
Package ‘diversitree’
January 16, 2020

Version 0.9-13

Title Comparative 'Phylogenetic' Analyses of Diversification

Depends R (>= 2.10), methods, ape

Imports deSolve (>= 1.7), graphics, grDevices, stats, subplex, Rcpp
(>= 0.10.0)

Suggests numDeriv, minqa, lubridate, expm, caper, geiger

LinkingTo Rcpp

RcppModules diversitree

SystemRequirements fftw3 (>= 3.1.2), gsl (>= 1.15)

Description Contains a number of comparative 'phylogenetic' methods,
mostly focusing on analysing diversification and character
evolution. Contains implementations of 'BiSSE' (Binary State
'Speciation' and Extinction) and its unresolved tree extensions,
'MuSSE' (Multiple State 'Speciation' and Extinction), 'QuaSSE',
'GeoSSE', and 'BiSSE-ness' Other included methods include Markov
models of discrete and continuous trait evolution and constant rate
'speciation' and extinction.

License GPL (>= 2)

URL http://www.zoology.ubc.ca/prog/diversitree

LazyData true

NeedsCompilation yes

Author Richard G. FitzJohn [aut, cre],
Emma Goldberg [aut],
Karen Magnuson-Ford [aut],
Roger Sidje [aut]

Maintainer Richard G. FitzJohn <rich.fitzjohn@gmail.com>

Repository CRAN

Date/Publication 2020-01-16 13:20:24 UTC

1

http://www.zoology.ubc.ca/prog/diversitree

2 R topics documented:

R topics documented:

diversitree-package . 3
argnames . 3
asr . 4
asr-bisse . 5
asr-mkn . 7
check . 10
combine . 10
constrain . 11
find.mle . 13
history.from.sim . 17
make.bd . 18
make.bd.split . 20
make.bd.t . 22
make.bisse . 24
make.bisse.split . 29
make.bisse.td . 31
make.bisseness . 35
make.bm . 40
make.clade.tree . 41
make.classe . 42
make.geosse . 45
make.geosse.split . 47
make.geosse.t . 49
make.mkn . 52
make.musse . 55
make.musse.multitrait . 58
make.musse.split . 63
make.musse.td . 65
make.pgls . 67
make.prior . 68
make.quasse . 69
make.quasse.split . 71
mcmc . 73
plot.history . 77
profiles.plot . 79
quasse-common . 80
set.defaults . 81
sim.character . 82
simulate . 83
trait.plot . 86
utilities . 88

Index 90

diversitree-package 3

diversitree-package Comparative ’Phylogenetic’ Analyses of Diversification

Description

Contains a number of comparative ’phylogenetic’ methods, mostly focusing on analysing diversi-
fication and character evolution. Contains implementations of ’BiSSE’ (Binary State ’Speciation’
and Extinction) and its unresolved tree extensions, ’MuSSE’ (Multiple State ’Speciation’ and Ex-
tinction), ’QuaSSE’, ’GeoSSE’, and ’BiSSE-ness’ Other included methods include Markov models
of discrete and continuous trait evolution and constant rate ’speciation’ and extinction.

Author(s)

NA

Maintainer: NA

References

Diversitree contains methods described in the following papers (all of which aside from Maddison
et al. 2007 were originally published as a diversitree implementation).

• FitzJohn R.G., Maddison W.P., and Otto S.P. 2009. Estimating trait-dependent speciation
and extinction rates from incompletely resolved phylogenies. systematic biology 58:595-611.
Systematic Biology 58:595-611.

• FitzJohn R.G. 2010. Quantitative traits and diversification. Systematic Biology 59:619-633.

• Goldberg E.E., Lancaster L.T., Ree R.H. 2011. Phylogenetic inference of reciprocal effects
between geographic range evolution and diversification. Systematic Biology 60: 451-465.

• Maddison W.P., Midford P.E., and Otto S.P. 2007. Estimating a binary character’s effect on
speciation and extinction. Systematic Biology 56: 701-710.

• Magnuson-Ford K. and Otto S.P. 2012. Linking the investigations of character evolution and
species diversification. The American Naturalist 180: 225-245.

argnames Argument Names for Vector-Argument Functions

Description

Functions to get and set “argument names” for functions that take vectorised arguments. For ex-
ample, the likelihood function returned by make.bisse takes a vector of six these functions can be
used to get the canonical names for these six parameters, and also to set them to something more
memorable. These names are used by the constrain function to specify submodels.

4 asr

Usage

argnames(x, ...)
argnames(x) <- value
S3 method for class 'constrained'
argnames(x, ...)
S3 replacement method for class 'constrained'
argnames(x) <- value

Arguments

x A function taking a vector of parameters as its first argument.

value Vector of names to set the argument names to.

... Ignored arguments to future methods.

Details

Methods exist for all models: bisse, geosse, bd, yule, mk2, and mkn. These are particulary useful
for mkn as the number of parameters for the Q matrix can be very large.

Author(s)

Richard G. FitzJohn

Examples

Same example likelihood function as for \link{make.bisse}:
pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(4)
phy <- tree.bisse(pars, max.t=30, x0=0)
f <- make.bisse(phy, phy$tip.state)

argnames(f) # Canonical argument names (set by default)
Names that might be more informative for a tall/short state
argnames(f) <- c("l.tall", "l.short", "m.tall", "m.short",

"q.tall.short", "q.short.tall")
argnames(f)

asr Ancestral State Reconstruction

Description

Perform ancestral state reconstruction. These functions are all generic and will dispatch on the class
of the given likelihood functions. Currently methods exist for all generics for Mk2, and marginal
ancestral state reconstructions are supported for BiSSE.

asr-bisse 5

Usage

asr.marginal(lik, pars, nodes=NULL, ...)
asr.joint(lik, pars, n=1, ...)
asr.stoch(lik, pars, n=1, ...)

make.asr.marginal(lik, ...)
make.asr.joint(lik, ...)
make.asr.stoch(lik, ...)

Arguments

lik A likelihood function.

pars A vector of parameters, suitable for lik.

nodes For asr.marginal only; an optional vector of nodes to return ancestral states
for (using ape’s index). By default, all nodes are returned.

n The number of samples to draw from the joint distribution, or number of stochas-
tic reconstructions to make.

... Additional arguments passed through to future methods

Details

These three functions compute marginal, joint, and stochastic ancestral reconstructions. The make
versions return functions that can efficiently be used many times over.

Value

The return values of the functions are likely to change in the near future. Watch out!

Author(s)

Richard G. FitzJohn

See Also

asr.mkn and asr.bisse for methods specific to particular classes, with examples of use.

asr-bisse Ancestral State Reconstruction Under BiSSE

Description

Perform ancestral state reconstruction under BiSSE and other constant rate Markov models. Marginal
reconstructions are supported (c.f. asr). Documentation is still in an early stage, and mostly in
terms of examples.

6 asr-bisse

Usage

S3 method for class 'bisse'
make.asr.marginal(lik, ...)
S3 method for class 'musse'
make.asr.marginal(lik, ...)

Arguments

lik A likelihood function, returned by make.mk2 or make.mkn.

... Additional arguments passed through to future methods. Currently unused.

Author(s)

Richard G. FitzJohn

Examples

Start with a simple tree evolved under a BiSSE with all rates
asymmetric:
pars <- c(.1, .2, .03, .06, .01, .02)
set.seed(3)
phy <- trees(pars, "bisse", max.taxa=50, max.t=Inf, x0=0)[[1]]

Here is the true history
h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy, main="True history")

Not run:
BiSSE ancestral state reconstructions under the ML model
lik <- make.bisse(phy, phy$tip.state)
fit <- find.mle(lik, pars, method="subplex")
st <- asr.marginal(lik, coef(fit))
nodelabels(thermo=t(st), piecol=1:2, cex=.5)

Mk2 ancestral state reconstructions, ignoring the shifts in
diversification rates:
lik.m <- make.mk2(phy, phy$tip.state)
fit.m <- find.mle(lik.m, pars[5:6], method="subplex")
st.m <- asr.marginal(lik.m, coef(fit.m))
The Mk2 results have more uncertainty at the root, but both are
similar.
nodelabels(thermo=t(st.m), piecol=1:2, cex=.5, adj=-.5)

(This section will take 10 or so minutes to run.)
Try integrating over parameter uncertainty and comparing the BiSSE
with Mk2 output:
prior <- make.prior.exponential(2)
samples <- mcmc(lik, coef(fit), 1000, w=1, prior=prior,

print.every=100)
st.b <- apply(samples[2:7], 1, function(x) asr.marginal(lik, x)[2,])
st.b.avg <- rowMeans(st.b)

asr-mkn 7

samples.m <- mcmc(lik.m, coef(fit.m), 1000, w=1, prior=prior,
print.every=100)

st.m <- apply(samples.m[2:3], 1, function(x) asr.marginal(lik.m, x)[2,])
st.m.avg <- rowMeans(st.m)

These end up being more striking in their similarity than their
differences, except for the root node, where BiSSE remains more sure
that is in state 0 (there is about 0.05 red there).
plot(h, phy, main="Marginal ASR, BiSSE (left), Mk2 (right)",

show.node.state=FALSE)
nodelabels(thermo=1-st.b.avg, piecol=1:2, cex=.5)
nodelabels(thermo=1-st.m.avg, piecol=1:2, cex=.5, adj=-.5)

Equivalency of Mk2 and BiSSE where diversification is state
independent. For any values of lambda/mu (here .1 and .03) where
these do not vary across character states, these two methods will
give essentially identical marginal ancestral state reconstructions.
st.id <- asr.marginal(lik, c(.1, .1, .03, .03, coef(fit.m)))
st.id.m <- asr.marginal(lik.m, coef(fit.m))

Reconstructions are identical to a relative tolerance of 1e-7
(0.0000001), which is similar to the expected tolerance of the BiSSE
calculations.
all.equal(st.id, st.id.m, tolerance=1e-7)

Equivalency of BiSSE and MuSSE reconstructions for two states:
lik.b <- make.bisse(phy, phy$tip.state)
lik.m <- make.musse(phy, phy$tip.state + 1, 2)

st.b <- asr.marginal(lik.b, coef(fit))
st.m <- asr.marginal(lik.m, coef(fit))

all.equal(st.b, st.m)

End(Not run)

asr-mkn Ancestral State Reconstruction Under Mk2/Mkn

Description

Perform ancestral state reconstruction under Mk2 and other constant rate Markov models. Marginal,
joint, and stochastic reconstructions are supported. Documentation is still in an early stage, and
mostly in terms of examples.

Usage

S3 method for class 'mkn'
make.asr.marginal(lik, ...)

8 asr-mkn

S3 method for class 'mkn'
make.asr.joint(lik, ...)
S3 method for class 'mkn'
make.asr.stoch(lik, slim=FALSE, ...)

Arguments

lik A likelihood function, returned by make.mk2 or make.mkn.

slim Should the history object be slimmed down?

... Additional arguments; currently ignored.

Details

Output will differ slightly when mk2 and mkn models are used as lik, as mk2 uses states 0/1, while
2-state mkn uses 1/2.

This is all quite slow. Faster versions are coming eventually.

These functions all return functions that generate different types of ancestral reconstruction.

Author(s)

Richard G. FitzJohn

Examples

Start with a simple tree evolved under a constant rates birth-death
model with asymetric character evolution
pars <- c(.1, .1, .03, .03, .03, .06)
set.seed(1)
phy <- trees(pars, "bisse", max.taxa=50, max.t=Inf, x0=0)[[1]]

Here is the true history. The root node appears to be state 1 (red)
at the root, despite specifying a root of state 0 (x0=0, in statement
above). This is because the tree started with a single lineage, but
had changed state by the time the first speciation event happened.
h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy, main="True history")

All of the methods need a likelihood function; build a mk2 function:
lik <- make.mk2(phy, phy$tip.state)

Using the true parameters, compute the marginal ancestral state
reconstructions:
st.m <- asr.marginal(lik, pars[5:6])

There is still not a good stand-alone plotting command for nodes.
For now, use ape's nodelabels().
plot(h, phy, main="Marginal ASR", show.node.state=FALSE)
nodelabels(thermo=t(st.m), piecol=1:2, cex=.5)

Again, with the true parameters, a sample from the joint

asr-mkn 9

distribution:
st.j <- asr.joint(lik, pars[5:6])

Plotting this sample against the true values.
plot(h, phy, main="Joint ASR", show.node.state=FALSE)
nodelabels(pch=19, col=st.j + 1)

This is just one sample, and is not very accurate in this case! Make
1,000 such samples and average them:
st.j2 <- asr.joint(lik, pars[5:6], 1000)
st.j2.mean <- colMeans(st.j2)

plot(h, phy, main="Joint ASR (averaged)", show.node.state=FALSE)
nodelabels(thermo=1-st.j2.mean, piecol=1:2, cex=.5)

Check the estimates against one another:
plot(st.m[2,], st.j2.mean, xlab="Marginal", ylab="Joint", las=1)
abline(0, 1)

Finally, the stochastic character mapping. This uses samples from
the joint distribution at its core.
st.s <- asr.stoch(lik, pars[5:6])
plot(st.s, phy)

Again, multiple samples can be done at once. There is a function for
summarising histories, but it is still in the works.

Repeating the above with a two-state mkn model:
lik2 <- make.mkn(phy, phy$tip.state + 1, 2, FALSE)

Everything works:
st2.m <- asr.marginal(lik2, pars[5:6])
st2.j <- asr.joint(lik2, pars[5:6], 100)
st2.s <- asr.stoch(lik2, pars[5:6])

Marginal likelihoods agree:
all.equal(st.m, st2.m)
Joint reconstructions are stochastic, so just check with a
regression:
summary(lm(colMeans(st2.j) - 1 ~ colMeans(st.j2) - 1))

Integrate parameter uncertainty, and see how far down the tree there
is any real information on parameter states for this tree (this takes
about 6s)
Not run:
set.seed(1)
prior <- make.prior.exponential(.5)
samples <- mcmc(lik, pars[5:6], 1000, w=1, prior=prior, print.every=100)
st.m.avg <- rowMeans(apply(samples[2:3], 1, asr.joint, lik=lik))

plot(h, phy, main="MCMC Averaged ASR", show.node.state=FALSE)
nodelabels(thermo=1 - st.m.avg, piecol=1:2, cex=.5)

10 combine

End(Not run)

check Check Capabilities of the Diversitree Install

Description

These check to see if FFTW support was included in diversitree. They rarely need to be called
directly.

Usage

check.fftC(error=TRUE)

Arguments

error Logical: causes an error if FFTW is not available if TRUE

Author(s)

Richard G. FitzJohn

combine Combine Several Likelihood Functions Multiplicatively

Description

Combine several likelihood functions, so that the new functions gives the product of all likelihoods
(the sum of the log likelihoods). This assumes that all likelihoods are independent from one another!

This function is little tested. Use at your own risk!

Usage

combine(liks)

Arguments

liks A list of likelihood functions. All must be of the same type, with the same
argnames, and not constrained.

Author(s)

Richard G. FitzJohn

constrain 11

constrain Constrain Parameters of a Model

Description

Constrain a model to make submodels with fewer parameters. If f is a function that takes a vector
x as its first argument, this function returns a new function that takes a shorter vector x with some
elements constrained in some way; parameters can be fixed to particular values, constrained to be
the same as other parameters, or arbitrary expressions of free parameters.

Usage

constrain(f, ..., formulae=NULL, names=argnames(f), extra=NULL)
constrain.i(f, p, i.free)

Arguments

f A function to constrain.

... Formulae indicating how the function should be constrained (see Details and
Examples).

formulae Optional list of constraints, possibly in addition to those in ...

names Optional Character vector of names, the same length as the number of parame-
ters in x. Use this only if argnames does not return a vector for your function.
Generally this should not be used.

extra Optional vector of additional names that might appear on the RHS of constraints
but do not represent names in the function’s argnames. This can be used to set
up dummy variables (example coming later).

p A parameter vector (for constrain.i) indicating values for all parameters.

i.free Indices of the parameters that are not constrained. Other indices will get the
value in p. The element of p[i.free] will never be used and can be zero, NA,
or any other value.

Details

The relationships are specified in the form target ~ rel, where target is the name of a vector
to be constrained, and rel is some relationship. For example lambda0 ~ lambda1 would have the
effect of making the parameters lambda0 and lambda1 take the same value.

The rel term can be a constant (e.g., target ~ 0), another parameter (as above) or some expression
of the parameters (e.g., lambda0 ~ 2 * lambda1 or lambda0 ~ lambda1 -mu1).

Terms that appear on the right hand side of an expression may not be constrained in another expres-
sion, and no term may be constrained twice.

12 constrain

Value

This function returns a constrained function that can be passed through to find.mle and mcmc.
It will behave like any other function. However, it has a modified class attribute so that some
methods will dispatch differently (argnames, for example). All arguments in addition to x will be
passed through to the original function f.

For help in designing constrained models, the returned function has an additional argument pars.only,
when this is TRUE the function will return a named vector of arguments rather than evaluate the func-
tion (see Examples).

Warning

Only a few checks are done to ensure that the resulting function makes any sense; it is possible that
I have missed some cases. There is currently no way of modifying constrained functions to remove
the constraints. These weaknesses will be addressed in a future version.

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

Same example likelihood function as for \link{find.mle} - BiSSE on a
tree with 203 species, generated with an asymmetry in the speciation
rates.
pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(2)
phy <- tree.bisse(pars, max.t=60, x0=0)
lik <- make.bisse(phy, phy$tip.state)

argnames(lik) # Canonical argument names

Specify equal speciation rates
lik.2 <- constrain(lik, lambda0 ~ lambda1)
argnames(lik.2) # Note lambda0 now missing

On constrained functions, use the "pars.only" argument to see what
the full argument list would be:
lik.2(c(.1, pars[3:6]), pars.only=TRUE)

Check this works:
lik(c(.1, .1, pars[3:6])) == lik.2(c(.1, pars[3:6]))

For optimisation of these functions, see \link{find.mle}, which
includes an example.

find.mle 13

More complicated; constrain lambda0 to half of lambda1, constrain mu0
to be the same mu1, and set q01 equal to zero.
lik.3 <- constrain(lik, lambda0 ~ lambda1 / 2, mu0 ~ mu1, q01 ~ 0)
argnames(lik.3) # lambda1, mu1, q10
lik(c(.1, .2, .03, .03, 0, .01)) == lik.3(c(.2, .03, .01))

Alternatively, coefficients can be specified using a list of
constraints:
cons <- list(lambda1 ~ lambda0, mu1 ~ mu0, q10 ~ q01)
constrain(lik, formulae=cons)

Using the "extra" argument allows recasting things to dummy
parameters. Here both lambda0 and lambda1 are mapped to the
parameter "lambda":
lik.4 <- constrain(lik, lambda0 ~ lambda, lambda1 ~ lambda, extra="lambda")
argnames(lik.4)

constrain.i can be useful for setting a number of values at once.
Suppose we wanted to look at the shape of the likelihood surface with
respect to one parameter around the ML point. For this tree, the ML
point is approximately:
p.ml <- c(0.09934, 0.19606, 0.02382, 0.03208, 0.01005, 0.00982)

Leaving just lambda1 (which is parameter number 2) free:
lik.l1 <- constrain.i(lik, p.ml, 2)

The function now reports that five of the parameters are constrained,
with one free (lambda1)
lik.l1

Likewise:
argnames(lik.l1)

Looking in the neighbourhood of the ML point, the likelihood surface
is approximately quadratic:
pp <- seq(p.ml[2] - .02, p.ml[2] + .02, length.out=15)
yy <- sapply(pp, lik.l1)
plot(yy ~ pp, type="b", xlab="lambda 1", ylab="Log likelihood")
abline(v=p.ml[2], col="red", lty=2)

pars.only works as above, returning the full parameter vector
lik.l1(p.ml[2], pars.only=TRUE)
identical(p.ml, lik.l1(p.ml[2], pars.only=TRUE))

find.mle Maximimum Likelihood Inference

Description

Find the maximum likelihood point of a model by nonlinear optimisation. find.mle is generic, and
allows different default behaviour for different likelihood functions.

14 find.mle

Usage

find.mle(func, x.init, method, ...)
S3 method for class 'fit.mle'
coef(object, full=FALSE, extra=FALSE, ...)
S3 method for class 'fit.mle'
logLik(object, ...)
S3 method for class 'fit.mle'
anova(object, ..., sequential=FALSE)

Arguments

func A likelihood function. This is assumed to return the log likelihood (see Details).
The function must take a vector of parameters as the first argument.

x.init Initial starting point for the optimisation.

method Method to use for optimisation. May be one of "optim", "subplex", "nlminb",
"nlm" (partial unambigious string is allowed).

... For find.mle, additional arguments passed through to the methods, optimisa-
tion routines, or to the likelihood function func - see Details. For anova, this is
one or more models to compare against the model object (either submodels or
supermodels or the test is meaningless).

object A fitted model, returned by find.mle.

full When returning the coefficients for a constrained model, should be coefficients
for the underlying constrained model be returned?

extra When returning the coefficients for a constrained model, should dummy “extra”
parameters be returned as well?

sequential Should anova treat the models as a series of increasing complexity? Currently
this is a little overzealous in checking and will refuse to work if the likelihood
values are not strictly increasing.

Details

find.mle starts a search for the maximum likelihood (ML) parameters from a starting point x.init.
x.init should be the correct length for func, so that func(x.init) returns a valid likelihood.
However, if func is a constrained function (via constrain) and x.init is the correct length for the
unconstrained function then an attempt will be made to guess a valid starting point. This will often
do poorly and a warning will be given.

Different methods will be dispatched for different types of likelihood functions. Currently all mod-
els in diversitree are supported (bisse, geosse, mk2, mkn, bd, and yule). With the exception
of the Yule pure-birth process, these methods just specify different default arguments for the un-
derlying optimisation routines (the Yule model has an analytical solution, and no optimisation step
is required). Generally, it will not be necessary to specify the method argument to find.mle as a
sensible method is chosen during dispatch.

The ... argument may contain additional arguments for the function func. This includes things
like condition.surv for conditioning on survival in BiSSE, birth-death, and Yule models. Specify
this as

find.mle 15

find.mle(lik, x.init, condition.surv=TRUE)

(see the Examples).

Different method arguments take different arguments passed through ... to control their behaviour:

method="optim": Uses R’s optim function for the optimisation. This allows access to a vari-
ety of general purpose optimisation algorithms. The method within optim can be chosen via the
argument optim.method, which is set to "L-BFGS-B" by default (box constrained quasi-Newton
optimisation). This should be suitable for most uses. See the method argument of optim for other
possibilities. If "L-BFGS-B" is used, then upper and lower bounds may be specified by the argu-
ments lower and upper. The argument control can be used to specify other control parameters
for the algorithms - see optim for details. Most of the optim algorithms require finite values be
returned at every evaluated point. This is often not possible (extreme values of parameters or par-
ticular combinations may have zero likelihood and therefore -Inf log-likelihood). To get around
this, the argument fail.value can be used to specify a fallback value. By default this is set to
func(x.init) -1000, which should work reasonably well for most cases.

method="subplex": Uses the "subplex" algorithm (a variant of the downhill simplex/Nelder-Mead
algorithm that uses Nelder-Mead on a sequence of subspaces). This algorithm generally requires
more evaluations than optim-based optimisation, but does not require approximation of derivatives
and seems to find the global optimum more reliably (though often less precisely). Additional ar-
guments are control to control aspects of the search (see subplex for details). The argument
fail.value can be used as in method="optim", but by default -Inf will be used on failure to
evaluate, which is generally appropriate.

method="nlminb": Uses the function nlminb for optimisation, so that optimising a Mk2/Mkn like-
lihood function behaves as similarly as possible to ape’s ace function. As for method="optim",
lower and upper bounds on parameters may be specified via lower and upper. fail.value can
be used to control behaviour on evaluation failure, but like method="subplex", -Inf is used
which should work in most cases. Additional control parameters may be passed via control -
see link{nlminb} for details. This function is not generally recommended for use.

method="nlm": Uses the function nlm for optimisation, so that optimising a birth-death likelihood
function behaves as similarly as possible to ape’s birthdeath function. Takes the same additional
arguments as method="nlminb" (except that fail.value behaves as for method="optim"). Like
method="nlminb", this is not recommended for general use.

code and logLik methods exist for fit.mle objects so that parameters and log-likelihoods may be
extracted. This also allows use with AIC.

Simple model comparison by way of likelihood ratio tests can be performed with anova. See
Examples for usage.

Value

A list of class fit.mle, with at least the components

• par The estimated parameters.

• lnLik The log likelihood at the ML point.

• counts The number of function evaluations performed during the search.

16 find.mle

• code Convergence code. See the documentation for the underlying optimisation method for
meaning, but "0" is usually good.

• func The likelihood function used in the fit.

• method The optimisation method used.

Model comparison

The anova function carries out likelihood ratio tests. There are a few possible configurations.

First, the first fit provided could be the focal fit, and all other fits are either special cases of it (every
additional model is nested within the focal model) or generalisations of it (the focal model is nested
within every additional model).

Second, the models could be sequential series of fits (if sequential=TRUE), such that models (A,
B, C, D) are to be compared A vs. B, B vs. C, C vs. D. The models can either be strictly increasing
in parameters (A nested in B, B nested in C, ...) or strictly decreasing in parameters (D nested in C,
C nested in B, ...).

In both cases, nestedness is checked. First, the "class" of the fitted object must match. Second,
the argnames of the likelihood function of a sub model must all appear in the argnames of the
parent model. There are some cases where this second condition may not be satisfied and yet the
comparison is valid (e.g., comparing a time-varying model against a non time varying model, and
some make.quasse fits). We attempt to detect this but it may fail on some valid comparisons and
silently allow some invalid comparisons.

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(2)
phy <- tree.bisse(pars, max.t=60, x0=0)

Here is the 203 species tree with the true character history coded.
Red is state '1', which has twice the speciation rate of black (state
'0').
h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy, cex=.5, show.node.state=FALSE)

Make a BiSSE likelihood function
lik <- make.bisse(phy, phy$tip.state)
lik(pars)

This takes ~30s to run, so is not enabled by default

history.from.sim 17

Not run:
Fit the full six-parameter model
fit <- find.mle(lik, pars)
fit[1:2]

coef(fit) # Named vector of six parameters
logLik(fit) # -659.93
AIC(fit) # 1331.86

find.mle works with constrained models (see \link{constrain}). Here
the two speciation rates are constrained to be the same as each
other.
lik.l <- constrain(lik, lambda0 ~ lambda1)
fit.l <- find.mle(lik.l, pars[-2])
logLik(fit.l) # 663.41

Compare the models with \link{anova} - this shows that the more
complicated model with two separate speciation rates fits
significantly better than the simpler model with equal rates
(p=0.008).
anova(fit, equal.lambda=fit.l)

You can return the parameters for the full six parameter model from
the fitted five parameter model - this makes a good starting point
for a ML search.
coef(fit.l, full=TRUE)

End(Not run)

history.from.sim Extract Character Histories From Simulations

Description

This function extracts a history object from a simulated phylogeny produced by tree.bisse.

Usage

history.from.sim.discrete(phy, states)

Arguments

phy A phylogeny produced by tree.bisse.

states Possible states. For tree.bisse this should be 0:1.

Author(s)

Richard G. FitzJohn

18 make.bd

make.bd Constant Rate Birth-Death Models

Description

Prepare to run a constant rate birth-death model on a phylogenetic tree. This fits the Nee et al. 1994
equation, duplicating the birthdeath function in ape. Differences with that function include (1) the
function is not constrained to positive diversification rates (mu can exceed lambda), (2) [eventual]
support for both random taxon sampling and unresolved terminal clades (but see bd.ext), and (3)
run both MCMC and MLE fits to birth death trees.

Usage

make.bd(tree, sampling.f=NULL, unresolved=NULL, times=NULL, control=list())
make.yule(tree, sampling.f=NULL, unresolved=NULL, times=NULL, control=list())
starting.point.bd(tree, yule=FALSE)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

times Vector of branching times, as returned by branching.times. You don’t need to
use this unless you know that you need to use this. Don’t use it at the same time
as tree.

sampling.f Probability of an extant species being included in the phylogeny (sampling frac-
tion). By default, all extant species are assumed to be included.

unresolved Unresolved clade information. This is a named vector, with the number of
species as the value and names corresponding to tip labels. Tips that represent a
single species should not be included in this vector. For example sp1=10,sp2=2,
would mean that sp1 represents 10 species, while sp2 represents two. These la-
bels must exist in tree$tip.label and all other tips are assumed to represent
one species.

yule Should the starting point function return a Yule model (zero extinction rate)?

control List of control parameters. The element method can be either nee or ode to
compute the likelihood using the equation from Nee et al. (1994) or in a BiSSE-
style ODE approach respectively. nee should be faster, and ode is provided for
completeness (and forms the basis of other methods). When ode is selected,
other elements of control affect the behaviour of the ODE solver: see details
in make.bisse.

Details

make.bd returns a function of class bd. This function has argument list (and default values)

f(pars, prior=NULL, condition.surv=TRUE)

make.bd 19

The arguments are interpreted as

• pars A vector of two parameters, in the order lambda, mu.

• prior: a valid prior. See make.prior for more information.

• condition.surv (logical): should the likelihood calculation condition on survival of two
lineages and the speciation event subtending them? This is done by default, following Nee et
al. 1994.

The function "ode" method is included for completeness, but should not be taken too seriously. It
uses an alternative ODE-based approach, more similar to most diversitree models, to compute the
likelihood. It exists so that other models that extend the birth-death models may be tested.

Author(s)

Richard G. FitzJohn

References

Nee S., May R.M., and Harvey P.H. 1994. The reconstructed evolutionary process. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 344:305-311.

See Also

constrain for making submodels, find.mle for ML parameter estimation, mcmc for MCMC inte-
gration, and make.bisse for state-dependent birth-death models.

Examples

Simulate a tree under a constant rates birth-death model and look at
the maximum likelihood speciation/extinction parameters:
set.seed(1)
phy <- trees(c(.1, .03), "bd", max.taxa=25)[[1]]
lik <- make.bd(phy)

By default, optimisation gives a lambda close to 0.1 and extremely
small mu:
fit <- find.mle(lik, c(.1, .03))
coef(fit)

The above optimisation uses the algorithm \link{nlm} for
compatibility with ape's \link{birthdeath}. This can be slightly
improved by using \link{optim} for the optimisation, which allows
bounds to be specified:
fit.o <- find.mle(lik, c(.1, .03), method="optim", lower=0)
coef(fit.o)

logLik(fit.o) - logLik(fit) # slight improvement

Special case methods are worked out for the Yule model, for which
analytic solutions are available. Compare a direct fit of the Yule
model with one where mu is constrained to be zero:

20 make.bd.split

lik.yule <- make.yule(phy)
lik.mu0 <- constrain(lik, mu ~ 0)

The same to a reasonable tolerance:
fit.yule <- find.mle(lik.yule, .1)
fit.mu0 <- find.mle(lik.mu0, .1)
all.equal(fit.yule[1:2], fit.mu0[1:2], tolerance=1e-6)

There is no significant improvement in the fit by including the mu
parameter (unsurprising as the ML value was zero)
anova(fit.o, yule=fit.yule)

Optimisation can be done without conditioning on survival:
fit.nosurv <- find.mle(lik, c(.1, .03), method="optim", lower=0,

condition.surv=FALSE)
coef(fit.nosurv) # higher lambda than before

Look at the marginal likelihoods, computed through MCMC (see
\link{mcmc} for details, and increase nsteps for smoother
plots [takes longer]).
samples <- mcmc(lik, fit$par, nsteps=500,

lower=c(-Inf, -Inf), upper=c(Inf, Inf), w=c(.1, .1),
fail.value=-Inf, print.every=100)

samples$r <- with(samples, lambda - mu)

Plot the profiles (see \link{profiles.plot}).
The vertical lines are the simulated parameters, which match fairly
well with the estimated ones.
col <- c("red", "blue", "green3")
profiles.plot(samples[c("lambda", "mu", "r")], col.line=col, las=1,

legend="topright")
abline(v=0, lty=2)
abline(v=c(.1, .03, .07), col=col)

Sample the phylogeny to include 20 of the species, and run the
likelihood search assuming random sampling:
set.seed(1)
phy2 <- drop.tip(phy, sample(25, 5))
lik2 <- make.bd(phy2, sampling.f=20/25)
fit2 <- find.mle(lik2, c(.1, .03))

The ODE based version gives comparable results. However, it is
about 55x slower.
lik.ode <- make.bd(phy, control=list(method="ode"))
all.equal(lik.ode(coef(fit)), lik(coef(fit)), tolerance=2e-7)

make.bd.split Constant Rate Birth-Death Models: Split Models

make.bd.split 21

Description

Create a likelihood function for a birth-death model where the tree is partitioned into regions with
different parameters.

Usage

make.bd.split(tree, nodes, split.t, sampling.f=NULL, unresolved=NULL)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

nodes Vector of nodes that will be split (see Details).

split.t Vector of split times, same length as nodes (see Details).

sampling.f Probability of an extant species being included in the phylogeny (sampling frac-
tion). By default, all extant species are assumed to be included.

unresolved Unresolved clade information. This is a named vector, with the number of
species as the value and names corresponding to tip labels. Tips that represent a
single species should not be included in this vector. For example sp1=10,sp2=2,
would mean that sp1 represents 10 species, while sp2 represents two. These la-
bels must exist in tree$tip.label and all other tips are assumed to represent
one species.

Details

Branching times can be controlled with the split.t argument. If this is Inf, split at the base of
the branch (as in MEDUSA). If 0, split at the top (closest to the present, as in the new option for
MEDUSA). If 0 < split.t < Inf then we split at that time on the tree (zero is the present, with
time growing backwards).

This function is related to MEDUSA (Alfaro et al. 2009), but does not include any of the code for ef-
ficiently moving between different splits (split creation here is fairly slow). The primary use for this
model is for generating starting points for state dependent split models (e.g., make.bisse.split)
and testing a priori splits.

Author(s)

Richard G. FitzJohn

Examples

set.seed(1)
pars <- c(.1, .03)
phy <- trees(pars, "bd", max.taxa=30)[[1]]

Here is the phylogeny:
plot(phy, show.node.label=TRUE, label.offset=.1, font=1, cex=.75,

no.margin=TRUE)

Construct the plain likelihood function as a benchmark:

22 make.bd.t

lik <- make.bd(phy)
lik(pars) # -21.74554

Split this phylogeny at three points: nd11, nd13 and nd26
nodes <- c("nd11", "nd13", "nd26")

This is the index in ape's node indexing:
nodes.i <- match(nodes, phy$node.label) + length(phy$tip.label)

nodelabels(node=nodes.i, pch=19, cex=2, col="#FF000099")

To make a split likelihood function, pass the node locations and times in:
lik.s <- make.bd.split(phy, nodes)

The parameters must be a list of the same length as the number of
partitions. Partition '1' is the root partition, and partition i is
the partition rooted at the node[i-1]
pars4 <- rep(pars, 4)
names(pars4) <- argnames(lik.s)

Run the likelihod calculation:
lik.s(pars4) # -21.74554

These are basically identical (to acceptable tolerance)
lik.s(pars4) - lik(pars)

You can use the labelled nodes rather than indices:
lik.s2 <- make.bd.split(phy, nodes)
identical(lik.s(pars4), lik.s2(pars4))

All the usual ML/MCMC functions work as before:
fit <- find.mle(lik.s, pars4)

make.bd.t Time-varing Birth-Death Models

Description

Create a likelihood function for the birth-death model, where birth and/or death rates are arbitrary
functions of time.

Usage

make.bd.t(tree, functions, sampling.f=NULL, unresolved=NULL,
control=list(), truncate=FALSE, spline.data=NULL)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

functions A named list of functions of time. See details.

make.bd.t 23

sampling.f Probability of an extant species being included in the phylogeny (sampling frac-
tion). By default, all extant species are assumed to be included.

unresolved Not yet included: present in the argument list for future compatibility with
make.bd.

control List of control parameters for the ODE solver. See details in make.bisse.

truncate Logical, indicating if functions should be truncated to zero when negative (rather
than causing an error). May be scalar (applying to all functions) or a vector (of
length 2).

spline.data List of data for spline-based time functions. See details.

Author(s)

Richard G. FitzJohn

Examples

First, show equivalence to the plain Birth-death model. This is not
a very interesting use of the functions, but it serves as a useful
check.

Here is a simulated 25 species tree for testing.
set.seed(1)
pars <- c(.1, .03)
phy <- trees(pars, "bd", max.taxa=25)[[1]]

Next, make three different likelihood functions: a "normal" one that
uses the direct birth-death calculation, an "ode" based one (that
uses numerical integration to compute the likelihood, and is
therefore not exact), and one that is time-varying, but that the
time-dependent functions are constant.t().
lik.direct <- make.bd(phy)
lik.ode <- make.bd(phy, control=list(method="ode"))
lik.t <- make.bd.t(phy, c("constant.t", "constant.t"))

lik.direct(pars) # -22.50267

ODE-based likelihood calculations are correct to about 1e-6.
lik.direct(pars) - lik.ode(pars)

The ODE calculation agrees exactly with the time-varying (but
constant) calculation.
lik.ode(pars) - lik.t(pars)

Next, make a real case, where speciation is a linear function of
time.
lik.t2 <- make.bd.t(phy, c("linear.t", "constant.t"))

Confirm that this agrees with the previous calculations when the
slope is zero
pars2 <- c(pars[1], 0, pars[2])
lik.t2(pars2) - lik.t(pars)

24 make.bisse

The time penalty comes from moving to the ODE-based solution, not
from the time dependence.
system.time(lik.direct(pars)) # ~ 0.000
system.time(lik.ode(pars)) # ~ 0.003
system.time(lik.t(pars)) # ~ 0.003
system.time(lik.t2(pars2)) # ~ 0.003

Not run:
fit <- find.mle(lik.direct, pars)
fit.t2 <- find.mle(lik.t2, pars2)

No significant improvement in model fit:
anova(fit, time.varying=fit.t2)

End(Not run)

make.bisse Binary State Speciation and Extinction Model

Description

Prepare to run BiSSE (Binary State Speciation and Extinction) on a phylogenetic tree and character
distribution. This function creates a likelihood function that can be used in maximum likelihood or
Bayesian inference.

Usage

make.bisse(tree, states, unresolved=NULL, sampling.f=NULL, nt.extra=10,
strict=TRUE, control=list())

starting.point.bisse(tree, q.div=5, yule=FALSE)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be 0 or 1, or NA if the state
is unknown. This vector must have names that correspond to the tip labels in
the phylogenetic tree (tree$tip.label). For tips corresponding to unresolved
clades, the state should be NA.

unresolved Unresolved clade information: see section below for structure.

sampling.f Vector of length 2 with the estimated proportion of extant species in state 0 and
1 that are included in the phylogeny. A value of c(0.5,0.75) means that half
of species in state 0 and three quarters of species in state 1 are included in the
phylogeny. By default all species are assumed to be known.

nt.extra The number of species modelled in unresolved clades (this is in addition to the
largest observed clade).

control List of control parameters for the ODE solver. See details below.

make.bisse 25

strict The states vector is always checked to make sure that the values are 0 and 1
only. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing.

q.div Ratio of diversification rate to character change rate. Eventually this will be
changed to allow for Mk2 to be used for estimating q parameters.

yule Logical: should starting parameters be Yule estimates rather than birth-death
estimates?

Details

make.bisse returns a function of class bisse. This function has argument list (and default values)

f(pars, condition.surv=TRUE, root=ROOT.OBS, root.p=NULL,
intermediates=FALSE)

The arguments are interpreted as

• pars A vector of six parameters, in the order lambda0, lambda1, mu0, mu1, q01, q10.
• condition.surv (logical): should the likelihood calculation condition on survival of two

lineages and the speciation event subtending them? This is done by default, following Nee et
al. 1994.

• root: Behaviour at the root (see Maddison et al. 2007, FitzJohn et al. 2009). The possible
options are

– ROOT.FLAT: A flat prior, weighting D0 and D1 equally.
– ROOT.EQUI: Use the equilibrium distribution of the model, as described in Maddison et

al. (2007).
– ROOT.OBS: Weight D0 and D1 by their relative probability of observing the data, follow-

ing FitzJohn et al. 2009:

D = D0
D0

D0 +D1
+D1

D1

D0 +D1

– ROOT.GIVEN: Root will be in state 0 with probability root.p[1], and in state 1 with
probability root.p[2].

– ROOT.BOTH: Don’t do anything at the root, and return both values. (Note that this will not
give you a likelihood!).

• root.p: Root weightings for use when root=ROOT.GIVEN. sum(root.p) should equal 1.
• intermediates: Add intermediates to the returned value as attributes:

– cache: Cached tree traversal information.
– intermediates: Mostly branch end information.
– vals: Root D values.

At this point, you will have to poke about in the source for more information on these.

starting.point.bisse produces a heuristic starting point to start from, based on the character-
independent birth-death model. You can probably do better than this; see the vignette, for example.
bisse.starting.point is the same code, but deprecated in favour of starting.point.bisse - it
will be removed in a future version.

26 make.bisse

Unresolved clade information

This must be a data.frame with at least the four columns

• tip.label, giving the name of the tip to which the data applies

• Nc, giving the number of species in the clade

• n0, n1, giving the number of species known to be in state 0 and 1, respectively.

These columns may be in any order, and additional columns will be ignored. (Note that column
names are case sensitive).

An alternative way of specifying unresolved clade information is to use the function make.clade.tree
to construct a tree where tips that represent clades contain information about which species are con-
tained within the clades. With a clade.tree, the unresolved object will be automatically con-
structed from the state information in states. (In this case, states must contain state information
for the species contained within the unresolved clades.)

ODE solver control

The differential equations that define the BiSSE model are solved numerically using ODE solvers
from the GSL library or deSolve’s LSODA. The control argument to make.bisse controls the
behaviour of the integrator. This is a list that may contain elements:

• tol: Numerical tolerance used for the calculations. The default value of 1e-8 should be a
reasonable trade-off between speed and accuracy. Do not expect too much more than this
from the abilities of most machines!

• eps: A value that when the sum of the D values drops below, the integration results will be dis-
carded and the integration will be attempted again (the second-chance integration will divide
a branch in two and try again, recursively until the desired accuracy is reached). The default
value of 0 will only discard integration results when the parameters go negative. However, for
some problems more restrictive values (on the order of control$tol) will give better stability.

• backend: Select the solver. The three options here are

– gslode: (the default). Use the GSL solvers, by default a Runge Kutta Kash Carp stepper.
– deSolve: Use the LSODA solver from the deSolve package. This is quite a bit slower at

the moment.

deSolve is the only supported backend on Windows.

Author(s)

Richard G. FitzJohn

References

FitzJohn R.G., Maddison W.P., and Otto S.P. 2009. Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595-611.

Maddison W.P., Midford P.E., and Otto S.P. 2007. Estimating a binary character’s effect on specia-
tion and extinction. Syst. Biol. 56:701-710.

Nee S., May R.M., and Harvey P.H. 1994. The reconstructed evolutionary process. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 344:305-311.

make.bisse 27

See Also

constrain for making submodels, find.mle for ML parameter estimation, mcmc for MCMC inte-
gration, and make.bd for state-independent birth-death models.

The help pages for find.mle has further examples of ML searches on full and constrained BiSSE
models.

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}
pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(4)
phy <- tree.bisse(pars, max.t=30, x0=0)

Here is the 52 species tree with the true character history coded.
Red is state '1', which has twice the speciation rate of black (state
'0').
h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy)

lik <- make.bisse(phy, phy$tip.state)
lik(pars) # -159.71

Heuristic guess at a starting point, based on the constant-rate
birth-death model (uses \link{make.bd}).
p <- starting.point.bisse(phy)

Not run:
Start an ML search from this point. This takes some time (~7s)
fit <- find.mle(lik, p, method="subplex")
logLik(fit) # -158.6875

The estimated parameters aren't too far away from the real ones, even
with such a small tree
rbind(real=pars,

estimated=round(coef(fit), 2))

Test a constrained model where the speciation rates are set equal
(takes ~4s).
lik.l <- constrain(lik, lambda1 ~ lambda0)
fit.l <- find.mle(lik.l, p[-1], method="subplex")
logLik(fit.l) # -158.7357

Despite the difference in the estimated parameters, there is no
statistical support for this difference:
anova(fit, equal.lambda=fit.l)

Run an MCMC. Because we are fitting six parameters to a tree with

28 make.bisse

only 50 species, priors will be needed. I will use an exponential
prior with rate 1/(2r), where r is the character independent
diversificiation rate:
prior <- make.prior.exponential(1 / (2 * (p[1] - p[3])))

This takes quite a while to run, so is not run by default
tmp <- mcmc(lik, fit$par, nsteps=100, prior=prior, w=.1, print.every=0)

w <- diff(sapply(tmp[2:7], range))
samples <- mcmc(lik, fit$par, nsteps=1000, prior=prior, w=w,

print.every=100)

See \link{profiles.plot} for more information on plotting these
profiles.
col <- c("blue", "red")
profiles.plot(samples[c("lambda0", "lambda1")], col.line=col, las=1,

xlab="Speciation rate", legend="topright")

End(Not run)

BiSSE reduces to the birth-death model and Mk2 when diversification
is state independent (i.e., lambda0 ~ lambda1 and mu0 ~ mu1).
lik.mk2 <- make.mk2(phy, phy$tip.state)
lik.bd <- make.bd(phy)

1. BiSSE / Birth-Death
Set the q01 and q10 parameters to arbitrary numbers (need not be
symmetric), and constrain the lambdas and mus to be the same for each
state. The likelihood function now has just two parameters and
will be proprtional to Nee's birth-death based likelihood:
lik.bisse.bd <- constrain(lik,

lambda1 ~ lambda0, mu1 ~ mu0,
q01 ~ .01, q10 ~ .02)

pars <- c(.1, .03)
These differ by -167.3861 for both parameter sets:
lik.bisse.bd(pars) - lik.bd(pars)
lik.bisse.bd(2*pars) - lik.bd(2*pars)

2. BiSSE / Mk2
Same idea as above: set all diversification parameters to arbitrary
values (but symmetric this time):
lik.bisse.mk2 <- constrain(lik,

lambda0 ~ .1, lambda1 ~ .1,
mu0 ~ .03, mu1 ~ .03)

Differ by -150.4740 for both parameter sets.
lik.bisse.mk2(pars) - lik.mk2(pars)
lik.bisse.mk2(2*pars) - lik.mk2(2*pars)

3. Sampled BiSSE / Birth-Death
Pretend that the tree is only .6 sampled:
lik.bd2 <- make.bd(phy, sampling.f=.6)
lik.bisse2 <- make.bisse(phy, phy$tip.state, sampling.f=c(.6, .6))
lik.bisse2.bd <- constrain(lik.bisse2,

make.bisse.split 29

lambda1 ~ lambda0, mu1 ~ mu0,
q01 ~ .01, q10 ~ .01)

Difference of -167.2876
lik.bisse2.bd(pars) - lik.bd2(pars)
lik.bisse2.bd(2*pars) - lik.bd2(2*pars)

4. Unresolved clade BiSSE / Birth-Death
unresolved <- data.frame(tip.label=I(c("sp25", "sp30", "sp40", "sp56", "sp20")),

Nc =c(10, 9, 6, 5, 2),
n0=0, n1=0)

unresolved.bd <- structure(unresolved$Nc, names=unresolved$tip.label)
lik.bisse3 <- make.bisse(phy, phy$tip.state, unresolved)
lik.bisse3.bd <- constrain(lik.bisse3,

lambda1 ~ lambda0, mu1 ~ mu0,
q01 ~ .01, q10 ~ .01)

lik.bd3 <- make.bd(phy, unresolved=unresolved.bd)

Difference of -167.1523
lik.bisse3.bd(pars) - lik.bd3(pars)
lik.bisse3.bd(pars*2) - lik.bd3(pars*2)

make.bisse.split Binary State Speciation and Extinction Model: Split Models

Description

Create a likelihood function for a BiSSE model where the tree is partitioned into regions with
different parameters. Alternatively, make.bisse.uneven can be used where different regions of the
tree have different fractions of species known.

Usage

make.bisse.split(tree, states, nodes, split.t, unresolved=NULL,
sampling.f=NULL, nt.extra=10, strict=TRUE, control=list())

make.bisse.uneven(tree, states, nodes, split.t, unresolved=NULL,
sampling.f=NULL, nt.extra=10, strict=TRUE, control=list())

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be 0 or 1, or NA if the state
is unknown. This vector must have names that correspond to the tip labels in
the phylogenetic tree (tree$tip.label). For tips corresponding to unresolved
clades, the state should be NA.

nodes Vector of nodes that will be split (see Details).

split.t Vector of split times, same length as nodes (see Details).

unresolved Unresolved clade information: see section below for structure.

30 make.bisse.split

sampling.f Vector of length 2 with the estimated proportion of extant species in state 0
and 1 that are included in the phylogeny. A value of c(0.5,0.75) means that
half of species in state 0 and three quarters of species in state 1 are included in
the phylogeny. By default all species are assumed to be known. Alternatively,
with split models this can be a list of length (length(nodes) + 1), each ele-
ment of which is a vector of length 2. The first element is the sampling fraction
for the “background” group, the second element corresponds to the clade sub-
tended by nodes[1], and the ith element corresponding to the clade subtended
by nodes[i+1].

nt.extra The number of species modelled in unresolved clades (this is in addition to the
largest observed clade).

strict The states vector is always checked to make sure that the values are 0 and 1
only. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing.

control List of control parameters for the ODE solver. See details in make.bisse.

Details

Branching times can be controlled with the split.t argument. If this is Inf, split at the base of
the branch (as in MEDUSA). If 0, split at the top (closest to the present, as in the new option for
MEDUSA). If 0 < split.t < Inf then we split at that time on the tree (zero is the present, with
time growing backwards).

TODO: Describe nodes and split.t here.

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(546)
phy <- tree.bisse(pars, max.taxa=30, x0=0)

Here is the phylogeny:
plot(phy, show.node.label=TRUE, label.offset=.1, font=1, cex=.75,

no.margin=TRUE)

Here is a plain BiSSE function for comparison:
lik.b <- make.bisse(phy, phy$tip.state)
lik.b(pars) # -93.62479

make.bisse.td 31

Split this phylogeny at three points: nd15, nd18 and nd26
nodes <- c("nd15", "nd18", "nd26")

This is the index in ape's node indexing:
nodes.i <- match(nodes, phy$node.label) + length(phy$tip.label)

nodelabels(node=nodes.i, pch=19, cex=2, col="#FF000099")

To make a split BiSSE function, pass the node locations and times in:
lik.s <- make.bisse.split(phy, phy$tip.state, nodes.i)

The parameters must be a list of the same length as the number of
partitions. Partition '1' is the root partition, and partition i is
the partition rooted at the node[i-1]
pars4 <- rep(pars, 4)
pars4

Run the likelihod calculation:
lik.s(pars4) # -93.62479

These are basically identical (to acceptable tolerance)
lik.s(pars4) - lik.b(pars)

You can use the labelled nodes rather than indices:
lik.s2 <- make.bisse.split(phy, phy$tip.state, nodes)
identical(lik.s(pars4), lik.s2(pars4))

This also works where some tips are unresolved clades. Here are a
few:
unresolved <-

data.frame(tip.label=c("sp12", "sp32", "sp9", "sp22", "sp11"),
Nc=c(2,5,3,2,5), n0=c(1, 4, 3, 2, 4), n1=c(1, 1, 0, 0, 1))

Plain BiSSE with unresolved clades:
lik.u.b <- make.bisse(phy, phy$tip.state, unresolved=unresolved)
lik.u.b(pars) # -139.3688

Split BiSSE with unresolved clades:
lik.u.s <- make.bisse.split(phy, phy$tip.state, nodes,

unresolved=unresolved)
lik.u.s(pars4) # -139.3688

lik.u.b(pars) - lik.u.s(pars4) # numerical error only

make.bisse.td Binary State Speciation and Extinction Model: Time Dependant Mod-
els

Description

Create a likelihood function for a BiSSE model where different chunks of time have different pa-
rameters. This code is experimental!

32 make.bisse.td

Usage

make.bisse.td(tree, states, n.epoch, unresolved=NULL, sampling.f=NULL,
nt.extra=10, strict=TRUE, control=list())

make.bisse.t(tree, states, functions, unresolved=NULL, sampling.f=NULL,
strict=TRUE, control=list(), truncate=FALSE, spline.data=NULL)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.
states A vector of character states, each of which must be 0 or 1, or NA if the state

is unknown. This vector must have names that correspond to the tip labels in
the phylogenetic tree (tree$tip.label). For tips corresponding to unresolved
clades, the state should be NA.

n.epoch Number of epochs. 1 corresponds to plain BiSSE, so this will generally be an
integer at least 2.

functions A named character vector of functions of time. See details.
unresolved Unresolved clade information: see make.bisse. (Currently this is not sup-

ported.)
sampling.f Vector of length 2 with the estimated proportion of extant species in state 0 and

1 that are included in the phylogeny. See make.bisse.
nt.extra The number of species modelled in unresolved clades (this is in addition to the

largest observed clade).
strict The states vector is always checked to make sure that the values are 0 and 1

only. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing.

control List of control parameters for the ODE solver. See details in make.bisse.
truncate Logical, indicating if functions should be truncated to zero when negative (rather

than causing an error). May be scalar (applying to all functions) or a vector (of
length 6).

spline.data List of data for spline-based time functions. See details.

Details

This builds a BiSSE likelihood function where different regions of time (epochs) have different
parameter sets. By default, all parameters are free to vary between epochs, so some constraining
will probably be required to get reasonable answers.

For n epochs, there are n-1 time points; the first n-1 elements of the likelihood’s parameter vector
are these points. These are measured from the present at time zero, with time increasing towards
the base of the tree. The rest of the parameter vector are BiSSE parameters; the elements n:(n+6)
are for the first epoch (closest to the present), elements (n+7):(n+13) are for the second epoch,
and so on.

For make.bisse.t, the funtions is a vector of names of functions of time. For example, to have
speciation rates be linear functions of time, while the extinction and character change rates be
constant with respect to time, one can do

make.bisse.td 33

functions=rep(c("linear.t", "constant.t"), c(2, 4))

The functions here must have t as their first argument, interpreted as time back from the present.
Other possible functions are "sigmoid.t", "stepf.t", "spline.t", "exp.t", and "spline.linear.t". Unfor-
tunately, documentation is still pending.

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

set.seed(4)
pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
phy <- tree.bisse(pars, max.t=30, x0=0)

Suppose we want to see if diversification is different in the most
recent 3 time units, compared with the rest of the tree (yes, this is
a totally contrived example!):
plot(phy)
axisPhylo()
abline(v=max(branching.times(phy)) - 3, col="red", lty=3)

For comparison, make a plain BiSSE likelihood function
lik.b <- make.bisse(phy, phy$tip.state)

Create the time-dependent likelihood function. The final argument
here is the number of 'epochs' that are allowed. Two epochs is one
switch point.
lik.t <- make.bisse.td(phy, phy$tip.state, 2)

The switch point is the first argument. The remaining 12 parameters
are the BiSSE parameters, with the first 6 being the most recent
epoch.
argnames(lik.t)

pars.t <- c(3, pars, pars)
names(pars.t) <- argnames(lik.t)

Calculations are identical to a reasonable tolerance:
lik.b(pars) - lik.t(pars.t)

It will often be useful to constrain the time as a fixed quantity.
lik.t2 <- constrain(lik.t, t.1 ~ 3)

Parameter estimation under maximum likelihood. This is marked "don't

34 make.bisse.td

run" because the time-dependent fit takes a few minutes.
Not run:
Fit the BiSSE ML model
fit.b <- find.mle(lik.b, pars)

And fit the BiSSE/td model
fit.t <- find.mle(lik.t2, pars.t[argnames(lik.t2)],

control=list(maxit=20000))

Compare these two fits with a likelihood ratio test (lik.t2 is nested
within lik.b)
anova(fit.b, td=fit.t)

End(Not run)

The time varying model (bisse.t) is more general, but substantially
slower. Here, I will show that the two functions are equivalent for
step function models. We'll constrain all the non-lambda parameters
to be the same over a time-switch at t=5. This leaves 8 parameters.
lik.td <- make.bisse.td(phy, phy$tip.state, 2)
lik.td2 <- constrain(lik.td, t.1 ~ 5,

mu0.2 ~ mu0.1, mu1.2 ~ mu1.1,
q01.2 ~ q01.1, q10.2 ~ q10.1)

lik.t <- make.bisse.t(phy, phy$tip.state,
rep(c("stepf.t", "constant.t"), c(2, 4)))

lik.t2 <- constrain(lik.t, lambda0.tc ~ 5, lambda1.tc ~ 5)

Note that the argument names for these functions are different from
one another. This reflects different ways that the functions will
tend to be used, but is potentially confusing here.
argnames(lik.td2)
argnames(lik.t2)

First, evaluate the functions with no time effect and check that they
are the same as the base BiSSE model
p.td <- c(pars, pars[1:2])
p.t <- pars[c(1, 1, 2, 2, 3:6)]

All agree:
lik.b(pars) # -159.7128
lik.td2(p.td) # -159.7128
lik.t2(p.t) # -159.7128

In fact, the time-varying BiSSE will tend to be identical to plain
BiSSE where the functions to not change:
lik.b(pars) - lik.t2(p.t)

Slight numerical differences are typical for the time-chunk BiSSE,
because it forces the integration to be carried out more carefully
around the switch point.
lik.b(pars) - lik.td2(p.td)

make.bisseness 35

Next, evaluate the functions with a time effect (5 time units ago,
speciation rates were twice the contemporary rate)
p.td2 <- c(pars, pars[1:2]*2)
p.t2 <- c(pars[1], pars[1]*2, pars[2], pars[2]*2, pars[3:6])

Huge drop in the likelihood (from -159.7128 to -172.7874)
lik.b(pars)
lik.td2(p.td2)
lik.t2(p.t2)

The small difference remains between the two approaches, but they are
basically the same.
lik.td2(p.td2) - lik.t2(p.t2)

There is a small time cost to both time-dependent methods,
heavily paid for the time-chunk case:
system.time(lik.b(pars))
system.time(lik.td2(p.td)) # 1.9x slower than plain BiSSE
system.time(lik.td2(p.td2)) # 1.9x slower than plain BiSSE
system.time(lik.t2(p.t)) # about the same speed
system.time(lik.t2(p.t2)) # about the same speed

make.bisseness Binary State Speciation and Extinction (Node Enhanced State Shift)
Model

Description

Prepare to run BiSSE-ness (Binary State Speciation and Extinction (Node Enhanced State Shift))
on a phylogenetic tree and character distribution. This function creates a likelihood function that
can be used in maximum likelihood or Bayesian inference.

Usage

make.bisseness(tree, states, unresolved=NULL, sampling.f=NULL,
nt.extra=10, strict=TRUE, control=list())

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be 0 or 1, or NA if the state
is unknown. This vector must have names that correspond to the tip labels in
the phylogenetic tree (tree$tip.label). For tips corresponding to unresolved
clades, the state should be NA.

unresolved Unresolved clade information: see section below for structure.

sampling.f Vector of length 2 with the estimated proportion of extant species in state 0 and
1 that are included in the phylogeny. A value of c(0.5,0.75) means that half
of species in state 0 and three quarters of species in state 1 are included in the
phylogeny. By default all species are assumed to be known.

36 make.bisseness

nt.extra The number of "extra" species to include in the unresolved clade calculations.
This is in addition to the largest included unresolved clade.

control List of control parameters for the ODE solver. See details in make.bisse.

strict The states vector is always checked to make sure that the values are 0 and 1
only. If strict is TRUE (the default), then the additional check is made that
every state is present at least once in the tree. The likelihood models tend to be
poorly behaved where a state is not represented on the tree.

Details

make.bisse returns a function of class bisse. This function has argument list (and default values)
[RICH: Update to BiSSEness?]

f(pars, condition.surv=TRUE, root=ROOT.OBS, root.p=NULL,
intermediates=FALSE)

The arguments are interpreted as

• pars A vector of 10 parameters, in the order lambda0, lambda1, mu0, mu1, q01, q10, p0c, p0a,
p1c, p1a.

• condition.surv (logical): should the likelihood calculation condition on survival of two lin-
eages and the speciation event subtending them? This is done by default, following Nee et al.
1994. For BiSSE-ness, equation (A5) in Magnuson-Ford and Otto describes how conditioning
on survival alters the likelihood of observing the data.

• root: Behaviour at the root (see Maddison et al. 2007, FitzJohn et al. 2009). The possible
options are

– ROOT.FLAT: A flat prior, weighting D0 and D1 equally.
– ROOT.EQUI: Use the equilibrium distribution of the model, as described in Maddison et

al. (2007) using equation (A6) in Magnuson-Ford and Otto.
– ROOT.OBS: Weight D0 and D1 by their relative probability of observing the data, follow-

ing FitzJohn et al. 2009:

D = D0
D0

D0 +D1
+D1

D1

D0 +D1

– ROOT.GIVEN: Root will be in state 0 with probability root.p[1], and in state 1 with
probability root.p[2].

– ROOT.BOTH: Don’t do anything at the root, and return both values. (Note that this will not
give you a likelihood!).

• root.p: Root weightings for use when root=ROOT.GIVEN. sum(root.p) should equal 1.

• intermediates: Add intermediates to the returned value as attributes:

– cache: Cached tree traversal information.
– intermediates: Mostly branch end information.
– vals: Root D values.

At this point, you will have to poke about in the source for more information on these.

make.bisseness 37

Unresolved clade information

This must be a data.frame with at least the four columns

• tip.label, giving the name of the tip to which the data applies

• Nc, giving the number of species in the clade

• n0, n1, giving the number of species known to be in state 0 and 1, respectively.

These columns may be in any order, and additional columns will be ignored. (Note that column
names are case sensitive).

An alternative way of specifying unresolved clade information is to use the function make.clade.tree
to construct a tree where tips that represent clades contain information about which species are con-
tained within the clades. With a clade.tree, the unresolved object will be automatically con-
structed from the state information in states. (In this case, states must contain state information
for the species contained within the unresolved clades.)

Author(s)

Karen Magnuson-Ford

References

FitzJohn R.G., Maddison W.P., and Otto S.P. 2009. Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595-611.

Maddison W.P., Midford P.E., and Otto S.P. 2007. Estimating a binary character’s effect on specia-
tion and extinction. Syst. Biol. 56:701-710.

Magnuson-Ford, K., and Otto, S.P. 2012. Linking the investigations of character evolution and
species diversification. American Naturalist, in press.

Nee S., May R.M., and Harvey P.H. 1994. The reconstructed evolutionary process. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 344:305-311.

See Also

make.bisse for the model with no state change at nodes.

tree.bisseness for simulating trees under the BiSSE-ness model.

constrain for making submodels, find.mle for ML parameter estimation, mcmc for MCMC inte-
gration, and make.bd for state-independent birth-death models.

The help pages for find.mle has further examples of ML searches on full and constrained BiSSE
models.

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

38 make.bisseness

First we simulate a 50 species tree, assuming cladogenetic shifts in
the trait (i.e., the trait only changes at speciation).
Red is state '1', black is state '0', and we let red lineages
speciate at twice the rate of black lineages.
The simulation starts in state 0.
set.seed(3)
pars <- c(0.1, 0.2, 0.03, 0.03, 0, 0, 0.1, 0, 0.1, 0)
phy <- tree.bisseness(pars, max.taxa=50, x0=0)
phy$tip.state

h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy)

This builds the likelihood of the data according to BiSSEness:
lik <- make.bisseness(phy, phy$tip.state)
e.g., the likelihood of the true parameters is:
lik(pars) # -174.7954

ML search: First we make hueristic guess at a starting point, based
on the constant-rate birth-death model assuming anagenesis (uses
\link{make.bd}).
startp <- starting.point.bisse(phy)

We then take the total amount of anagenetic change expected across
the tree and assign half of this change to anagenesis and half to
cladogenetic change at the nodes as a heuristic starting point:
t <- branching.times(phy)
tryq <- 1/2 * startp[["q01"]] * sum(t)/length(t)
p <- c(startp[1:4], startp[5:6]/2, p0c=tryq, p0a=0.5, p1c=tryq, p1a=0.5)

Start an ML search from this point. This takes some time (~12s), so
is not run by default.
Not run:
fit <- find.mle(lik, p, method="subplex")
logLik(fit) # -174.0104

Compare the fit to a constrained model that only allows the trait
to change along a lineage (anagenesis). This also takes some time
(~12s)
lik.no.clado <- constrain(lik, p0c ~ 0, p1c ~ 0)
fit.no.clado <- find.mle(lik.no.clado,p[argnames(lik.no.clado)])
logLik(fit.no.clado) # -174.0577

This is consistent with what BiSSE finds:
likB <- make.bisse(phy, phy$tip.state)
fitB <- find.mle(likB, startp, method="subplex")
logLik(fitB) # -174.0576

With only this 50-species tree, there is no statistical support
for the more complicated BiSSE-ness model that allows cladogenesis:
anova(fit, no.clado=fit.no.clado)
Note that anova() performs a likelihood ratio test here.

make.bisseness 39

If the above is repeated with max.taxa=250, BiSSE-ness rejects the
constrained model in favor of one that allows cladogenetic change.

MCMC run: We use the ML estimate from the full model
as a starting point.
##
We shift all very small numbers up to 1e-4 to allow the derivatives
to be calculated.
ml.start.pt <- pmax(coef(fit), 1e-4)

Make exponential priors for the rate parameters and uniform priors
for the cladogenetic change probability prarameters.
make.prior.exp_ness <- function(r, min=0, max=1) {

function(pars) {
sum(dexp(pars[1:6], rate=r, log=TRUE)) +

sum(dunif(pars[7:10], min, max, log=TRUE))
}

}

Choosing the slice sampling parameter, w (affects speed):
library(numDeriv)
hess <- hessian(lik, ml.start.pt)
vcv <- -solve(hess)
sehess <- sqrt(abs(diag(vcv)))
w <- 2 * pmin(sehess, .2)

Setting the priors
r <- log(length(phy$tip.label))/max(branching.times(phy))
prior <- make.prior.exp_ness(1/(2*r))
prior(ml.start.pt)

Running the mcmc chain (only 10 steps are shown for illustration)
steps <- 10
set.seed(1) # For reproducibility
output <- mcmc(lik, ml.start.pt, nsteps=steps, w=w, prior=prior)

Unresolved tip clade: Here we collapse one clade in the 50 species
tree (involving sister species sp70 and sp71) and illustrate the use
of BiSSEness with unresolved tip clades.
slimphy <- drop.tip(phy,c("sp71"))
states <- slimphy$tip.state[slimphy$tip.label]
states["sp70"] <- NA
unresolved <- data.frame(tip.label=c("sp70"), Nc=2, n0=2, n1=0)

This builds the likelihood of the data according to BiSSEness:
lik.unresolved <- make.bisseness(slimphy, states, unresolved)
e.g., the likelihood of the true parameters is:
lik.unresolved(pars) # -174.6575

ML search from the heuristic starting point used above:
fit.unresolved <- find.mle(lik.unresolved, p, method="subplex")
logLik(fit.unresolved) # -173.9136

40 make.bm

End(Not run)

make.bm Brownian Motion and Related Models of Character Evolution

Description

Create a likelihood function for models of simple Brownian Motion (BM), Ornstein-Uhlenbeck
(OU), or Early Burst (EB) character evolution, or BM on a “lambda” rescaled tree. This function
creates a likelihood function that can be used in maximum likelihood or Bayesian inference.

Usage

make.bm(tree, states, states.sd=0, control=list())
make.ou(tree, states, states.sd=0, with.optimum=FALSE, control=list())
make.eb(tree, states, states.sd=0, control=list())
make.lambda(tree, states, states.sd=0, control=list())

Arguments

tree A bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of continuous valued character states. This vector must be named with
the tip labels of tree.

states.sd An optional vector of measurement errors, as standard deviation around the
mean. If a single value is given it is used for all tips, otherwise the vector must
be named as for states.

with.optimum Should the optimum (often "theta") be considered a free parameter? The default,
FALSE, makes this behave like geiger’s fitContinuous. Setting TRUE leaves the
optimim to be a free parameter to be estimated. This setting can (currently) only
be set to TRUE with method="pruning".

control A list of control parameters. See details below.

Details

The control argument is a named list of options.

The main option is method. Specifying control=list(method="vcv") uses a variance-covariance
matrix based approach to compute the likelihood. This is similar to the approach used by geiger,
and is the default.

Two alternative approaches are available. control=list(method="pruning") uses the transition
density function for brownian motion along each branch, similar to how most methods in diversitree
are computed. This second approach is much faster for very large trees. control=list(method="contrasts")
uses Freckleton (2012)’s contrasts based approach, which is also much faster on large trees.

When method="pruning" is specified, backend="R" or backend="C" may also be provided, which
switch between a slow (and stable) R calculator and a fast (but less extensively tested) C calculator.
backend="R" is currently the default.

make.clade.tree 41

The VCV-based functions are heavily based on fitContinuous in the geiger package.

For non-ultrametric trees with OU models, computed likelihoods may differ because of the different
root treatments. This is particularly the case for models where the optimum is estimated.

For the EB model, the parameter intepretation follows geiger; the ’a’ parameter is equivalent to
-log(g) in Bloomberg et al. 2003; when negative it indicates a decelerating rate of trait evolution
over time. When zero, it reduces to Brownian motion.

Author(s)

Richard G. FitzJohn

See Also

See http://www.zoology.ubc.ca/prog/diversitree/examples/ou-nonultrametric/ for a dis-
cussion about calculations on non-ultrametric trees.

Examples

Random data (following APE)
data(bird.orders)
set.seed(1)
x <- structure(rnorm(length(bird.orders$tip.label)),

names=bird.orders$tip.label)

Not run:
With the VCV approach
fit1 <- find.mle(make.bm(bird.orders, x), .1)

With the pruning calculations
lik.pruning <- make.bm(bird.orders, x, control=list(method="pruning"))
fit2 <- find.mle(lik.pruning, .1)

All the same (need to drop the function from this though)
all.equal(fit1[-7], fit2[-7])

If this is the same as the estimates from Geiger, to within the
tolerances expected for the calculation and optimisation:
fit3 <- fitContinuous(bird.orders, x)
all.equal(fit3$Trait1$lnl, fit1$lnLik)
all.equal(fit3$Trait1$beta, fit1$par, check.attributes=FALSE)

End(Not run)

make.clade.tree Make a "Clade Tree"

http://www.zoology.ubc.ca/prog/diversitree/examples/ou-nonultrametric/

42 make.classe

Description

This function makes a “clade tree”, where tips represent clades. It is designed to make working
with unresolved clade information in make.bisse more straightforward. clade.tree objects have
their own plotting methods.

Usage

make.clade.tree(tree, clades)
clades.from.polytomies(tree)
clades.from.classification(tree, class, check=TRUE)

Arguments

tree An ultrametric phylogenetic tree, in ape “phylo” format.

clades A list, where the name of each element represents a tip in tree and each element
is a character vector containing the names of species contained within that clade.

class A vector along tree$tip.label, indicating the class to which each tip belongs.

check Logical, indicating whether a (potentially slow) check will be done to ensure
that all resulting clades are reciprocally monophyletic within the tree.

Details

The idea here is that make.bisse takes a tree and a named character state vector. If the phylogenetic
tree contains information about the membership of clades, then the unresolved clade information
can be constructed automatically. The names chosen should therefore reflect the names used in the
state information.

Note

Currently, clade.tree objects work poorly with some ape functions.

Author(s)

Richard G. FitzJohn

make.classe Cladogenetic State change Speciation and Extinction Model

Description

Prepare to run ClaSSE (Cladogenetic State change Speciation and Extinction) on a phylogenetic tree
and character distribution. This function creates a likelihood function that can be used in maximum
likelihood or Bayesian inference.

make.classe 43

Usage

make.classe(tree, states, k, sampling.f=NULL, strict=TRUE,
control=list())

starting.point.classe(tree, k, eps=0.5)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.
states A vector of character states, each of which must be an integer between 1 and k.

This vector must have names that correspond to the tip labels in the phylogenetic
tree (tree$tip.label).

k The number of states. (The maximum now is 31, but that can easily be increased
if necessary.)

sampling.f Vector of length k where sampling.f[i] is the proportion of species in state i
that are present in the phylogeny. A value of c(0.5,0.75,1) means that half of
species in state 1, three quarters of species in state 2, and all species in state 3
are included in the phylogeny. By default all species are assumed to be known

strict The states vector is always checked to make sure that the values are integers
on 1:k. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing, but there are cases (missing intermediate states for meristic
characters) where allowing such models may be useful.

control List of control parameters for the ODE solver. See details in make.bisse.
eps Ratio of extinction to speciation rates to be used when choosing a starting set of

parameters. The procedure used is based on Magallon & Sanderson (2001).

Details

The ClaSSE model with k = 2 is equivalent to but a different parameterization than the BiSSE-ness
model. The GeoSSE model can be constructed from ClaSSE with k = 3; see the example below.

make.classe returns a function of class classe. The arguments and default values for this function
are:

f(pars, condition.surv=TRUE, root=ROOT.OBS, root.p=NULL,
intermediates=FALSE)

The arguments of this function are explained in make.bisse. The speciation rate parameters are
lambda_ijk, ordered with k changing fastest and insisting on j < k.

With more than 9 states, lambda_ijk and q_ij can be ambiguous (e.g. is q113 1->13 or 11->3?).
To avoid this, the numbers are zero padded (so that the above would be q0113 or q1103 for 1->13
and 11->3 respectively). It might be easier to rename the arguments in practice though. More
human-friendly handling of large speciation rate arrays is in the works.

starting.point.classe produces a first-guess set of parameters, ignoring character states.

Unresolved clade methods are not available for ClaSSE.

Tree simulation methods are not yet available for ClaSSE.

44 make.classe

Author(s)

Emma E. Goldberg

References

FitzJohn R.G., Maddison W.P., and Otto S.P. 2009. Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595-611.

Goldberg E.E. and Igic B. Tempo and mode in plant breeding system evolution. In review.

Maddison W.P., Midford P.E., and Otto S.P. 2007. Estimating a binary character’s effect on specia-
tion and extinction. Syst. Biol. 56:701-710.

Magallon S. and Sanderson M.J. 2001. Absolute diversification rates in angiospem clades. Evol.
55:1762-1780.

Magnuson-Ford, K., and Otto, S.P. 2012. Linking the investigations of character evolution and
species diversification. American Naturalist, in press.

See Also

constrain for making submodels, find.mle for ML parameter estimation, and mcmc for MCMC
integration. The help page for find.mle has further examples of ML searches on full and con-
strained BiSSE models. Things work similarly for ClaSSE, just with different speciation parame-
ters.

make.bisse, make.bisseness, make.geosse, make.musse for similar models and further relevant
examples.

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

GeoSSE equivalence
Same tree simulated in ?make.geosse
pars <- c(1.5, 0.5, 1.0, 0.7, 0.7, 2.5, 0.5)
names(pars) <- diversitree:::default.argnames.geosse()
set.seed(5)
phy <- tree.geosse(pars, max.t=4, x0=0)

lik.g <- make.geosse(phy, phy$tip.state)
pars.g <- c(1.5, 0.5, 1.0, 0.7, 0.7, 1.4, 1.3)
names(pars.g) <- argnames(lik.g)

lik.c <- make.classe(phy, phy$tip.state+1, 3)
pars.c <- 0 * starting.point.classe(phy, 3)
pars.c['lambda222'] <- pars.c['lambda112'] <- pars.g['sA']
pars.c['lambda333'] <- pars.c['lambda113'] <- pars.g['sB']
pars.c['lambda123'] <- pars.g['sAB']
pars.c['mu2'] <- pars.c['q13'] <- pars.g['xA']

make.geosse 45

pars.c['mu3'] <- pars.c['q12'] <- pars.g['xB']
pars.c['q21'] <- pars.g['dA']
pars.c['q31'] <- pars.g['dB']

lik.g(pars.g) # -175.7685
lik.c(pars.c) # -175.7685

make.geosse Geographic State Speciation and Extinction Model

Description

Prepare to run GeoSSE (Geographic State Speciation and Extinction) on a phylogenetic tree and
character distribution. This function creates a likelihood function that can be used in maximum
likelihood or Bayesian inference.

Usage

make.geosse(tree, states, sampling.f=NULL, strict=TRUE,
control=list())

starting.point.geosse(tree, eps=0.5)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be 0 (in both regions/widespread;
AB), 1 or 2 (endemic to one region; A or B), or NA if the state is unknown. This
vector must have names that correspond to the tip labels in the phylogenetic tree
(tree$tip.label).

sampling.f Vector of length 3 with the estimated proportion of extant species in states 0, 1
and 2 that are included in the phylogeny. A value of c(0.5,0.75,1) means that
half of species in state 0, three quarters of species in state 1, and all the species
in state 2 are included in the phylogeny. By default all species are assumed to
be known.

strict The states vector is always checked to make sure that the values are 0, 1 and
2 only. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing.

control List of control parameters for the ODE solver. See details in make.bisse.

eps Ratio of extinction to speciation rates to be used when choosing a starting set of
parameters. The procedure used is based on Magallon & Sanderson (2001).

46 make.geosse

Details

make.geosse returns a function of class geosse. The arguments and default values for this function
are:

f(pars, condition.surv=TRUE, root=ROOT.OBS, root.p=NULL,
intermediates=FALSE)

The arguments of this function are explained in make.bisse. The parameter vector pars is ordered
sA, sB, sAB, xA, xB, dA, dB.

Unresolved clade methods are not available for GeoSSE. With three states, it would rapidly become
computationally infeasible.

Author(s)

Emma E. Goldberg

References

FitzJohn R.G., Maddison W.P., and Otto S.P. 2009. Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595-611.

Goldberg E.E., Lancaster L.T., and Ree R.H. 2011. Phylogenetic inference of reciprocal effects
between geographic range evolution and diversification. Syst. Biol. 60:451-465.

Maddison W.P., Midford P.E., and Otto S.P. 2007. Estimating a binary character’s effect on specia-
tion and extinction. Syst. Biol. 56:701-710.

Magallon S. and Sanderson M.J. 2001. Absolute diversification rates in angiospem clades. Evol.
55:1762-1780.

See Also

constrain for making submodels, find.mle for ML parameter estimation, mcmc for MCMC inte-
gration, make.bisse for further relevant examples.

The help page for find.mle has further examples of ML searches on full and constrained BiSSE
models. Things work similarly for GeoSSE, just with different parameters.

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

Parameter values
pars <- c(1.5, 0.5, 1.0, 0.7, 0.7, 2.5, 0.5)
names(pars) <- diversitree:::default.argnames.geosse()

Simulate a tree

make.geosse.split 47

set.seed(5)
phy <- tree.geosse(pars, max.t=4, x0=0)

See the data
statecols <- c("AB"="purple", "A"="blue", "B"="red")
plot(phy, tip.color=statecols[phy$tip.state+1], cex=0.5)

The likelihood function
lik <- make.geosse(phy, phy$tip.state)

With "true" parameter values
lik(pars) # -168.4791

A guess at a starting point.
p <- starting.point.geosse(phy)

Start an ML search from this point (takes a couple minutes to run).
Not run:
fit <- find.mle(lik, p, method="subplex")
logLik(fit) # -165.9965

Compare with sim values.
rbind(real=pars, estimated=round(coef(fit), 2))

A model with constraints on the dispersal rates.
lik.d <- constrain(lik, dA ~ dB)
fit.d <- find.mle(lik.d, p[-7])
logLik(fit.d) # -166.7076

A model with constraints on the speciation rates.
lik.s <- constrain(lik, sA ~ sB, sAB ~ 0)
fit.s <- find.mle(lik.s, p[-c(2,3)])
logLik(fit.s) # -169.0123

End(Not run)

"Skeletal tree" sampling is supported. For example, if your tree
includes all AB species, half of A species, and a third of B species,
create the likelihood function like this:
lik.f <- make.geosse(phy, phy$tip.state, sampling.f=c(1, 0.5, 1/3))

If you have external evidence that the base of your tree must have
been in state 1, say (endemic to region A), you can fix the root
when computing the likelihood, like this:
lik(pars, root=ROOT.GIVEN, root.p=c(0,1,0))

make.geosse.split Geographic State Speciation and Extinction Model: Split Models

48 make.geosse.split

Description

Create a likelihood function for a GeoSSE model where the tree is partitioned into regions with
different parameters.

Usage

make.geosse.split(tree, states, nodes, split.t,
sampling.f=NULL, strict=TRUE, control=list())

make.geosse.uneven(tree, states, nodes, split.t,
sampling.f=NULL, strict=TRUE, control=list())

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be an integer between 0 and
2: see make.geosse. This vector must have names that correspond to the tip
labels in the phylogenetic tree (tree$tip.label). Unresolved clades are not
supported.

nodes Vector of nodes that will be split (see Details).

split.t Vector of split times, same length as nodes (see Details).

sampling.f Vector of length 3 where sampling.f[i] is the proportion of species in state i
that are present in the phylogeny. A value of c(0.5,0.75,1) means that half of
species in state 0, three quarters of species in state 1, and all species in state 2
are included in the phylogeny. By default all species are assumed to be known.

strict The states vector is always checked to make sure that the values are integers
on 0:2. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing, but there are cases (missing intermediate states for meristic
characters) where allowing such models may be useful.

control List of control parameters for the ODE solver. See details in make.bisse.

Details

Branching times can be controlled with the split.t argument. If this is Inf, split at the base of
the branch (as in MEDUSA). If 0, split at the top (closest to the present, as in the new option for
MEDUSA). If 0 < split.t < Inf then we split at that time on the tree (zero is the present, with
time growing backwards).

The nodes at the top of the split location are specified as a vector of node names. For example, a
value of c("nd10","nd12") means that the splits are along the branches leading from each of these
nodes towards the root.

Author(s)

Emma E. Goldberg

make.geosse.t 49

make.geosse.t Geographic State Speciation and Extinction Model: Time Dependent
Models

Description

Prepare to run time dependent GeoSSE (Geographic State Speciation and Extinction) on a phylo-
genetic tree and character distribution. This function creates a likelihood function that can be used
in maximum likelihood or Bayesian inference.

Usage

make.geosse.t(tree, states, functions, sampling.f=NULL, strict=TRUE,
control=list(), truncate=FALSE, spline.data=NULL)

Arguments

tree A phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be 0 (in both regions/widespread;
AB), 1 or 2 (endemic to one region; A or B), or NA if the state is unknown. This
vector must have names that correspond to the tip labels in the phylogenetic tree
(tree$tip.label).

functions A named character vector of functions of time. See details.

sampling.f Vector of length 3 with the estimated proportion of extant species in states 0, 1
and 2 that are included in the phylogeny. A value of c(0.5,0.75,1) means that
half of species in state 0, three quarters of species in state 1, and all the species
in state 2 are included in the phylogeny. By default all species are assumed to
be known.

strict The states vector is always checked to make sure that the values are 0, 1 and
2 only. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing.

control List of control parameters for the ODE solver. See details in make.bisse.

truncate Logical, indicating if functions should be truncated to zero when negative (rather
than causing an error). May be scalar (applying to all functions) or a vector (of
length 7).

spline.data List of data for spline-based time functions. See details in make.bisse.t.

Details

Please see make.bisse.t for further details.

make.geosse.t returns a function of class geosse.t.

The funtions is a vector of named functions of time. For example, to have speciation rates be
linear functions of time, while the extinction and dispersal rates be constant with respect to time,
one can do

50 make.geosse.t

functions=rep(c("linear.t", "constant.t"),
c(3, 4))

. The functions here must have t as their first argument, interpreted as time back from the present.
See make.bisse.t for more information, and for some potentially useful time functions.

The function has argument list (and default values):

f(pars, condition.surv=FALSE, root=ROOT.OBS, root.p=NULL,
intermediates=FALSE)

The parameter vector pars is ordered sA, sB, sAB, xA, xB, dA, dB. Unresolved clade methods are not
available for GeoSSE. With three states, it would rapidly become computationally infeasible. The
arguments of this function are also explained in make.bisse.

starting.point.geosse produces a first-guess set of parameters, ignoring character states.

Warning

This computer intensive code is experimental!

Author(s)

Jonathan Rolland

References

FitzJohn R.G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Meth-
ods in Ecology and Evolution. 3, 1084-1092.

FitzJohn R.G., Maddison W.P., and Otto S.P. 2009. Estimating trait-dependent speciation and ex-
tinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595-611.

Goldberg E.E., Lancaster L.T., and Ree R.H. 2011. Phylogenetic inference of reciprocal effects
between geographic range evolution and diversification. Syst. Biol. 60:451-465.

Maddison W.P., Midford P.E., and Otto S.P. 2007. Estimating a binary character’s effect on specia-
tion and extinction. Syst. Biol. 56:701-710.

Nee S., May R.M., and Harvey P.H. 1994. The reconstructed evolutionary process. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 344:305-311.

See Also

constrain for making submodels and reduce number of parameters, find.mle for ML parame-
ter estimation, mcmc for MCMC integration, make.bisse and make.bisse.t for further relevant
examples.

The help page for find.mle has further examples of ML searches on full and constrained BiSSE
models. Things work similarly for GeoSSE and GeoSSE.t, just with different parameters.

See make.geosse for explanation of the base model.

make.geosse.t 51

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

Parameter values
pars <- c(1.5, 0.5, 1.0, 0.7, 0.7, 2.5, 0.5)
names(pars) <- diversitree:::default.argnames.geosse()

Simulate a tree
set.seed(5)
phy <- tree.geosse(pars, max.t=4, x0=0)

See the data
statecols <- c("AB"="purple", "A"="blue", "B"="red")
plot(phy, tip.color=statecols[phy$tip.state+1], cex=0.5)

Create your list of functions. Its length corresponds to the number
of parameters (speciation, extinction and dispersal) you want to
estimate.
For an unconstrained model, at least 7 parameters are estimated for
sA, sB, sAB, xA, xB, dA, dB.
In the case you want to define a model with linear functions of
speciation and extinction, and constant dispersal:
functions <- rep(c("linear.t", "constant.t"), c(5, 2))

Create the likelihood function
lik <- make.geosse.t(phy, phy$tip.state, functions)

This function will estimate a likelihood from 12 parameters.
argnames(lik)

Imagine that you want to get an estimate of the likelihood from a
known set of parameters.
pars <- c(0.01,0.001,0.01,0.001,0.01,0.001,0.02,0.002,0.02,0.002,0.1,0.1)
names(pars)<-argnames(lik)
lik(pars) # -640.1644

A guess at a starting point from character independent birth-death
model (constant across time) .
p <- starting.point.geosse(phy)

#it only gives 7 parameters for time-constant model.
names(p)

it can be modified for time-dependent with a guess on the slopes of
speciation and extinction rates.
p.t<-c(p[1],0.001,p[2],0.001,p[3],0.001,p[4],0.001,p[5],0.001,p[6],p[7])
names(p.t)<-argnames(lik)

52 make.mkn

Start an ML search from this point (takes from one minute to a very
long time depending on your computer).
Not run:
fit <- find.mle(lik, p.t, method="subplex")
fit$logLik
coef(fit)

End(Not run)

A model with constraints on the dispersal rates.
lik.d <- constrain(lik, dA ~ dB)

##Now dA and dB are the same parameter dB.
argnames(lik.d)

##The parameter dA must be removed from maximum likelihood initial parameters
Not run:
fit.d <- find.mle(lik.d, p.t[-which(names(p.t)=="dA")])
fit$logLik
coef(fit)

End(Not run)

make.mkn Mk2 and Mk-n Models of character evolution

Description

Prepare to run a Mk2/Mk-n model on a phylogenetic tree and binary/discrete trait data. This fits
the Pagel 1994 model, duplicating the ace function in ape. Differences with that function include
(1) alternative root treatments are possible, (2) easier to tweak parameter combinations through
constrain, and (3) run both MCMC and MLE fits to parameters. Rather than exponentiate the
Q matrix, this implementation solves the ODEs that this matrix defines. This may or may not be
robust on trees leading to low probabilities.

Usage

make.mk2(tree, states, strict=TRUE, control=list())
make.mkn(tree, states, k, strict=TRUE, control=list())
make.mkn.meristic(tree, states, k, control=list())

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be 0 or 1 for make.mk2 or 1 to
k for make.mkn.

k Number of states to model.

make.mkn 53

strict The states vector is always checked to make sure that the values are integers on
0:1 (mk2) or 1:k (mkn). If strict is TRUE (the default), then the additional check
is made that every state is present. The likelihood models tend to be poorly be-
haved where states are missing, but there are cases (missing intermediate states
for meristic characters) where allowing such models may be useful.

control List of control parameters for the ODE solver. See Details below.

Details

make.mk2 and make.mkn return functions of class mkn. These functions have argument list (and
default values)

f(pars, pars, prior=NULL, root=ROOT.OBS, root.p=NULL, fail.value=NULL)

The arguments are interpreted as

• pars For make.mk2, a vector of two parameters, in the order q01, q10. For make.mkn, a vector
of k(k-1) parameters, in the order q12,q13,...q1k,q21,q23,...,q2k,...qk(k-1), corre-
sponding to the off-diagonal elements of the Q matrix in row order. The order of parameters
can be seen by running argnames(f).

• prior: a valid prior. See make.prior for more information.

• root: Behaviour at the root (see Maddison et al. 2007, FitzJohn et al. 2009). The possible
options are

– ROOT.FLAT: A flat prior, weighting all variables equally.
– ROOT.EQUI: Use the equilibrium distribution of the model (not yet implemented).
– ROOT.OBS: Weight D0 and D1 by their relative probability of observing the data, follow-

ing FitzJohn et al. 2009:

D =
∑
i

Di
Di∑
j Dj

– ROOT.GIVEN: Root will be in state i with probability root.p[i].
– ROOT.BOTH: Don’t do anything at the root, and return both values. (Note that this will not

give you a likelihood for use with ML or MCMC functions!).

• root.pVector of probabilities/weights to use when ROOT.GIVEN is specified. Must be of length
k (2 for make.mk2).

• intermediates: Add intermediates to the returned value as attributes. Currently undocu-
mented.

With more than 9 states, qij can be ambiguous (e.g. is q113 1->13 or 11->3?). To avoid this,
the numbers are zero padded (so that the above would be q0113 or q1103 for 1->13 and 11->3
respectively). It might be easier to rename the arguments in practice though.

The control argument controls how the calculations will be carried out. It is a list, which may
contain elements in make.bisse. In addition, the list element method may be present, which selects
between three different ways of computing the likelihood:

• method="exp": Uses a matrix exponentiation approach, where all transition probabilities are
computed (i.e., for a rate matrix Q and time interval t, it computes P = exp(Qt)).

54 make.mkn

• method="mk2": As for exp, but for 2 states only. Faster, direct, calculations are available here,
rather than numerically computing the exponentiation.

• method="ode": Uses an ODE-based approach to compute only the k variables over time,
rather than the k2 transition probabilities in the exp approach. This will be much more efficient
when k is large.

Author(s)

Richard G. FitzJohn

See Also

constrain for making submodels, find.mle for ML parameter estimation, mcmc for MCMC inte-
gration, and make.bisse for state-dependent birth-death models.

Examples

Simulate a tree and character distribution. This is on a birth-death
tree, with high rates of character evolution and an asymmetry in the
character transition rates.
pars <- c(.1, .1, .03, .03, .1, .2)
set.seed(3)
phy <- trees(pars, "bisse", max.taxa=25, max.t=Inf, x0=0)[[1]]

Here is the 25 species tree with the true character history coded.
Red is state '1', which has twice the character transition rate of
black (state '0').
h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy)

Maximum likelihood parameter estimation:
p <- c(.1, .1) # initial parameter guess

Not run:
lik <- make.mk2(phy, phy$tip.state)
fit.mk2 <- find.mle(lik, p)
coef(fit.mk2) # q10 >> q01
logLik(fit.mk2) # -10.9057

This can also be done using the more general Mk-n.
This uses an approximation for the likelihood calculations. make.mkn
assumes that states are numbered 1, 2, ..., k, so 1 needs to be added
to the states returned by trees.
lik.mkn <- make.mkn(phy, phy$tip.state + 1, 2)
fit.mkn <- find.mle(lik.mkn, p)
fit.mkn[1:2]

These are the same (except for the naming of arguments)
all.equal(fit.mkn[-7], fit.mk2[-7], check.attr=FALSE, tolerance=1e-7)

Equivalence to ape's \link{ace} function:
model <- matrix(c(0, 2, 1, 0), 2)

make.musse 55

fit.ape <- ace(phy$tip.state, phy, "discrete", model=model, ip=p)

To do the comparison, we need to rerun the diversitree version with
the same root conditions as ape.
fit.mk2 <- find.mle(lik, p, root=ROOT.GIVEN, root.p=c(1,1))

These are the same to a reasonable degree of accuracy, too (the
matrix exponentiation is slightly less accurate than the ODE
solving approach. The make.mk2 version is exact)
all.equal(fit.ape[c("rates", "loglik")], fit.mk2[1:2],

check.attributes=FALSE, tolerance=1e-4)

The ODE calculation method may be useful when there are a large
number of possible states (say, over 20).
lik.ode <- make.mkn(phy, phy$tip.state + 1, 2,

control=list(method="ode"))
fit.ode <- find.mle(lik.ode, p)
fit.ode[1:2]

all.equal(fit.ode[-7], fit.mkn[-7], tolerance=1e-7)

End(Not run)

make.musse MuSSE: Multi-State Speciation and Extinction

Description

Prepare to run MuSSE (Multi-State Speciation and Extinction) on a phylogenetic tree and character
distribution. This function creates a likelihood function that can be used in maximum likelihood or
Bayesian inference.

MuSSE is agnostic as to whether multiple states or multiple traits are modelled (following Pagel
1994). Instead, a transition rate matrix amongst possible trait/state combinations is constructed and
the analysis is conducted on this.

The helper function make.musse.multitrait wraps the basic MuSSE model for the case of a
combination of several binary traits; its argument handling are a little different; please see the help
page for more information.

Usage

make.musse(tree, states, k, sampling.f=NULL, strict=TRUE,
control=list())

starting.point.musse(tree, k, q.div=5, yule=FALSE)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

56 make.musse

states A vector of character states, each of which must be an integer between 1 and k.
This vector must have names that correspond to the tip labels in the phylogenetic
tree (tree$tip.label). For tips corresponding to unresolved clades, the state
should be NA.

k The number of states.

sampling.f Vector of length k where sampling.f[i] is the proportion of species in state i
that are present in the phylogeny. A value of c(0.5,0.75,1) means that half of
species in state 1, three quarters of species in state 2, and all species in state 3
are included in the phylogeny. By default all species are assumed to be known

strict The states vector is always checked to make sure that the values are integers
on 1:k. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing, but there are cases (missing intermediate states for meristic
characters) where allowing such models may be useful.

control List of control parameters for the ODE solver. See details in make.bisse.

q.div Ratio of diversification rate to character change rate. Eventually this will be
changed to allow for Mk2 to be used for estimating q parameters.

yule Logical: should starting parameters be Yule estimates rather than birth-death
estimates?

Details

With more than 9 states, qij can be ambiguous (e.g. is q113 1->13 or 11->3?). To avoid this,
the numbers are zero padded (so that the above would be q0113 or q1103 for 1->13 and 11->3
respectively). It might be easier to rename the arguments in practice though.

Author(s)

Richard G. FitzJohn

See Also

make.bisse for the basic binary model, and make.musse.multitrait for the case where the data
are really combinations of binary traits.

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

1: BiSSE equivalence
pars <- c(.1, .2, .03, .04, 0.05, 0.1)
set.seed(2)
phy <- tree.musse(pars, 20, x0=1)

Show that the likelihood functions give the same answers. Ignore the

make.musse 57

warning when creating the MuSSE function.
lik.b <- make.bisse(phy, phy$tip.state-1)
lik.m <- make.musse(phy, phy$tip.state, 2)
all.equal(lik.b(pars), lik.m(pars), tolerance=1e-7)

Notice that default argument names are different between BiSSE and
MuSSE, but that the order is the same.
argnames(lik.b) # BiSSE: 0/1
argnames(lik.m) # MuSSE: 1/2

2: A 3-state example where movement is only allowed between
neighbouring states (1 <-> 2 <-> 3), and where speciation and
extinction rates increase moving from 1 -> 2 -> 3:

You can get the expected argument order for any number of states
this way (sorry - clunky). The help file also lists the order.
diversitree:::default.argnames.musse(3)

Here are the parameters:
pars <- c(.1, .15, .2, # lambda 1, 2, 3

.03, .045, .06, # mu 1, 2, 3

.05, 0, # q12, q13

.05, .05, # q21, q23
0, .05) # q31, q32

set.seed(2)
phy <- tree.musse(pars, 30, x0=1)

Extract history from simulated tree and plot
(colours are 1: black, 2: red, 3: blue)
col <- c("blue", "orange", "red")
h <- history.from.sim.discrete(phy, 1:3)
plot(h, phy, cex=.7, col=col)

The states are numbered 1:3, rather than 0:1 in bisse.
states <- phy$tip.state
table(states)

2: Likelihood
Making a likelihood function is basically identical to bisse. The
third argument needs to be the number of states. In a future
version this will probably be max(states), but there are some
pitfalls about this that I am still worried about.
lik <- make.musse(phy, states, 3)

Here are the arguments. Even with three states, this is getting
ridiculous.
argnames(lik)

Start with a fully constrained model, but still enforcing stepwise
changes (disallowing 1 <-> 3 shifts)
lik.base <- constrain(lik, lambda2 ~ lambda1, lambda3 ~ lambda1,

mu2 ~ mu1, mu3 ~ mu1,

58 make.musse.multitrait

q13 ~ 0, q21 ~ q12, q23 ~ q12, q31 ~ 0, q32 ~ q12)

Not run:
p <- starting.point.musse(phy, 3)
fit.base <- find.mle(lik.base, p[argnames(lik.base)])

Now, allow the speciation rates to vary:
lik.lambda <- constrain(lik, mu2 ~ mu1, mu3 ~ mu1,

q13 ~ 0, q21 ~ q12, q23 ~ q12, q31 ~ 0, q32 ~ q12)
fit.lambda <- find.mle(lik.lambda, p[argnames(lik.lambda)])

Very little improvement in fit (this *is* a small tree)
anova(fit.base, lambda=fit.lambda)

Run an MCMC with this set. Priors will be necessary (using the
usual exponential with mean of 2r)
prior <- make.prior.exponential(1 / (2 * (p[1] - p[4])))
samples <- mcmc(lik.lambda, coef(fit.lambda), nstep=1000, w=1,

prior=prior, print.every=50)

Posterior probability profile plots for the three speciation rates.
profiles.plot(samples[2:4], col)
abline(v=c(.1, .15, .2), col=col)

End(Not run)

make.musse.multitrait MuSSE: Multi-State Speciation and Extinction (Multiple Binary Traits
Version)

Description

Prepare to run MuSSE or Mkn (Multi-State Speciation and Extinction) on a phylogenetic tree and
character distribution. This function creates a likelihood function that can be used in maximum
likelihood or Bayesian inference.

This is a helper function that wraps the basic MuSSE/Mkn models for the case of a combination
of several binary traits; its parametrisation and argument handling are a little different to the other
models in diversitree.

Usage

make.musse.multitrait(tree, states, sampling.f=NULL,
depth=NULL, allow.multistep=FALSE,
strict=TRUE, control=list())

make.mkn.multitrait(tree, states,
depth=NULL, allow.multistep=FALSE,
strict=TRUE, control=list())

musse.multitrait.translate(n.trait, depth=NULL, names=NULL,

make.musse.multitrait 59

allow.multistep=FALSE)
mkn.multitrait.translate(n.trait, depth=NULL, names=NULL,

allow.multistep=FALSE)

starting.point.musse.multitrait(tree, lik, q.div=5, yule=FALSE)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A data.frame of character states, each column of which represents a different
binary state (with values 0 or 1), and each row of which represents a taxon. The
row names of states must be the names that correspond to the tip labels in the
phylogenetic tree (tree$tip.label). The column names must be unique and
a single character long. The character "0" (zero) is reserved and may not be
used. NA values are allowed in one or more columns when one or more traits is
unknown for a taxon.

depth A scalar or vector of length 3 indicating the depth of interactions to include in
the model. See Details.

allow.multistep

Should transition rates be included that imply simultaneous changes in more
than one trait? By default this is not allowed, but if set to TRUE these rates are
included at the end of the parameter vector. Warning: treatment of these will
change in future versions!

sampling.f Scalar with the estimated proportion of extant species that are included in the
phylogeny. A value of 0.75 means that three quarters of extant species are
included in the phylogeny. By default all species are assumed to be known. In
the future, this will expand to allow state-specific sampling rates.

strict Each column in states is always checked to make sure that the values are 0
or 1. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing, but there are cases (missing intermediate states for meristic
characters) where allowing such models may be useful. Note that this model
may misbehave even if this check is met, due to combinations of traits being
absent.

control List of control parameters for the ODE solver. See details in make.bisse.

lik A likelihood function created by make.musse.multitrait.

q.div Ratio of diversification rate to character change rate. Eventually this will be
changed to allow for Mk2 to be used for estimating q parameters.

yule Logical: should starting parameters be Yule estimates rather than birth-death
estimates?

n.trait Number of binary traits.

names Vector of names for the traits when using musse.multitrait.translate (optional).

60 make.musse.multitrait

Details

Suppose that you have two binary traits that may affect speciation and extinction. In previous
versions of diversitree, you had to code the possible combinations as states 1, 2, 3, 4, which makes
the interpretation of the speciation rates (lambda1, lambda2, etc) unintuitive.

Let states is a data.frame with columns "A" and "B", representing the two binary traits. We can
write the speciation rate as

λ0 + λAXA + λBXB + λABXAXB

where XA and XB are indicator variables that take the value of trait A and B respectively (with
values 0 or 1). In this form, λ0 is the intercept, λA and λB are "main effects" of traits A and B, and
λAB is the "interaction" between these. We can do a similar trick for the extinction rates.

For character transition rates, we first consider changes only in a single trait. For our two trait case
we have four "types" of character change allowed (A 0->1, A 1->0, B 0->1, and B 1->0), but the
rates of change for trait A might depend on the current state of trait B (and vice versa). So we have,
for the A0->1 trait change qA01,0 + qA01,B × XB . Note that one fewer levels of interaction are
possible for these character changes than for the speciation/extinction parameters.

It may sometimes be desirable to have the multi-trait changes in the model. At present, if allow.multistep
is TRUE, all the multiple change transitions are included at the end of the parameter vector. For the
two trait case these are labelled q00.11, q10.01, q01.10, and q11.00, where qij.kl represents a
change from (A=i, B=j) to (C=k, D=l). The argument name, and treatment, of these may change in
future.

This approach generalises out to more than two traits. For N traits, interactions are possible up to
the Nth order for lambda and mu, and up to the N-1th order for q. The depth argument controls
how many of these are returned. If this is a scalar, then the same level is used for lambda, mu and
q. If it is a vector of length 3, then different depths are used for these three types of parameters.
By default, all possible interactions are returned and the model has the same number of degrees of
freedom as the models returned by make.musse (except for a reduction in the possible q parameters
when allow.multistep is FALSE). Parameters can then be further refined with constrain.

Author(s)

Richard G. FitzJohn

See Also

make.bisse for the basic binary model, and make.musse for the basic multistate model.

Examples

The translation between these two bases is fairly straightforward; if
we have a vector of parameters in our new basis 'p' we can convert it
into the original MuSSE basis ('q') through this matrix:
tr <- musse.multitrait.translate(2)
tr

Notice that the rows that correspond to transitions in multiple
traits are all zero by default; this means that these q values will

make.musse.multitrait 61

be zero regardless of the parameter vector used.
tr["q00.11",]

And here is the section of the transition matrix corresponding to the
lambda values; every rate gets a contribution from the intercept term
(lambda0), lambda10 and lambda11 get a contribution from lambdaA, etc.
tr[1:4,1:4]

There is currently no nice simulation support for this, so bear with
an ugly script to generate the tree and traits.
pars <- c(.10, .15, .20, .25, # lambda 00, 10, 01, 11

.03, .03, .03, .03, # mu 00, 10, 01, 11

.05, .05, .0, # q00.10, q00.01, q00.11

.05, .0, .05, # q10.00, q10.01, q10.11

.05, .0, .05, # q01.00, q01.10, q01.11

.0, .05, .05) # q11.00, q11.10, q11.01
set.seed(2)
phy <- tree.musse(pars, 60, x0=1)

states <- expand.grid(A=0:1, B=0:1)[phy$tip.state,]
rownames(states) <- phy$tip.label

Here, states has row names corresponding to the different taxa, and
the states of two traits "A" and "B" are recorded in the columns.
head(states)

Note that transition from the original MuSSE basis to this basis is
only possible in general when depth=n.trait and allow.multistep=TRUE
(as only this generates a square matrix that is invertible).
However, when it is possible to express the set of parameters in the
new basis (as it is above), this can be done through a pseudoinverse
(here, a left inverse).
pars2 <- drop(solve(t(tr) %*% tr) %*% t(tr) %*% pars)

Going from our new basis to the original MuSSE parameters is always
straightforward. This is done automatically in the likelihood
function.
all.equal(drop(tr %*% pars2), pars, check.attributes=FALSE)

This shows that the two traits act additively on speciation rate
(lambdaAB is zero), that there is no effect of any trait on
extinction (the only nonzero mu parameter is mu0) and transition
rates for one trait are unaffected by other traits (the only nonzero
q parameters are the qXij.0 parameters; qXij.Y parameters are all
zero).

Here is our new MuSSE function parametrised as a multi-trait
function:
lik <- make.musse.multitrait(phy, states)

Here are the argument names for the likelihood function.
argnames(lik)

62 make.musse.multitrait

Basic MuSSE function for comparison
lik.m <- make.musse(phy, phy$tip.state, 4)
argnames(lik.m)

Rather than fit this complicated model first, let's start with a
simple model with no state dependent diversification. This model
allows the forwards and backwards transition rates to vary, but the
speciation and extinction rates do not depend on the character
state:
lik0 <- make.musse.multitrait(phy, states, depth=0)
argnames(lik0)

This can be used in analyses as usual. However, this can take a
while to run, so is not run by default.
Not run:
p <- starting.point.musse.multitrait(phy, lik0)
fit0 <- find.mle(lik0, p)

Now, allow the speciation rates to vary additively with both
character states (extinction and character changes are left as in the
previous model)
lik1 <- make.musse.multitrait(phy, states, depth=c(1, 0, 0))

Start from the previous ML point:
p <- starting.point.musse.multitrait(phy, lik1)
p[names(coef(fit0))] <- coef(fit0)

fit1 <- find.mle(lik1, p)

The likelihood improves, but the difference is not statistically
significant (p = 0.35).
anova(fit1, fit0)

We can fit an interaction for the speciation rates, too:
lik2 <- make.musse.multitrait(phy, states, depth=c(2, 0, 0))
p <- starting.point.musse.multitrait(phy, lik2)
p[names(coef(fit1))] <- coef(fit1)
fit2 <- find.mle(lik2, p)

There is next to no support for the interaction term (which is good,
as the original model did not have any interaction!)
anova(fit2, fit1)

Constraining also works with these models. For example, constraining
the lambdaA parameter to zero:
lik1b <- constrain(lik1, lambdaA ~ 0)
argnames(lik1b)
p <- starting.point.musse.multitrait(phy, lik1b)
p[names(coef(fit0))] <- coef(fit0)
fit1b <- find.mle(lik1b, p)
anova(fit1b, fit0)

Or constraining both main effects to take the same value:

make.musse.split 63

lik1c <- constrain(lik1, lambdaB ~ lambdaA)
argnames(lik1c)
p <- starting.point.musse.multitrait(phy, lik1c)
p[names(coef(fit0))] <- coef(fit0)
fit1c <- find.mle(lik1c, p)
anova(fit1c, fit0)

End(Not run)

make.musse.split Multiple State Speciation and Extinction Model: Split Models

Description

Create a likelihood function for a MuSSE model where the tree is partitioned into regions with
different parameters.

Usage

make.musse.split(tree, states, k, nodes, split.t,
sampling.f=NULL, strict=TRUE, control=list())

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be an integer between 1 and k.
This vector must have names that correspond to the tip labels in the phylogenetic
tree (tree$tip.label). For tips corresponding to unresolved clades, the state
should be NA.

k The number of states.

nodes Vector of nodes that will be split (see Details).

split.t Vector of split times, same length as nodes (see Details).

sampling.f Vector of length k where sampling.f[i] is the proportion of species in state i
that are present in the phylogeny. A value of c(0.5,0.75,1) means that half of
species in state 1, three quarters of species in state 2, and all species in state 3
are included in the phylogeny. By default all species are assumed to be known

strict The states vector is always checked to make sure that the values are integers
on 1:k. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing, but there are cases (missing intermediate states for meristic
characters) where allowing such models may be useful.

control List of control parameters for the ODE solver. See details in make.bisse.

64 make.musse.split

Details

Branching times can be controlled with the split.t argument. If this is Inf, split at the base of
the branch (as in MEDUSA). If 0, split at the top (closest to the present, as in the new option for
MEDUSA). If 0 < split.t < Inf then we split at that time on the tree (zero is the present, with
time growing backwards).

Author(s)

Richard G. FitzJohn

Examples

This example picks up from the tree used in the ?make.musse example.

First, simulate the tree:
set.seed(2)
pars <- c(.1, .15, .2, # lambda 1, 2, 3

.03, .045, .06, # mu 1, 2, 3

.05, 0, # q12, q13

.05, .05, # q21, q23
0, .05) # q31, q32

phy <- tree.musse(pars, 30, x0=1)

Here is the phylogeny, with true character history superposed:
h <- history.from.sim.discrete(phy, 1:3)
plot(h, phy, show.node.label=TRUE, font=1, cex=.75, no.margin=TRUE)

Here is a plain MuSSE function for later comparison:
lik.m <- make.musse(phy, phy$tip.state, 3)
lik.m(pars) # -110.8364

Split this phylogeny at three points: nd16 and nd25, splitting it
into three chunks
nodes <- c("nd16", "nd25")
nodelabels(node=match(nodes, phy$node.label) + length(phy$tip.label),

pch=19, cex=2, col="#FF000099")

To make a split BiSSE function, pass the node locations and times
in. Here, we'll use 'Inf' as the split time to mimick MEDUSA's
behaviour of placing the split at the base of the branch subtended by
a node.
lik.s <- make.musse.split(phy, phy$tip.state, 3, nodes, split.t=Inf)

The parameters must be a list of the same length as the number of
partitions. Partition '1' is the root partition, and partition i is
the partition rooted at the node[i-1]:
argnames(lik.s)

Because we have two nodes, there are three sets of parameters.
Replicate the original list to get a starting point for the analysis:
pars.s <- rep(pars, 3)
names(pars.s) <- argnames(lik.s)

make.musse.td 65

lik.s(pars.s) # -110.8364

This is basically identical (to acceptable tolerance) to the plain
MuSSE version:
lik.s(pars.s) - lik.m(pars)

The resulting likelihood function can be used in ML analyses with
find.mle. However, because of the large number of parameters, this
may take some time (especially with as few species as there are in
this tree - getting convergence in a reasonable number of iterations
is difficult).
Not run:
fit.s <- find.mle(lik.s, pars.s, control=list(maxit=20000))

End(Not run)

Bayesian analysis also works, using the mcmc function. Given the
large number of parameters, priors will be essential, as there will
be no signal for several parameters. Here, I am using an exponential
distribution with a mean of twice the state-independent
diversification rate.
Not run:
prior <- make.prior.exponential(1/(-2*diff(starting.point.bd(phy))))
samples <- mcmc(lik.s, pars.s, 100, prior=prior, w=1, print.every=10)

End(Not run)

make.musse.td Multiple State Speciation and Extinction Model: Time Dependent
Models

Description

Create a likelihood function for a MuSSE model where different chunks of time have different
parameters. This code is experimental!

Usage

make.musse.td(tree, states, k, n.epoch, sampling.f=NULL,
strict=TRUE, control=list())

make.musse.t(tree, states, k, functions, sampling.f=NULL,
strict=TRUE, control=list(), truncate=FALSE, spline.data=NULL)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

66 make.musse.td

states A vector of character states, each of which must be an integer between 1 and k.
This vector must have names that correspond to the tip labels in the phylogenetic
tree (tree$tip.label). For tips corresponding to unresolved clades, the state
should be NA.

k The number of states.

n.epoch Number of epochs. 1 corresponds to plain MuSSE, so this will generally be an
integer at least 2.

functions A named list of functions of time. See details.

sampling.f Vector of length k where sampling.f[i] is the proportion of species in state i
that are present in the phylogeny. A value of c(0.5,0.75,1) means that half of
species in state 1, three quarters of species in state 2, and all species in state 3
are included in the phylogeny. By default all species are assumed to be known

strict The states vector is always checked to make sure that the values are integers
on 1:k. If strict is TRUE (the default), then the additional check is made that
every state is present. The likelihood models tend to be poorly behaved where
states are missing, but there are cases (missing intermediate states for meristic
characters) where allowing such models may be useful.

control List of control parameters for the ODE solver. See details in make.bisse.

truncate Logical, indicating if functions should be truncated to zero when negative (rather
than causing an error). May be scalar (applying to all functions) or a vector (of
same length as the functions vector).

spline.data List of data for spline-based time functions. See details.

Details

Please see make.bisse.t for further details.

Author(s)

Richard G. FitzJohn

Examples

Here we will start with the tree and three-state character set from
the make.musse example. This is a poorly contrived example.
pars <- c(.1, .15, .2, # lambda 1, 2, 3

.03, .045, .06, # mu 1, 2, 3

.05, 0, # q12, q13

.05, .05, # q21, q23
0, .05) # q31, q32

set.seed(2)
phy <- tree.musse(pars, 30, x0=1)

Suppose we want to see if diversification is different in the most
recent 3 time units, compared with the rest of the tree (yes, this is
a totally contrived example!):
plot(phy)
axisPhylo()

make.pgls 67

abline(v=max(branching.times(phy)) - 3, col="red", lty=3)

For comparison, make a plain MuSSE likelihood function
lik.m <- make.musse(phy, phy$tip.state, 3)

Create the time-dependent likelihood function. The final argument
here is the number of 'epochs' that are allowed. Two epochs is one
switch point.
lik.t <- make.musse.td(phy, phy$tip.state, 3, 2)

The switch point is the first argument. The remaining 12 parameters
are the MuSSE parameters, with the first 6 being the most recent
epoch.
argnames(lik.t)

pars.t <- c(3, pars, pars)
names(pars.t) <- argnames(lik.t)

Calculations are identical to a reasonable tolerance:
lik.m(pars) - lik.t(pars.t)

It will often be useful to constrain the time as a fixed quantity.
lik.t2 <- constrain(lik.t, t.1 ~ 3)

Parameter estimation under maximum likelihood. This is marked "don't
run" because the time-dependent fit takes a few minutes.
Not run:
Fit the MuSSE ML model
fit.m <- find.mle(lik.m, pars)

And fit the MuSSE/td model
fit.t <- find.mle(lik.t2, pars.t[argnames(lik.t2)],

control=list(maxit=20000))

Compare these two fits with a likelihood ratio test (lik.t2 is nested
within lik.m)
anova(fit.m, td=fit.t)

End(Not run)

make.pgls Phylogenetic Generalised Least Squares

Description

Generate the likelihood function that underlies PGLS (Phylogenetic Generalised Least Squares).
This is a bit of a misnomer here, as you may not be interested in least squares (e.g., if using this
with mcmc for Bayesian inference).

68 make.prior

Usage

make.pgls(tree, formula, data, control=list())

Arguments

tree A bifurcating phylogenetic tree, in ape “phylo” format.

formula A model formula; see lm for details on formulae; the interface is the same here.

data A data frame containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment
from which this function is called. That may perform badly with reconciling
with species names, however.

control A list of control parameters. Currently the only option is the key “method”
which can be "vcv" for the traditional variance-covariance approach (slow for
large trees) or "contrasts" for the contrasts-based approach outlined in Freck-
leton (2012).

Author(s)

Richard G. FitzJohn

References

Freckleton R.P. 2012. Fast likelihood calculations for comparative analyses. Methods in Ecology
and Evolution 3: 940-947.

make.prior Simple Prior Functions

Description

Functions for generating prior functions for use with mcmc, etc.

Usage

make.prior.exponential(r)
make.prior.uniform(lower, upper, log=TRUE)

Arguments

r Scalar or vector of rate parameters

lower Lower bound of the parameter

upper Upper bound of the parameter

log Logical: should the prior be on a log basis?

make.quasse 69

Details

The exponential prior probability distribution has probability density∑
i

rie
−rixi

where the i denotes the ith parameter. If r is a scalar, then the same rate is used for all parameters.

These functions each return a function that may be used as the prior argument to mcmc().

Author(s)

Richard G. FitzJohn

make.quasse Quantitative State Speciation and Extinction Model

Description

Prepare to run QuaSSE (Quantitative State Speciation and Extinction) on a phylogenetic tree and
character distribution. This function creates a likelihood function that can be used in maximum
likelihood or Bayesian inference.

Usage

make.quasse(tree, states, states.sd, lambda, mu, control,
sampling.f=NULL)

starting.point.quasse(tree, states, states.sd=NULL)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be a numeric real values. Miss-
ing values (NA) are not yet handled. This vector must have names that correspond
to the tip labels in the phylogenetic tree (tree$tip.label).

states.sd A scalar or vector corresponding to the standard error around the mean in states
(the initial probability distribution is assumed to be normal).

lambda A function to use as the speciation function. The first argument of this must be
x (see Details).

mu A function to use as the extinction function. The first argument of this must be
x (see Details.)

control A list of parameters for tuning the performance of the integrator. A guess at
reasonble values will be made here. See Details for possible entries.

sampling.f Scalar with the estimated proportion of extant species that are included in the
phylogeny. A value of 0.75 means that three quarters of extant species are
included in the phylogeny. By default all species are assumed to be known.

70 make.quasse

Details

The control list may contain the following elements:

• method: one of fftC or fftR to switch between C (fast) and R (slow) backends for the integra-
tion. Both use non-adaptive fft-based convolutions. Eventually, an adaptive methods-of-lines
approach will be available.

• dt.max: Maximum time step to use for the integration. By default, this will be set to 1/1000
of the tree depth. Smaller values will slow down calculations, but improve accuracy.

• nx: The number of bins into which the character space is divided (default=1024). Larger
values will be slower and more accurate. For the fftC integration method, this should be an
integer power of 2 (512, 2048, etc).

• r: Scaling factor that multiplies nx for a "high resolution" section at the tips of the tree (de-
fault=4, giving a high resolution character space divided into 4096 bins). This helps improve
accuracy while possibly tight initial probability distributions flatten out as time progresses
towards the root. Larger values will be slower and more accurate. For the fftC integration
method, this should be a power of 2 (2, 4, 8, so that nx*r is a power of 2).

• tc: where in the tree to switch to the low-resolution integration (zero corresponds to the
present, larger numbers moving towards the root). By default, this happens at 10% of the tree
depth. Smaller values will be faster, but less accurate.

• xmid: Mid point to center the character space. By default this is at the mid point of the
extremes of the character states.

• tips.combined: Get a modest speed-up by simultaneously integrating all tips? By default,
this is FALSE, but speedups of up to 25% are possible with this set to TRUE.

• w: Number of standard deviations of the normal distribution induced by Brownian motion to
use when doing the convolutions (default=5). Probably best to leave this one alone.

Warning

In an attempt at being computationally efficient, a substantial amount of information is cached in
memory so that it does not have to be created each time. However, this can interact poorly with
the multicore package. In particular, likelihood functions should not be made within a call to
mclapply, or they will not share memory with the main R thread, and will not work (this will cause
an error, but should no longer crash R).

The method has less general testing than BiSSE, and is a little more fragile. In particular, because of
the way that I chose to implement the integrator, there is a very real chance of likelihood calculation
failure when your data are a poor fit to the model; this can be annoyingly difficult to diagnose (you
will just get a -Inf log likelihood, but the problem is often just caused by two sister species on
short branches with quite different states). There are also a large number of options for fine tuning
the integration, but these aren’t really discussed in any great detail anywhere.

Author(s)

Richard G. FitzJohn

make.quasse.split 71

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

Example showing simple integration with two different backends,
plus the splits.
lambda <- function(x) sigmoid.x(x, 0.1, 0.2, 0, 2.5)
mu <- function(x) constant.x(x, 0.03)
char <- make.brownian.with.drift(0, 0.025)

set.seed(1)
phy <- tree.quasse(c(lambda, mu, char), max.taxa=15, x0=0,

single.lineage=FALSE, verbose=TRUE)

nodes <- c("nd13", "nd9", "nd5")
split.t <- Inf

pars <- c(.1, .2, 0, 2.5, .03, 0, .01)
pars4 <- unlist(rep(list(pars), 4))

sd <- 1/200
control.C.1 <- list(dt.max=1/200)

Not run:
control.R.1 <- list(dt.max=1/200, method="fftR")
lik.C.1 <- make.quasse(phy, phy$tip.state, sd, sigmoid.x, constant.x, control.C.1)
(ll.C.1 <- lik.C.1(pars)) # -62.06409

slow...
lik.R.1 <- make.quasse(phy, phy$tip.state, sd, sigmoid.x, constant.x, control.R.1)
(ll.R.1 <- lik.R.1(pars)) # -62.06409

lik.s.C.1 <- make.quasse.split(phy, phy$tip.state, sd, sigmoid.x, constant.x,
nodes, split.t, control.C.1)

(ll.s.C.1 <- lik.s.C.1(pars4)) # -62.06409

End(Not run)

make.quasse.split Quantitative State Speciation and Extinction Model: Split Models

72 make.quasse.split

Description

Create a likelihood function for a QuaSSE model where the tree is partitioned into regions with
different parameters.

Usage

make.quasse.split(tree, states, states.sd, lambda, mu, nodes, split.t,
control=NULL, sampling.f=NULL)

Arguments

tree An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

states A vector of character states, each of which must be a numeric real values. Miss-
ing values (NA) are not yet handled. This vector must have names that correspond
to the tip labels in the phylogenetic tree (tree$tip.label).

states.sd A scalar or vector corresponding to the standard error around the mean in states
(the initial probability distribution is assumed to be normal).

lambda A function to use as the speciation function. The first argument of this must be
x (see Details).

mu A function to use as the extinction function. The first argument of this must be
x (see Details.)

nodes Vector of nodes that will be split (see Details).

split.t Vector of split times, same length as nodes (see Details).

control A list of parameters for tuning the performance of the integrator. A guess at
reasonble values will be made here. See Details in make.quasse for possible
entries.

sampling.f Scalar with the estimated proportion of extant species that are included in the
phylogeny. A value of 0.75 means that three quarters of extant species are
included in the phylogeny. By default all species are assumed to be known.

Details

Branching times can be controlled with the split.t argument. If this is Inf, split at the base of
the branch (as in MEDUSA). If 0, split at the top (closest to the present, as in the new option for
MEDUSA). If 0 < split.t < Inf then we split at that time on the tree (zero is the present, with
time growing backwards).

TODO: Describe nodes and split.t here.

Author(s)

Richard G. FitzJohn

mcmc 73

mcmc Simple Markov Chain Monte Carlo with Slice Sampling

Description

Run a simple-minded MCMC using slice samples (Neal 2003) for independent updating of each
variable.

Usage

mcmc(lik, x.init, nsteps, ...)
Default S3 method:
mcmc(lik, x.init, nsteps, w, prior=NULL,

sampler=sampler.slice, fail.value=-Inf, lower=-Inf,
upper=Inf, print.every=1, control=list(),
save.file, save.every=0, save.every.dt=NULL,
previous=NULL, previous.tol=1e-4, keep.func=TRUE, ...)

sampler.slice(lik, x.init, y.init, w, lower, upper, control)
sampler.norm(lik, x.init, y.init, w, lower, upper, control)

Arguments

lik Likelihood function to run MCMC on. This must return the log likelihood (or
the log of a value proportional to the likelihood).

x.init Initial parameter location (vector).

nsteps Number of MCMC steps to take.

w Tuning parameter for the sampler. See Details below for more information.

prior An optional prior probability distribution function. This must be a function that
returns the log prior probability, given a parameter vector. See make.prior for
more information. If no prior is given, unbounded (and therefore “improper”)
priors are used for all parameters, which can cause the MCMC to fail in some
situations.

sampler Sampler to use for the MCMC. There are currently only two implemented;
sampler.slice (the default, and generally recommended), and sampler.norm
(Gaussian updates, and for illustrative purposes mostly).

lower Lower bounds on parameter space (scalar or vector of same length as x.init).

upper Upper bounds on parameter space (scalar or vector of same length as x.init).

fail.value Value to use where function evaluation fails. The default (negative infinity)
corresponds to zero probability. Most values that fail are invalid for a given
model (negative rates, etc) or have negligble probability, so this is reasonable.
Set to NULL to turn off checking.

print.every The position and its probability will be printed every print.every generations.
Set this to 0 to disable printing.

74 mcmc

control List with additional control parameters for the sampler. Not currently used.

save.file Name of csv or rds file to save temporary output in. Contents will be rewritten
at each save (rds is faster than csv, but is R-specific).

save.every Number of steps to save progress into save.file. By default this is 0, which
prevents saving occuring. Low nonzero values of this will slow things down, but
may be useful during long runs.

save.every.dt Period of time to save after, as a lubridate Period object (e.g., minutes(10)).

previous Output from a previous mcmc run, perhaps only partly completed. The sampler
will continue from the end of this chain until the total chain has nsteps points.

previous.tol Before continuing, the sampler re-evaluates the last point and compares the pos-
terior probability against the posterior probability in the previous samples. If
the difference is greater than previous.tol then mcmc will not continue.

keep.func Indicates if the returned samples should include the likelihood function, which
can be accessed with get.likelihood.

... Arguments passed to the function lik

y.init Likelihood evaluated at x.init.

Details

There are two samplers implemented: a slice sampler (Neal 2003) and a basic Gaussian sampler.
In general, only the slice sampler should be used; the Gaussian sampler is provided for illustration
and as a starting point for future samplers.

For slice sampling (sampler.slice), the tuning parameter w affects how many function evalua-
tions are required between sample updates, but in almost all cases it does not affect how fast the
MCMC “mixes” (Neal 2003). In particular, w is not analagous to the step sizes used in conven-
tional Metropolis-Hastings updaters that use some fixed kernel for updates (see below). Ideally,
w would be set to approximately the width of the high probability region. I find that chosing the
distance between the 5% and 95% quantiles of the marginal distributions of each parameter works
well, computed from this preliminary set of samples (see Examples). If a single value is given, this
is shared across all parameters.

For the Gaussian updates (sampler.norm), the tuning parameter w is the standard deviation of the
normal distribution centred on each parameter as it is updated.

For both samplers, if a single value is given, this is shared across all parameters. If a vector is given,
then it must be the same length as w, and parameter i will use w[i].

If the MCMC is stopped by an interrupt (Escape on GUI versions of R, Control-C on command-line
version), it will return a truncated chain with as many points as completed so far.

This is far from the most efficient MCMC function possible, as it was designed to work with likeli-
hood functions that are relatively expensive to compute. The overhead for 10,000 slice samples is
on the order of 5s on a 2008 Mac Pro (0.0005 s / sample).

The sampler function sampler.norm and sampler.slice should not generally be called directly
(though this is possible), but exist only to be passed in to mcmc.

Author(s)

Richard G. FitzJohn

mcmc 75

References

Neal R.M. 2003. Slice sampling. Annals of Statistics 31:705-767.

See Also

make.bd, make.bisse, make.geosse, and make.mkn, all of which provide likelihood functions that
are suitable for use with this function. The help page for make.bd has further examples of using
MCMC, and make.bisse has examples of using priors with MCMC.

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

To demonstrate, start with a simple bivariate normal. The function
'make.mvn' creates likelihood function for the multivariate normal
distribution given 'mean' (a vector) and 'vcv' (the variance
covariance matrix). This is based on mvnorm in the package
mvtnorm, but will be faster where the vcv does not change between
calls.
make.mvn <- function(mean, vcv) {

logdet <- as.numeric(determinant(vcv, TRUE)$modulus)
tmp <- length(mean) * log(2 * pi) + logdet
vcv.i <- solve(vcv)

function(x) {
dx <- x - mean
-(tmp + rowSums((dx %*% vcv.i) * dx))/2

}
}

Our target distribution has mean 0, and a VCV with positive
covariance between the two parameters.
vcv <- matrix(c(1, .25, .25, .75), 2, 2)
lik <- make.mvn(c(0, 0), vcv)

Sample 500 points from the distribution, starting at c(0, 0).
set.seed(1)
samples <- mcmc(lik, c(0, 0), 500, 1, print.every=100)

The marginal distribution of V1 (the first axis of the
distribution) should be a normal distribution with mean 0 and
variance 1:
curve(dnorm, xlim=range(samples$X1), ylim=c(0, .5), col="red")
hist(samples$X1, 30, add=TRUE, freq=FALSE)

plot(X2 ~ X1, samples, pch=19, cex=.2, col="#00000055", asp=1)

The estimated variance here matches nicely with the true VCV: (These

76 mcmc

all look much better if you increase the number of sampled points,
say to 10,000)
var(samples[2:3])

The above uses slice sampling. We can use simple Gaussian updates
instead. This performs updates with standard deviation '1' in each
direction. Unlike slice sampling, the 'w' parameter here will
matter a great deal in determining how fast the chain will mix.
samples.norm <- mcmc(lik, c(0, 0), 500, 1, print.every=100,

sampler=sampler.norm)

This *appears* to run much faster than the slice sampling based
approach above, but the effective sample size of the second
approach is much lower. The 'effectiveSize' function in coda says
that for 10,000 samples using slice sampling, the effective sample
size (equivalent number of independent samples) is about 8,500, but
for the Gaussian updates is only 1,200. This can be seen by
comparing the autocorrelation between samples from the two
different runs.
op <- par(oma=c(0, 0, 2, 0))
acf(samples[2:3])
title(main="Slice sampling", outer=TRUE)

acf(samples.norm[2:3])
title(main="Gaussian updates", outer=TRUE)

The autocorrelation is negligable after just 2 samples under slice
sampling, but remains significant for about 15 with Gaussian
updates.

Not run:
Next, a diversitree likelihood example. This example uses a 203
species phylogeny evolved under the BiSSE model. This takes a
more substantial amount of time, so is not evaluated by default.
pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(2)
phy <- tree.bisse(pars, max.t=60, x0=0)

First, create a likelihood function:
lik <- make.bisse(phy, phy$tip.state)
lik(pars)

This produces about a sample a second, so takes a while. The "upper"
limit is a hard upper limit, above which the sampler will never let
the parameter go (in effect, putting a uniform prior on the range
lower..upper, and returning the joint distribution conditional on the
parameters being in this range).
tmp <- mcmc(lik, pars, nsteps=100, w=.1)

The argument 'w' works best when it is about the width of the "high
probability" region for that parameter. This takes the with of the
90% quantile range. The resulting widths are only slightly faster
than the first guess. Samples are generated about 1/s; allow 15

plot.history 77

minutes to generate 1000 samples.
w <- diff(sapply(tmp[2:7], quantile, c(.05, .95)))
out <- mcmc(lik, pars, nsteps=1000, w=w)

You can do several things with this. Look for candidate ML points:
out[which.max(out$p),]

Or look at the marginal distribution of parameters
profiles.plot(out["lambda0"], col.line="red")

Or look at the joint marginal distribution of pairs of parameters
plot(lambda0 ~ mu0, out)

End(Not run)

plot.history Plot Character History

Description

Both stochastic character mapping and simulation may create character histories. This function
plots these histories

Usage

S3 method for class 'history'
plot(x, phy, cols=seq_along(states),

states=x$states,
xlim=NULL, ylim=NULL, show.tip.label=TRUE,
show.node.label=FALSE, show.tip.state=TRUE,
show.node.state=TRUE, no.margin=FALSE, cex=1, font=3,
srt=0, adj=0, label.offset=NA, lwd=1, ...)

Arguments

x An object of class history.discrete containing a discrete character history.
This could be made by history.from.sim.discrete.

phy The phylogeny used to generate the history. Few checks are made to make sure
that this is really correct, and all manner of terrible things might happen if these
are not compatible. This may change in future.

cols A vector of colours.

states The different state types. Probably best to leave alone.

xlim Plot x-limits (optional).

ylim Plot y-limits (optional).

show.tip.label Logical: show the species tip labels?

78 plot.history

show.node.label

Logical: show the species node labels?

show.tip.state Logical: draw a symbol at the tips to indicate tip state?
show.node.state

Logical: draw a symbol at the nodes to indicate node state?

no.margin Supress drawing of margins around the plot

cex Font and symbol scaling factor.

font Font used for tip and node labels (see par).

srt String rotation for tip and node labels.

adj Label adjustment (see par).

label.offset Horizontal offset of tip and node labels, in branch length units.

lwd Line width

... Additional arguments (currently ignored)

Details

This attempts to be as compatible with ape’s plotting functions as possible, but currently implements
only right-facing cladegrams.

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

Simulate a tree, but retain extinct species.
pars <- c(.1, .2, .03, .04, 0.05, 0.1) # BiSSE pars
set.seed(2)
phy <- tree.bisse(pars, 20, x0=0, include.extinct=TRUE)

Create a 'history' from the information produced by the simulation
and plot this
h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy, cex=.7)

Prune the extinct taxa.
phy2 <- prune(phy)

The history must be recreated for this pruned tree:
h2 <- history.from.sim.discrete(phy2, 0:1)
plot(h2, phy2, cex=.7)

profiles.plot 79

profiles.plot Plot Marginal Distributions from MCMC

Description

Simple plotting assistance for plotting output from MCMC runs

Usage

profiles.plot(y, col.line, col.fill, xlim=NULL, ymax=NULL, n.br=50,
opacity=.5, xlab="Parameter estimate",
ylab="Probability density", legend.pos=NULL,
with.bar=TRUE, col.bg=NA, lwd=1, lines.on.top=TRUE, ...)

Arguments

y Data frame, columns of which will be plotted as separate profiles.

col.line Vector of colours for the lines.

col.fill Vector of colours for the fill of the 95% most probable region of the distribution.
If ommited, this will be a semi-transparent version of col.line.

xlim X-axis limits - calculated automatically if omitted.

ymax Y-axis upper limit - calculated automatically if omitted.

n.br Number of breaks along the range of the data.

opacity Opacity of the filled region (0 is transparent, 1 is fully opaque).

xlab,ylab Axis labels for the plot.

legend.pos String to pass to legend to position the legend (for automatic legend building
based on the names of y).

with.bar Should a bar be included that shows the CI ranges below the plot (in addition to
the shading)?

col.bg Colour to draw behind the profiles (set to "white" for nicer transparency on non-
white backgrounds)

lwd Width of lines around the profiles

lines.on.top Draw lines around profiles on top of all profiles?

... Additional arguments passed through to plot.

Author(s)

Richard G. FitzJohn

Examples

For usage, see the example in ?make.bd

80 quasse-common

quasse-common Support Functions for QuaSSE Models

Description

Utility functions for working with QuaSSE models. These provide a minimal set of state-varying
functions, suitable for use with make.quasse, and simulation assistance functions for use with
tree.quasse.

This is currently poorly explained!

Usage

constant.x(x, c)
sigmoid.x(x, y0, y1, xmid, r)
stepf.x(x, y0, y1, xmid)
noroptimal.x(x, y0, y1, xmid, s2)

make.linear.x(x0, x1)

make.brownian.with.drift(drift, diffusion)

Arguments

x Character state

c Constant.

y0 y value at very small x (limit as x tends to negative infinity)

y1 y value at very large x (limit as x tends to infinity). For noroptimal.x, this is
the y value at xmid.

xmid Midpoint (inflection point) of sigmoid or step function

r Rate at which exponential decay occurs or sigmoid changes - higher values are
steeper

s2 Variance of the normal distribution specified by noroptimal.x.

x0 Lower x limit for the linear function: y will take value at x0 for all x smaller
than this

x1 Upper x limit for the linear function: y will take value at x1 for all x greater than
this

drift Rate of drift

diffusion Rate of diffusion (positive)

Details

The linear function returned by (make.linear.x) will go to zero wherever negative. This may not
always be desired, but is required for valid likelihood calculations under QuaSSE.

set.defaults 81

Author(s)

Richard G. FitzJohn

set.defaults Set Default Arguments of a Function

Description

Set the default values of formal arguments of a function.

Usage

set.defaults(f, ..., defaults)

Arguments

f A function

... Named arguments to be set

defaults A named list of arguments

Details

The repetitive argument lists of many of diversitree’s likelihood functions are the motivation for this
function.

For example, the likelihood function that make.bisse produces takes arguments condition.surv,
root, and root.p, each with default values. If you dislike the defaults, you can change them by
passing in alternative values when computing likelihoods, or when doing an ML search. However,
this can get tedious if you are using a function a lot, and your code will get cluttered with lots of
statements like condition.surv=FALSE, some of which you may forget. See the example below
for how to avoid this.

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(4)
phy <- tree.bisse(pars, max.t=30, x0=0)
lik <- make.bisse(phy, phy$tip.state)

82 sim.character

default arguments:
args(lik)

lik.no.cond <- set.defaults(lik, condition.surv=FALSE)
args(lik.no.cond)

Multiple arguments at once:
lik2 <- set.defaults(lik, root=ROOT.GIVEN, root.p=c(0, 1))
args(lik2)

Equivalently (using alist, not list -- see ?alist)
defaults <- alist(root=ROOT.GIVEN, root.p=c(0, 1))
lik3 <- set.defaults(lik, defaults=defaults)
identical(lik2, lik3)

sim.character Simulate a Character Distribution on a Tree

Description

Simulate a character distribution (state of each species) under some simple models of trait evolution.
Currently this does not return the full history (node states, and state changes) but this may be added
in a future version.

Usage

sim.character(tree, pars, x0=0, model="bm", br=NULL)
make.sim.character(tree, pars, model="bm", br=NULL)

Arguments

tree A bifurcating phylogenetic tree, in ape “phylo” format.

pars A set of model parameters (see Details below), as the order and interpretation
depends on the model.

x0 Root state. The default is zero, which may not make sense in all models.

model Character string specifying which model to evolve the character under. Possible
values are "bm", "ou", "bbm", "mk" and "meristic"; see Details.

br For cases where none of the models specifiable through the model argument are
sufficient, you can provide your own function. The function must have argu-
ments x0, t, which are the state at the base of a branch and the length of time
to simulate over. It must return a scalar state at the tip of the branch. Future
versions may change requirements of this function, especially to allow retention
of character histories along branches.

simulate 83

Details

This function duplicates functionality in other packages; see sim.char in geiger in particular. The
main difference here is that for continuous characters, this does not use the variance-covariance
matrix, which can make it much faster for very large trees. I believe that this approach is similar to
fastBM in phytools.

• model="bm": Brownian Motion. Takes a single parameter, representing the rate of diffusion
(must be positive)

• model="ou": Ornstein-Uhlenbeck process. Takes a vector of three parameters, representing
the rate of diffusion, strength of restoring force, and the "optimum" value. The first two
parameters must be non-negative, and the rate of diffusion must be positive.

• model="bbm": Bounded Brownian Motion. Takes a vector of three parameters (s2, c, d),
representing the rate of diffusion, lower and upper bound, respectively. The rate of diffusion
must be positive.
model="mk": Mk model (see make.mkn). Takes a Q matrix as its argument. The element
Q[i,j] represents the rate of transition from state i to state j, and the diagonal elements must
be such that rowSums(Q) is zero.
model="meristic": A special case of the Mk model, where the trait is meristic and character
transitions are only possible between adjacent states. There are three parameters (k, up, down),
representing the number of states, and rate of character change up (from state i to i+1) and
down.

Author(s)

Richard G. FitzJohn

simulate Evolve Birth-Death Trees

Description

Evolves one or more trees under the BiSSE (Binary State Speciation and Extinction), MuSSE
(Multi-State Speciation and Extinction), BiSSE-ness (BiSSE-node enhanced state shift), ClaSSE
(Cladogenetic State change Speciation and Extinction), or GeoSSE (Geographic State Speciation
and Extinction) model, or a simple character independent birth-death model. For the SSE models,
it simultaneously evolves a character that affects speciation and/or extinction, and the tree itself.

Usage

trees(pars, type=c("bisse", "bisseness", "bd", "classe", "geosse",
"musse", "quasse", "yule"), n=1, max.taxa=Inf, max.t=Inf,
include.extinct=FALSE, ...)

tree.bisse(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE,
x0=NA)

tree.musse(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE,

84 simulate

x0=NA)
tree.musse.multitrait(pars, n.trait, depth, max.taxa=Inf, max.t=Inf,

include.extinct=FALSE, x0=NA)

tree.quasse(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE, x0=NA,
single.lineage=TRUE, verbose=FALSE)

tree.bisseness(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE,
x0=NA)

tree.classe(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE,
x0=NA)

tree.geosse(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE,
x0=NA)

tree.bd(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE)
tree.yule(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE)

prune(phy, to.drop=NULL)

Arguments

pars Vector of parameters. The parameters must be in the same order as an uncon-
strained likelihood function returned by make.x, for tree type x. The MuSSE
simulator automatically detects the appropriate number of states, given a pa-
rameter vector.

type Type of tree to generate: May be "bisse" or "bd".

n How many trees to generate?

max.taxa Maximum number of taxa to include in the tree. If Inf, then the tree will be
evolved until max.t time has passed.

max.t Maximum length to evolve the phylogeny over. If Inf (the default), then the tree
will evolve until max.taxa extant taxa are present.

include.extinct

Logical: should extinct taxa be included in the final phylogeny? And should
extinct trees be returned by trees?

x0 Initial character state at the root (state 0 or 1). A value of NA will randomly
choose a state from the model’s equilibrium distribution for a BiSSE, ClaSSE, or
GeoSSE model, but a non-NA value must be specified for MuSSE and QuaSSE.

n.trait, depth For tree.musse.multitrait only, these specify the number of binary traits
and the style of parameters (with the same meaning as in make.musse.multitrait).
The pars argument then needs to be in the same order as a likelihood function
created by make.musse.multitrait with these arguments (this interface may
be improved in future – email me if you find this annoying).

single.lineage (tree.quasse only): Start simulation with a single lineage? If FALSE, then the
simulation starts with two lineages in state x0 (i.e., immediately following a
speciation event).

simulate 85

verbose (tree.quasse only): print verbose details about tree simuations. This can be
reassuring for really large trees.

... Additional arguments

phy A phylogeny, possibly with extinct species, produced by one of the tree evolving
functions.

to.drop Optional vector with the species names to drop.

Details

The phylogeny will begin from a single lineage in state x0, but the final phylogeny will include only
branches above the first split.

tree.bisse may return an extinct phylogeny, and trees might return extinct phylogenies if include.extinct
is TRUE.

Value

A phylo phylogenetic tree (ape format), or for bisse.trees, a list of phylo trees.

The trees will have an element tip.state that contains the binary state information.

Note

There are some logic problems around the creation of zero and one species trees; this will cause
occasional errors when running the above functions. Things will change to fix this soon. All these
functions may change in the near future.

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(3)
phy <- tree.bisse(pars, max.taxa=30, x0=0)
phy$tip.state

h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy)

Retain extinct species:
set.seed(3)
phy2 <- tree.bisse(pars, max.taxa=30, x0=0, include.extinct=TRUE)
h2 <- history.from.sim.discrete(phy2, 0:1)
plot(h2, phy2)

86 trait.plot

MuSSE:
Two states
pars <- c(.1, .2, .03, .04, 0.05, 0.1)
set.seed(2)
phy <- tree.musse(pars, 20, x0=1)

h <- history.from.sim.discrete(phy, 1:2)
plot(h, phy)

A 3-state example where movement is only allowed between neighbouring
states (1 <-> 2 <-> 3), and where speciation and extinction rates
increase moving from 1 -> 2 -> 3:
pars <- c(.1, .15, .2, # lambda 1, 2, 3

.03, .045, .06, # mu 1, 2, 3

.05, 0, # q12, q13

.05, .05, # q21, q23
0, .05) # q31, q32

set.seed(2)
phy <- tree.musse(pars, 30, x0=1, include.extinct=TRUE)

h <- history.from.sim.discrete(phy, 1:3)
plot(h, phy, cex=.7)

And with extinct taxa pruned:
phy2 <- prune(phy)
h2 <- history.from.sim.discrete(phy2, 1:3)
plot(h2, phy2, cex=.7)

This can all be done in one step (and is by default):
set.seed(2)
phy <- tree.musse(pars, 30, x0=1)
h <- history.from.sim.discrete(phy, 1:3)
plot(h, phy, cex=.7)

trait.plot Plot a Phylogeny and Traits

Description

Plot a phylogeny and label the tips with traits. This function is experimental, and may change soon.
Currently it can handle discrete-valued traits and two basic tree shapes.

Usage

trait.plot(tree, dat, cols, lab=names(cols), str=NULL,
class=NULL, type="f", w=1/50,
legend=length(cols) > 1, cex.lab=.5,
font.lab=3, cex.legend=.75, margin=1/4,
check=TRUE, quiet=FALSE, ...)

trait.plot 87

Arguments

tree Phylogenetic tree, in ape format.

dat A data.frame of trait values. The row names must be the same names as the
tree (tree$tip.label), and each column contains the states (0, 1, etc., or NA).
The column names must give the trait names.

cols A list with colors. Each element corresponds to a trait and must be named so that
all names appear in names(dat). Each of these elements is a vector of colors,
with length matching the number of states for that trait. Traits will be plotted in
the order given by cols.

lab Alternative names for the legend (perhaps longer or more informative). Must be
in the same order as cols.

str Strings used for the states in the legend. If NULL (the default), the values in dat
are used.

class A vector along phy$tip.label giving a higher level classification (e.g., genus
or family). No checking is done to ensure that such classifications are not poly-
phyletic.

type Plot type (same as type in ?plot.phylo). Currently only f (fan) and p (right-
wards phylogram) are implemented.

w Width of the trait plot, as a fraction of the tree depth.

legend Logical: should a legend be plotted?
cex.lab, font.lab

Font size and type for the tip labels.

cex.legend Font size for the legend.

margin How much space, relative to the total tree depth, should be reserved when plot-
ting a higher level classification.

check When TRUE (by default), this will check that the classes specified by class are
monophyletic. If not, classes will be concatenated and a warning raised.

quiet When TRUE (FALSE by default), this suppresses the warning caused by check=TRUE.

... Additional arguments passed through to phylogeny plotting code (similar to
ape’s plot.phylo).

Author(s)

Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {

RNGkind(sample.kind = "Rounding")
}

These are the parameters: they are a single speciation and extinction
rate, then 0->1 (trait A), 1->0 (A), 0->1 (B) and 1->0 (B).

88 utilities

colnames(musse.multitrait.translate(2, depth=0))

Simulate a tree where trait A changes slowly and B changes rapidly.
set.seed(1)
phy <- tree.musse.multitrait(c(.1, 0, .01, .01, .05, .05),

n.trait=2, depth=0, max.taxa=100,
x0=c(0,0))

Here is the matrix of tip states (each row is a species, each column
is a trait).
head(phy$tip.state)

trait.plot(phy, phy$tip.state,
cols=list(A=c("pink", "red"), B=c("lightblue", "blue")))

nodes <- c("nd5", "nd4", "nd7", "nd11", "nd10", "nd8")
grp <- lapply(nodes, get.descendants, phy, tips.only=TRUE)
class <- rep(NA, 100)
for (i in seq_along(grp))

class[grp[[i]]] <- paste("group", LETTERS[i])

Now, 'class' is a vector along phy$tip.label indicating which of six
groups each species belongs.

Plotting the phylogeny with these groups:
trait.plot(phy, phy$tip.state,

cols=list(A=c("pink", "red"), B=c("lightblue", "blue")),
class=class, font=1, cex.lab=1, cex.legend=1)

Add another state, showing values 1:3, names, and trait ordering.
tmp <- sim.character(phy, c(-.1, .05, .05, .05, -.1, .05, .05, 0.05, -.1),

model="mkn", x0=1)
phy$tip.state <- data.frame(phy$tip.state, C=tmp)
trait.plot(phy, phy$tip.state,

cols=list(C=c("palegreen", "green3", "darkgreen"),
A=c("pink", "red"), B=c("lightblue", "blue")),

lab=c("Animal", "Vegetable", "Mineral"),
str=list(c("crane", "toad", "snail"), c("kale", "carrot"),

c("calcite", "beryl")))

Rectangular/phylogram plot with groups.
trait.plot(ladderize(phy, right=FALSE), phy$tip.state, type="p",

cols=list(A=c("pink", "red"), B=c("lightblue", "blue"),
C=c("palegreen", "green3", "darkgreen")),

class=class, font=1, cex.lab=1)

utilities Utility Functions

utilities 89

Description

These are utility functions that are used internally by diversitree, but which might be more generally
useful.

Currently only get.descendants docuemnted here, which determines which species or nodes are
descended from a particular node.

Usage

get.descendants(node, tree, tips.only=FALSE, edge.index=FALSE)
run.cached(filename, expr, regenerate=FALSE)
expand.parameters(p, lik.new, repl=0, target=argnames(lik.new))
get.likelihood(object)
drop.likelihood(object)

Arguments

node A node, either a name in tree$node.label, an integer in 1..tree$Nnode, or
in length(tree$tip.label)..(length(tree$tip.label)+tree$Nnode).

tree A phylogenetic tree, in ape’s phylo format.

tips.only Logical: return only descendant indices of tip species?

edge.index Logical: return the row indices in the edge matrix?

filename Name of the file to store cached results

expr Expression to evaluate

regenerate Logical: force re-evaluation of expr and regeneration of filename?

object For drop.likelihood, an object that has a likelihood attribute to be removed
(saves space on object save); for get.likelihood, retrieves the function.

p, lik.new, repl, target

Undocumented currently

Author(s)

Richard G. FitzJohn

Index

∗Topic hplot
plot.history, 77
profiles.plot, 79
trait.plot, 86

∗Topic manip
make.clade.tree, 41

∗Topic models
asr, 4
find.mle, 13
history.from.sim, 17
make.bd, 18
make.bd.split, 20
make.bd.t, 22
make.bisse, 24
make.bisse.split, 29
make.bisse.td, 31
make.bisseness, 35
make.bm, 40
make.classe, 42
make.geosse, 45
make.geosse.split, 47
make.geosse.t, 49
make.mkn, 52
make.musse, 55
make.musse.multitrait, 58
make.musse.split, 63
make.musse.td, 65
make.pgls, 67
make.prior, 68
make.quasse, 69
make.quasse.split, 71
mcmc, 73
quasse-common, 80
sim.character, 82
simulate, 83

∗Topic model
asr-bisse, 5
asr-mkn, 7

∗Topic package

diversitree-package, 3
∗Topic programming

argnames, 3
combine, 10
constrain, 11
set.defaults, 81

∗Topic utilities
check, 10
utilities, 88

ace, 15
AIC, 15
anova, 15, 16
anova.fit.mle (find.mle), 13
argnames, 3, 11, 16, 53
argnames<- (argnames), 3
asr, 4, 5
asr-bisse, 5
asr-mkn, 7
asr.bisse, 5
asr.bisse (asr-bisse), 5
asr.marginal.bisse (asr-bisse), 5
asr.marginal.musse (asr-bisse), 5
asr.mkn, 5
asr.mkn (asr-mkn), 7
asr.musse (asr-bisse), 5

Bayesian, 24, 35, 40, 42, 45, 49, 55, 58, 69
birthdeath, 15
BiSSE-ness, 43

check, 10
clades.from.classification

(make.clade.tree), 41
clades.from.polytomies

(make.clade.tree), 41
coef.fit.mle (find.mle), 13
combine, 10
constant.x (quasse-common), 80

90

INDEX 91

constrain, 3, 11, 14, 19, 27, 37, 44, 46, 50,
52, 54

data.frame, 26, 37
diversitree (diversitree-package), 3
diversitree-package, 3
drop.likelihood (utilities), 88

expand.parameters (utilities), 88

find.mle, 12, 13, 19, 27, 37, 44, 46, 50, 54

GeoSSE, 43
get.descendants (utilities), 88
get.likelihood, 74
get.likelihood (utilities), 88

history.from.sim, 17
history.from.sim.discrete, 77

legend, 79
lm, 68
logLik.fit.mle (find.mle), 13

make.asr.joint (asr), 4
make.asr.joint.mk2 (asr-mkn), 7
make.asr.joint.mkn (asr-mkn), 7
make.asr.marginal (asr), 4
make.asr.marginal.bisse (asr-bisse), 5
make.asr.marginal.mk2 (asr-mkn), 7
make.asr.marginal.mkn (asr-mkn), 7
make.asr.marginal.musse (asr-bisse), 5
make.asr.stoch (asr), 4
make.asr.stoch.mk2 (asr-mkn), 7
make.asr.stoch.mkn (asr-mkn), 7
make.bd, 18, 23, 27, 37, 75
make.bd.split, 20
make.bd.t, 22
make.bisse, 18, 19, 23, 24, 30, 32, 36, 37,

42–46, 48–50, 53, 54, 56, 59, 60, 63,
66, 75

make.bisse.split, 21, 29
make.bisse.t, 49, 50, 66
make.bisse.t (make.bisse.td), 31
make.bisse.td, 31
make.bisse.uneven (make.bisse.split), 29
make.bisseness, 35, 44
make.bm, 40
make.brownian.with.drift

(quasse-common), 80

make.clade.tree, 26, 37, 41
make.classe, 42
make.eb (make.bm), 40
make.geosse, 44, 45, 48, 50, 75
make.geosse.split, 47
make.geosse.t, 49
make.geosse.uneven (make.geosse.split),

47
make.lambda (make.bm), 40
make.linear.x (quasse-common), 80
make.mk2 (make.mkn), 52
make.mkn, 52, 75, 83
make.mkn.multitrait

(make.musse.multitrait), 58
make.musse, 44, 55, 60
make.musse.multitrait, 55, 56, 58, 84
make.musse.split, 63
make.musse.t (make.musse.td), 65
make.musse.td, 65
make.ou (make.bm), 40
make.pgls, 67
make.prior, 19, 53, 68, 73
make.quasse, 69, 72, 80
make.quasse.split, 71
make.sim.character (sim.character), 82
make.yule (make.bd), 18
maximum likelihood, 24, 35, 40, 42, 45, 49,

55, 58, 69
mcmc, 19, 27, 37, 44, 46, 50, 54, 67, 68, 73
mkn.multitrait.translate

(make.musse.multitrait), 58
musse.multitrait.translate

(make.musse.multitrait), 58

nlm, 15
nlminb, 15
noroptimal.x (quasse-common), 80

optim, 15

par, 78
plot, 79
plot.history, 77
profiles.plot, 79
prune (simulate), 83

quasse-common, 80

run.cached (utilities), 88

92 INDEX

sampler.norm (mcmc), 73
sampler.slice (mcmc), 73
set.defaults, 81
sigmoid.x (quasse-common), 80
sigmoid2.x (quasse-common), 80
sim.character, 82
simulate, 83
starting.point.bd (make.bd), 18
starting.point.bisse (make.bisse), 24
starting.point.classe (make.classe), 42
starting.point.geosse (make.geosse), 45
starting.point.musse (make.musse), 55
starting.point.musse.multitrait

(make.musse.multitrait), 58
starting.point.quasse (make.quasse), 69
stepf.x (quasse-common), 80
subplex, 15

trait.plot, 86
tree.bd (simulate), 83
tree.bisse, 17
tree.bisse (simulate), 83
tree.bisseness, 37
tree.bisseness (simulate), 83
tree.classe (simulate), 83
tree.geosse (simulate), 83
tree.musse (simulate), 83
tree.quasse, 80
tree.quasse (simulate), 83
tree.yule (simulate), 83
trees (simulate), 83

utilities, 88

	diversitree-package
	argnames
	asr
	asr-bisse
	asr-mkn
	check
	combine
	constrain
	find.mle
	history.from.sim
	make.bd
	make.bd.split
	make.bd.t
	make.bisse
	make.bisse.split
	make.bisse.td
	make.bisseness
	make.bm
	make.clade.tree
	make.classe
	make.geosse
	make.geosse.split
	make.geosse.t
	make.mkn
	make.musse
	make.musse.multitrait
	make.musse.split
	make.musse.td
	make.pgls
	make.prior
	make.quasse
	make.quasse.split
	mcmc
	plot.history
	profiles.plot
	quasse-common
	set.defaults
	sim.character
	simulate
	trait.plot
	utilities
	Index

