
diagis: Diagnostic plot and multivariate summary statistics of
weighted samples from importance sampling

Jouni Helske

October 27, 2016

Introduction
diagis is an R package containing functions relating weighted samples obtained for example from importance
sampling. The main motivation for developing diagis was to enable easy computation of summary statistics
and diagnostics of the weighted MCMC runs provided by bssm package (Helske and Vihola 2016; Vihola,
Helske, and Franks 2017) for Bayesian state space modelling. For more broader use, the diagis package
provides functions for computing weighted means and covariances of possibly multivariate samples, the
running versions of these, as well as diagnostic plot function weight_plot for graphical diagnostic of weights.

All the mean and covariance functions are written in C++ using Rcpp (Eddelbuettel and François 2011;
Eddelbuettel 2013) and RcppArmadillo (Eddelbuettel and Sanderson 2014) packages, making these function
computationally very efficient even for large samples. The weight diagnostic plot uses ggplot (Wickham
2009) for visually appealing graphics, while gridExtra (Auguie 2016) combines the plots together.

Illustrations
As an illustration, consider estimating the expected value of Gamma(α, β) distribution using importance
sampling. The density of Gamma(α, β) is

p(x) = βα

Γ(α)x
α−1 exp(−βx).

We will use another Gamma distribution with parameters a and b as our proposal distribution q(x), so the
weights are of form

w(x) = p(x)
q(x) =

βα

Γ(α)x
α−1 exp(−βx)

ba

Γ(a)x
a−1 exp(−bx)

= Γ(a)βα

Γ(α)ba x
α−a exp(−(β − b)x),

and our importance sampling estimator for θ = Ep(X) is

θ̂n = 1
n

n∑
i=1

Yiw(Yi),

where Yi, i = 1, . . . , n are drawn from Gamma(a, b). However, in practice we often have access only to
unnormalized weights wu(x) = cw(x), which leads to self-normalized importance sampling estimate

θ̃n = 1∑n
i=1 wu(Yi)

n∑
i=1

Yiwu(Yi).

Note that the self-normalized estimate θ̃n is not unbiased, but still consistent. Also, we might want to use
self-normalized version even when the computation of weights w is possible (Owen 2013). Thus the functions
in diagis are focused on self-normalized importance sampling as it is more generally applicable approach.
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We can in principle choose a and b arbitrarily, but weights w(x) have finite variance only if a < α and b < β.
As we will soon see, infinite variance of the weights can make the importance sampling unreliable.

Let us first take α = 2, and β = 1. The expected value is then α/β = 2. For proposal distribution, let us first
use a = 1 and b = 0.5:
library("diagis")
set.seed(1)
x <- rgamma(10000, 1, 0.75)
w <- dgamma(x, 2, 1) / dgamma(x, 1, 0.75)
plot(w)
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weighted_mean(x, w)

## [1] 2.012761

Our estimate is fairly close to the theoretical value, and the plot of weights w suggest that the distribution of
the weights is nearly uniform with upper bound slightly below 2 (actual bound can be computed theoretically
based on w(x)).

Let us now change a to 2:
set.seed(1)
x_bad <- rgamma(10000, 1, 2)
w_bad <- dgamma(x_bad, 2, 1) / dgamma(x_bad, 1, 2)
plot(w_bad)

2



0 2000 4000 6000 8000 10000

0
20

0
40

0
60

0
80

0
10

00
12

00

Index

w
_b

ad

weighted_mean(x_bad, w_bad)

## [1] 2.313655

Now our importance sampling estimate is cleary off, and the plot of the importance weights show what is
going on: There is one huge weight and couple others which will dominate our mean estimator. We can use
weight_plot function to further illustrate the differences between our two approaches. First let’s check the
results from our good IS case:
weight_plot(w)
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The function weight_plot draws four figures. The first one shows 100 largest weights, again illustrating
that there are no single draws dominating the sample. On the second figure, the weights are sorted and
drawn in increasing order. This figure has mixed uses, sometimes it shows interesting phenomena better than
for example a histogram (which often needs some tweaking), whereas in other cases its information value
is quite small. Here we see that the weights are distributed quite uniformly. The third figure is often the
most important; it shows the variance of the weights computed from successive samples $w_1, . . . , w_t,
t = 1, . . . , n. If the importance weights have finite variance, this figure should show clear converge towards
finite values as is the case here. The final figure shows the effective sample sizes again in a form of running
line. The effective sample size (ESS) is defined as

ESSn =
(
∑n
i=1 wi)2∑n
i=1 w

2
i

= 1∑n
i=1 w̄

2
i

,

where w̄i = wi/
∑n
i=1 wi. The intepretation of ESS is that our importance sampling corresponds to the case

with direct simulation from the target distribution p(x) using ESS samples (i.e. larger the ESS is better).
Other measures of efficiency are also available in literature, and they might be added to diagis in future.

Now let’s use weight_plot function for our bad IS run:
weight_plot(w_bad)
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Oops! The figures are pretty self-explanatory, the running statistics look fine at first, but when the we take
that one huge weight into account, the variance explodes and at the same time ESS drops signigicantly as
that one (xi, wi) pair dominates the sums in ESS.
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