Package ‘diffrprojects’

November 6, 2016
Title Projects for Text Version Comparison and Analytics in R
Date 2016-11-06
Version 0.1.14

Description Provides data structures and methods for measuring, coding,
and analysing text within text corpora. The package allows for manual as
well computer aided coding on character, token and text pair level.

Depends R (>=3.0.0), stringb (>= 0.1.13), rtext (>= 0.1.20)
License MIT + file LICENSE
LazyData TRUE

Imports R6 (>=2.1.2), hellno (>=0.0.1), dplyr(>= 0.5.0), Rcpp (>=
0.12.6), stringdist (>= 0.9.4.1), RSQLite (>= 1.0.0), magrittr,
stats

Suggests testthat, knitr, rmarkdown
BugReports https://github.com/petermeissner/diffrprojects/issues

URL https://github.com/petermeissner/diffrprojects
RoxygenNote 5.0.1

LinkingTo Rcpp

NeedsCompilation yes

Author Peter Meissner [aut, cre],
Ulrich Sieberer [cph],
University of Konstanz [cph]

Maintainer Peter Meissner <retep.meissner@gmail.com>
Repository CRAN
Date/Publication 2016-11-06 22:32:04

R topics documented:

as.data.frame.alignment_data_list
as.data.frame.alignment_listo

https://github.com/petermeissner/diffrprojects/issues
https://github.com/petermeissner/diffrprojects

Index

as.data.frame.alignment_data_list

as.data.frame.named_df list e 3
choose_Options e e 4
diffrproject 5
diff_align 16
dp_align e 17
dp_base e e 18
dp_export e 18
dp_inherit 19
dp_loadsave 19
dp_text_base_data. e 20
dummyimport e e e e e 20
GELPIIVALE o v e e e e e e e e e e e e e e e 20
push_text_char_data 21
sort_alignment 22
text_version 1. L e e 22
teXE_VEISION_2 o e 23
write_numerous_parts_to_table 23

24

as.data.frame.alignment_data_list

as.data.frame method for for named lists of data.frames

Description

as.data.frame method for for named lists of data.frames

Usage

S3 method for class 'alignment_data_list'
as.data.frame(x, row.names = NULL,

optional = FALSE, ...)

Arguments
X any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syntac-

tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment,
basically with the meaning of data.frame(*, check.names = !optional).

additional arguments to be passed to or from methods.

as.data.frame.alignment_list 3

as.data.frame.alignment_list
as.data.frame method for for named lists of data.frames

Description

as.data.frame method for for named lists of data.frames

Usage

S3 method for class 'alignment_list'
as.data.frame(x, row.names = NULL,

optional = FALSE, ...)
Arguments
X any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment,
basically with the meaning of data.frame(x, check.names = l!optional).

additional arguments to be passed to or from methods.

as.data.frame.named_df_list
as.data.frame method for for named lists of data.frames

Description

as.data.frame method for for named lists of data.frames

Usage

S3 method for class 'named_df_list'
as.data.frame(x, row.names = NULL, optional = FALSE,
dfnamevar = "name"”, ...)

4 choose_options

Arguments
X any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment,
basically with the meaning of data.frame(x, check.names = l!optional).
dfnamevar in which variable should list item names be saved
additional arguments to be passed to or from methods.
choose_options (choose from a number of pre-sorted options) takes a vector pair
of tokil / toki2 and a vector pair of res_token_i_I / res_token_i_2
and chooses so that each 1st and exh 2nd value only is used where
res_token_i_x identiefies already used items.
Description

(choose from a number of pre-sorted options) takes a vector pair of tokil / toki2 and a vector pair
of res_token_i_1/res_token_i_2 and chooses so that each 1st and exh 2nd value only is used where
res_token_i_x identiefies already used items.

Usage

choose_options(tokil, toki2, res_token_i_1, res_token_i_2)

Arguments
toki1l first number of number pair to choose from
toki2 second number of number pair to choose from

res_token_i_1 already used first numbers

res_token_i_2 already used second numbers // @keywords internal

diffrproject 5

diffrproject class for diffrproject

Description

class for diffrproject

Usage

diffrproject

Format

R6Class creator object.

Value

Object of diffrproject

The diffrprojects class family

Diffrproject consists of an set of R6 classes that are conencted by inheritance. Each class handles a
different set of functionalities that are modular.

R6_rtext_extended A class that has nothing to do per se with diffrprojects. It merely adds some
basic features to the base R6 class (debugging, hashing, getting fields and handling warnings
and messages as well as listing content). This class is imported from rtext package

dp_base [inherits from rtext::R6_rtext_extended] This class forms the foundation of all diffrpojects
(dp_xxx) classes by implementing data fields for meta data, texts, data on texts, links between
texts, alignment of text tokens, and data on the alignment of text tokens. Furthermore it
implements methods add, delete, code, and link texts or to aggregate text data on text token
level.

dp_loadsave [inherits from dp_base] This class allows for loading and saving diffrprojects from
and to Rdata files.

dp_export [inherits from dp_loadsave] This class provides methods for exporting and importing
to and from RSQLite.

dp_align [inherits from dp_export] This is one of the workhorses of diffrprojects. The methods of
this class allow for adding, deleting or computing alignments between text tokens (e.g. words
or lines or sentences or characters or paragraphs, or some other way to split text into chunks).
Furthermore it allows to also assign data to individual alignments (a connection beween two
token of text from different text versions).

dp_inherit [inherits from dp_align] The text_data_inherit method added by this class allows to
copy text data from one token of a text version to another token of another text version chan-
neled through aligments with zero distance. Conflicting codings (a text might have multiple
codings stemming from several links and from direct coding of the text) are resolved by the
fact that text codings are accompanied by a hierarchy level that defaults to zero and gets de-
creased by one every time the coding is inherited by a token.

6 diffrproject

diffrproject [inherits from dp_inherit] Just a wrapper inheriting from dp_inherit to have a less
technical name at the end of the inheritance chain.

Examples

Creating a Diffrprojects Instance

To create a diffrproject we use the diffrproject creator object -
its simply an object with an function that knows how to create a project.

Creating a project looks like this:

library(diffrprojects)
dp <- diffrproject$new()

Et viola - we created a first, for now empty, project that we will
use throughout the tutorial.

Some Help Please

To get a better idea about what this thing called xdiffrprojectx really is
you can consult its help page which gives a broad overview over its
capabilities:

?2diffrproject

Another way is to call the 1ls() method. This will present us with a
data frame listing all fields where data is stored and all the methods
(aka object specific functions) of our diffrprojects instance.

Those methods and fields located in *privatex are not for the user

to mess around with while non-private (*self* aka public) data fields
can be read by the user and public methods can be triggered by the
user to manipulate the data or retrieve data in a specific format.

% ¥ oM O H M

dp$ls()

The base R class() function furthermore reveals from which classes the
diffrproject class inherits:

class(dp)

diffrproject

Adding Texts to Projects

Our diffrproject (‘dp‘) has one method called ‘text_add()‘ that allows to
add texts to the project. Basically the method can be used in three
different flavors: adding character vectors, adding texts stored on disk,
or by adding rtext objects (see rtext package:
https://CRAN.R-project.org/package=rtext; rtext objects are the way
individual texts are represented within diffrprojects).

For each of these used cases there is one option:

“text', “text_file', ‘rtext‘; respectively.

e E E EEE

Below are shown examples using each of these methods:

=xxadding text filesxx

test_filel <- stringb:::test_file("rc_1_ch1.txt")
test_file2 <- stringb:::test_file("rc_2_ch1l.txt")
dp$text_add(text_file = c(test_filel, test_file2))

*xadding rtext objects**

test_file <- stringb:::test_file("rc_1_chl.txt")
rt <- rtext$new(text_file = test_file)
dp$text_add(rtext = rt)

*xadding character vectors*x

test_filel <- stringb:::test_file("rc_1_ch1.txt")
test_file2 <- stringb:::test_file("rc_2_ch1.txt")
cv <= "

cv[1] <- text_read(test_filel, NULL)

cv[2] <- text_read(test_file2, NULL)
dp$text_add(text = cv)

In the last case make sure to put each text in one separate line.

Functions like readlLines() or text_read() read in texts such that

each line corresponds to one element in a character vector. With e.g.

text_read()'s tokenize parameter to NULL the text will be read in as one
long string.

Piping Methods

Now is a good time to mention a feature of diffrprojects that comes in
handy: All functions that do not explicitly extract data
(those usually have some 'get' as part of their name) do return the

diffrproject

object itself so that one can pipe together a series of method calls.

Consider the following example where we initiate a new diffrprojects
instance and add two texts in just one pipe:

dp <-
diffrproject$
new()$
text_add(text_version_1, name = "versionl1")$
text_add(text_version_2, name = "version2")

length(dp$text)

Getting Infos About Texts

If we want to get some general overview about the texts gathered in our
project, we can use the text_meta_data() method to do so.

The method has no parameters and returns a data.frame with several

variables informing us about its source, length, encoding used for

storage, and its name.

dp$text_meta_data()

Showing Text

If you want to have a look at your texts you may do so by using the
text's own text_show methods. Per default this method only shows the
first 500 characters, but it can be set to higher numbers as well.

dp$text$versioni$text_show(length=1000)
dp$text$version2$text_show(length=1000)

Getting And Setting Infos About the Project

Similar to the text_meta_data() method we can access the projects

meta data via data fields meta and options. But contrary to the

text_meta_data() method that gathers data from all the texts within the
project and does not allow for manipulation of the data, the data

fields allow reading and writing.

diffrproject

First let us have a look and thereafter turn off the message
notification service:

xgetting data fieldsx

dp$options

*xsetting data fieldsxx

dp$options$verbose <- FALSE

(note, ask is deprecated and only remains for compatibility
reasons but has no function anymore)

Now it's time to have a look at the projects meta data.

It tells us when the project was created, which path to use for
SQLite exports, which path to use for saving data as in RData

format and what is the projects id. The id is a hash of a time stamp
as well as session information which should ensure uniqueness across
space and time.

% o H W

All these values can be manipulated by the user to her liking.

dp$meta

dp$meta$file_path = "./diffrproject.RData”

Deleting Texts

Of cause we can not only add texts but delete them from the project as
well. For this purpose there is the text_delete() method.

Let's just add two texts and delete one by providing its index number and
the second by providing its name to the text_delete() method.

dp$text_add(text = "nonesense”, "n1")
dp$text_add(text = "nonesense”, "n2")

dp$text_delete(3)
dp$text_delete(”"n2")

length(dp$text)

diffrproject

names (dp$text)

Defining Relationships Between Texts: Linking

The purpose of diffrprojects is to enable data collection on the
difference of texts. Having filled a project with various texts,
there are endless possibilities to form pairs of text for comparison
and change measurement - where endless actually is equal to: $n*2-n$.

* % o

ES

Linking can be done via the text_link method which accepts either
index numbers or text names for its from and to arguments
(a third argument delete will delete a specified link if set to TRUE).

H

dp$text_link(from =
dp$text_link(from =

1
—_
&+
]

|

2, delete = TRUE)

|
—
+
o

1

If no arguments are specified, text_link will link the first text to
the second, the third to the fourth, the fourth to the fifths and so on.

dp$text_link()

To get an idea of what links are currently specified, we can
directly access the link data field or/and ask R to transform the
list found there into a data.frame.

dp$link

dp$link %>% as.data.frame()

Aligning Texts and Measuring Change

At the heart of each diffrproject lies the text_align method.

diffrproject 11

% ¥ o

BT

* =

ETE TN

* %

e

e I

This method compares two texts and tries to align parts
of one text with parts of the other text. The first two
arguments (“t1' and ‘t2%) are for specifying which pair
of texts to compare - if left as-is, all text pairs that
are specified within the link data field will be aligned.

Text parts are arbitrary character spans defined by the
‘tokenizer® argument. This argument expects a function splitting
text into a token data.frame. If the tokenizer argument

is left as-is, it will default to text_tokenize_lines function
from the stringb package.

Text tokens can be pre-processed before alignment. The ‘clean®
argument allows to hand over a function tranforming a charactr
vector of text tokens into their clean counterparts.

The ‘ignore‘ arguments expects a function that is able to
transform a character vector of tokens into a logical vector
of same length, indicating which tokens to ignore throughout
the alignment process and which to consider.

The next argument - ‘distance‘ - specifies which distance
metrics to use to calculate distances between strings.

Since the text_align method basically is a wrapper around
diff_align you can get more information via ‘?diff_align®

and since again diff_align is a wrapper around stringdist
from the stringdist package ‘?stringdist::stringdist® and
also ‘‘?stringdist::‘stringdist-metrics® ‘* will provide
further insights about possible metrics and how to use the
rest of the arguments to text_align (these are passed through
to stringdist).

Let's have an example using the Levenshtein distance to
calculate distances between tokens (lines per default).
Furthermore we allow the distance between two aligned tokens

to be as large as 15. Tokens which do not find a partner

below that distance are considered to have been deleted

or respectively inserted. Tokens which find a partner with

a non-zero distance which is not above the threshhold are
considered changes - transformations of one token into the other.

The following shows the resulting list of alignment data.frames.

dp$text_align(distance = "1lv", maxDist = 15)

dp$alignment

#
#

To measure the change between those two texts we can e.g. aggregate
the distances by change type:

12

sum_up_changes <- function(x){

X

%>%

dplyr: :group_by(type) %>%
dplyr: :summarise(sum_of_change = sum(distance))

}

lapply(dp$alignment, sum_up_changes)

Coding Texts

#

e e E E E E R

Now let us put some data into our diffrproject.

The most basic method to do so is simply called text_code.
Text_code takes up

to five arguments (the first three are mandatory), where one
specifies the text to be coded (‘text‘, either by index
number or by name), how the variable to store the information
is called (*x'), and the index number or a vector of those
indicating which characters of the text should be coded.

The last two parameters are optional and specify which value
the variable should hold (‘val‘) and at which hierarchy
level the coding is placed (‘*hl‘, higher or equal hierarchy
levels will overwrite existing codings of lower hierarchy
level for the same text, character span, and variable).

dp$text_code(text = 1, x = "start”, i=1:5, val = TRUE, hl = @)
dp$text_code(text = "version2”, x = "start”, i=1:5, val = TRUE, hl = @)

* % o H

% o H O o H

H

The text_code method is quite verbose and in most cases more suited
to be accessed by a machine or algorithm than by a human.
Therefore, there are three other methods to code text:
text_code_regex, text_code_alignment_token,
text_code_alignment_token_regex.

The text_code_regex method allows to search for text patterns and

code a whole pattern instead of assigning codes character by

character - the ‘i‘ argument of text_code gets replaced by a

‘pattern® argument. The in addition further arguments can be

passed to the pattern search functions via ‘... - see e.g.

‘?grep for possible further arguments and
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html for a

description of regular expressions in R.

In this example we are searching for the word *"it"* in text 1 and code

diffrproject

diffrproject

each instance.

dp$text_code_regex(text = 1, x = "it", pattern = "\\bit\\b", ignore.case=TRUE)

Another variant of coding text is by using alignment tokens.

Having alignment data availible, this allows for selecting:

link, alignment and text while the other arguments from above stay the
same.

having a look at alignment number 4

dp$alignment[[1]]1[4,]

coding text connected by alignment number 4

dp$text_code_alignment_token(

link =1,
alignment_i = 4,
textl = TRUE,
text2 = TRUE,

x = "token_coding",
val = 4,

hl =120

Getting Text Codings

The most basic way to get text data is to use the text_data method.
This method will go through all or only selected texts, gather all
the data stored there and put it into a neat data.frame where name
identifies the text from which the data comes per name, char informs
us about the character that was coded, and i refers to the characters
position within the text. ALl other variables hold the data we added
during the examples above.

od ¥ O OH H W

dp$text_data(text = 1) %>% head()

13

14 diffrproject

Aggregating Text Codings

The usage of text_data has its merits but often one is more

interested in text data aggregated to a specific level.

The following three aggregation functions offer a solution

to this problem: tokenize_text_data_lines, tokenize_text_data_words,
and tokenize_text_data_regex. These three methods make use

of the similiary named methods provided by the rtext package.
One important thing to keep in mind is that using these methods
implies aggregating several data values on character level

into one data value at token level. Therefore there has

to be some aggregation function to be involved. The default

is to use the value that occurs most often on character

level, if more than one distinct values occur more than

once the first is choosen.

T TR

The aggregation function can be changed to whatever function the
user seems appropriate by passing it to ‘aggregate_function®

- as long as it

reduces a vector of values into a vector with only one value.

ETE TN

The “join® argument allows to decide how text and data are

joined

into the resulting data.frame - left: all token, right: all data, full:
token with or without data and data with or without token.

ETE T

dp$tokenize_text_data_lines(
text = 1,

join = "right",
aggregate_function =
function(x){

paste(x[1:3], collapse = ",")
}

)

Text Coding Inheritence

Having aligned two texts via token pairs another functionality of

diffrprojects becomes availible: text coding inheritance via no-change

tokens. This means that text codings can get copied to those tokens they
are aligned with, given that they are considered the same - i.e. the

distance equals zero and the change type therefore is no-change.

diffrproject

To show this feature we use the text_inherit method and we will

start with a fresh example. A new project with two texts. The first text
gets some codings, then they are aligned, and in a last step codings are
transfered from one text to the other via the text_data_inherit method.

dp <-

diffrproject$new()$
text_add(text_version_1)$
text_add(text_version_2)$
text_code_regex(

text =1,

X = "test1",

pattern = "This part.*?change”,
val = "inherited”

)$

text_code_regex(

text =1,

X = "test2",

pattern = "This part.*?change”,
val = "inherited”

)

dp$tokenize_text_data_lines(1)

dp$

text_link()$
text_align()$
text_data_inherit(
link =1,
direction = "forward”

)

dp$tokenize_text_data_lines(2)

Saving and Loading Projects

Diffrprojects also allow for storing and loading project to and
from disk.

note, uncomment code lines to run

save to file
dp$save(file = "dp_save.RData")

remove object
rm(dp)

16 diff_align

create new object and load saved data into new object
dp <- diffrproject$new()

dp$load("dp_save.RData")

dp$tokenize_text_data_lines(2)

diff_align algining texts

Description

Function aligns two texts side by side as a data.frame with change type and distance given as well

Usage
diff_align(textl = NULL, text2 = NULL, tokenizer = NULL, ignore = NULL,
clean = NULL, distance = c("1v", "osa”, "dl", "hamming"”, "lcs", "qgram",
"cosine"”, "jaccard”, "jw", "soundex"), useBytes = FALSE, weight = c(d = 1,
i=1,s=1,t=1), maxDist =0, g=1, p =0,
nthread = getOption("sd_num_thread”), verbose = TRUE, ...)
Arguments
text1 first text
text2 second text
tokenizer defaults to NULL which will trigger linewise tokenization; accepts a function

that turns a text into a token data frame; a token data frame has at least three
columns: from (first character of token), to (last character of token) token (the
token)

ignore defaults to NULL which means that nothing is ignored; function that accepts a
token data frame (see above) and returns a possibly subseted data frame of hte
same form

clean defaults to NULL which means that nothing cleaned; accepts a function that
takes a vector of tokens and returns a vector of same length - potentially clean

up
distance defaults to Levenshtein ("lv"); see amatch, stringdist-metrics, stringdist

useBytes Perform byte-wise comparison, see stringdist-encoding.

dp_align

weight

maxDist

nthread

verbose

Value

17

For method="osa"' or 'dl’, the penalty for deletion, insertion, substitution and
transposition, in that order. When method="1v", the penalty for transposition is
ignored. When method="jw', the weights associated with characters of a, char-
acters from b and the transposition weight, in that order. Weights must be posi-
tive and not exceed 1. weight is ignored completely when method="hamming',
'ggram', 'cosine’, 'Jaccard', 'lcs', or soundex.

[DEPRECATED AND WILL BE REMOVEDI2016] Currently kept for back-
ward compatibility. It does not offer any speed gain. (In fact, it currently slows
things down when set to anything different from Inf).

Size of the g-gram; must be nonnegative. Only applies to method="qgram’,
'jaccard' or 'cosine'.

Penalty factor for Jaro-Winkler distance. The valid range for pis @ <= p <= 9. 25.
If p=0 (default), the Jaro-distance is returned. Applies only to method="jw".

Maximum number of threads to use. By default, a sensible number of threads is
chosen, see stringdist-parallelization.

should function report on its doings via messages or not

further arguments passed through to distance function

dataframe with tokens aligned according to distance

dp_align

class for dp_align

Description

class for dp_align

Usage
dp_align

Format

R6Class object.

Value

Object of dp_align

See Also

diffrproject

18

dp_export

dp_base class for dp_base

Description

class for dp_base

Usage

dp_base

Format

R6Class object.

Value

Object of dp_base

See Also

diffrproject

dp_export R6 class - linking text and data

Description

R6 class - linking text and data

Usage

dp_export

Format

R6Class object.

Value

Object of R6Class

See Also

diffrproject

dp_inherit 19

dp_inherit class for dp_inherit

Description

class for dp_inherit

Usage

dp_inherit

Format

R6Class object.

Value

Object of dp_align

See Also

diffrproject

dp_loadsave class for dp_base

Description

class for dp_base

Usage

dp_loadsave

Format

R6Class object.

Value

Object of dp_loadsave

See Also

diffrproject

20 get_private

dp_text_base_data function providing basic information on texts within diffrproject

Description

function providing basic information on texts within diffrproject

Usage

dp_text_base_data(dp)

Arguments

dp a diffrproject object

dummyimport imports

Description

imports

Usage

dummyimport()

get_private accessing private from R6 object

Description

accessing private from R6 object

Usage

get_private(x)

Arguments

X R6 object to access private from

Source

http://stackoverflow.com/a/38578080/1144966

push_text_char_data 21

push_text_char_data push char_data of one rtext objet to another

Description

Function that takes a rtext object pulls specific char_data from it and pushes this information to
another rtext object.

Usage

push_text_char_data(from_text = NULL, to_text = NULL, from_token = NULL,
to_token = NULL, from_i = NULL, to_i = NULL, x = NULL, warn = TRUE)

Arguments
from_text text to pull data from
to_text text to push data to
from_token token of text to pull data from (e.g.: data.frame(from=1, to=4))
to_token token of text to push data to (e.g.: data.frame(from=1, to=4))
from_i index of characters to pull data from
to_i index of characters to push data to
X name of the char_data variable to pull and push - defaults to NULL which will
result in cycling through all availible variables
warn should function warn about non-uniform pull values (those will not be pushed
to the other text)
Details

Note, that this is an intelligent function.

It will e.g. always decrease the hierarchy level (hl) found when pulling and decrease it before
pushing it forward therewith allowing that already present coding might take priority over those
pushed.

Furthermore, the function will only push values if the pulled values are all the same. Since, character
index lengths that are used for pulling and pushing might differ in length there is no straight forward
rule to translate non uniform value sequences in value sequnces of differing length. Note, that of
cause the values might differ between char_data variables but not within. In case of non-uniformity
the function will simply do nothing.

22 text_version_1

sort_alignment function sorting alignment data according to token index

Description

function sorting alignment data according to token index

Usage

sort_alignment(x, til = NULL, ti2 = NULL, first = TRUE)

Arguments
X data.frame to be sorted
til either NULL (default): first column of X is used as first token index for sorting;
a character vector specifying the column to be used as first token index; or a
numeric vector of length nrow(x) to be use as first token index
ti2 either NULL (default): second column of x is used as second token index for
sorting; a character vector specifying the column to be used as second token
index; or a numeric vector of length nrow(x) to be use as second token index
first should first text or second text be given priority
text_version_1 text_version_I a first version of a text
Description

text_version_1 a first version of a text

Usage

text_version_1

Format

An object of class character of length 1.

Source

Source of Text: Diff. (2014, August 26). In Wikipedia, The Free Encyclopedia. Retrieved 10:14,
September 24, 2014, from http://en.wikipedia.org/w/index.php?title=Diff&0ldid=622929855

text_version 2 23

text_version_2 text_version_2 a second version of a text

Description

text_version_2 a second version of a text

Usage

text_version_2

Format

An object of class character of length 1.

Source

Source of Text: Diff. (2014, August 26). In Wikipedia, The Free Encyclopedia. Retrieved 10:14,
September 24, 2014, from http://en.wikipedia.org/w/index.php?title=Diff&o0ldid=622929855

write_numerous_parts_to_table
function writing numerous parts of table to database

Description

function writing numerous parts of table to database

Usage

write_numerous_parts_to_table(x, con, table_name, meta = data.frame())

Arguments
X parts to be written
con connection to database
table_name of the table

meta additional information to be attachesd to table parts

Index

*Topic datasets text_version_2, 23
text_version_1, 22
text_version_2, 23 write_numerous_parts_to_table, 23

xTopic data
diffrproject, 5
dp_align, 17
dp_base, 18
dp_export, 18
dp_inherit, 19
dp_loadsave, 19

amatch, 16
as.data.frame.alignment_data_list, 2
as.data.frame.alignment_list, 3
as.data.frame.named_df_list, 3

choose_options, 4

data.frame, 24
diff_align, 16
diffrproject, 5, 5, 17-19
dp_align, 17,17, 19
dp_base, 18, 18
dp_export, 18
dp_inherit, 19
dp_loadsave, 19, 19
dp_text_base_data, 20
dummyimport, 20

get_private, 20
make.names, 2—4
push_text_char_data, 21
R6Class, 5, 17-19
sort_alignment, 22
stringdist, 16
stringdist-metrics, 16

text_version_1, 22

24

	as.data.frame.alignment_data_list
	as.data.frame.alignment_list
	as.data.frame.named_df_list
	choose_options
	diffrproject
	diff_align
	dp_align
	dp_base
	dp_export
	dp_inherit
	dp_loadsave
	dp_text_base_data
	dummyimport
	get_private
	push_text_char_data
	sort_alignment
	text_version_1
	text_version_2
	write_numerous_parts_to_table
	Index

