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Description

This package implements the small-sample degrees of freedom adjustment discussed in Imbens
and Kolesar [2016]. The implementation can handle models with fixed effects, and cases where the
number of observations or clusters is large *.

library(dfadjust)

To give some examples, let us construct an artificial dataset with 11 clusters

set.seed(7)

dl <- data.frame(y = rnorm(1000), xl1 = c(rep(l, 3), rep(0,
997)), x2 = c(rep(l, 150), rep(0, 850)), x3 = rnorm(1000),
¢l = as.factor(c(rep(1:10, each = 50), rep(11l, 500))))

Let us first run a regression of y on x1. This is a case where in spite of moderate data size, the
effective number of observations is small since there are only three treated units:

rl <- Im(y ~ x1, data = d1)
## lNo clustering

dfadjustSE(rl)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) 0.00266 0.0311 0.031 0.0311 996.00 0.932
#> xl 0.12940 0.8892 1.088 2.37(3 2.01 0.957

Now consider a cluster-robust regression of y on x2. There are only 3 treated clusters, so the
effective number of observations is again small:

1We thank Ulrich Miiller for suggesting to us the lemma below



rl <- Im(y ~ x2, data = d1)
# Default Imbens-Kolesar method
dfadjustSE(rl, clustervar = d1$cl)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0222 4.94  0.288
#> x2 0.1778 0.0530 0.0621 0.1157 2.43 0.124

# Bell-McCaffrey method
dfadjustSE(rl, clustervar = d1$cl, IK = FALSE)

#>

#> Coefficrents:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0316 2.42 0.4547
#> x2 0.1778 0.0530 0.0621 0.1076 2.70 0.0983

Now, let us run a regression of y on x3, with fixed effects. Since we’re only interested in x3, we
specify that we only want inference on the second element:

rl <- Im(y ~ x3 + cl, data = di)

dfadjustSE(rl, clustervar = d1$cl, ell = c(0, 1, rep(O,
ri$rank - 2)))

#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value

#> Estimate 0.0261 0.0463 0.0595 0.0928 3.23 0.778
dfadjustSE(rl, clustervar = d1$cl, ell = c(0, 1, rep(O,
ri$rank - 2)), IK = FALSE)

#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value

#> Estimate  0.0261 0.0463 0.0595 0.0928 3.23 0.778

Finally, an example in which the clusters are large. We have 500,000 observations:

d2 <- do.call("rbind", replicate(500, d1, simplify = FALSE))
d2%y <- rnorm(length(d2$y))

r2 <- Im(y = x2, data = d2)

summary (r2)

#>

#> Call:

#> lm(formula = y ~ z2, data = d2)

#>

#> Restduals:

#> Min 1§ Median 34 Max

#> -5.073 -0.675 0.000 0.675 4.789

#>

#> Coefficients:

#> Estimate Std. Error t wvalue Pr(>/t])



#> (Intercept) -0.000991 0.001535 -0.65 0.52

#> z2 -0.003590  0.003963 -0.91 0.37

#>

#> Restdual standard error: 1 on 499998 degrees of freedom

#> MNultiple R-squared: 1.64e-06, ddjusted R-squared: -3.59e-07
#> F-statistic: 0.821 on 1 and 5e+05 DF, p-value: 0.365

# Default Imbens-Kolesar method

dfadjustSE(r2, clustervar = d2$cl)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.000991 0.00133 0.00205 0.00261 5.50  0.704
#> z2 -0.003590 0.00483 0.00376 0.00554 3.64  0.517

# Bell-McCaffrey method
dfadjustSE(r2, clustervar = d2$cl, IK = FALSE)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se 4dj. se df p-value
#> (Intercept) -0.000991 0.00133 0.00205 0.00267 5.10  0.710
#> z2 -0.003590 0.00483 0.00376 0.00554 3.64  0.517
Methods

This section describes the implementation of the Imbens and Kolesar [2016] and Bell and McCaffrey
[2002] degrees of freedom adjustments.

There are S clusters, and we observe n; observations in cluster s, for a total of n = 25521 N
observations. We handle the case with independent observations by letting each observation be in
its own cluster, with S = n. Consider the linear regression of a scalar outcome Y; onto a p-vector of
regressors X;,

YZ'IXZ{,B—FMZ', E[ul- ’ Xl'] =0.

We're interested in inference on ¢'B for some fixed vector ¢ € R?. Let X, u, and Y denote the design
matrix, and error and outcome vectors, respectively. For any n x k matrix M, let M, denote the
ns X k block corresponding to cluster s, so that, for instance, Y; corresponds to the outcome vector
in cluster s. For a positive semi-definite matrix M, let M'/2 be a matrix satisfying M'/ 2y = M,
such as its symmetric square root or its Cholesky decomposition.

Assume that
Elusul | X] =Qs, and E[usu; | X] =0 ifs #t.

Denote the conditional variance matrix of u by (), so that () is the block of () corresponding to
cluster s. We estimate ¢’ using OLS. In R, the OLS estimator is computed via a QR decomposition,
X = QR, where Q'Q = I and R is upper-triangular, so we can write the estimator as

/

-1
Vp=1r (ngxs> Y XY =10")_ QlY,, ?=R1¢.
S S S



It has variance

Vi=var(fB| X) =0 (X'X) T Y XX, (X'X) 0 =7 QLOsQL.
S S

Variance estimate

We estimate V using a variance estimator that generalizes the HC2 variance estimator to clustering.
Relative to the LZ2 estimator described in Imbens and Kolesér [2016], we use a slight modification
that allows for fixed effects:

S
V=0(X'X)'Y. XA ALX(X'X) T = ORTVY QAL ALQR' T = Y (as)?,
S s s=1

where -
s :=Ys — Xsp = us — QsQu, as = A,Qs,

and the matrix A; is given by the symmetric square root of the inverse of I — Q;Qy, or else its
pseudo-inverse if it is singular, as is the case, for example, if X contains fixed effects. We do not
need to insist on I — Q;Q} to be invertible, since, using the identity

V=u) (I-0Q")uauai(I-QQ )su,

one can verify by simple algebra that a sufficient condition for V to be unbiased under homoskedas-
ticity is that QL As(I — QsQ%) AsQs = QLQs (see, for example, Pustejovsky and Tipton [2018], for
details).

If the observations are independent, the vector of leverages (Q]Qj, ..., Q;Qx) can be computed
directly using the stats: :hatvalues function. In this case, use this function to compute A; =
1/4/1 — Q!Q; directly, and we then compute a; = Angz using vector operations. For the case with

clustering, computing the spectral decomposition of I — Q;Q; can be expensive or even infeasible
if the cluster size n; is large. We therefore use the following result, suggested to us by Ulrich Miiller,
allows us to compute a; by computing a spectral decomposition of a p X p matrix.

o Let Q.Qs = Y, Aisristl, be the spectral decomposition of Q,Qs. Then A; = Y. a1 (1—
Ai)T12Qgrr! QL satisties As(I — QsQL)As = 1.

This follows from the fact that I — Q;Q; has eigenvalues 1 — A;; and eigenvectors Qs7;s, and
hence its pseudoinverse is Y. 5,21 (1 — A;) 7' Qsrisr} Q.
Using the lemma, we can compute a5 efficiently as:

as= Y. (1—A)"2Qsrisr,QLQs? = Q:Ds?, Ds= Y M(1—A) Y rir.
i Ai#l it \i#A1

Degrees of freedom correction

Let G be an n x S matrix with columns (I — QQ').a;. Then the Bell and McCaffrey [2002] adjustment
sets the degrees of freedom to
_ tr(G'G)?
fon = w((GcRy



Since (G'G)s = al(I — QQ)s(I — QQ)iar = as(1{s = t} — Q;Q})a;, the matrix G'G can be effi-
ciently computed as
G'G = diag(alas) — BB"  Bg = a.Q.

Note that Bisan S x p matrix, so that computing the degrees of freedom adjustment only involves
p X p matrices:

(L, atas — Yox B3)?
Zs (a;as)z -2 Zs,k(agaS)Bszk =+ Zs,t (BéBt)Z
If the observations are independent, we compute B directly as B <- a*Q, and since 4; is a scalar, we

have : )’
(Zi bll- - Zsk Bsk)
Yia} — 2 a?B[B; + L;(B/B;)?

fem =

fem =

The Imbens and Kolesar [2016] degrees of freedom adjustment instead sets

fix = tr(G'QG)?
T (606

where () is an estimate of the Moulton [1986] model of the covariance matrix, under which
Qs = 021, + ptn,t},,. Using simple algebra, one can show that in this case,

G'QG = o2 diag(alas) — 0*BB’' + p(D — BF')(D — BF'Y/,
where
Fg = 1515 Qsk D= diag(a;lﬂs)

which can again be computed even if the clusters are large. The estimate Q) replaces o2 and p with
analog estimates.
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