for signature 'epid'
x[[i, j, ..., exact = TRUE]]

S4 method for signature 'epid'
c(x, ...)

Arguments

x x

... ...

object object

i i

j j

drop drop

exact exact

episode_group Episode grouping for case definitions and record deduplication

Description

Group events into chronological episodes

Usage

episode_group(df, sn = NULL, strata = NULL, date, case_length,
episode_type = "fixed", episode_unit = "days", episodes_max = Inf,
recurrence_length = NULL, rolls_max = Inf,
skip_if_b4_lengths = TRUE, data_source = NULL, data_links = "ANY",
custom_sort = NULL, skip_order = NULL, from_last = FALSE,
overlap_method = c("exact", "across", "inbetween", "aligns_start",
"aligns_end", "chain"), overlap_methods = NULL, bi_direction = FALSE,
group_stats = FALSE, display = TRUE, deduplicate = FALSE,
to_s4 = TRUE, recurrence_from_last = TRUE,
case_for_recurrence = FALSE, include_index_period = TRUE)

fixed_episodes(date, sn = NULL, strata = NULL, case_length,
episode_unit = "days", episodes_max = Inf,
skip_if_b4_lengths = TRUE, data_source = NULL, data_links = "ANY",
custom_sort = NULL, skip_order = NULL, from_last = FALSE,
overlap_method = c("exact", "across", "inbetween", "aligns_start",
"aligns_end", "chain", "overlap", "none"), overlap_methods = "overlap",
bi_direction = FALSE, group_stats = FALSE, display = TRUE,
deduplicate = FALSE, x, to_s4 = TRUE, include_index_period = TRUE)

4 episode_group

rolling_episodes(date, sn = NULL, strata = NULL, case_length,
recurrence_length = NULL, episode_unit = "days",
episodes_max = Inf, rolls_max = Inf, skip_if_b4_lengths = TRUE,
data_source = NULL, data_links = "ANY", custom_sort = NULL,
skip_order = NULL, from_last = FALSE, overlap_method = c("exact",
"across", "inbetween", "aligns_start", "aligns_end", "chain", "overlap",
"none"), overlap_methods = "overlap", bi_direction = FALSE,
group_stats = FALSE, display = TRUE, deduplicate = FALSE, x,
to_s4 = TRUE, recurrence_from_last = TRUE,
case_for_recurrence = FALSE, include_index_period = TRUE)

Arguments

df data.frame. One or more datasets appended together.

sn Unique numerical record identifier. Optional.

strata Subsets of the dataset. Episode grouping will be done separately within each
subset of the dataset. In episode_group, you can use multiple columns. record_group
can create useful strata e.g. patient identifiers.

date Event date (date, datetime or numeric) or period (number_line).

case_length Duration after a "case" within which subsequent events are considered "duplicate"
events. This period is referred to as the the case window. Can be a (number_line)
range.

episode_type "fixed" or "rolling".

episode_unit Time units. Options are "seconds", "minutes", "hours", "days", "weeks", "months"
or "years". See diyar::episode_unit.

episodes_max Maximum number of episodes to have within each strata.
recurrence_length

Duration after the last or first event (see recurrence_from_last) of the pre-
vious window within which subsequent events are considered "recurrent"
events. This period is referred to as the recurrence window. If recurrence_length
is not supplied, it’s assumed to be the same as case_length. Can be a (number_line)
range.

rolls_max Maximum number of times an episode can reoccur. Only used if episode_type
is "rolling".

skip_if_b4_lengths

If TRUE (default), records events before the case_length or the recurrence_length
range are skipped.

data_source Unique dataset identifier. Useful when the dataset contains data from multiple
sources. In episode_group, you can use multiple columns supplied as column
names.

data_links Breakup episodes that will not include records from these data_sources. data_links
should be a list with every element named ’l’ (links) or ’g’ (groups). Useful in
skipping episodes that are not required to minimise processing time. Ignored if
data_source is NULL.

episode_group 5

custom_sort Preferential order for "case" assignment. Useful in specifying that episode
grouping begins at particular events regardless of chronological order. In episode_group,
you can use multiple columns as sort levels.

skip_order Skip episodes whose case events have custom_sort values that are less than or
equal to the "nth" level of custom_sort. Useful in skipping episodes that are
not required and so minimises the overall processing time. Ignored if custom_sort
is NULL.

from_last If TRUE, episode grouping will be backwards in time - starting at the most recent
event and proceeding to the earliest. If FALSE, it’ll be forward in time - starting
at the earliest event and proceeding to the most recent one.

overlap_method Methods of overlap considered when grouping event periods. Each pair of peri-
ods are checked with the same set of overlap_method. Deprecated please use
overlap_methods instead.

overlap_methods

Methods of overlap considered when grouping event periods. Different pairs of
periods can be checked with different sets of overlap_methods

bi_direction If FALSE (default), "duplicate" events will be those within the case_length
before or after the "case" as determined by from_last. If TRUE, "duplicate"
events will be those within the same period before and after the "case".

group_stats If TRUE, the output will include additional information with useful stats for each
episode group.

display If TRUE (default), a progress message is printed on screen.

deduplicate if TRUE, "dupilcate" events are excluded from the output.

to_s4 If TRUE (default), episodes are returned as an epid object.
recurrence_from_last

If TRUE (default), the reference event for a recurrence window will be the last
event from the previous window. If FALSE (default), it will be the first event.
Only used if episode_type is "rolling".

case_for_recurrence

If TRUE, both case and recurrence events will have a case window. If FALSE (de-
fault), only case events will have a case window. Only used if episode_type
is "rolling".

include_index_period

If TRUE, overlaps with the index event or period are grouped together even if
they are outside the cut-off range (case_length or recurrence_length).

x Record date or interval. Deprecated. Please use date

Details

Episode grouping begins at a reference event ("case") and proceeds forward or backward in time
depending on from_last. If custom_sort is used, episode grouping can be forced to begin at cer-
tain events before proceeding forward or backwards in time. The maximum duration of a "fixed"
episode is the case_length. This period is referred to as the case window. The maximum duration
of a "rolling" episode is the case_length plus all periods of recurrence. The recurrence periods
are referred to as recurrence windows. This is a specified duration (recurrence_length) after the

6 episode_group

last or first (depending on recurrence_from_last) event in the previous window. Events within
this period are considered "recurrent" events.

When a data_source identifier is provided, epid_dataset is included in the output. This lists the
source of every event in each episode.

fixed_episodes() and rolling_episodes() are wrapper functions of episode_group(). They
are convenient alternatives with the same functionalities.

Value

epid objects or data.frame if to_s4 is FALSE)

• sn - unique record identifier as provided (or generated)

• epid | .Data - unique episode identifier

• wind_id - unique window identifier

• wind_nm - type of window i.e. "Case" or "Recurrence"

• case_nm - record type in regards to case assignment

• dist_from_wind - duration of each event from its window’s reference event

• dist_from_epid - duration of each event from its episode’s reference event

• epid_total - number of records in each episode

• epid_dataset - data sources in each episode

• epid_interval - episode start and end dates. A number_line object.

• epid_length - difference between episode start and end dates (difftime). If possible, it’s
the same unit as episode_unit otherwise, a difference in days is returned

• epid_total - number of records in each episode

See Also

record_group, overlaps and number_line

Examples

library(diyar)
data(infections)
data(hospital_admissions)

db_1 <- infections
db_1$patient_id <- c(rep("PID 1",8), rep("PID 2",3))

Fixed episodes
One 16-day (15-day difference) episode per patient
db_1$epids_p <- fixed_episodes(date=db_1$date, strata = db_1$patient_id,
case_length = 15, episodes_max = 1, display = FALSE)

Rolling episodes
Case length of 16 days and recurrence periods of 11 days
db_1$rd_b <- rolling_episodes(db_1$date, case_length = 15,
recurrence_length = 10, display = FALSE)

number_line 7

Interval grouping
hospital_admissions$admin_period <- number_line(hospital_admissions$admin_dt,
hospital_admissions$discharge_dt)
admissions <- hospital_admissions[c("admin_period","epi_len")]

Episodes of overlaping periods of admission
hospital_admissions$epi_0 <- fixed_episodes(date=hospital_admissions$admin_period,
case_length = 0, group_stats = TRUE, to_s4=TRUE)

Note - episode_group() takes column names not actual values

number_line Number line objects

Description

number_line - A range of numeric based values on a number line.

Usage

number_line(l, r, id = NULL, gid = NULL)

as.number_line(x)

is.number_line(x)

left_point(x)

left_point(x) <- value

right_point(x)

right_point(x) <- value

start_point(x)

start_point(x) <- value

end_point(x)

end_point(x) <- value

number_line_width(x)

reverse_number_line(x, direction = "both")

8 number_line

shift_number_line(x, by = 1)

expand_number_line(x, by = 1, point = "both")

invert_number_line(x, point = "both")

compress_number_line(x, method = c("exact", "across", "chain",
"aligns_start", "aligns_end", "inbetween", "overlap", "none"),
collapse = FALSE, deduplicate = TRUE, methods = "overlap")

number_line_sequence(x, by = 1, length.out = NULL)

Arguments

l Left point of the number_line object. Must be able to be coerced to a finite
numeric value

r Right point of the number_line object. Must be able to be coerced to a finite
numeric value

id Unique numeric element ID. Optional

gid Unique numeric group ID. Optional

x number_line object

value numeric based value

direction Type of "number_line" objects to be reversed. Options are; "increasing",
"decreasing" or "both" (default).

by increment or decrement. Passed to seq() in number_line_sequence()

point "start" or "end" point

method Method of overlap. Check every pair of number_line objects with the same
method. Deprecated. Please use methods instead.

collapse If TRUE, collapse the compressed results yet again.

deduplicate if TRUE, retains only one number_line object per set of overlapping number_line.

methods Methods of overlap. Check different pairs of number_line objects with the
different methods

length.out desired length of the sequence. Passed to seq()

Details

A number_line object represents a range of real numbers on a number line.

Visually, it’s presented as the left (l) and right (r) points of the range This may differ from start
and end points. The start point is the lowest number in the range, regardless of whether it’s at the
left or right point.

The location of the start point - left or right, indicates whether it’s an "increasing" or
"decreasing" range. This is the direction of the number_line object.

reverse_number_line() - reverses the direction of a number_line object. A reversed number_line
object has its l and r points swapped. The direction argument determines which type of number_line

number_line 9

objects will be reversed. number_line objects with non-finite numeric starts or end points i.e. (NA,
NaN and Inf) can’t be reversed.

shift_number_line() - Shift a number_line object towards the positive or negative end of the
number line.

expand_number_line() - Increase or decrease the width or length of a number_line object.

invert_number_line() - Invert the left and/or right points to the opposite end of the number
line.

compress_number_line() - "compress" or "collapse" overlapping number_line objects into
a new number_line object that covers the start and end points of the originals. This results in
duplicate number_line objects with the start and end points of the new expanded number_line
object. See overlaps for further details on overlapping number_line objects. If a familiar (but
unique) id is used when creating the number_line objects, compress_number_line() can be an
alternative for simple implementations of record_group or episode_group.

number_line_sequence() - Convert a number_line object into a sequence of finite numbers. The
direction of the sequence will correspond to that of the number_line object.

Value

number_line object

Examples

date <- function(x) as.Date(x, "%d/%m/%Y")
dttm <- function(x) as.POSIXct(x, "UTC",format="%d/%m/%Y %H:%M:%S")

number_line(-100, 100); number_line(10, 11.2)

Other numeric based object classes are also compatible
number_line(dttm("15/05/2019 13:15:07"), dttm("15/05/2019 15:17:10"))

However, a warning is given if 'l' and 'r' have different classes.
Consider if this needs to be corrected.
number_line(2, date("05/01/2019"))

Convert numeric based objects to number_line objects
as.number_line(5.1); as.number_line(date("21/10/2019"))

A test for number_line objects
a <- number_line(0, -100)
b <- number_line(date("25/04/2019"), date("01/01/2019"))
is.number_line(a); is.number_line(b)

Structure of a number_line object
left_point(a); right_point(a); start_point(a); end_point(a)

Reverse number_line objects
reverse_number_line(number_line(date("25/04/2019"), date("01/01/2019")))
reverse_number_line(number_line(200, -100), "increasing")
reverse_number_line(number_line(200, -100), "decreasing")

10 number_line-class

Shift number_line objects
c <- number_line(5, 6)
Towards the positive end of the number line
shift_number_line(x=c(c, c), by=c(2, 3))
Towards the negative end of the number line
shift_number_line(x=c(c, c), by=c(-2, -3))

Change the width or length of a number_line object
d <- c(number_line(3, 6), number_line(6, 3))

expand_number_line(d, 2)
expand_number_line(d, -2)
expand_number_line(d, c(2,-1))
expand_number_line(d, 2, "start")
expand_number_line(d, 2, "end")

Change the width or length of a number_line object
e <- c(number_line(3, 6), number_line(-3, -6), number_line(-3, 6))

e
invert_number_line(e)
invert_number_line(e, "start")
invert_number_line(e, "end")

Collapse number line objects
x <- c(number_line(10,10), number_line(10,20), number_line(5,30), number_line(30,40))
compress_number_line(x, deduplicate = FALSE)
compress_number_line(x)
compress_number_line(x, collapse=TRUE)
compress_number_line(x, collapse=TRUE, methods = "inbetween")

Convert a number line object to its series of real numbers
number_line_sequence(number_line(1, 5))
number_line_sequence(number_line(5, 1), .5)
number_line_sequence(number_line(5:1, 1:5), 1:5)

nl <- number_line(dttm("01/04/2019 00:00:00"), dttm("04/04/2019 00:00:00"))

number_line_sequence(c(nl, nl), c(episode_unit[["days"]] * 1.5, episode_unit[["hours"]] * 12))

number_line-class number_line object

Description

S4 objects representing a series of finite numbers on a number line Used for range matching in
record_group and interval grouping in fixed_episodes, rolling_episodes and episode_group

number_line-class 11

Usage

S4 method for signature 'number_line'
show(object)

S4 method for signature 'number_line'
rep(x, ...)

S4 method for signature 'number_line'
x[i, j, ..., drop = TRUE]

S4 method for signature 'number_line'
x[[i, j, ..., exact = TRUE]]

S4 replacement method for signature 'number_line'
x[i, j, ...] <- value

S4 replacement method for signature 'number_line'
x[[i, j, ...]] <- value

S4 method for signature 'number_line'
x$name

S4 replacement method for signature 'number_line'
x$name <- value

S4 method for signature 'number_line'
c(x, ...)

S3 method for class 'number_line'
unique(x, ...)

S3 method for class 'number_line'
sort(x, decreasing = FALSE, ...)

S3 method for class 'number_line'
format(x, ...)

Arguments

object object

x x

... ...

i i

j j

drop drop

exact exact

12 overlaps

value value

name slot name

decreasing logical. Should the sort be increasing or decreasing

Slots

start Start of the number line

id Unique numeric ID. Providing this is optional.

gid Unique numeric Group ID. Providing this is optional.

.Data Length/with and direction of the number_line object.

overlaps Overlapping number line objects

Description

Identify overlapping number_line objects

Usage

overlaps(x, y, method = c("exact", "across", "chain", "aligns_start",
"aligns_end", "inbetween", "overlap", "none"), methods = "overlap")

overlap(x, y)

exact(x, y)

across(x, y)

chain(x, y)

aligns_start(x, y)

aligns_end(x, y)

inbetween(x, y)

overlap_method(x, y)

include_overlap_method(methods)

exclude_overlap_method(methods)

overlaps 13

Arguments

x number_line object

y number_line object

method Method of overlap. Check every pair of number_line objects with the same
method. Deprecated. Please use methods instead.

methods Methods of overlap. Check different pairs of number_line objects using differ-
ent methods

Details

7 logical test;
exact() - Identical start and end points

inbetween() - start and end points of one number_line object is in between the start and end
points of another.

across() - Start or end points of one number_line object is in between the start and end points of
another.

chain() - Chained i.e. end point of one number_line object is the same as the start point of
another.

aligns_start() - Identical start points only.

aligns_end() - Identical end points only.

overlap() - Any kind of overlap. All other methods are mutually exclusive. overlap() is just a
convenient method for "ANY" and "ALL" methods of overlap.

overlaps() - Overlap by any or all 7 methods above.

Describe methods of overlap;
overlap_method() - Shows if and how a pair of number_line object has overlapped. Does not
show "overlap" since overlap() is always TRUE when any other method is TRUE.

include_overlap_method() and exclude_overlap_method() - Conveniently create the required
values for methods and overlap_methods in episode_group.

Value

logical; character

See Also

number_line and set_operations

Examples

a <- number_line(-100, 100)
b <- number_line(10, 11.2)
c <- number_line(100, 200)
d <- number_line(100, 120)
e <- number_line(50, 120)
g <- number_line(100,100)

14 pid-class

overlaps(a, g)
overlaps(a, g, methods = "exact|chain")

overlap(a, b)
overlap(a, e)

exact(a, g)
exact(a, a)

across(a, b)
across(a, e)

chain(c, d)
chain(a, c)

aligns_start(c, d)
aligns_start(a, c)

aligns_end(d, e)
aligns_end(a, c)

inbetween(a, g)
inbetween(b, a)

overlap_method(a, c)
overlap_method(d, c)
overlap_method(a, g)
overlap_method(b, e)

include_overlap_method("across")
include_overlap_method(c("across", "chain"))

exclude_overlap_method("across")
exclude_overlap_method(c("across", "chain"))

pid-class pid objects

Description

S4 objects to store the results of record_group

Usage

as.pid(x, ...)

S3 method for class 'pid'
format(x, ...)

record_group 15

S3 method for class 'pid'
unique(x, ...)

S4 method for signature 'pid'
show(object)

S4 method for signature 'pid'
rep(x, ...)

S4 method for signature 'pid'
x[i, j, ..., drop = TRUE]

S4 method for signature 'pid'
x[[i, j, ..., exact = TRUE]]

S4 method for signature 'pid'
c(x, ...)

Arguments

x x

... ...

object object

i i

j j

drop drop

exact exact

record_group Multistage deterministic record linkage

Description

Group matching or partially matching records in multiple stages of relevance using different criteria.

Usage

record_group(df, sn = NULL, criteria, sub_criteria = NULL,
strata = NULL, data_source = NULL, group_stats = FALSE,
display = TRUE, to_s4 = TRUE)

16 record_group

Arguments

df data.frame. One or more datasets appended together.

sn Unique numerical record identifier. Optional.

criteria Column names of attributes to match. Each criteria is a stage in the process
and the order in which they are listed determines the relevance of matches.

sub_criteria Matching sub-criteria. Additional matching conditions for each stage (criteria).

strata Subsets of the dataset. Record grouping will be done separately with each subset
of the dataset. You can use multiple columns supplied as column names.

data_source Unique dataset identifier. Useful when df contains data from multiple sources.

group_stats If TRUE, output will include additional columns with useful stats for each record
group.

display If TRUE (default), a progress message is printed on screen.

to_s4 If TRUE (default), record groups are returned as a pid object.

Details

Record grouping occurs in stages of matching criteria.

Records are matched in two ways: an exact match i.e. the equivalent of (==), or range matching.
An example of range matching is matching a date give or take 5 days, or matching an age give or
take 2 years. To do this, create the range as a number_line object and supply it to the criteria
or sub_criteria argument. The actual value within each range must be assigned to the gid slot of
the number_line object.

A match at each stage is considered more relevant than a match at the next stage. Therefore,
criteria should be listed in order of decreasing relevance or certainty.

sub_criteria can be used to force additional matching conditions at each stage. If sub_criteria
is not NULL, only records with matching criteria and sub_criteria values are grouped together.
If a record has missing values for any criteria, that record is skipped at that stage, and another
attempt is made at the next stage. If there are no matches for a record at every stage, that record is
assigned a unique group ID.

When a data_source identifier is provided, pid_dataset is included in the output. This lists the
source of every record in each record group.

Value

pid objects or data.frame if to_s4 is FALSE)

• sn - unique record identifier as provided (or generated)

• pid | .Data - unique group identifier

• link_id - unique record identifier of matching records

• pid_cri - matching criteria

• pid_dataset - data sources in each group

• pid_total - number of records in each group

record_group 17

See Also

episode_group and number_line

Examples

library(diyar)
three_people <- data.frame(forename=c("Obinna","James","Ojay","James","Obinna"),

stringsAsFactors = FALSE)

three_people$pids_a <- record_group(three_people, criteria= forename, to_s4 = TRUE)
three_people

To handle missing or unknown data, recode missing or unknown values to NA or "".
three_people$forename[c(1,4)] <- NA
three_people$pids_b <- record_group(three_people, criteria= forename, to_s4 =TRUE)
three_people

data(staff_records); staff_records

Range matching
dob <- staff_records["sex"]
dob$age <- c(30,28,40,25,25,29,27)

age range: age + 20 years
dob$range_a <- number_line(dobage, dobage+20, gid=dob$age)
dob$pids_a <- record_group(dob, criteria = sex, sub_criteria = list(s1a="range_a"), to_s4 = TRUE)
dob[c("sex","age","range_a","pids_a")]

age range: age +- 20 years
dob$range_b <- number_line(dob$age-20, dob$age+20, gid=dob$age)
dob$pids_b <- record_group(dob, criteria = sex, sub_criteria = list(s1a="range_b"), to_s4 = TRUE)
dob[c("sex","age","range_b","pids_b")]

dob$pids_c <- record_group(dob, criteria = range_b, to_s4 = TRUE)
dob[c("age","range_b","pids_c")]

Multistage record grouping
staff_records$pids_a <- record_group(staff_records, sn = r_id, criteria = c(forename, surname),

data_source = sex, display = FALSE, to_s4 = TRUE)
staff_records

Add `sex` to the second stage (`cri`) to be more certain
staff_records$cri_2 <- paste0(staff_records$surname,"-", staff_records$sex)
staff_records$pids_b <- record_group(staff_records, r_id, c(forename, cri_2),

data_source = dataset, display = FALSE, to_s4 = TRUE)
staff_records

Using sub-criteria
data(missing_staff_id); missing_staff_id

missing_staff_id$pids <- record_group(missing_staff_id, r_id, c(staff_id, age),

18 set_operations

list(s2a=c("initials","hair_colour","branch_office")), data_source = source_1, to_s4 = TRUE)

missing_staff_id

set_operations Set operations on number line objects

Description

Perform set operations on a pair of number_line objects.

Usage

union_number_lines(x, y)

intersect_number_lines(x, y)

subtract_number_lines(x, y)

Arguments

x number_line object

y number_line object

Details

union_number_lines() - Combined range of x and y

intersect_number_line() - Subset of x that overlaps with y and vice versa

subtract_number_lines() - Subset of x that does not overlap with y and vice versa. Returns a
list with two elements;

• n1 - subset before the overlapped range

• n2 - subset before the overlapped range

The direction of the returned number_line will be that of the widest one (x or y). If x and y have
the same length, it’ll be an "increasing direction".

If x and y do not overlap, NA ("NA ?? NA") is returned.

Value

number_line; list

See Also

number_line and overlaps

staff_records 19

Examples

nl_1 <- c(number_line(1, 5), number_line(1, 5), number_line(5, 9))
nl_2 <- c(number_line(1, 2), number_line(2, 3), number_line(0, 6))

Union
nl_1; nl_2; union_number_lines(nl_1, nl_2)

nl_1 <- number_line(as.Date(c("01/01/2020", "03/01/2020","09/01/2020"), "%d/%m/%Y"),
as.Date(c("09/01/2020", "09/01/2020","25/12/2020"), "%d/%m/%Y"))

nl_2 <- number_line(as.Date(c("04/01/2020","01/01/2020","01/01/2020"), "%d/%m/%Y"),
as.Date(c("05/01/2020","05/01/2020","03/01/2020"), "%d/%m/%Y"))

Intersect
nl_1; nl_2; intersect_number_lines(nl_1, nl_2)

Subtract
nl_1; nl_2; subtract_number_lines(nl_1, nl_2)

staff_records Datasets in diyar package

Description

Datasets in diyar package

Usage

data(staff_records)

data(missing_staff_id)

data(infections)

data(infections_2)

data(infections_3)

data(infections_4)

data(hospital_admissions)

data(patient_list)

data(patient_list_2)

20 to_s4

data(hourly_data)

data(Opes)

data(episode_unit)

Format

data.frame

Details

staff_records - Staff record with some missing data

missing_staff_id - Staff records with missing staff identifiers

infections, infections_2, infections_3 and infections_4 - Reports of bacterial infections

hospital_admissions - Hospital admissions and discharges

patient_list & patient_list_2 - Patient list with some missing data

Hourly data

Opes - List of individuals with the same name

Duration in seconds for each ’episode_unit’

Examples

data(staff_records)
data(missing_staff_id)
data(infections)
data(infections_2)
data(infections_3)
data(infections_4)
data(hospital_admissions)
data(patient_list)
data(patient_list_2)
data(hourly_data)
data(Opes)
data(episode_unit)

to_s4 Change the returned outputs of diyar functions

Description

Convert the returned output of number_line, record_group, episode_group, fixed_episodes
and rolling_episodes from a data.frame to number_line, pid or epid objects, and vice versa.

to_s4 21

Usage

to_s4(df)

to_df(s4)

Arguments

df data.frame

s4 pid or epid objects

Value

to_s4 - pid or epid objects

to_df - data.frame object

Examples

data(infections)
dates <- infections$date
output <- fixed_episodes(dates, case_length=30)
output

from the a pid/epid object to a data.frame
df_output <- to_df(output)
df_output

from a data.frame to pid/epid object
s4_output <- to_s4(df_output)
s4_output

all(s4_output == output)

Index

∗Topic datasets
staff_records, 19

[,epid-method (epid-class), 2
[,number_line-method

(number_line-class), 10
[,pid-method (pid-class), 14
[<-,number_line-method

(number_line-class), 10
[[,epid-method (epid-class), 2
[[,number_line-method

(number_line-class), 10
[[,pid-method (pid-class), 14
[[<-,number_line-method

(number_line-class), 10
$,number_line-method

(number_line-class), 10
$<-,number_line-method

(number_line-class), 10

across (overlaps), 12
aligns_end (overlaps), 12
aligns_start (overlaps), 12
as.epid (epid-class), 2
as.number_line (number_line), 7
as.pid (pid-class), 14

c,epid-method (epid-class), 2
c,number_line-method

(number_line-class), 10
c,pid-method (pid-class), 14
chain (overlaps), 12
compress_number_line (number_line), 7

end_point (number_line), 7
end_point<- (number_line), 7
epid, 5, 6, 20, 21
epid-class, 2
episode_group, 2, 3, 4, 5, 9, 10, 13, 17, 20
episode_unit (staff_records), 19
exact (overlaps), 12

exclude_overlap_method (overlaps), 12
expand_number_line (number_line), 7

fixed_episodes, 2, 10, 20
fixed_episodes (episode_group), 3
format.epid (epid-class), 2
format.number_line (number_line-class),

10
format.pid (pid-class), 14

hospital_admissions (staff_records), 19
hourly_data (staff_records), 19

inbetween (overlaps), 12
include_overlap_method (overlaps), 12
infections (staff_records), 19
infections_2 (staff_records), 19
infections_3 (staff_records), 19
infections_4 (staff_records), 19
intersect_number_lines

(set_operations), 18
invert_number_line (number_line), 7
is.number_line (number_line), 7

left_point (number_line), 7
left_point<- (number_line), 7

missing_staff_id (staff_records), 19

number_line, 4, 6, 7, 13, 16–18, 20
number_line-class, 10
number_line_sequence (number_line), 7
number_line_width (number_line), 7

Opes (staff_records), 19
overlap (overlaps), 12
overlap_method (overlaps), 12
overlaps, 6, 9, 12, 18

patient_list (staff_records), 19
patient_list_2 (staff_records), 19

22

INDEX 23

pid, 16, 20, 21
pid-class, 14

record_group, 4, 6, 9, 10, 14, 15, 20
rep,epid-method (epid-class), 2
rep,number_line-method

(number_line-class), 10
rep,pid-method (pid-class), 14
reverse_number_line (number_line), 7
right_point (number_line), 7
right_point<- (number_line), 7
rolling_episodes, 2, 10, 20
rolling_episodes (episode_group), 3

set_operations, 13, 18
shift_number_line (number_line), 7
show,epid-method (epid-class), 2
show,number_line-method

(number_line-class), 10
show,pid-method (pid-class), 14
sort.number_line (number_line-class), 10
staff_records, 19
start_point (number_line), 7
start_point<- (number_line), 7
subtract_number_lines (set_operations),

18

to_df (to_s4), 20
to_s4, 20

union_number_lines (set_operations), 18
unique.epid (epid-class), 2
unique.number_line (number_line-class),

10
unique.pid (pid-class), 14

	epid-class
	episode_group
	number_line
	number_line-class
	overlaps
	pid-class
	record_group
	set_operations
	staff_records
	to_s4
	Index

