Package 'diagram’

August 16, 2017

Version 1.6.4

Title Functions for Visualising Simple Graphs (Networks), Plotting Flow Diagrams

Author Karline Soetaert karline.soetaert@nioz.nl
Maintainer Karline Soetaert karline.soetaert@nioz.nl
Depends R (>= 2.01), shape
Imports stats, graphics

Description

Visualises simple graphs (networks) based on a transition matrix, utilities to plot flow diagrams, visualising webs, electrical networks, etc.
Support for the book "A practical guide to ecological modelling -
using R as a simulation platform"
by Karline Soetaert and Peter M.J. Herman (2009), Springer.
and the book "'Solving Differential Equations in R"
by Karline Soetaert, Jeff Cash and Francesca Mazzia (2012), Springer.
Includes demo(flowchart), demo(plotmat), demo(plotweb).
License GPL (>=2)
LazyData yes
Repository CRAN
Repository/R-Forge/Project diagram
Repository/R-Forge/Revision 81
Repository/R-Forge/DateTimeStamp 2017-08-15 08:02:46
Date/Publication 2017-08-16 09:53:22 UTC
NeedsCompilation no

R topics documented:

diagram-package 2
bentarrow 3
coordinates 5
curvedarrow 7
Electrical 8
openplotmat 13
plotmat 14
plotweb 20
Rigaweb 22
segmentarrow 23
selfarrow 25
shadowbox 27
splitarrow 29
straightarrow 31
Takapotoweb 33
Teasel 34
textdiamond 35
textellipse 36
textempty 37
texthexa 38
textmulti 39
textplain 40
textrect 41
textround 42
treearrow 44
Index 46
diagram-package Functions for visualising simple graphs (networks), plotting flow dia- grams

Description

Visualises simple graphs (networks) based on a transition matrix, utilities to plot flow diagrams, visualising webs,...

Support for the book "A practical guide to ecological modelling - using R as a simulation platform" by Karline Soetaert and Peter M.J. Herman (2009). Springer.
and for the book "Solving Differential Equations in R" by Karline Soetaert, Jeff R. Cash and Francesca Mazzia (in press). Springer.

Details

Package:	diagram
Type:	Package
Version:	1.6
Date:	$2011-06-01$
License:	GNU Public License 2 or above

This package is used in R-package ecolMod, which includes many more examples.

Author(s)

Karline Soetaert (Maintainer)

See Also

plotmat, plotweb, coordinates, openplotmat,
arrows:
bentarrow, curvedarrow, segmentarrow, selfarrow, splitarrow, straightarrow, treearrow, boxes and text:
shadowbox, textdiamond, textellipse, textempty, texthexa, textdiamond, textplain, textrect, textround.
electrical networks:
en.Resistor,en.Capacitator,en.Node, en.Amplifier,en. Signal en. Ground.

Examples

```
## Not run:
## show examples (see respective help pages for details)
example(plotmat)
example(plotweb)
## run demos
demo("flowchart") # creating flow charts
demo("plotmat") # plotting diagrams inputted as a matrix
demo("plotweb") # plotting webs inputted as a matrix
## open the directory with source code of demos
browseURL(paste(system.file(package="diagram"), "/demo", sep=""))
## show package vignette
vignette("diagram")
edit(vignette("diagram"))
browseURL(paste(system.file(package="diagram"), "/doc", sep=""))
## End(Not run)
```

bentarrow adds 2-segmented arrow between two points

Description

Connects two points with 2 segments (default = horizontal-vertical) and adds an arrowhead on (one of) the segments and at a certain distance.

Usage

bentarrow(from, to, lwd = 2, lty = 1, lcol = "black", arr.col = lcol, arr.side = 2, arr.pos = 0.5, path = "H", ...)

Arguments

from coordinates (x, y) of the point *from* which to draw arrow.
to
lwd line width.
lty line type.
lcol line color.
arr.col arrowhead color.
arr.side segment number on which arrowhead is drawn $(1,2)$.
arr.pos relative position of arrowhead on segment on which arrowhead is drawn.
path first segment to be drawn (V=Vertical, H=Horizontal).
... other arguments passed to function straightarrow.

Details

a two-segmented arrow is drawn between two points '(from, to)'
how the segments are drawn is set with path which can take on the values:

- H: (horizontal): first left or right, then vertical.
- V: (vertical) : first down- or upward, then horizontal.

The segment(s) on which the arrow head is drawn is set with arr. side, which is one or more values in $(1,2)$
The position of the arrowhead on the segment on which it is drawn, is set with arr.pos, a value between 0 (start of segment) and 1 (end of segment).
The type of the arrowhead is set with arr.type which can take the values:

- "simple" : uses comparable R function arrows.
- "triangle": uses filled triangle.
- "curved" : draws arrowhead with curved edges.
- "circle" : draws circular head.
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head
see Arrowhead from package shape for details on arrow head.

Value

coordinates (x, y) where arrowhead is drawn

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

straightarrow, segmentarrow, curvedarrow, selfarrow, treearrow, splitarrow, arrows: the comparable R function,
Arrows: more complicated arrow function from package shape.

Examples

```
openplotmat(main = "bentarrow")
pos <- cbind( A <- seq(0.1, 0.9, by = 0.2), rev(A))
text(pos, LETTERS[1:5], cex = 2)
for (i in 1:4)
        bentarrow(from = pos[i,] + c(0.05, 0), to = pos[i+1,] + c(0, 0.05),
            arr.pos = 1, arr.adj = 1)
for (i in 1:2)
        bentarrow(from = pos[i,] + c(0.05, 0), to = pos[i+1, ] + c(0, 0.05),
                arr.pos = 0.5, path = "V", lcol = "lightblue",
                arr.type = "triangle")
bentarrow(from = pos[3, ] + c(0.05, 0), to = pos[4, ] + c(0, 0.05),
        arr.pos = 0.7, arr.side = 1, path = "V", lcol = "darkblue")
bentarrow(from = pos[4, ] + c(0.05, 0), to = pos[5, ] + c(0, 0.05),
        arr.pos = 0.7, arr.side = 1:2, path = "V", lcol = "blue")
```

 coordinates coordinates of elements on a plot

Description

estimates coordinates of elements, neatly arranged on a plot.

Usage

$$
\begin{aligned}
\text { coordinates }(\text { pos } & =\text { NULL, } m x=0.0, m y=0.0, N=\text { length(pos) }, \\
\text { hor } & =\text { TRUE, relsize }=1)
\end{aligned}
$$

Arguments

pos
$m x \quad$ horizontal shift (x).
my
N
hor
relsize with element position, or NULL.
vertical shift (y).
vector specifying the number of elements in each row, or 2-columned matrix total number of elements to be positioned - only if pos=NULL. only if pos is a 2-columned matrix. In this case, when hor = TRUE, pos specifies number of elements per row; when FALSE per column. scaling factor as a function of graph size.

Details

the position of the elements are specified with pos, which is either NULL, or a vector specifying the number of elements on a row, or a 2-columned matrix specifying the (x, y) position of each element.

- when pos is NULL, the elements will be arranged on a circle; in this case, the number of elements to be positioned must be specified with N.
- when pos is a vector, it specifies the number of elements in each row (if hor =TRUE) or in each column (if hor = FALSE).

For instance, with hor=TRUE and pos $=c(3,2,1)$ the elements will be arranged in 3 rows (length of vector); on the top row 3 elements; on the second row 2 ; and on the third row 1 element will be positioned. All elements within a row are equally distributed horizontally; all rows are equally distributed vertically;

- when pos is a matrix, it specifies the $x(1$ st column) and y (2 nd column) position of each element and is returned as such.

The offset from the x -axis and from the y -axis can be changed with mx and my .

Value

2-columned matrix, with coordinates (x, y) of each of the elements

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

Examples

```
openplotmat(main = "coordinates")
text(coordinates(N = 6), lab = LETTERS[1:6], cex = 2)
text(coordinates(N = 8, relsize = 0.5), lab = letters[1:8], cex = 2)
openplotmat(main = "coordinates")
text(coordinates(pos = c(2, 4, 2)), lab = letters[1:8], cex = 2)
```

```
plot(0, type = "n", xlim = c(0, 5), ylim = c(2, 8), main = "coordinates")
text(coordinates(pos = c(2, 4, 3), hor = FALSE), lab = 1:9, cex = 2)
```


Description

Connects two points with an ellipsoid line and adds an arrowhead at a certain distance

Usage

curvedarrow(from, to, lwd = 2, lty = 1, lcol = "black", arr.col $=$ lcol, arr.pos $=0.5$, curve $=1$, dr $=0.01$, endhead $=$ FALSE, segment $=c(0,1), \ldots)$

Arguments

from coordinates (x, y) of the point $*$ from* which to draw arrow.
to coordinates (x, y) of the point *to ${ }^{*}$ which to draw arrow.
lwd line width.
lty line type.
lcol line color.
arr.col arrowhead color.
arr.pos relative position of arrowhead.
curve relative size of curve (fraction of points distance) - see details.
dr size of segments, in radians, to draw ellipse (decrease for smoother).
endhead if TRUE: the arrow line stops at the arrowhead; default $=$ FALSE.
segment if not $c(0,1)$: then the arrow line will cover only part of the requested path, e.g. if segment $=\mathrm{c}(0.2,0.8)$, it will start 0.2 from from and till 0.8 .
$\ldots \quad$ arguments passed to function Arrows.

Details

A curved arrow is drawn between two points '(from, to)'
The position of the arrowhead, is set with arr.pos, a value between 0 (start point) and 1(endpoint)
The line curvature is set with curve which expresses the ellipse radius as a fraction of the distance between the two points. For instance, curve= 0.5 will draw an ellepse with small radius half of a circle.
The type of the arrowhead is set with arr. type which can take the values:

- "simple" : uses comparable R function arrows.
- "triangle": uses filled triangle.
- "curved" : draws arrowhead with curved edges.
- "circle" : draws circular head.
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head
see Arrowhead from package shape for details on arrow head

Value

default coordinates (x, y) where arrowhead is drawn.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

straightarrow, segmentarrow, bentarrow, selfarrow, treearrow, splitarrow, arrows: the comparable R function,

Arrows: more complicated arrow function from package shape.

Examples

```
openplotmat(main = "curvedarrow")
pos <- coordinates(pos = 4, my = 0.2)
text(pos, LETTERS[1:4], cex = 2)
for (i in 1:3)
    curvedarrow(from = pos[1, ] + c(0,-0.05), to = pos[i+1, ] + c(0,-0.05),
            curve = 0.5, arr.pos=1)
for (i in 1:3)
    curvedarrow(from = pos[1, ] + c(0, 0.05), to = pos[i+1, ] + c(0, 0.05),
            curve = -0.25, arr.adj = 1, arr.pos = 0.5,
            arr.type = "triangle", arr.col = "blue")
```

Electrical
electric network symbols

Description

Adds a resistor, capacitator, node, amplifier, ... to a diagrom

Usage

```
en.Resistor (mid, width = 0.05, length = 0.1, lab = NULL, pos = 0,
    dtext = 0., vert = TRUE, ...)
    en.Capacitator (mid, width = 0.025, length = 0.1, lab = NULL,
    pos = 2.5, dtext = 0.04, vert = TRUE, ...)
    en.Transistor (mid, gate, drain, source, r = 0.05, lab = NULL,
    pos = 0, dtext = 0, ...)
    en.Node(mid, cex = 1, lab = NULL, pos = 2.5, dtext = 0.025, ...)
    en.Amplifier(mid, r = 0.05, lab = NULL, pos = 0, dtext = 0, ...)
    en.Signal(mid, r = 0.03, lab = NULL, pos = 0, dtext = 0.025, ...)
    en.Ground(mid, width = 0.075, length = 0.1, n = 4, dx = 0.2, ...)
```


Arguments

mid midpoint (x, y) of the symbol.
width width of the symbol.
length length of the symbol.
lab one label to be added in the symbol.
pos \quad position of the label in the symbol; $1=$ below; $2=$ left; $3=$ upper, $4=$ right; 1.5 = below-left, ...
dtext shift in x - and/or y-direction for the text
vert if TRUE then vertically arranged
gate position (x, y) of the gate terminal of the en. Transistor.
drain position (x, y) of the drain terminal of the en. Transistor.
source position (x,y) of the source terminal of the en. Transistor.
$r \quad$ radius of en. Signal and en.Amplifier
cex size of node pch (en.Node)
$\mathrm{n} \quad$ number of horizontal lines in (en. Ground)
$\mathrm{dx} \quad$ size reduction of horizontal lines in (en. Ground)
... other arguments passed to functions.

Details

Created for drawing the electrical network in the book Soetaert Karline, Jeff Cash and Francesca Mazzia. Solving differential equations in R. Springer.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl.

See Also

textdiamond, textellipse, textempty, texthexa, textmulti, textplain, textround

Examples

```
## ==================================================================================
## en.Capacitator
## =================================================================================
emptyplot(main = "en.Capacitator")
straightarrow(c(0.5, 0.9), c(0.5, 0.1),
    arr.pos = 0.3, arr.length = 0.25, arr.type = "triangle")
en.Capacitator(c(0.5, 0.5), width = 0.075, length = 0.5, vert = TRUE)
text(0.4, 0.65, "i", font = 3, cex = 2)
straightarrow(c(0.8, 0.3), c(0.8, 0.77), arr.pos = 1,
    arr.length = 0.25, arr.type = "triangle", lwd = 1)
text(0.925, 0.65, "v", font = 3, cex = 2)
text(0.15, 0.5, "C", font = 3, cex = 2)
box(col = "grey")
## =====================================================================================
## en.Resistor
## ===================================================================================
emptyplot(main = "en.Resistor")
straightarrow(c(0.5, 0.9), c(0.5, 0.1), arr.pos = 0.2,
    arr.length = 0.25, arr.type = "triangle", lwd = 1)
text(0.4, 0.85, "i", font = 3, cex = 2)
en.Resistor(c(0.5, 0.5), width = 0.25, length = 0.35)
straightarrow(c(0.8, 0.3), c(0.8, 0.77), arr.pos = 1,
    arr.length = 0.25, arr.type = "triangle", lwd = 1)
text(0.925, 0.65, "v", font = 3, cex = 2)
text(0.5, 0.5, "R", font = 3, cex = 2)
box(col = "grey")
## =================================================================================
## en.Signal
## ====================================================================================
emptyplot(main = "voltage source, en.Signal")
lines(c(0.5, 0.5), c(0.1, 0.9))
en.Signal(c(0.5, 0.5), r=0.15)
straightarrow(c(0.8, 0.3), c(0.8, 0.77), arr.pos = 1,
    arr.length = 0.25, arr.type = "triangle", lwd = 1)
text(0.925, 0.65, "v", font = 3, cex = 2)
box(col = "grey")
## ==================================================================================
## en.Ground
## ==================================================================================
emptyplot(main = "en.Ground")
```

```
straightarrow(c(0.5, 0.7), c(0.5, 0.25), arr.pos = 1.0,
    arr.length = 0.25, arr.type = "triangle", lwd = 1)
en.Ground(c(0.5, 0.65), width = 0.25, length = 0.35 )
box(col = "grey")
## ===ニ===ニ===ニ=ニ====ニ==========================================================
## en.Node
## =============================================================================
emptyplot(main = "en.Node")
rect(0.2, 0.2, 0.8, 0.8)
en.Node(c(0.2, 0.2), lab = "N1" , pos = 1.5)
en.Node(c(0.2, 0.8), lab = "N2" , pos = 2.5)
en.Node(c(0.8, 0.8), lab = "N3" , pos = 3.5)
en.Node(c(0.8, 0.2), lab = "N2" , pos = 4.5)
box(col = "grey")
```



```
## en.Amplifier example
```



```
emptyplot(main = "en.Amplifier")
en.Amplifier(c(0.5, 0.5), r = 0.15)
box(col = "grey")
```



```
## en.Transistor example
```



```
emptyplot(main = "enTransistor")
gate <- c(0.1, 0.5)
mid <- c(0.5, 0.5)
drain <- c(0.9, 0.9)
source <- c(0.9, 0.1)
en.Transistor(mid = mid, gate = gate, drain = drain,
    source = source, r = 0.15)
text(0.2, 0.4, "Gate", font = 3)
text(0.8, 0.9, "Drain", font = 3, adj = 1)
text(0.8, 0.1, "Source", font = 3, adj = 1)
box(col = "grey")
## ===========================================================================
## position of text examples
## =============================================================================
mf <- par (mfrow = c(2, 2))
openplotmat(main = "pos")
segments(0, 0.5, 1, 0.5)
for (i in 4:0)
    en.Resistor( mid = c(0.5, 0.5), width = 0.25, length = 0.25,
                    lab = i, pos = i, dtext = 0.2)
```

```
openplotmat(main \(=\) "pos")
segments(0, 0.5, 1, 0.5)
for (i in 1:4)
    en. Resistor (mid \(=c(0.5,0.5)\), width \(=0.25\), length \(=0.25\),
            lab \(=i+0.5\), pos \(=i+0.5\), dtext \(=0.25)\)
openplotmat(main = "vert = TRUE")
segments \((0.5,0,0.5,1)\)
for (i in 1:4)
    en. Resistor (mid \(=c(0.5, i / 5)\), width \(=0.075\), length \(=0.125\),
                        lab = substitute(R[i], list(i = i) ))
openplotmat(main \(=\) "vert \(=\) FALSE")
segments (0, 0.5, 1, 0.5)
for (i in 1:4)
    en. Resistor ( mid \(=c(i / 5,0.5)\), width \(=0.075\), length \(=0.125\),
                    lab \(=\operatorname{substitute}(R[i], \operatorname{list}(i=i)), v e r t=F A L S E)\)
\(\operatorname{par}(m f r o w=m f)\)
\#\# ======================================================================================1
\#\# A small transistor example
\#\# ====================================================================================1
\(\operatorname{par}(l w d=1.5)\)
\(\operatorname{par}(\operatorname{mar}=c(0,0,2,0))\)
emptyplot(main = "transistor Amplifier",
        \(y \lim =c(-0.1,1), x \lim =c(-0.1,1.1)\),
        asp \(=\) FALSE)
\(x 1<-0 ; x 2<-0.2 ; x 3<-0.4 ; x 4<-0.6 ; \times 5<-0.8 ; \times 6<-1\);
y1 <- 0.05; y2 <- 0.4; y3 <- 0.5; y4 <- 0.6; y5 <- 0.95
\(x 23<-(x 2+x 3) / 2\)
\(x 56<-(x 5+x 6) / 2\)
lines (c \((x 2, x 6, x 6, x 2, x 2, x 1, x 1, x 23, x 3, x 3)\),
        c(y1, y1, y5, y5, y1, y1, y3, y3, y4, y5))
lines(c(x3, x3),
        \(c(y 2, y 1))\)
lines \((c(x 3, x 4, x 4)\),
        \(c(y 2, y 2, y 1))\)
lines(c \((x 3, x 5, x 5)\),
        \(c(y 4, y 4, y 1))\)
en.Transistor (mid \(=c(x 23, y 3)\), gate \(=c(x 2, y 3)\),
    drain \(=c(x 3, y 4)\), source \(=c(x 3, y 2), r=0.035)\)
en.Signal(c(x1, 0.2), lab = expression("U"["in"]))
en.Signal(c(x6, y2), lab = expression("U"["b"]))
straightarrow(c(x1-0.05, 0.23), c(x1 - 0.05, 0.17),
    arr.pos \(=1\), arr.type \(=\) "triangle", lwd = 1)
straightarrow \((c(x 6+0.05, y 2+0.03), c(x 6+0.05, y 2-0.03)\),
```

arr.pos = 1, arr.type = "triangle", lwd = 1)
en. $\operatorname{Node(c(x1,y3),~lab="u1")~}$
en. $\operatorname{Node}(c(x 2, y 3), l a b=" u 2 ")$
en. $\operatorname{Node(c(x3,~y2),~lab~=~"u3",~pos~=~1.5)~}$
en. $\operatorname{Node(c(x3,~y4),~lab~=~"u4",~pos~=~2.5)~}$
en.Node(c(x5, y4), lab = "u5")
en.Capacitator (c $(0.5 *(x 1+x 2), y 3)$, lab $=" C 1 "$, vert $=$ FALSE $)$
en. Capacitator (c(x4, y4), lab = "C3", vert = FALSE)
en.Capacitator (c(x4, 0.5*(y1+y2)), lab = "C2", vert = TRUE)
en.Resistor(c(x1, y2), lab = "R0")
en.Resistor(c(x2, 0.5*(y1+y2)), lab = "R1")
en.Resistor (c(x2, 0.5*(y4+y5)), lab = "R2")
en.Resistor (c(x3, 0.5*(y4+y5)), lab = "R4")
en.Resistor(c(x3, 0.5*(y1+y2)), lab = "R3")
en.Resistor(c(x5, 0.5*(y1+y2)), lab = "R5")
en. $\operatorname{Ground}(\mathrm{c}(1.0,0.05))$

```
openplotmat
```

Creates an empty plot used for diagram plotting.

Description

Creates a plotting region, bounded by $[0,1]$ without axes, labels, titles

Usage

openplotmat (asp = NA, ...)

Arguments

asp the y / x aspect ratio.
... arguments passed to emptyplot from package shape.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

emptyplot from package shape.

Description

visualises a transition matrix as a number of (labeled) boxes connected by (labeled) arrows.

Usage

```
plotmat(A, pos \(=\) NULL, curve \(=\) NULL, name \(=\) NULL, absent \(=0\),
    relsize = 1, lwd = 2, lcol = "black", box.size = 0.1,
    box.type = "circle", box.prop = 1, box.col = "white",
    box.lcol = lcol, box.lwd = lwd,
    shadow.size \(=0.01\), shadow.col \(=\) "grey", \(d r=0.01\),
    dtext \(=0.3\), self.lwd \(=1\), self.cex \(=1\),
    self.shiftx = box.size, self.shifty = NULL,
    self.arrpos \(=\) NULL, arr.lwd \(=1 w d\), arr.lcol = lcol,
    arr.col = "black", arr.type = "curved", arr.pos = 0.5,
    arr.length \(=0.4\), arr.width \(=\) arr.length/2,
    endhead \(=\) FALSE, \(m x=0.0\), \(m y=0.0\), box.cex \(=1\),
    txt.col = "black", txt.xadj \(=0.5\), txt.yadj \(=0.5\),
    txt.font \(=1\), prefix \(=" "\), cex \(=1\), cex.txt \(=\) cex,
    add \(=\) FALSE, main \(=\) "", cex.main = cex,
    segment.from \(=0\), segment.to \(=1\), latex \(=\) FALSE,.. )
```


Arguments

A
pos vector, specifying the number of elements in each graph row, or a 2-column matrix with element position, or NULL. If a 2 -column matrix, the values should be withing 0 and 1 .
curve one value, or a matrix, same dimensions as A, specifying the arrow curvature; 0 for straight; NA for default curvature.
name string vector, specifying the names of elements, dimension $=$ number of rows (columns) of A .
absent all elements in A different from this value are connected.
relsize scaling factor for size of the graph.
lwd default line width of arrow and box.
lcol default color of arrow line and box line.
box.size size of label box, one value or a vector with dimension = number of rows of A .
box.type shape of label box (rect, ellipse, diamond, round, hexa, multi), one value or a vector with dimension=number of rows of A.
box.prop length/width ratio of label box, one value or a vector with dimension=number of rows of A.

box.col	fill color of label box, one value or a vector with dimension=number of rows of A.
box.lcol	line color of label box, one value or a vector with dimension=number of rows of A.
box.lwd	line width of the box, one value or a vector with dimension = number of rows of A.
shadow.size	relative size of shadow of label box, one value or a vector with dimension=number of rows of A.
shadow.col	color of shadow of label box, one value or a vector with dimension=number of rows of A.
$d r$	size of segments, in radians, to draw ellipse (decrease for smoother ellipses).
dtext	controls the position of arrow text relative to arrowhead.
self.lwd	line width of self-arrow, (arrow from i to i), one value or a vector with dimension=number of rows of A.
self.cex	relative size of self-arrow, relative to box, one value or a vector with dimension=number of rows of A.
self.shiftx	relative shift of self-arrow, in x-direction, one value or a vector with dimension=number of rows of A.
self.shifty	relative shift of self-arrow, in y-direction, one value or a vector with dimension=number of rows of A.
self.arrpos	position of the self-arrow, angle in radians relative to x-direction, one value or a vector with dimension=number of rows of A.
arr.lwd	line width of arrow, connecting two different points, one value, or a matrix with same dimensions as A.
arr.lcol	color of arrow line, one value, or a matrix with same dimensions as A.
arr.col	color of arrowhead, one value, or a matrix with same dimensions as A.
arr.type	type of arrowhead, one of ("curved", "triangle", "circle", "ellipse", "T", "simple"), one value, or a matrix with same dimensions as A.
arr.pos	relative position of arrowhead on arrow segment/curve, one value, or a matrix with same dimensions as A.
arr.length	arrow length, one value, or a matrix with same dimensions as A.
arr.width	arrow width, one value, or a matrix with same dimensions as A.
endhead	if TRUE: the arrow line stops at the arrowhead; default = FALSE and arrow line continues beyond the arrow head.
mx	horizontal shift of the boxes.
my	vertical shift of the boxes.
box.cex	relative size of text in boxes, one value or a vector with dimension=number of rows of A.
txt.col	color of text in boxes, one value or a vector with dimension=number of rows of A.

```
txt.xadj, txt.yadj
                    the x and y adjustment of the labels in the boxes, one value or a vector with
                    dimension=number of rows of A values usually within [0,1], although on most
                        devices values outside that interval will also work.
txt.font the font to be used for the text in boxes, one value or a vector with dimen-
        sion=number of rows of A.
prefix to be added in front of non-zero arrow labels.
cex relative size of text.
cex.txt relative size of arrow text, one value, or a matrix with same dimensions as A.
add start a new plot (FALSE), or add to current plot (TRUE).
main main title. Only effective if add = FALSE.
cex.main relative size of main title.
segment.from if not 0 then the arrow line will not start at the position as given in A, but with an
    offset. one value, or a matrix with same dimensions as A
segment. to if not 1 then the arrow line will not end at the position as given in A, but with an
    offset. one value, or a matrix with same dimensions as A
latex if FALSE then expressions will be interpreted before print, if TRUE they will be
    printed literally to the plot. Set to TRUE if LaTeX code is to be printed.
    other arguments passed to function shadowbox.
```


Details

The square transition matrix A determines the number of elements of A (rows of A) and which elements are connected (all values in A different from absent).
A also provides the values of arrowlabels.
The position of the elements are specified with pos, which is either NULL, or a vector specifying the number of elements on a row, or a 2-columned matrix specifying the (x, y) position of each element.
The ordering of elements is according to the row number of A

- when pos is NULL, the elements will be arranged on a circle
- when pos is a vector, it specifies the number of elements in each row. For instance, with pos $=c(3,2,1)$ the elements will be arranged in 3 rows (length of vector); on top row, 3 elements; on second row 2, and on third row 1 element will be positioned. All elements within a row are equally distributed horizontally, all rows are equally distributed vertically.
- when pos is a matrix, it specifies the x (1st column) and y (2 nd column) position of each element.

The offset from x -axis and from y -axis can be changed with mx and my .
The name of each element is given by vector name; this name is written in its respective box.
The relative size of this text can be changed by box.cex.
By default, a shadow is drawn, in the right-lower corner of the box.
The shadow color and relative size is specified with shadow. col and shadow. size respectively.
both can be one value (equal shadows) or a vector, specifying one value for each box shadow.
shadow. size $=0$ toggles off the drawing of the shadow.
The type of the box is set with "box.type" which can take on the values:

- "rect": a rectangle,
- "ellipse": an ellipse,
- "diamond": a diamond,
- "round": a rectangle with rounded left and right edges,
- "hexa": a hexagonal shape,
- "multi": a multigonal shape.
- "none" if no box is to be drawn.

The length of the box is set with box. size, the proportionality (length/width) ratio with box. prop.
The fill-color of the box is specified with box.col; the line width of the box with box.lwd and the line color with box.lcol;
All box properties can be either one value (equal boxes) or a vector, specifying one value for each box.

For all values $A[i, j]$ of A which are not equal to absent, one arrow is drawn *from* column-element j *to* the row-element i of A.
The curvature of this arrow is specified with matrix element curve[i,j],
where 'curve' is either NULL, one value, or has the same dimension as A.
A straight arrow has curvature $0, \mathrm{NA}$ (the default) chooses a default curvature,
Positive or negative values of curve draws curved arrows.
If the arrow is curved, then dr is the increment used to draw the ellipse; set to a lower value for smoother lines.
The type of the arrowhead is set with arr. type which can take the values:

- "simple" : uses comparable R function arrows
- "triangle": uses filled triangle
- "curved" : draws arrowhead with curved edges
- "circle" : draws circular head
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head

The line color and width of the arrow line is set with arr.lcol and arr.lwd
The size of the arrow head is specified with arr.length and arr.width, the position of the arrow head is specified with arr. pos (value between $[0,1]$).
see Arrowhead for details on arrow head

Value

a list containing:
arr a data.frame with arrow information:

- nonzero: the elements between which an arrow is drawn.
- Angle: the angle of the arrow.
- Value: the value written next to the arrow head.
- rad: the radius of the arrow (if 0: straight line).
- ArrowX: the x-position of arrowhead.
- ArrowY: the y-position of arrowhead.
- TextX: the x-position of arrowtext.
- TextY: the y-position of arrowtext.
comp a matrix with the element position (centre of the boxes).
radii the radiusses in x - and y-direction of the boxes.
rect the "xleft","ybot","xright",and "ytop" of the boxes - redundant.

Author(s)
Karline Soetaert karline.soetaert@nioz.nl

See Also

shadowbox,
Arrowhead from package shape
try: demo(plotmat)

Examples

```
M <- matrix(nrow = 4, ncol = 4, byrow = TRUE, data = 0)
pp <- plotmat(M, pos = c(1, 2, 1), name = c("A", "B", "C", "D"),
    lwd = 1, box.lwd = 2, cex.txt = 0.8,
    box.size = 0.1, box.type = "square", box.prop = 0.5,
    main = "plotmat")
pp
# when explicitly given, pos should should be inbetween 0, 1
pos <- cbind (c(0.2, 0.4, 0.6, 0.8), c(0.8, 0.6, 0.4, 0.2))
pp <- plotmat(M, pos = pos, name = c("A", "B", "C", "D"),
    lwd = 1, box.lwd = 2, cex.txt = 0.8,
    box.size = 0.1, box.type = "square", box.prop = 0.5,
    main = "plotmat")
# includes arrows between boxes
pm <- par(mfrow = c(2, 2))
M <- matrix(nrow = 4, ncol = 4, byrow = TRUE, data = 0)
M[2, 1] <- M[3, 1] <- M[4, 2] <- M[4, 3] <- "f1"
col <- M
col[] <- "red"
col[2, 1] <- col[3, 1] <- "blue"
pp <- plotmat(M, pos = c(1, 2, 1), curve = 0, name = 1:4,
    lwd = 1, box.lwd = 2, box.cex = 1:4, cex.txt = 0.8,
```

```
    arr.lcol = col, arr.col = col, box.type = "circle",
    box.prop = 1.0, main = "plotmat")
pp <- plotmat(M, pos = c(1, 2, 1), curve = 0, name = 1:4,
    lwd = 1, box.lwd = 2, box.cex = 1:4, cex.txt = 0.8,
    arr.lcol = col, arr.col = col, box.type = "circle",
    box.prop = 1.0, arr.len = 0.3,
    segment.from = 0.35, segment.to = 0.65)
M[1, 2] <- M[1, 3] <- M[2, 4] <- M[3, 4] <- "f2"
pp <- plotmat(M, pos = c(1, 2, 1), curve = 0.1, name = 1:4,
    lwd = 1, box.lwd = 2, box.cex = 1:4, cex.txt = 0.8,
    arr.lcol = col, arr.col = col, box.type = "none",
    box.prop = 1.0, main = "plotmat", arr.len = 0.2,
    segment.from = 0.3, segment.to = 0.7)
pp <- plotmat(M, pos = c(1, 2, 1), curve = 0.1, name = 1:4,
    box.lwd = 2, box.cex = 1:4, cex.txt = 0.8,
    arr.lcol = col, arr.col = col, arr.pos = 0.7,
    arr.type = "simple", lwd = 2, box.type = "none",
    box.prop = 1.0, main = "plotmat", arr.len = 0.2,
    segment.from = 0.3, segment.to = 0.7)
par(mfrow=pm)
# self arrows
diag(M) <- "self"
pp <- plotmat(M, pos = c(2, 2), curve = 0, name = LETTERS[1:4],
    lwd = 1, box.lwd = 2, cex.txt = 0.8, self.cex = 0.5,
    self.shiftx = c(-0.1, 0.1, -0.1, 0.1),
    box.type = "diamond", box.prop = 0.5, main = "plotmat")
M <- matrix(nrow = 4, ncol = 4, data = 0)
M[2, 1]<- 1 ; M[4, 2] <- 2 ; M[3, 4] <- 3; M[1, 3] <- 4
pp <- plotmat(M, pos = c(1, 2, 1), curve = 0.2, name = letters[1:4],
    lwd = 1, box.lwd = 2, cex.txt = 0.8, arr.type = "triangle",
    box.size = 0.1, box.type = "hexa", box.prop = 0.5,
    main = "plotmat")
arrlwd <- M*2
arr.length <- M*0.4
cextxt <- M*0.8
plotmat(M, pos = c(1, 2, 1), curve = 0.2, name = letters[1:4], lwd = 1,
        box.lwd = 2, arr.type = "triangle", box.size = 0.1,
        box.type = "hexa", box.prop = 0.5, main = "plotmat",
        arr.lwd = arrlwd, arr.length = arr.length, cex.txt = cextxt,
        txt.font = 1:4, txt.xadj = seq(-3, 3, length.out = 4),
        txt.yadj = 1)
M <- matrix(nrow = 4, ncol = 4, byrow = TRUE, data = 0)
M <- as.data.frame(M)
M[[2,1]]<- "k[si]"
M[[3,1]]<- "k[N]"
```

```
M[[4,2]]<- "sqrt(frac(2,3))"
names <-
    c(expression(lambda[12]), "?",
        expression(lambda[13]),expression(lambda[23]))
plotmat(M, pos = c(1, 2, 1), name = names, lwd = 1, box.lwd = 2,
        curve = 0, cex.txt = 0.8, box.size = 0.1, box.type = "square",
        box.prop = 0.5, main = "plotmat")
plotmat(M, name = letters[1:4], curve = 0, box.cex = 1:4, box.lwd = 4:1,
        box.size = 0.075, arr.pos = 0.7,
        box.col = c("lightblue", "green", "yellow", "orange"))
```

 plotweb plots a web

Description

plots a web, based on a flow matrix

Usage

```
plotweb(flowmat, names \(=\) NULL, lab.size \(=1.5\), add \(=\) FALSE,
fig.size \(=1.3\), main \(=" "\), sub \(=" "\), sub2 \(=" "\),
\(\log =\) FALSE, mar \(=c(2,2,2,2)\),
nullflow \(=\) NULL, minflow \(=\) NULL, maxflow \(=\) NULL,
legend \(=\) TRUE, leg.digit \(=5\), leg.title \(=\) NULL,
lcol = "black", arr.col = "black",
val = FALSE, val.digit = 5, val.size = 0.6, val.col = "red",
val.title = NULL, val.ncol = 1,
budget \(=\) FALSE, bud.digit \(=5\), bud.size \(=0.6\),
bud.title = "budget", bud.ncol = 1,
maxarrow \(=10\), minarrow \(=1\), length \(=0.1\), dcirc \(=1.2\), bty = "o", ...)
```


Arguments

flowmat	flow matrix, rows=flow $*$ from $*$, columns=flow $*$ to*.
names	string vector with the names of components.
lab.size	relative size of name label text.
add	start a new plot (FALSE), or add to current (TRUE).
fig.size	if add = FALSE: relative size of figure.
main	if add = FALSE: main title.
sub	if add = FALSE: sub title.

sub2	ifadd = FALSE: title in bottom.
log	logical indicating whether to scale the flow values logarithmically.
mar	the figure margins.
nullflow	either one value or a two-valued vector; if flow < nullflow[1] or flow > nullflow[2] (if two values): flow is assumed $=0$ and the arrow is not drawn.
minflow	flowvalue corresponding to minimum arrow thickness.
maxflow	flowvalue corresponding to maximum arrow thickness.
legend	logical indicating whether to add a legend with arrow thickness.
leg.digit	nr of digits for writing legend - only if legend = TRUE.
leg.title	title for arrow legend, e.g to give units - only if legend=TRUE.
lcol arr.col	line color of arrow - not used. arrow color. One value or a matrix, with same dimensions as flowmat; if a matrix, each arrow can have a different color.
val	logical indicating whether to write flow values as a legend.
val.digit	nr of digits for writing values - only if val =TRUE.
val.size	relative size for writing values - only if val =TRUE.
val.col	color for writing values - only if val =TRUE.
val.title	title for values legend - only if val =TRUE.
val.ncol	number of columns for writing values - only if val =TRUE.
budget	logical indicating whether to calculate budget (sum of flows in - sum of flows out) per component.
bud.digit	nr of digits for writing budget - only if budget =TRUE.
bud.size	relative size for writing budget - only if budget $=$ TRUE
bud.title	title for budget legend - only if budget =TRUE.
bud.ncol	number of columns for writing budget - only if budget =TRUE.
maxarrow	maximal thickness of arrow.
minarrow	minimal thickness of arrow.
length	length of the edges of the arrow head (in inches).
dcirc	if cannibalism (flow from i to i), offset of circular 'arrow' - if dcirc $=0$:no circle drawn.
bty	the type of box to be drawn around the legends (legend, val, budget). The allowed values are " o " (the default) and " n ".
	extra arguments passed to R-function arrows.

Details

This function is less flexible than function plotmat
It is meant for visualisation of food web flows, that are inputted as a flow matrix.
It displays the elements on a circle, and, where there is a mass flow, two elements are connected, the magnitude of the web flows is reflected by the thickness of the arrow
Note that the input matrices from function plotmat and plotweb are transposed.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

```
See Also
    plotmat,
    Rigaweb, Takapotoweb
    try: demo(plotweb)
```


Examples

```
    plotweb(Rigaweb, main = "Gulf of Riga food web",
        sub = "mgC/m3/d", val = TRUE)
    ArrCol <- Rigaweb
    ArrCol[] <- "black"
    ArrCol[,"Sedimentation"] <- "green"
    plotweb(Rigaweb, main = "Gulf of Riga food web",
        sub = "mgC/m3/d", val = FALSE, arr.col = ArrCol)
    plotweb(diag(20), main = "plotweb")
```

 Rigaweb Gulf of Riga autumn planktonic food web

Description

Carbon flux matrix of the Gulf of Riga planktonic food web in autumn as reconstructed by inverse modelling by Donali et al. (1999).
The Gulf of Riga is a highly eutrophic system in the Baltic Sea.
The foodweb comprises 7 functional compartments:

- picoautotrophs (P1)
- non-picoautotrophs (P2)
- bacteria (B)
- heterotrophic nanoflagellates (N)
- zooplankton (Z)
- detritus, including virus (D)
- dissolved organic carbon (DOC)
and two external compartments:
- CO 2
- Sedimentation

These compartments are connected with 26 flows.
Units of the flows are $\mathrm{mg} \mathrm{C} / \mathrm{m} 3 /$ day.

Usage

Rigaweb

Format

matrix with flow values, where element ij denotes flow from compartment i to j
rownames and columnames are the components.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

References

Donali, E., Olli, K., Heiskanen, A.S., Andersen, T., 1999. Carbon flow patterns in the planktonic food web of the Gulf of Riga, the Baltic Sea: a reconstruction by the inverse method. Journal of Marine Systems 23, pp. 251268.

See Also
 Takapotoweb

Examples

```
plotweb(Rigaweb, main = "Gulf of Riga planktonic food web",
    sub = "mgC/m3/day")
```

segmentarrow adds 3-segmented arrow between two points.

Description

Connects two points with 3 segments (default = left-vertical-right) and adds an arrowhead on one of the segments at a certain distance

Usage

segmentarrow(from, to, lwd = 2, lty = 1, lcol = "black", arr.col = lcol, arr.side $=2$, arr.pos $=0.5$, path $=$ "LVR", dd $=0.5, \ldots$)

Arguments

from	coordinates (x, y) of point ffrom 2 which to draw arrow.
to	coordinates (x, y) of point $*$ to ${ }^{*}$ which to draw arrow.
lwd	line width.
lty	line type.
lcol	line color.
arr.col	arrow color.
arr.side	segment number on which arrowhead is drawn $(1,2,3)$.
arr.pos	relative position of arrowhead on segment on which arrowhead is drawn.
path	outline of the 3 segments, default: left, vertical, right.
dd	length of segment arm, directed away from endpoints.
\ldots	arguments passed to function straightarrow.

Details

one segmented arrow is drawn between two points '(from, to)'
how the segments are drawn is set with path which can take on the values:

- "LVR": first left then vertical then right.
- "RVL": first right then vertical then left.
- "UHD": first up then horizontal then down.
- "DHU": first down then horizontal then up.

The segment(s) on which the arrow head is drawn is set with arr. side, which is one or more values in $(1,2,3)$.
The position of the arrowhead, on the segment on which it is drawn, is set with arr.pos, a value between 0 (start of segment) and 1 (end of segment)
The type of the arrowhead is set with arr. type which can take the values:

- "simple" : uses comparable R function arrows.
- "triangle": uses filled triangle.
- "curved" : draws arrowhead with curved edges.
- "circle" : draws circular head.
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head
see Arrowhead from package shape for details on arrow head.

Value

coordinates (x, y) where arrowhead is drawn

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

straightarrow, bentarrow, curvedarrow, selfarrow, treearrow, splitarrow, arrows: the comparable R function,
Arrows: more complicated arrow function from package shape try: demo(plotweb)

Examples

```
openplotmat(main="segmentarrow")
pos <-cbind(A <- seq(0.2, 0.8, by = 0.2), rev(A))
text(pos, LETTERS[1:4], cex = 2)
segmentarrow(from = pos[1, ] +c(0, 0.05), to = pos[2, ] + c(0, 0.05),
    arr.pos = 1, arr.adj = 1, dd = 0.1,
    path = "UHD", lcol = "darkred")
segmentarrow(from = pos[2, ] + c(-0.05, 0), to = pos[3, ] +c(-0.05, 0.01),
    arr.pos = 1, arr.adj = 1, dd = 0.1,
    lcol = "black", arr.type = "triangle")
segmentarrow(from = pos[2, ] + c(0.05, 0), to = pos[3, ] +c(0.05, 0.01),
    arr.pos = 0.5, dd = 0.3, path = "RVL", arr.side = 1,
    lcol = "lightblue", arr.type = "simple")
segmentarrow(from = pos[3, ] +c(0.05, 0), to = pos[4, ] + c(-0.05, 0.01),
    arr.pos = 0.5, dd = 0.05, path = "RVL", lcol = "darkblue",
    arr.type = "ellipse")
segmentarrow(from = pos[3, ] + c(0, -0.05), to = pos[4, ] + c(0, 0.05),
    arr.pos = 0.5, arr.side = 3, dd = 0.05, path = "DHU",
    lcol = "darkgreen")
segmentarrow(from = pos[3,] + c(-0.05, -0.05), to = pos[4, ] + c(0, -0.05),
    arr.pos = 0.5, arr.side = 1:3, dd = 0.3, path = "DHU",
    lcol = "green")
```

selfarrow
adds a circular, self-pointing arrow to a plot

Description

adds a circular arrow, from and to the same point

Usage

selfarrow(pos, lwd = 2, lty = 1, lcol = "black", arr.pos = 0.5, path $=" \mathrm{~L} "$, curve $=c(0.1,0.1), \mathrm{dr}=0.01$, code $=1, \ldots)$

Arguments

pos	2-valued vector with coordinates (x, y) of points $*$ from and to* which to draw arrow.
lwd	line width.
lty	line type.
lcol	line color.
arr. pos	relative position of arrowhead.
path	position of circle: R, L, U, D for right, left, up and down respectively.
curve	relative size of curve (fraction of arrow length).
dr	size of segments, in radians, to draw ellipse (decrease for smoother).
code	how to put the arrowhead.
\ldots	arguments passed to function Arrows.

Details

draws a circular arrow from and to one point
The position of the arrowhead on the circle is set with arr. pos, a value between 0 (at start) and 1(at end of circle)
The type of the arrowhead is set with arr. type which can take the values:

- "simple" : uses comparable R function arrows.
- "triangle": uses filled triangle.
- "curved" : draws arrowhead with curved edges.
- "circle" : draws circular head.
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head
see Arrowhead for details on arrow head.

Value

coordinates (x, y) where arrowhead is drawn

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

straightarrow, segmentarrow, curvedarrow, bentarrow, treearrow, splitarrow, arrows: the comparable R function,
Arrows: more complicated arrow function from package shape.

Examples

```
openplotmat(main = "selfarrow")
pos <- coordinates(3, mx = 0.05)
text(pos, LETTERS[1:3], cex = 2)
for (i in 1:3)
    selfarrow(pos = pos[i, ], path = "R", arr.pos = 0.2,
                curve = c(0.05, 0.1), lcol = "darkred")
for (i in 1:3)
    selfarrow(pos = pos[i, ], path = "L", arr.pos = 0.7,
            lcol = "darkblue", curve = c(0.05, 0.05))
for (i in 1:3)
    selfarrow(pos = pos[i, ], path = "L", arr.pos = 0.5,
        lcol = "darkgreen", code = i, arr.type = "triangle")
```


Description

adds a box, with shadow on a plot; used for writing text

Usage

shadowbox(box.type = "rect", mid, radx, rady = radx, shadow.size $=0.01$, shadow.col = "grey", box.col = "white", lcol = "black", lwd = 1, $\mathrm{dr}=0.01$, angle $=0$, len $=1$, $n r=5$, $r x=$ rady, theta $=90, \ldots$)

Arguments

box.type shape of the box.
mid midpoint (x, y) of the box.
radx horizontal radius of the box.
rady vertical radius of the box.

shadow.size	relative size of shadow.
shadow.col	color of shadow.
box.col	fill color of the box.
lcol	line color surrounding box.
lwd	line width of line surrounding the box. if box is curved: size of segments, in radians, to draw ellipse (decrease for smoother).
angle	rotation angle, degrees.
len	if box.type="cylinder": length of the cylinder.
nr box.type="multi": the number of angles.	
$r x$	if box.type="round", the radius of the rounded part. if box.type="parallel", angle of the bottom, left corner of the parallelogram, in degrees.
\ldots	other arguments.

Details

one box is drawn, centered aroung point mid and with horizontal and vertical radiusses radx, rady. By default, a shadow is drawn, in the right-lower corner of the box.

The shadow color and relative size is specified with shadow. col and shadow. size respectively. shadow.size $=0$ toggles off the drawing of the shadow.
the type of the box is set with box. type which can take on the values:

- "rect": a rectangle.
- "ellipse": an ellipse.
- "diamond": a diamond.
- "round": a rectangle with rounded sides.
- "hexa": a hexagonal shape.
- "multi": a multigonal shape; also input "nr", the number of angles.
- "cylinder": a cylindrical shape; also input "len", the length of the cylinder.
- "parallel": a parallelogram; "theta" is the angle of the bottom left corner.
the fill-color of the box is specified with box.col;
the line width and color of the box are specified with lwd and lcol

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

Examples

```
    openplotmat(main="shadowbox")
shadowbox(box.type = "rect", mid = c(0.1, 0.5),
        rady = 0.1, radx = 0.05, angle = 25)
shadowbox(box.type = "round", mid = c(0.3, 0.5),
        rady = 0.05, radx = 0.025, angle = 90,
        shadow.col = "darkred")
shadowbox(box.type = "ellipse", mid = c(0.5, 0.5),
        rady = 0.05, radx = 0.075, box.col = "blue")
shadowbox(box.type = "multi", mid = c(0.8, 0.5),
        rady = 0.05, radx = 0.05, box.col = "darkblue", nr = 5)
```

splitarrow adds a branched arrow between several points

Description

connects two sets of points with a star-like structure, adds an arrowhead at a certain distance

Usage

```
splitarrow(from, to, lwd \(=2\), lty \(=1\), lcol \(=" b l a c k ", ~ a r r . c o l=1 c o l\),
```

 arr.side \(=2\), arr.pos \(=0.5\), centre \(=\) NULL, dd \(=0.5, \ldots\))

Arguments

from	matrix of coordinates (x, y) of points $*$ from* which to draw arrow.
to	matrix of coordinates (x, y) of points $*$ to* which to draw arrow.
lwd	line width.
lty	line type.
lcol	line color.
arr.col	arrow color.
arr.side	segment number on which arrowhead is drawn (1,2).
arr.pos	relative position of arrowhead on segment on which arrowhead is drawn.
centre	coordinates (x, y) of central point.
dd	relative position of central point, only when centre=NULL.
\ldots	other arguments passed to function straightarrow.

Details

a branched arrow is drawn between points '(from, to)', where both from and to can be several points.
The arrow segments radiate into a central point. Either the (x, y) coordinates of this central point are set with centre or it is estimated at a certain distance ($\mathrm{dd}>0,<1$) between the centroid of the *from* points and the centroid of the $*$ to points.

The segment(s) on which the arrow head is drawn is set with arr. side, which is one or more values in $(1,2)$

- arr. side $=1$ sets the arrow head on the segment $*$ from ${ }^{*}->$ central point
- arr. side=2 sets the arrow head on the segment central point $->$ *to*

The position of the arrowhead on the segment on which it is drawn, is set with arr.pos, a value between 0 (start of segment) and 1 (end of segment)

The type of the arrowhead is set with arr. type which can take the values:

- "simple" : uses comparable R function arrows.
- "triangle": uses filled triangle.
- "curved" : draws arrowhead with curved edges.
- "circle" : draws circular head.
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head
see Arrowhead from package shape for details on arrow head.

Value

coordinates (x, y) where arrowheads are drawn

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

straightarrow, segmentarrow, curvedarrow, selfarrow, bentarrow, treearrow,
arrows: the comparable R function,
Arrows: more complicated arrow function from package shape.

Examples

```
openplotmat(main = "splitarrow")
pos <- coordinates(c(1, 2, 2, 4, 1))
splitarrow(from = pos[1, ], to = pos[2:10, ],
        arr.side = 1, centre = c(0.5, 0.625))
for (i in 1:10)
```

```
        textrect(pos[i, ], lab = i, cex = 2, radx = 0.05)
    openplotmat(main = "splitarrow")
    pos <- coordinates(c(1, 3))
    splitarrow(from = pos[1,], to = pos[2:4, ], arr.side = 1)
splitarrow(from = pos[1,], to = pos[2:4, ], arr.side = 2)
for (i in 1:4)
    textrect(pos[i, ], lab = i, cex = 2, radx = 0.05)
openplotmat(main = "splitarrow")
pos <- coordinates(N = 6)
pos <- rbind(c(0.5, 0.5), pos)
splitarrow(from = pos[1, ], to = pos[2:7, ], arr.side = 2)
for (i in 1:7)
    textrect(pos[i, ], lab = i, cex = 2, radx = 0.05)
```

straightarrow adds straight arrow between two points

Description

Plots straight line between two points
adds an arrowhead at a certain distance.

Usage

```
straightarrow(from, to, lwd = 2, lty = 1, lcol = "black",
arr.col = lcol, arr.pos = 0.5, endhead = FALSE,
    segment = c(0,1), ...)
```


Arguments

from	coordinates (x, y) of the point $*$ from $*$ which to draw arrow.
to	coordinates (x, y) of the point $*$ to $*$ which to draw arrow.
lwd	line width.
lty	line type.
lcol	line color.
arr.col	arrow color.
arr.pos	relative position of arrowhead.
endhead	if TRUE: the arrow line stops at the arrowhead; default = FALSE.
segment	if not $c(0,1):$ then the arrow line will cover only part of the requested path, e.g. if segment $=c(0.2,0.8)$, it will start 0.2 from from and till 0.8.
\ldots	arguments passed to function Arrows.

Details

a straight arrow is drawn between the points '(from, to)' The position of the arrowhead, is set with arr.pos, a value between 0 (start point) and 1 (endpoint)

The type of the arrowhead is set with arr. type which can take the values:

- "simple" : uses comparable R function arrows.
- "triangle": uses filled triangle.
- "curved" : draws arrowhead with curved edges.
- "circle" : draws circular head.
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head
see Arrowhead from package shape for details on arrow head.

Value

coordinates (x, y) where arrowhead is drawn

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

bentarrow, segmentarrow, curvedarrow selfarrow, splitarrow, treearrow, arrows: the comparable R function,
Arrows: more complicated arrow function from package shape.

Examples

```
openplotmat(main = "straightarrow")
pos <- coordinates(c(2, 3, 1))
for (i in 1:5)
    straightarrow(from = pos[i, ], to = pos[i+1, ], arr.pos = 0.5)
straightarrow(from = pos[6, ], to = pos[6, ] + c(0.3, 0.),
                        arr.type = "T", arr.pos = 1, arr.lwd = 3)
for (i in 1:6)
    textrect(pos[i, ], lab = LETTERS[i], radx = 0.05)
```


Description

Carbon flux matrix of the Takapoto atoll planktonic food web as reconstructed by inverse modelling by Niquil et al. (1998).
The Takapoto Atoll lagoon is located in the French Polynesia of the South Pacific The food web comprises 7 functional compartments:

- Phytoplankton
- Bacteria
- Protozoa
- Microzooplankton
- Mesozooplankton
- Detritus
- Dissolved organic carbon (DOC)
and three external compartments/sinks:
- CO 2
- Sedimentation
- Grazing

These compartments are connected with 32 flows. Units of the flows are $\mathrm{mg} \mathrm{C} / \mathrm{m} 2 /$ day

Usage

Takapotoweb

Format

matrix with flow values, where element ij denotes flow from compartment i to j rownames and columnames are the components.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

References

Niquil, N., Jackson, G.A., Legendre, L., Delesalle, B., 1998. Inverse model analysis of the planktonic food web of Takapoto Atoll (French Polynesia). Marine Ecology Progress Series 165, pp. 17 29.

See Also

Rigaweb

Examples

$$
\begin{gathered}
\text { plotweb(Takapotoweb, main = "Takapoto atoll planktonic food web", } \\
\text { sub }=\text { "mgC/m2/day", lab.size }=1)
\end{gathered}
$$

Teasel Population dynamics model transition matrix of teasel

Description

Transition matrix of the population dynamics model of teasel (Dipsacus sylvestris), a European perennial weed, as discussed in Caswell (2001), and in Soetaert and Herman, (2009)
The life cycle of teasel can be described by six stages:

- dormant seeds < 1 yr (DS 1yr)
- dormant seeds 1-2yr (DS 2yr)
- small rosettes $<2.5 \mathrm{~cm}$ (R small)
- medium rosettes $2.5-18.9 \mathrm{~cm}$ (R medium)
- large rosettes $>19 \mathrm{~cm}$ (R large)
- flowering plants (F)

The matrix contains the transition probabilities from one compartment (column) to another (row).

Usage

Teasel

Format

matrix with transition probabilities, where element ij denotes transition from compartment j to i rownames and columnames are the component names

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

References

Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation. Second edition. Sinauer, Sunderland, Mass.
Karline Soetaert and Peter Herman. 2009. A practical guide to ecological modelling. Using R as a simulation platform. Springer.

See Also

Rigaweb, Takapotoweb

Examples

```
curves <- matrix(nrow = ncol(Teasel), ncol = ncol(Teasel), 0)
curves[3,1] <- curves[1,6] <- -0.35
curves[4,6] <- curves[6,4] <- curves[5,6] <- curves[6,5] <- 0.08
curves[3,6] <- 0.35
plotmat(Teasel, pos = c(3, 2, 1), curve = curves, lwd = 1, box.lwd = 2,
    cex.txt = 0.8, box.cex = 0.8, box.size = 0.08, arr.length = 0.5,
    box.type = "circle", box.prop = 1, shadow.size = 0.01,
    self.cex = 0.6, my = -0.075, mx = -0.01, relsize = 0.9,
    self.shifty = 0, self.shiftx = c(0, 0, 0.125, -0.12, 0.125, 0),
    main = "Dispsacus sylvestris")
```

 textdiamond adds lines of text in a diamand-shaped box to a plot

Description

adds one or more lines of text, in a diamond-shaped box.

Usage

textdiamond(mid, radx, rady $=$ NULL, $l w d=1$, shadow. size $=0.01$, adj $=c(0.5,0.5), ~ l a b=" ", ~ b o x . c o l=" w h i t e "$, lcol = "black", shadow.col = "grey", angle = 0, ...)

Arguments

mid

midpoint (x, y) of the box.
radx horizontal radius of the box.
rady vertical radius of the box.
lwd line width of line surrounding the box.
shadow.size relative size of shadow.
adj text adjustment.
lab one label or a vector string of labels to be added in box.
box.col fill color of the box.
lcol line color surrounding box.
shadow.col color of shadow.
angle rotation angle, degrees.
... other arguments passed to function textplain.

Details

see shadowbox for specifications of the diamond-shaped box and its shadow.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

```
textellipse, textempty,texthexa, textmulti, textplain, textrect, textround
```


Examples

```
openplotmat(xlim = c(-0.1, 1.1), main = "textdiamond")
for (i in 1:10)
    textdiamond(mid = runif(2), col = i, radx = 0.1, rady = 0.05,
        lab = LETTERS[i], cex = 2, angle = runif(1)*360)
```

```
textellipse adds lines of text in an ellipsoid box to a plot
```


Description

adds one or more lines of text, centered around "mid" in an ellipsoid box

Usage

```
textellipse(mid, radx, rady = radx*length(lab), lwd = 1,
    shadow.size = 0.01, adj = c(0.5, 0.5), lab = "",
    box.col = "white", lcol = "black", shadow.col = "grey",
    angle = 0, dr = 0.01, ...)
```


Arguments

mid	midpoint (x, y) of the box.
radx	horizontal radius of the box.
rady	vertical radius of the box.
lwd	line width of line surrounding the box.
shadow.size	relative size of shadow.
adj	text adjustment.
lab	one label or a vector string of labels to be added in box.
box.col	fill color of the box.
lcol	line color surrounding box.
shadow.col	color of shadow.

angle rotation angle, degrees.
dr size of segments, in radians, to draw ellipse (decrease for smoother).
... other arguments passed to function textplain.

Details

see shadowbox for specifications of the ellipsoid-shaped box and its shadow

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

```
textdiamond, textempty, texthexa, textmulti, textplain, textrect, textround
```


Examples

```
openplotmat(xlim = c(-0.1, 1.1), main = "textellipse")
for (i in 1:10)
    textellipse(mid = runif(2), col = i, box.col = grey(0.95),
            radx = 0.1, rady = 0.05, lab = LETTERS[i],
            cex = 2, angle = runif(1)*360)
```

textempty
adds lines of text, on a colored background to a plot

Description

adds one or more lines of text, with a colored background, no box

Usage

textempty(mid, lab $=" ", ~ a d j=c(0.5,0.5)$,
box.col = "white", cex = 1, ...)

Arguments

mid	midpoint (x, y) of the text.
lab	one label or a vector string of labels to be added in box.
adj	text adjustment.
box.col	background color.
cex	relative size of text.
\ldots	other arguments passed to function textplain.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

textdiamond, textellipse, texthexa, textmulti, textplain, textrect, textround

Examples

```
openplotmat(xlim = c(-0.1, 1.1), col = "lightgrey", main = "textempty")
for (i in 1:10)
    textempty(mid = runif(2), box.col = i, lab = LETTERS[i], cex = 2)
textempty(mid = c(0.5, 0.5), adj = c(0, 0),
    lab = "textempty", box.col = "white")
```

```
texthexa adds lines of text in an hexagonal box to a plot
```


Description

adds one or more lines of text, centered around "mid" in an hexagonal box.

Usage

texthexa(mid, radx, rady = radx*length(lab), lwd = 1 , shadow.size $=0.01$, adj $=c(0.5,0.5)$, lab = "", box.col = "white", lcol = "black", shadow.col = "grey", angle = 0, ...)

Arguments

mid midpoint (x, y) of the box.
radx horizontal radius of the box.
rady vertical radius of the box.
lwd line width of line surrounding the box.
shadow.size
relative size of shadow.
adj
text adjustment.
lab one label or a vector string of labels to be added in box.
box.col fill color of the box.
lcol line color surrounding box.
shadow.col color of shadow.
angle rotation angle, degrees.
... other arguments passed to function textplain.

Details

see shadowbox for specifications of the hexangular box and its shadow

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

```
textdiamond, textellipse, textempty, textmulti, textplain, textrect, textround
```


Examples

```
    openplotmat(xlim = c(-0.1, 1.1), main = "texthexa")
    for (i in 1:20)
        texthexa(mid = runif(2), angle = runif(1)*360, col = i,
            box.col = grey(0.95), radx = 0.1, rady = 0.05,
            lab = LETTERS[i], cex = 2)
```

 textmulti
 adds lines of text in an multigonal box to a plot

Description

adds one or more lines of text, centered around "mid" in an multigonal box

Usage

textmulti(mid, radx, rady = radx*length(lab), lwd = 1 , shadow.size $=0.01$, adj $=c(0.5,0.5)$, lab = "", box.col = "white", lcol = "black", shadow.col = "grey", angle = 0, nr = 6, ...)

Arguments

mid midpoint (x, y) of the box.
radx horizontal radius of the box.
rady vertical radius of the box.
lwd line width of line surrounding the box.
shadow.size relative size of shadow.
adj text adjustment.
lab one label or a vector string of labels to be added in box.
box.col fill color of the box.
lcol line color surrounding box.

shadow.col	color of shadow.
angle	rotation angle, degrees.
nr	the number of angles.
\ldots	other arguments passed to function textplain.

Details

see shadowbox for specifications of the multigonal box and its shadow.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

textdiamond, textellipse, textempty, texthexa, textplain, textrect, textround.

Examples

openplotmat(xlim $=c(-0.1,1.1)$, main = "textmulti")
for (i in 1:10)
textmulti(mid $=$ runif(2), col = i, radx = 0.1, rady = 0.1, lab $=\operatorname{LETTERS}[\mathrm{i}]$, cex $=2, \mathrm{nr}=\operatorname{trunc}(\mathrm{i} / 1.5)+3)$

```
textplain adds lines of text to a plot
```


Description

adds one or more lines of text, centered around "mid"

Usage

```
textplain(mid, height = 0.1, lab = "", adj = c(0.5, 0.5), ...)
```


Arguments

mid central coordinates where to write the text.
height height of text.
lab one or more character strings or expressions specifying the $*$ text $*$ to be written.
adj label adjustments.
.. other arguments passed to R-function text.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

textdiamond, textellipse, textempty, texthexa, textmulti, textrect, textround

Examples

```
openplotmat(main = "textplain")
textplain(mid = c(0.5, 0.5),
    lab = c("this text is", "centered", "4 strings", "on 4 lines"))
    textplain(mid = c(0.5, 0.2), adj = c(0, 0.5), font = 2, height = 0.05,
        lab = c("this text is","left alligned"))
    textplain(mid = c(0.5, 0.8), adj = c(1, 0.5), font = 3, height = 0.05,
        lab = c("this text is","right alligned"))
```

textrect | adds lines of text in a rectangular-shaped box or in a parallelogram to |
| :--- |
| a plot |

Description

Adds one or more lines of text, centered around "mid" in a rectangular box, or in a paralellogram

Usage

```
textrect(mid, radx, rady = radx*length(lab), lwd = 1,
    shadow.size = 0.01, adj = c(0.5, 0.5),
    lab = "", box.col = "white",
    lcol = "black", shadow.col = "grey", angle = 0, ...)
textparallel (mid, radx, rady = radx*length(lab), lwd = 1,
    shadow.size = 0.01, adj = c(0.5, 0.5),
    lab = "", box.col = "white",
    lcol = "black", shadow.col = "grey",
    angle = 0, theta = 90, ...)
```


Arguments

mid midpoint (x, y) of the box.
$\operatorname{radx} \quad$ horizontal radius of the box.
rady vertical radius of the box.
lwd line width of line surrounding the box.
shadow.size relative size of shadow.
adj
text adjustment.
lab one label or a vector string of labels to be added in box.
box.col fill color of the box.
lcol line color surrounding box.
shadow.col color of shadow.
angle rotation angle, degrees.
theta angle of the bottom, left corner of the parallelogram, in degrees.
... other arguments passed to function textplain.

Details

see shadowbox for specifications of the rectangular box and its shadow.

Author(s)

Karline Soetaert karline.soetaert@nioz.nl
Thanks to Michael Folkes for the code of the parallelogram.

See Also

textdiamond, textellipse, textempty, texthexa, textmulti, textplain, textround

Examples

```
    openplotmat(xlim = c(-0.1, 1.1), main = "textrect")
    for (i in 1:10)
        textrect(mid = runif(2), col = i, radx = 0.1, rady = 0.1,
            lab = LETTERS[i], cex = 2)
    openplotmat(xlim = c(-0.1, 1.1), main = "textparallel")
    elpos <-coordinates (c(1, 1, 1, 1, 1))
    textparallel(mid = elpos[1,], col = 1, radx = 0.2, rady = 0.1,
            lab = "theta=20", theta = 20)
    textparallel(mid = elpos[2,], col = 1, radx = 0.2, rady = 0.1,
            lab = "theta=60", theta = 60)
    textparallel(mid = elpos[3,], col = 1, radx = 0.2, rady = 0.1,
            lab = "theta=100", theta = 100)
    textparallel(mid = elpos[4,], col = 1, radx = 0.2, rady = 0.1,
            lab = "theta=140", theta = 140)
    textparallel(mid = elpos[5,], col = 1, radx = 0.2, rady = 0.1,
        lab = "theta=170", theta = 170)
```

textround

Description

adds one or more lines of text, centered around "mid" in an a rectangular box with rounded sides

Usage

```
textround(mid, radx, rady = radx*length(lab), lwd = 1,
    shadow.size \(=0.01\), adj \(=c(0.5,0.5)\), lab \(=" ", ~ b o x . c o l=" w h i t e "\),
    lcol = "black", shadow.col = "grey", angle = 0, rx = rady, ...)
```


Arguments

mid midpoint (x, y) of the box.
radx horizontal radius of the box.
rady vertical radius of the box.
lwd line width of line surrounding the box.
shadow.size relative size of shadow.
adj text adjustment.
lab one label or a vector string of labels to be added in box.
box.col fill color of the box.
lcol line color surrounding box.
shadow.col color of shadow.
angle rotation angle, degrees.
$r x \quad$ the radius of the rounded part.
... other arguments passed to function textplain.

Details

see shadowbox for specifications of the box and its shadow

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

textdiamond, textellipse, textempty, texthexa, textmulti, textplain, textrect.

Examples

```
    openplotmat(xlim = c(-0.1, 1.1), main = "textround")
    for (i in 1:10)
        textround(mid = runif(2), col = i,
            radx = 0.03, rady = 0.075,
            lab = LETTERS[i], cex = 2)
```


Description

connects two sets of points with a dendrogram-like structure,
adds an arrowhead at a certain distance.

Usage

treearrow(from, to, lwd = 2, lty = 1, lcol = "black", arr.col = lcol, arr.side $=2$, arr.pos $=0.5$, line.pos $=0.5$, path $=" H ", \ldots$)

Arguments

from	matrix of coordinates (x, y) of points *from* which to draw arrow.
to	matrix of coordinates (x, y) of points *to* which to draw arrow.
lwd	line width.
lty	line type.
lcol	line color.
arr.col	arrow color.
arr.side	segment number on which arrowhead is drawn (1,2).
arr.pos	relative position of arrowhead on segment on which arrowhead is drawn.
line.pos	relative position of (horizontal/vertical) line.
path	Vertical, Horizontal.
\ldots	other arguments passed to function straightarrow.

Details

a tree-shaped arrow is drawn between points '(from, to)', where both from and to can be several points.
How the segments are drawn is set with path which can take on the values:

- "H": (horizontal): first left or right.
- "V": (vertical): first down- or upward.

The segment(s) on which the arrow head is drawn is set with arr. side, which is one or more values in $(1,2)$

The position of the arrowhead on the segment on which it is drawn, is set with arr.pos, a value between 0 (start of segment) and 1(end of segment)
The type of the arrowhead is set with arr. type which can take the values:

- "simple" : uses comparable R function arrows.
- "triangle": uses filled triangle.
- "curved" : draws arrowhead with curved edges.
- "circle" : draws circular head.
- "ellipse" : draws ellepsoid head
- "T" : draws T-shaped (blunt) head
see Arrowhead from package shape for details on arrow head.

Value

coordinates (x, y) where arrowhead is drawn

Author(s)

Karline Soetaert karline.soetaert@nioz.nl

See Also

straightarrow, segmentarrow, curvedarrow, selfarrow, bentarrow, splitarrow, arrows: the comparable R function,
Arrows: more complicated arrow function from package shape.

Examples

```
openplotmat(main = "treearrow")
pos <- coordinates(c(3, 2, 4, 1))
treearrow(from = pos[1:5, ], to = pos[6:10, ])
for (i in 1:10)
    textrect(pos[i, ], lab = i, cex = 2, radx = 0.05)
openplotmat(main = "treearrow")
pos <- coordinates(c(2, 4), hor = FALSE)
treearrow(from = pos[1:2, ], to = pos[3:6, ],
            arr.side = 1:2, path = "V")
for (i in 1:6)
    textrect(pos[i, ], lab = i, cex = 2, radx = 0.05)
openplotmat(main = "treearrow")
pos <- coordinates(c(3, 5, 7, 7, 5, 3))
treearrow(from = pos[1:15, ], to = pos[15:30, ], arr.side = 0)
for (i in 1:30)
    textrect(pos[i, ], lab = i, cex = 1.2, radx = 0.025)
```


Index

*Topic aplot
bentarrow, 3
curvedarrow, 7
Electrical, 8
plotmat, 14
plotweb, 20
segmentarrow, 23
selfarrow, 25
shadowbox, 27
splitarrow, 29
straightarrow, 31
textdiamond, 35
textellipse, 36
textempty, 37
texthexa, 38
textmulti, 39
textplain, 40
textrect, 41
textround, 42
treearrow, 44
$*$ Topic datasets
Rigaweb, 22
Takapotoweb, 33
Teasel, 34
*Topic hplot
openplotmat, 13
*Topic manip
coordinates, 5
$*$ Topic package
diagram-package, 2
Arrowhead, 4, 8, 17, 18, 24, 26, 30, 32, 45
Arrows, 5, 7, 8, 25, 27, 30-32, 45
arrows, 5, 8, 21, 24-27, 30, 32, 44, 45
bentarrow, 3, 3, 8, 25, 27, 30, 32, 45
coordinates, 3,5
curvedarrow, 3, 5, 7, 25, 27, 30, 32, 45
diagram (diagram-package), 2
diagram-package, 2
Electrical, 8
en.Amplifier, 3
en. Amplifier (Electrical), 8
en. Capacitator, 3
en. Capacitator (Electrical), 8
en. Ground, 3
en.Ground (Electrical), 8
en. Node, 3
en. Node (Electrical), 8
en.Resistor, 3
en. Resistor (Electrical), 8
en. Signal, 3
en. Signal (Electrical), 8
en.Transistor (Electrical), 8
openplotmat, 3, 13
plotmat, 3, 14, 21, 22
plotweb, 3, 20
Rigaweb, 22, 22, 34, 35
segmentarrow, $3,5,8,23,27,30,32,45$
selfarrow, 3, 5, 8, 25, 25, 30, 32, 45
shadowbox, 3, 18, 27, 36, 37, 39, 40, 42, 43
splitarrow, 3, 5, 8, 25, 27, 29, 32, 45
straightarrow, 3, 5, 8, 24, 25, 27, 29, 30, 31, 44, 45

Takapotoweb, 22, 23, 33, 35
Teasel, 34
text, 40
textdiamond, $3,10,35,37-43$
textellipse, 3, 10, 36, 36, 38-43
textempty, 3, 10, 36, 37, 37, 39-43
texthexa, 3, 10, 36-38, 38, 40-43
textmulti, 10, 36-39, 39, 41-43
textparallel (textrect), 41
textplain, 3, 10, 35-40, 40, 42, 43
textrect, 3, 36-41, 41, 43
textround, 3, 10, 36-42, 42
treearrow, 3, 5, 8, 25, 27, 30, 32, 44

