
Package ‘dfoptim’
April 2, 2018

Type Package

Title Derivative-Free Optimization

Description Derivative-Free optimization algorithms. These algorithms do not require gradient infor-
mation. More importantly, they can be used to solve non-smooth optimization problems.

Depends R (>= 2.10.1)

Version 2018.2-1

Date 2018-02-18

Author Ravi Varadhan, Johns Hopkins University, and Hans W. Borchers,
ABB Corporate Research.

Maintainer Ravi Varadhan <ravi.varadhan@jhu.edu>

URL http:
//www.jhsph.edu/agingandhealth/People/Faculty_personal_pages/Varadhan.html

License GPL (>= 2)

LazyLoad yes

Repository CRAN

NeedsCompilation no

Date/Publication 2018-04-02 09:37:48 UTC

R topics documented:

dfoptim . 2
hjk . 2
nmk . 5

Index 8

1

http://www.jhsph.edu/agingandhealth/People/Faculty_personal_pages/Varadhan.html
http://www.jhsph.edu/agingandhealth/People/Faculty_personal_pages/Varadhan.html

2 hjk

dfoptim Derivative-Free Optimization

Description

Derivative-Free optimization algorithms. These algorithms do not require gradient information.
More importantly, they can be used to solve non-smooth optimization problems. They can also
handle box constraints on parameters.

Details

Package: dfoptim
Type: Package
Version: 2016.7-1
Date: 2016-07-08
License: GPL-2 or greater
LazyLoad: yes

Derivative-Free optimization algorithms. These algorithms do not require gradient information.
More importantly, they can be used to solve non-smooth optimization problems. These algorithms
were translated from the Matlab code of Prof. C.T. Kelley, given in his book "Iterative methods for
optimization". However, there are some non-trivial modifications of the algorithm.

Currently, the Nelder-Mead and Hooke-Jeeves algorithms is implemented. In future, more derivative-
free algorithms may be added.

Author(s)

Ravi Varadhan, Johns Hopkins University
URL: http://www.jhsph.edu/agingandhealth/People/Faculty_personal_pages/Varadhan.html
Hans W. Borchers, ABB Corporate Research
Maintainer: Ravi Varadhan <ravi.varadhan@jhu.edu>

References

C.T. Kelley (1999), Iterative Methods for Optimization, SIAM.

hjk Hooke-Jeeves derivative-free minimization algorithm

Description

An implementation of the Hooke-Jeeves algorithm for derivative-free optimization. A bounded and
an unbounded version are provided.

hjk 3

Usage

hjk(par, fn, control = list(), ...)

hjkb(par, fn, lower = -Inf, upper = Inf, control = list(), ...)

Arguments

par Starting vector of parameter values. The initial vector may lie on the boundary.
If lower[i]=upper[i] for some i, the i-th component of the solution vector
will simply be kept fixed.

fn Nonlinear objective function that is to be optimized. A scalar function that takes
a real vector as argument and returns a scalar that is the value of the function at
that point.

lower, upper Lower and upper bounds on the parameters. A vector of the same length as the
parameters. If a single value is specified, it is assumed that the same bound
applies to all parameters. The starting parameter values must lie within the
bounds.

control A list of control parameters. See Details for more information.

... Additional arguments passed to fn.

Details

Argument control is a list specifing changes to default values of algorithm control parameters.
Note that parameter names may be abbreviated as long as they are unique.

The list items are as follows:

tol Convergence tolerance. Iteration is terminated when the step length of the main loop becomes
smaller than tol. This does not imply that the optimum is found with the same accuracy.
Default is 1.e-06.

maxfeval Maximum number of objective function evaluations allowed. Default is Inf, that is no
restriction at all.

maximize A logical indicating whether the objective function is to be maximized (TRUE) or min-
imized (FALSE). Default is FALSE.

target A real number restricting the absolute function value. The procedure stops if this value is
exceeded. Default is Inf, that is no restriction.

info A logical variable indicating whether the step number, number of function calls, best function
value, and the first component of the solution vector will be printed to the console. Default is
FALSE.

If the minimization process threatens to go into an infinite loop, set either maxfeval or target.

Value

A list with the following components:

par Best estimate of the parameter vector found by the algorithm.

value value of the objective function at termination.

4 hjk

convergence indicates convergence (=0) or not (=1).

feval number of times the objective fn was evaluated.

niter number of iterations in the main loop.

Note

This algorithm is based on the Matlab code of Prof. C. T. Kelley, given in his book “Iterative
methods for optimization". It is implemented here with the permission of Prof. Kelley.

This version does not (yet) implement a cache for storing function values that have already been
computed as searching the cache makes it slower.

Author(s)

Hans W Borchers <hwborchers@googlemail.com>

References

C.T. Kelley (1999), Iterative Methods for Optimization, SIAM.

Quarteroni, Sacco, and Saleri (2007), Numerical Mathematics, Springer.

See Also

optim, nmk

Examples

Hooke-Jeeves solves high-dim. Rosenbrock function
rosenbrock <- function(x){
n <- length(x)
sum (100*(x[1:(n-1)]^2 - x[2:n])^2 + (x[1:(n-1)] - 1)^2)

}
par0 <- rep(0, 10)
hjk(par0, rosenbrock)

hjkb(c(0, 0, 0), rosenbrock, upper = 0.5)
$par
[1] 0.50000000 0.25742722 0.06626892

Hooke-Jeeves does not work well on non-smooth functions
nsf <- function(x) {

f1 <- x[1]^2 + x[2]^2
f2 <- x[1]^2 + x[2]^2 + 10 * (-4*x[1] - x[2] + 4)
f3 <- x[1]^2 + x[2]^2 + 10 * (-x[1] - 2*x[2] + 6)
max(f1, f2, f3)

}
par0 <- c(1, 1) # true min 7.2 at (1.2, 2.4)
hjk(par0, nsf) # fmin=8 at xmin=(2,2)

nmk 5

nmk Nelder-Mead optimziation algorithm for derivative-free optimization

Description

An implementation of the Nelder-Mead algorithm for derivative-free optimization. This allows
bounds to be placed on parameters. Bounds are enforced by means of a parameter transformation.

Usage

nmk(par, fn, control = list(), ...)

nmkb(par, fn, lower=-Inf, upper=Inf, control = list(), ...)

Arguments

par A starting vector of parameter values. Must be feasible, i.e. lie strictly between
lower and upper bounds.

fn Nonlinear objective function that is to be optimized. A scalar function that takes
a real vector as argument and returns a scalar that is the value of the function at
that point (see details).

lower Lower bounds on the parameters. A vector of the same length as the parameters.
If a single value is specified, it is assumed that the same lower bound applies to
all parameters.

upper Upper bounds on the parameters. A vector of the same length as the parameters.
If a single value is specified, it is assumed that the same upper bound applies to
all parameters.

control A list of control parameters. See *Details* for more information.

... Additional arguments passed to fn

Details

Argument control is a list specifing any changes to default values of algorithm control parameters
for the outer loop. Note that the names of these must be specified completely. Partial matching will
not work. The list items are as follows:

tol Convergence tolerance. Iteration is terminated when the absolute difference in function value
between successive iteration is below tol. Default is 1.e-06.

maxfeval: Maximum number of objective function evaluations allowed. Default is min(5000,
max(1500, 20*length(par)^2)).

regsimp A logical variable indicating whether the starting parameter configuration is a regular
simplex. Default is TRUE.

maximize A logical variable indicating whether the objective function should be maximized. De-
fault is FALSE.

6 nmk

restarts.max Maximum number of times the algorithm should be restarted before declaring fail-
ure. Default is 3.

trace A logical variable indicating whether the starting parameter configuration is a regular sim-
plex. Default is FALSE.

Value

A list with the following components:

par Best estimate of the parameter vector found by the algorithm.

value The value of the objective function at termination.

feval The number of times the objective fn was evaluated.

restarts The number of times the algorithm had to be restarted when it stagnated.

convergence An integer code indicating type of convergence. 0 indicates successful conver-
gence. Positive integer codes indicate failure to converge.

message Text message indicating the type of convergence or failure.

Note

This algorithm is based on the Matlab code of Prof. C.T. Kelley, given in his book "Iterative methods
for optimization". It is implemented here with the permission of Prof. Kelley and SIAM. However,
there are some non-trivial modifications of the algorithm.

Author(s)

Ravi Varadhan <rvaradhan@jhmi.edu>, Johns Hopkins University URL:http://www.jhsph.edu/agingandhealth/People/Faculty_personal_pages/Varadhan.html

References

C.T. Kelley (1999), Iterative Methods for Optimization, SIAM.

See Also

optim, hjk

Examples

rosbkext <- function(x){
Extended Rosenbrock function
n <- length(x)
sum (100*(x[1:(n-1)]^2 - x[2:n])^2 + (x[1:(n-1)] - 1)^2)
}

np <- 10
set.seed(123)

p0 <- rnorm(np)
xm1 <- nmk(fn=rosbkext, par=p0) # maximum `fevals' is not sufficient to find correct minimum
xm1b <- nmkb(fn=rosbkext, par=p0, lower=-2, upper=2)

nmk 7

A non-smooth problem
hald <- function(x) {
#Hald J & Madsen K (1981), Combined LP and quasi-Newton methods
#for minimax optimization, Mathematical Programming, 20, p.42-62.
i <- 1:21
t <- -1 + (i - 1)/10
f <- (x[1] + x[2] * t) / (1 + x[3]*t + x[4]*t^2 + x[5]*t^3) - exp(t)
max(abs(f))
}

p0 <- runif(5)
xm2 <- nmk(fn=hald, par=p0)
xm2b <- nmkb(fn=hald, par=p0, lower=c(0,0,0,0,-2), upper=4)

Another non-smooth functions
nsf <- function(x) {

f1 <- x[1]^2 + x[2]^2
f2 <- x[1]^2 + x[2]^2 + 10 * (-4*x[1] - x[2] + 4)
f3 <- x[1]^2 + x[2]^2 + 10 * (-x[1] - 2*x[2] + 6)
max(f1, f2, f3)

}
par0 <- c(1, 1) # true min 7.2 at (1.2, 2.4)
nmk(par0, nsf) # fmin=8 at xmin=(2,2)

Index

∗Topic optimize
dfoptim, 2
hjk, 2
nmk, 5

dfoptim, 2

hjk, 2, 6
hjkb (hjk), 2

nmk, 4, 5
nmkb (nmk), 5

optim, 4, 6

8

	dfoptim
	hjk
	nmk
	Index

