NB: This vignette is work-in-progress and not yet complete.
TBD
digest()
and sha1()
R FAQ 7.31 illustrates potential problems with floating point arithmetic. Mathematically the equality \(x = \sqrt{x}^2\) should hold. But the precision of floating points numbers is finite. Hence some rounding is done, leading to numbers which are no longer identical.
An illustration:
## [1] FALSE
## [1] -4.440892e-16
## [1] "0x1p+1" "0x1.0000000000001p+1"
Although the difference is small, any difference will result in different hash when using the digest()
function. However, the sha1()
function tackles this problem by using the hexadecimal representation of the numbers and truncates that representation to a certain number of digits prior to calculating the hash function.
## [1] "315a5aa84aa6cfa4f3fb4b652a596770be0365e8"
## [2] "5e3999bf79c230f7430e97d7f30070a7eff5ec92"
## [1] "8a938d8f5fb9b8ccb6893aa1068babcc517f32d4"
## [2] "8a938d8f5fb9b8ccb6893aa1068babcc517f32d4"
## [1] "98eb1dc9fada00b945d3ef01c77049ee5a4b7b9c"
## [2] "5a173e2445df1134908037f69ac005fbd8afee74"
# decreasing the number of digits gives a stronger truncation
# the hash will change when then truncation gives a different result
# case where truncating gives same hexadecimal value
sapply(a, sha1, digits = 13)
## [1] "43b3b465c975af322c85473190a9214b79b79bf6"
## [2] "43b3b465c975af322c85473190a9214b79b79bf6"
## [1] "6b537a9693c750ed535ca90527152f06e358aa3a"
## [2] "6b537a9693c750ed535ca90527152f06e358aa3a"
# case where truncating gives different hexadecimal value
c(sha1(pi), sha1(pi, digits = 13), sha1(pi, digits = 10))
## [1] "169388cf1ce60dc4e9904a22bc934c5db33d975b"
## [2] "20dc38536b6689d5f2d053f30efb09c44af78378"
## [3] "3a727417bd1807af2f0148cf3de69abff32c23ec"
The result of floating point arithematic on 32-bit and 64-bit can be slightly different. E.g. print(pi ^ 11, 22)
returns 294204.01797389047
on 32-bit and 294204.01797389053
on 64-bit. Note that only the last 2 digits are different.
command | 32-bit | 64-bit |
---|---|---|
print(pi ^ 11, 22) |
294204.01797389047 |
294204.01797389053 |
sprintf("%a", pi ^ 11) |
"0x1.1f4f01267bf5fp+18" |
"0x1.1f4f01267bf6p+18" |
digest(pi ^ 11, algo = "sha1") |
"c5efc7f167df1bb402b27cf9b405d7cebfba339a" |
"b61f6fea5e2a7952692cefe8bba86a00af3de713" |
sha1(pi ^ 11, digits = 14) |
"5c7740500b8f78ec2354ea6af58ea69634d9b7b1" |
"4f3e296b9922a7ddece2183b1478d0685609a359" |
sha1(pi ^ 11, digits = 13) |
"372289f87396b0877ccb4790cf40bcb5e658cad7" |
"372289f87396b0877ccb4790cf40bcb5e658cad7" |
sha1(pi ^ 11, digits = 10) |
"c05965af43f9566bfb5622f335817f674abfc9e4" |
"c05965af43f9566bfb5622f335817f674abfc9e4" |
digest()
or sha1()
TBD
sha1()
.
sha1
.sha1()
on the (list of) relevant component(s).sha1()
zapsmall = 7
is recommended.digits = 14
is recommended in case all numerics are data.digits = 4
is recommended in case some numerics stem from floating point arithmetic.Let’s illustrate this using the summary of a simple linear regression. Suppose that we want a hash that takes into account the coefficients, their standard error and sigma.
# taken from the help file of lm.influence
lm_SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
lm_sum <- summary(lm_SR)
class(lm_sum)
## [1] "summary.lm"
## List of 11
## $ call : language lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
## $ terms :Classes 'terms', 'formula' language sr ~ pop15 + pop75 + dpi + ddpi
## .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "order")= int [1:4] 1 1 1 1
## .. ..- attr(*, "intercept")= int 1
## .. ..- attr(*, "response")= int 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
## .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## $ residuals : Named num [1:50] 0.864 0.616 2.219 -0.698 3.553 ...
## ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## $ coefficients : num [1:5, 1:4] 28.566087 -0.461193 -1.691498 -0.000337 0.409695 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## .. ..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
## $ aliased : Named logi [1:5] FALSE FALSE FALSE FALSE FALSE
## ..- attr(*, "names")= chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## $ sigma : num 3.8
## $ df : int [1:3] 5 45 5
## $ r.squared : num 0.338
## $ adj.r.squared: num 0.28
## $ fstatistic : Named num [1:3] 5.76 4 45
## ..- attr(*, "names")= chr [1:3] "value" "numdf" "dendf"
## $ cov.unscaled : num [1:5, 1:5] 3.74 -7.24e-02 -4.46e-01 -7.86e-05 -1.88e-02 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## .. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## - attr(*, "class")= chr "summary.lm"
# extract the coefficients and their standard error
coef_sum <- coef(lm_sum)[, c("Estimate", "Std. Error")]
# extract sigma
sigma <- lm_sum$sigma
# check the class of each component
class(coef_sum)
## [1] "matrix"
## [1] "numeric"
# sha1() has methods for both matrix and numeric
# because the values originate from floating point arithmetic it is better to use a low number of digits
sha1(coef_sum, digits = 4)
## [1] "1ab538262c9aad03d17f33c644d6c8d0b27367e8"
## [1] "cbc83d1791ef1eeadd824ea9a038891b5889056b"
# we want a single hash
# combining the components in a list is a solution that works
sha1(list(coef_sum, sigma), digits = 4)
## [1] "d2e6e07d97e2a97882fd3bbf6e4455140c0c6412"
# now turn everything into an S3 method
# - a function with name "sha1.classname"
# - must have the same arguments as sha1()
sha1.summary.lm <- function(x, digits = 4, zapsmall = 7){
coef_sum <- coef(x)[, c("Estimate", "Std. Error")]
sigma <- x$sigma
combined <- list(coef_sum, sigma)
sha1(combined, digits = digits, zapsmall = zapsmall)
}
sha1(lm_sum)
## [1] "d2e6e07d97e2a97882fd3bbf6e4455140c0c6412"
# try an altered dataset
LCS2 <- LifeCycleSavings[rownames(LifeCycleSavings) != "Zambia", ]
lm_SR2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LCS2)
sha1(summary(lm_SR2))
## [1] "637d8121e49b30dbc0b0e8cd02ff5a4a8b9d89e1"
Let’s illustrate this using the summary of a simple linear regression. Suppose that we want a hash that takes into account the coefficients, their standard error and sigma.
## [1] "lm"
## List of 12
## $ coefficients : Named num [1:5] 28.566087 -0.461193 -1.691498 -0.000337 0.409695
## ..- attr(*, "names")= chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## $ residuals : Named num [1:50] 0.864 0.616 2.219 -0.698 3.553 ...
## ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## $ effects : Named num [1:50] -68.38 -14.29 7.3 -3.52 -7.94 ...
## ..- attr(*, "names")= chr [1:50] "(Intercept)" "pop15" "pop75" "dpi" ...
## $ rank : int 5
## $ fitted.values: Named num [1:50] 10.57 11.45 10.95 6.45 9.33 ...
## ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## $ assign : int [1:5] 0 1 2 3 4
## $ qr :List of 5
## ..$ qr : num [1:50, 1:5] -7.071 0.141 0.141 0.141 0.141 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## .. .. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## .. ..- attr(*, "assign")= int [1:5] 0 1 2 3 4
## ..$ qraux: num [1:5] 1.14 1.17 1.16 1.15 1.05
## ..$ pivot: int [1:5] 1 2 3 4 5
## ..$ tol : num 1e-07
## ..$ rank : int 5
## ..- attr(*, "class")= chr "qr"
## $ df.residual : int 45
## $ xlevels : Named list()
## $ call : language lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
## $ terms :Classes 'terms', 'formula' language sr ~ pop15 + pop75 + dpi + ddpi
## .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "order")= int [1:4] 1 1 1 1
## .. ..- attr(*, "intercept")= int 1
## .. ..- attr(*, "response")= int 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
## .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## $ model :'data.frame': 50 obs. of 5 variables:
## ..$ sr : num [1:50] 11.43 12.07 13.17 5.75 12.88 ...
## ..$ pop15: num [1:50] 29.4 23.3 23.8 41.9 42.2 ...
## ..$ pop75: num [1:50] 2.87 4.41 4.43 1.67 0.83 2.85 1.34 0.67 1.06 1.14 ...
## ..$ dpi : num [1:50] 2330 1508 2108 189 728 ...
## ..$ ddpi : num [1:50] 2.87 3.93 3.82 0.22 4.56 2.43 2.67 6.51 3.08 2.8 ...
## ..- attr(*, "terms")=Classes 'terms', 'formula' language sr ~ pop15 + pop75 + dpi + ddpi
## .. .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
## .. .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
## .. .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## .. .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. .. ..- attr(*, "order")= int [1:4] 1 1 1 1
## .. .. ..- attr(*, "intercept")= int 1
## .. .. ..- attr(*, "response")= int 1
## .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
## .. .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
## .. .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## - attr(*, "class")= chr "lm"
# extract the model and the terms
lm_model <- lm_SR$model
lm_terms <- lm_SR$terms
# check their class
class(lm_model) # handled by sha1()
## [1] "data.frame"
## [1] "terms" "formula"
# define a method for formula
sha1.formula <- function(x, digits = 14, zapsmall = 7, ..., algo = "sha1"){
sha1(as.character(x), digits = digits, zapsmall = zapsmall, algo = algo)
}
sha1(lm_terms)
## [1] "2737d209720aa7d1c0555050ad06ebe89f3850cd"
## [1] "27b7dd9e3e09b9577da6947b8473b63a1d0b6eb4"
# define a method for lm
sha1.lm <- function(x, digits = 14, zapsmall = 7, ..., algo = "sha1"){
lm_model <- x$model
lm_terms <- x$terms
combined <- list(lm_model, lm_terms)
sha1(combined, digits = digits, zapsmall = zapsmall, ..., algo = algo)
}
sha1(lm_SR)
## [1] "7eda2a9d58e458c8e782e40ce140d62b836b2a2f"
## [1] "4d3abdb1f17bd12fdf9d9b91a2ad04c07824fe4a"
Use case
automated analysis
update frequency of the data might be lower than the frequency of automated analysis
similar analyses on many datasets (e.g. many species in ecology)
analyses that require a lot of computing time
Bundle all relevant information on an analysis in a class
calculate sha1()
file fingerprint ~ sha1()
on the stable parts
status fingerprint ~ sha1()
on the parts that result for the model