
Package ‘dexter’
June 15, 2020

Type Package

Title Data Management and Analysis of Tests

Version 1.0.8

Author Gunter Maris, Timo Bechger, Jesse Koops, Ivailo Partchev

Maintainer Jesse Koops <jesse.koops@cito.nl>

Description A system for the management, assessment, and psychometric analysis of data from edu-
cational and psychological tests.

License GPL-3

URL http://dexterities.netlify.com

BugReports https://github.com/jessekps/dexter/issues

Encoding UTF-8

LazyData yes

Depends R (>= 3.4)

Imports RSQLite (>= 2.1), DBI (>= 1.0.0), MASS (>= 7.3), tidyr (>=
0.8.3), rlang (>= 0.4.0), dplyr (>= 0.8.3), Rcpp (>= 1.0.1),
graphics, grDevices, methods, utils

LinkingTo Rcpp, RcppArmadillo (>= 0.9.3)

RoxygenNote 7.1.0

Suggests knitr, rmarkdown, latticeExtra, testthat, ggplot2, Cairo

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-06-15 10:30:02 UTC

R topics documented:
dexter-package . 3
ability . 3
add_booklet . 5

1

http://dexterities.netlify.com
https://github.com/jessekps/dexter/issues

2 R topics documented:

add_item_properties . 7
add_person_properties . 8
close_project . 9
coef.p2pass . 9
coef.prms . 10
design_info . 10
DIF . 11
distractor_plot . 12
fit_domains . 13
fit_enorm . 14
fit_inter . 16
get_booklets . 17
get_design . 17
get_items . 18
get_persons . 18
get_responses . 19
get_resp_data . 20
get_rules . 21
get_testscores . 22
get_variables . 22
individual_differences . 23
information . 24
keys_to_rules . 25
open_project . 26
plausible_scores . 26
plausible_values . 27
plot.DIF_stats . 29
plot.p2pass . 30
plot.prms . 31
plot.rim . 32
probability_to_pass . 33
profiles . 34
profile_plot . 35
ratedData . 36
ratedDataProperties . 37
ratedDataRules . 37
read_oplm_par . 37
r_score_IM . 38
standards_3dc . 38
standards_db . 40
start_new_project . 41
start_new_project_from_oplm . 42
tia_tables . 43
touch_rules . 44
verbAggrData . 45
verbAggrProperties . 45
verbAggrRules . 46

Index 47

dexter-package 3

dexter-package Dexter: data analyses for educational and psychological tests.

Description

Dexter provides a comprehensive solution for managing and analyzing educational test data.

Details

The main features are:

• project databases providing a structure for storing data about persons, items, responses and
booklets.

• methods to assess data quality using Classical test theory and plots.

• CML calibration of the extended nominal response model and interaction model.

To learn more about dexter, start with the vignettes: ‘browseVignettes(package="dexter")‘

See Also

Useful links:

• http://dexterities.netlify.com

• Report bugs at https://github.com/jessekps/dexter/issues

ability Estimate abilities

Description

Computes estimates of ability for persons or booklets

Usage

ability(
dataSrc,
parms,
predicate = NULL,
method = c("MLE", "EAP", "WLE"),
prior = c("normal", "Jeffreys"),
use_draw = NULL,
npv = 500,
mu = 0,
sigma = 4,
standard_errors = FALSE,

http://dexterities.netlify.com
https://github.com/jessekps/dexter/issues

4 ability

merge_within_persons = FALSE
)

ability_tables(
parms,
design = NULL,
method = c("MLE", "EAP", "WLE"),
prior = c("normal", "Jeffreys"),
use_draw = NULL,
npv = 500,
mu = 0,
sigma = 4,
standard_errors = TRUE

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms object produced by fit_enorm or a data.frame with columns item_id, item_score
and, depending on parametrization, a column named either beta/delta, eta or b

predicate An optional expression to subset data, if NULL all data is used
method Maximum Likelihood (MLE), Expected A posteriori (EAP) or Weighted Like-

lihood (WLE)
prior If an EAP estimate is produced one can choose a normal prior or Jeffreys prior;

i.e., a prior proportional to the square root of test information.
use_draw When parms is Bayesian, use_draw is the index of the posterior sample of the

item parameters that will be used for generating plausible values. If use_draw=NULL,
a posterior mean is used. If outside range, the last iteration will be used.

npv Number of plausible values sampled to calculate EAP with normal prior
mu Mean of the normal prior
sigma Standard deviation of the normal prior
standard_errors

If true standard-errors are produced
merge_within_persons

for persons who were administered multiple booklets, whether to provide just
one ability value (TRUE) or one per booklet(FALSE)

design A data.frame with columns item_id and optionally booklet_id. If the column
booklet_id is not included, the score transformation table will be based on all
items found in the design. If design is NULL and parms is an enorm fit object
the score transformation table will be computed based on the test design that
was used to fit the items.

Details

MLE estimates of ability will produce an NA for the minimum (=0) or the maximum score on a
booklet. If this is undesirable, we advise to use EAP with Jeffreys prior.

add_booklet 5

Value

ability a data.frame with columns: booklet_id, person_id, booklet_score, theta and optionally se
(standard error)

ability_tables a data.frame with columns: booklet_id, booklet_score, theta and optionally se (stan-
dard error)

Examples

Not run:
db = start_new_project(verbAggrRules, "verbAggression.db")
add_booklet(db, verbAggrData, "agg")
f = fit_enorm(db)
aa = ability_tables(f,method="MLE",standard_errors=FALSE)
bb = ability_tables(f,method="EAP",standard_errors=FALSE)
cc = ability_tables(f,method="EAP",prior="Jeffreys", standard_errors=FALSE)
plot(bb$booklet_score, bb$theta, xlab="test-score", ylab="ability est.", pch=19, cex=0.7)
points(aa$booklet_score, aa$theta, col="red", pch=19, cex=0.7)
points(aa$booklet_score, cc$theta, col="green", pch=19, cex=0.7)
legend("topleft", legend = c("EAP normal prior", "EAP Jeffreys prior", "MLE"), bty = "n",

lwd = 1, cex = 0.7, col = c("black", "green", "red"), lty=c(0,0,0), pch = c(19,19,19))

close_project(db)

End(Not run)

add_booklet Add response data to a project

Description

Add item response data in long or wide format

Usage

add_booklet(db, x, booklet_id, auto_add_unknown_rules = FALSE)

add_response_data(
db,
data,
auto_add_unknown_rules = FALSE,
missing_value = "NA"

)

6 add_booklet

Arguments

db a connection to a dexter database, i.e. the output of start_new_project or
open_project

x A data frame containing the responses and, optionally, person_properties. The
data.frame should have one row per respondent and the column names should
correspond to the item_id’s in the rules or the names of the person_properties.
See details.

booklet_id A (short) string identifying the test form (booklet)
auto_add_unknown_rules

If FALSE (the default), an error will be generated if one or more responses do
not appear in the scoring rules. If TRUE, unknown responses will be assumed
to have a score of 0.

data response data in normalized (long) format. Must contain columns person_id,
booklet_id, item_id and response and optionally item_position (useful if
your data contains new booklets, see details)

missing_value value to use for responses in missing rows in your data, see details

Details

It is a common practice to keep response data in tables where each row contains the responses from
a single person. add_booklet is provided to input data in that form, one booklet at a time.

If the dataframe x contains a variable named person_id this variable will be used to identify unique
persons. It is assumed that a single person will only make a single booklet once, otherwise an error
will be generated.

If a person_id is not supplied, dexter will generate unique person_id’s for each row of data.

Any column whose name has an exact match in the scoring rules inputted with function start_new_project
will be treated as an item; any column whose name has an exact match in the person_properties will
be treated as a person property. If a name matches both a person_property and an item, the item
takes precedence. Columns other than items, person properties and person_id will be ignored.

add_response_data can be used to add data that is already ’normalized’. This function takes a
data.frame in long format with columns person_id, booklet_id, item_id and response such as
can usually be found in databases for example. The first time a new booklet is encountered, the
design (i.e. which items are contained in each booklet at each position) is derived from data. In
this case it is useful if you specify an extra column named item_position, otherwise dexter will
generate the item_positions automatically in some way that may not reflect your actual design (of
course, if the item positions in your tests are randomized, that is not a problem).

If there are missing rows (e.g. there are only 9 rows for a person-booklet where the booklet should
contain 10 items) missing_value will be used for the omitted responses. This can lead to an error
in case missing_value is not defined in your rules and auto_add_unknown_rules is set to FALSE
(the default). Please also note that the booklet_design for any specific booklet is derived from the
distinct combination of booklet_id and item_id in data the first time that booklet is encountered.
If subsequent calls to add_response_data contain data with more/different items for this same
booklet, this will cause an error.

Note that responses are always treated as strings (in both functions), and NA values are transformed
to the string "NA".

add_item_properties 7

Value

A list with information about the recent import.

Examples

db = start_new_project(verbAggrRules, ":memory:",
person_properties=list(gender="unknown"))

head(verbAggrData)
add_booklet(db, verbAggrData, "agg")

close_project(db)

add_item_properties Add item properties to a project

Description

Add, change or define item properties in a dexter project

Usage

add_item_properties(db, item_properties = NULL, default_values = NULL)

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

item_properties

A data frame containing a column item_id (matching item_id’s already defined
in the project) and 1 or more other columns with item properties (e.g. item_type,
subject)

default_values a list where the names are item_properties and the values are defaults. The
defaults will be used wherever the item property is unknown.

Details

When entering response data in the form of a rectangular person x item table, it is easy to provide
person properties but practically impossible to provide item properties. This function provides a
possibility to do so.

Note that is is not possible to add new items with this function, use touch_rules if you want to
add new items to your project.

Value

nothing

8 add_person_properties

See Also

fit_domains, profile_plot for possible uses of item_properties

Examples

Not run: \donttest{
db = start_new_project(verbAggrRules, "verbAggression.db")
head(verbAggrProperties)
add_item_properties(db, verbAggrProperties)
get_items(db)

close_project(db)
}
End(Not run)

add_person_properties Add person properties to a project

Description

Add, change or define person properties in a dexter project. Person properties defined here will also
be automatically imported with add_booklet

Usage

add_person_properties(db, person_properties = NULL, default_values = NULL)

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

person_properties

A data frame containing a column person_id and 1 or more other columns with
person properties (e.g. education_type, birthdate)

default_values a list where the names are person_properties and the values are defaults. The
defaults will be used wherever the person property is unknown.

Details

Due to limitations in the sqlite database backend that we use, the default values for a person property
can only be defined once for each person_property

Value

nothing

close_project 9

close_project Close a project

Description

This is just an alias for DBI::dbDisconnect(db), included for completeness

Usage

close_project(db)

Arguments

db connection to a dexter database

coef.p2pass extract equating information

Description

extract equating information

Usage

S3 method for class 'p2pass'
coef(object, ...)

Arguments

object an p2pass object, generated by probability_to_pass

... further arguments are currently ignored

Value

A data.frame with columns:

booklet_id id of the target booklet

score_new score on the target booklet

probability_to_pass probability to pass on the reference test given score_new

true_positive percentages that correctly passes

sensitivity The proportion of positives that are correctly identified as such

specificity The proportion of negatives that are correctly identified as such

proportion proportion in sample with score_new

10 design_info

coef.prms extract enorm item parameters

Description

extract enorm item parameters

Usage

S3 method for class 'prms'
coef(object, hpd = 0.95, what = c("items", "var", "posterior"), ...)

Arguments

object an enorm parameters object, generated by the function fit_enorm

hpd width of Bayesian highest posterior density interval around mean_beta, value
must be between 0 and 1, default is 0.95

what which coefficients to return. Defaults to ‘items‘ (the item parameters). Can also
be ‘var‘ for the variance-covariance matrix (CML only) or ‘posterior‘ for all
draws of the item parameters (Bayes only)

... further arguments to coef are ignored

Value

Depends on the calibration method and the value of ’what’. For ’items’#’

CML a data.frame with columns: item_id, item_score, beta, SE_beta

Bayes a data.frame with columns: item_id, item_score, mean_beta, SD_beta, <hpd_b_left>, <hpd_b_right>

The posterior distribution and variance covariance matrix are returned as matrices.

design_info Information about the design

Description

This function is useful to inspect incomplete designs

Usage

design_info(dataSrc, predicate = NULL)

DIF 11

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

Value

a list with the following components

design a data.frame with columns booklet_id, item_id, item_position, n_persons

connected_booklets a data.frame with columns booklet_id, group; booklets with the same ‘group‘
are connected to each other.

connected TRUE/FALSE indicating whether the design is connected or not

testlets a data.frame with columns item_id and testlet; items within the same testlet always occur
together in a booklet

adj_matrix list of two adjacency matrices: *weighted_by_items* and *weighted_by_persons*;
These matrices can be useful in visually inspecting the design using a package like *igraph*

DIF Exploratory test for Differential Item Functioning

Description

Exploratory test for Differential Item Functioning

Usage

DIF(dataSrc, person_property, predicate = NULL)

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score

person_property

Defines groups of persons to calculate DIF

predicate An optional expression to subset data, if NULL all data is used

Details

Tests for equality of relative item/category difficulties across groups. Supplements the confirmatory
approach of the profile plot.

12 distractor_plot

Value

An object of class DIF_stats holding statistics for overall-DIF and a matrix of statistics for DIF in
the relative position of item-category parameters in the beta-parameterization where they represent
locations on the ability scale where adjacent categories are equally likely. If there is DIF, the
function ‘plot‘ can be used to produce an image of the pairwise DIF statistics.

References

Bechger, T. M. and Maris, G (2015); A Statistical Test for Differential Item Pair Functioning.
Psychometrika. Vol. 80, no. 2, 317-340.

See Also

A plot of the result is produced by the function plot.DIF_stats

Examples

db = start_new_project(verbAggrRules, ":memory:", person_properties=list(gender='unknown'))
add_booklet(db, verbAggrData, "agg")
dd = DIF(db,person_property="gender")
print(dd)
plot(dd)
str(dd)

close_project(db)

distractor_plot Distractor plot

Description

Produce a diagnostic distractor plot for an item

Usage

distractor_plot(
dataSrc,
item_id,
predicate = NULL,
legend = TRUE,
curtains = 10,
adjust = 1,
col = NULL,
...

)

fit_domains 13

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, response, item_score and optionally booklet_id

item_id The ID of the item to plot. A separate plot will be produced for each booklet
that contains the item, or an error message if the item_id is not known. Each
plot contains a non-parametric regression of each possible response on the total
score.

predicate An optional expression to subset data, if NULL all data is used

legend logical, whether to include the legend. default is TRUE

curtains 100*the tail probability of the sum scores to be shaded. Default is 10. Set to 0
to have no curtains shown at all.

adjust factor to adjust the smoothing bandwidth respective to the default value

col vector of colors to use for plotting

... further arguments to plot.

Details

Customization of title and subtitle can be done by using the arguments main and sub. These ar-
guments can contain references to the variables item_id, booklet_id, item_position(if available),
pvalue, rit and rir. References are made by prefixing these variables with a dollar sign. Variable
names may be postfixed with a sprintf style format string, e.g. distractor_plot(db,main='item:
$item_id',sub='Item rest correlation: $rir:.2f')

Value

Silently, a data.frame of response categories and colors used. Potentially useful if you want to
customize the legend or print it separately

fit_domains Estimate the Rasch and the Interaction model per domain

Description

Estimate the parameters of the Rasch model and the Interaction model

Usage

fit_domains(dataSrc, item_property, predicate = NULL)

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score

item_property The item property defining the domains (subtests)

predicate An optional expression to subset data, if NULL all data is used

14 fit_enorm

Details

We have generalised the interaction model for items having more than two (potentially, a largish
number) of response categories. This function represents scores on subtests as super-items and
analyses these as normal items.

Value

An object of class imp holding results for the Rasch model and the interaction model.

See Also

plot.rim, fit_inter, add_item_properties

Examples

db = start_new_project(verbAggrRules, ":memory:")
add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)
mSit = fit_domains(db, item_property= "situation")
plot(mSit)

close_project(db)

fit_enorm Fit the extended nominal response model

Description

Fits an Extended NOminal Response Model (ENORM) using conditional maximum likelihood
(CML) or a Gibbs sampler for Bayesian estimation.

Usage

fit_enorm(
dataSrc,
predicate = NULL,
fixed_params = NULL,
method = c("CML", "Bayes"),
nIterations = 1000,
merge_within_persons = FALSE

)

fit_enorm 15

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

fixed_params Optionally, a prms object from a previous analysis or a data.frame with param-
eters, see details.

method If CML, the estimation method will be Conditional Maximum Likelihood; oth-
erwise, a Gibbs sampler will be used to produce a sample from the posterior

nIterations Number of Gibbs samples when estimation method is Bayes. The maximum
number of iterations when using CML.

merge_within_persons

whether to merge different booklets administered to the same person, enabling
linking over persons as well as booklets.

Details

To support some flexibility in fixing parameters, fixed_params can be a dexter prms object of a
data.frame. If a data.frame, it should contain the columns item_id, item_score and a difficulty
parameter. Three types of parameters are supported:

delta/beta thresholds between subsequent item categories

eta item-category parameters

b exp(-eta)

Each type corresponds to a different parametrization of the model.

Value

An object of type prms. The prms object can be cast to a data.frame of item parameters using
function ‘coef‘ or used directly as input for other Dexter functions.

References

Maris, G., Bechger, T.M. and San-Martin, E. (2015) A Gibbs sampler for the (extended) marginal
Rasch model. Psychometrika. 2015; 80(4): 859-879.

See Also

functions that accept a prms object as input: ability, plausible_values, plot.prms, and plausible_scores

16 fit_inter

fit_inter Estimate the Interaction and the Rasch model

Description

Estimate the parameters of the Interaction model and the Rasch model

Usage

fit_inter(dataSrc, predicate = NULL)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

Details

Unlike the Rasch model, the interaction model cannot be computed concurrently for a whole design
of test forms. This function therefore fits the Rasch model and the interaction model on complete
data. This typically consist of responses to items in one booklet but can also consist of the intersec-
tion (common items) in two or more booklets. If the intersection is empty (no common items for
all persons), the function will exit with an error message.

Value

An object of class rim holding results for the Rasch model and the interaction model.

See Also

plot.rim, fit_domains

Examples

db = start_new_project(verbAggrRules, ":memory:")
add_booklet(db, verbAggrData, "agg")

m = fit_inter(db, booklet_id=='agg')
plot(m, "S1DoScold", show.observed=TRUE)

close_project(db)

get_booklets 17

get_booklets Booklets entered in a project

Description

Retrieve information about the booklets entered in the db so far

Usage

get_booklets(db)

Arguments

db a connection to a dexter database, i.e. the output of start_new_project or
open_project

Value

A data frame with columns: booklet_id, n_persons and n_items.

get_design Test design

Description

Retrieve all items that have been entered in the db so far by booklet and position in the booklet

Usage

get_design(
dataSrc,
format = c("long", "wide"),
rows = c("booklet_id", "item_id", "item_position"),
columns = c("item_id", "booklet_id", "item_position"),
fill = NA

)

Arguments

dataSrc a dexter database or any object form which a design can be inferred

format return format, see below

rows variable that defines the rows, ignored if format=’long’

columns variable that defines the columns, ignored if format=’long’

fill If set, missing values will be replaced with this value, ignored if format=’long’

18 get_persons

Value

A data.frame with the design. The contents depend on the rows, columns and format parameters if
format is 'long' a data.frame with columns: booklet_id, item_id, item_position (if available) if
format is 'wide' a data.frame with the rows defined by the rows parameter and the columns by the
columns parameter, with the remaining variable (i.e. item_id, booklet_id or item_position) making
up the cells

get_items Items in a project

Description

Retrieve all items that have been entered in the db so far together with the item properties

Usage

get_items(db)

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

Value

A data frame with column item_id and a column for each item property

get_persons Persons in a project

Description

Retrieve all persons/respondents that have been entered in the db so far together with their properties

Usage

get_persons(db)

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

Value

A data frame with columns person_id and columns for each person_property

get_responses 19

get_responses Selecting data

Description

Extract data from a dexter database

Usage

get_responses(
dataSrc,
predicate = NULL,
columns = c("person_id", "item_id", "item_score")

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate an expression to select data on

columns the columns you wish to select, can include any column in the project, see:
get_variables

Details

Many functions in Dexter accept a data source and a predicate. Predicates are extremely flexible
but they have a few limitations because they work on the individual response level. It is therefore
not possible for example, to remove complete person cases from an analysis based on responses to
a single item by using just a predicate expression.

For such cases, Dexter supports selecting the data and manipulating it before passing it back to a
Dexter function or possibly doing something else with it. The following example will hopefully
clarify this.

Value

a data.frame of responses

Examples

Not run:
goal: fit the extended nominal response model using only persons
without any missing responses
library(dplyr)

the following would not work since it will omit only the missing
responses, not the persons; which is not what we want in this case

20 get_resp_data

wrong = fit_enorm(db, response != 'NA')

to select on an aggregate level, we need to gather the data and
manipulate it ourselves
data = get_responses(db,

columns=c('person_id','item_id','item_score','response')) %>%
group_by(person_id) %>%
mutate(any_missing = any(response=='NA')) %>%
filter(!any_missing)

correct = fit_enorm(data)

End(Not run)

get_resp_data Functions for developers

Description

These functions are meant for people who want to develop their own models based on the data
management structure of dexter. Very little input checking is performed, the benefit is some extra
speed over using ‘get_responses‘. Regular users are advised not to use these functions as incorrect
use can easily crash your R-session or lead to unexpected results.

Usage

get_resp_data(
dataSrc,
qtpredicate = NULL,
extra_columns = NULL,
summarised = FALSE,
env = NULL,
protect_x = TRUE,
retain_person_id = TRUE,
merge_within_persons = FALSE,
parms_check = NULL

)

get_resp_matrix(dataSrc, qtpredicate = NULL, env = NULL)

Arguments

dataSrc data.frame, integer matrix, dexter database or ‘dx_resp_data‘ object

qtpredicate quoted predicate

extra_columns to be returned in addition to person_id, booklet_id, item_score, item_id

summarised if TRUE, no item scores are returned, just sumscores

get_rules 21

env environment for evaluation of qtpredicate, defaults to caller environment

protect_x best set TRUE (default)

retain_person_id

whether to retain the original person_id levels or just use arbitrary integers

merge_within_persons

merge different booklets for the same person together

parms_check data.frame of item_id, item_score to check for coverage of data

Value

get_resp_data returns a list with class ‘dx_resp_data‘ with elements

x when summarised is FALSE, a tibble(person_id, booklet_id, item_id, item_score, book-
let_score [, extra_columns>]), sorted in such a way that all rows pertaining to the same
person-booklet are together
when summarised is TRUE, a tibble(person_id, booklet_id, booklet_score [, extra_columns])

design tibble(booklet_id, item_id), sorted

get_resp_matrix returns a matrix of item scores as commonly used in other IRT packages, facili-
tating easy connection of your own package to the data management capabilities of dexter

get_rules Get scoring rules

Description

Retrieve the scoring rules currently present in the dexter project db

Usage

get_rules(db)

Arguments

db a connection to a Dexter database

Value

data.frame of scoring rules containing columns: item_id, response, item_score

22 get_variables

get_testscores Provide test scores

Description

Supplies the sum of item scores for each person selected.

Usage

get_testscores(dataSrc, predicate = NULL)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to filter data, if NULL all data is used

Value

A tibble with columns person_id, item_id, booklet_score

get_variables Variables that are defined in the project

Description

Inspect the variables defined in your dexter project and their datatypes

Usage

get_variables(db)

Arguments

db a dexter project database

Details

The variables in Dexter consist of the item properties and person properties you specified and a
number of reserved variables that are automatically defined like response and booklet_id.

Variables in Dexter are most useful when used in predicate expressions. A number of functions can
take a dataSrc argument and an optional predicate. Predicates are a concise and flexible way to filter
data for the different psychometric functions in Dexter.

The variables can also be used to retrieve data in get_responses

individual_differences 23

Value

a data.frame with name and type of the variables defined in your dexter project

individual_differences

Test individual differences

Description

Test individual differences

Usage

individual_differences(dataSrc, predicate = NULL)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data are used.

Details

This function uses a score distribution to test whether there are individual differences in ability.
First, it estimates ability based on the score distribution. Then, the observed distribution is compared
to the one expected from the single estimated ability. The data are typically from one booklet but can
also consist of the intersection (i.e., the common items) of two or more booklets. If the intersection
is empty (i.e., no common items for all persons), the function will exit with an error message.

Value

An object of type tind. Printing the object will show test results. Plotting it will produce a plot
of expected and observed score frequencies. The former under the hypothesis that there are no
individual differences.

Examples

Not run:
db = start_new_project(verbAggrRules, "verbAggression.db")
add_booklet(db, verbAggrData, "agg")
dd = individual_differences(db)
print(dd)
plot(dd)

close_project(db)

End(Not run)

24 information

information Functions of theta

Description

returns information function, expected score function, score distribution, or score simulation func-
tion for a single item, an arbitrary group of items or all items

Usage

information(parms, items = NULL, booklet_id = NULL, which.draw = NULL)

expected_score(parms, items = NULL, booklet_id = NULL, which.draw = NULL)

r_score(parms, items = NULL, booklet_id = NULL, which.draw = NULL)

p_score(parms, items = NULL, booklet_id = NULL, which.draw = NULL)

Arguments

parms object produced by fit_enorm or a data.frame with columns item_id, item_score
and, depending on parametrization, a column named either beta/delta, eta or b

items vector of one or more item_id’s. If NULL and booklet_id is also NULL, all
items in parms are used

booklet_id id of a single booklet (e.g. the test information function), if items is not NULL
this is ignored

which.draw the number of the random draw (only applicable if calibration method was
Bayes). If NULL, the mean beta parameter will be used

Value

Each function returns a new function which accepts a vector of theta’s. These return the following
values:

information an equal length vector with the information estimate at each value of theta.

expected_score an equal length vector with the expected score at each value of theta

r_score a matrix with length(theta) rows and one column for each item containing simulated scores
based on theta. To obtain test scores, use rowSums on this matrix

p_score a matrix with length(theta) rows and one column for each possible sumscore containing
the probability of the score given theta

keys_to_rules 25

Examples

db = start_new_project(verbAggrRules,':memory:')
add_booklet(db,verbAggrData, "agg")
p = fit_enorm(db)

plot information function for single item

ifun = information(p, "S1DoScold")

plot(ifun,from=-4,to=4)

compare test information function to the population ability distribution

ifun = information(p, booklet="agg")

pv = plausible_values(db,p)

op = par(no.readonly=TRUE)
par(mar = c(5,4,2,4))

plot(ifun,from=-4,to=4, xlab='theta', ylab='test information')

par(new=TRUE)

plot(density(pv$PV1), col='green', axes=FALSE, xlab=NA, ylab=NA, main=NA)
axis(side=4)
mtext(side = 4, line = 2.5, 'population density (green)')

par(op)
close_project(db)

keys_to_rules Derive scoring rules from keys

Description

For multiple choice items that will be scored as 0/1, derive the scoring rules from the keys to the
correct responses

Usage

keys_to_rules(keys, include_NA_rule = FALSE)

Arguments

keys A data frame containing columns item_id, noptions, and key See details.
include_NA_rule

whether to add an option ’NA’ (which is scored 0) to each item

26 plausible_scores

Details

This function might be useful in setting up the scoring rules when all items are multiple-choice and
scored as 0/1.

The input data frame must contain the exact id of each item, the number of options, and the key. If
the keys are all integers, it will be assumed that responses are coded as 1 through noptions. If they
are all letters, it is assumed that responses are coded as A,B,C,... All other cases result in an error.

Value

A data frame that can be used as input to start_new_project

open_project Open an existing project

Description

Opens a database created by function start_new_project

Usage

open_project(db_name = "dexter.db")

Arguments

db_name The name of the database to be opened.

Value

a database connection object

plausible_scores Generate plausible test scores

Description

Generate plausible i.e., posterior predictive sumscores on a set of items. A typical use of this
function is to generate plausible scores on a complete item bank when data is collected using an
incomplete design

plausible_values 27

Usage

plausible_scores(
dataSrc,
parms = NULL,
predicate = NULL,
items = NULL,
covariates = NULL,
keep.observed = TRUE,
nPS = 1,
merge_within_persons = FALSE

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms An object returned by function fit_enorm and containing parameter estimates.
If parms is given the function provides plausible scores conditional on the item
parameters. These are considered known. If parms is NULL, Bayesian parameters
are calculated from the datasrc

predicate an expression to filter data. If missing, the function will use all data in dataSrc

items vector of item_id’s, this specifies the itemset to generate the testscores for. If
items is NULL all items occurring in dataSrc are used.

covariates name or a vector of names of the variables to group the population, used to
update the prior. A covariate must be a discrete person covariate (e.g. not a
float) that indicates nominal categories, e.g. gender or school If dataSrc is a
data.frame, it must contain the covariate.

keep.observed If responses to one or more of the items have been observed, the user can choose
to keep these observations or generate new ones.

nPS Number of plausible testscores to generate per person.
merge_within_persons

If a person took multiple booklets, this indicates whether plausible scores are
generated per person (TRUE) or per booklet (FALSE)

Value

A data.frame with columns booklet_id, person_id, booklet_score and nPS plausible scores named
PS1...PSn.

plausible_values Draw plausible values

Description

Draws plausible values based on test scores

28 plausible_values

Usage

plausible_values(
dataSrc,
parms = NULL,
predicate = NULL,
covariates = NULL,
nPV = 1,
use_draw = NULL,
prior.dist = c("normal", "mixture"),
merge_within_persons = FALSE

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms An object returned by function fit_enorm containing parameter estimates. If
parms are provided, item parameters are considered known. If parms = NULL,
plausible values are marginalized over the posterior distribution of the item pa-
rameters and uncertainty of the item parameters is taken into account.

predicate an expression to filter data. If missing, the function will use all data in dataSrc

covariates name or a vector of names of the variables to group the populations used to
improve the prior. A covariate must be a discrete person property (e.g. not a
float) that indicates nominal categories, e.g. gender or school. If dataSrc is a
data.frame, it must contain the covariate.

nPV Number of plausible values to draw per person.

use_draw When the ENORM was fitted with a Gibbs sampler, this specifies the use of a
particular sample of item parameters used to generate the plausible value(s). If
NULL, the posterior means are used. If outside range, the last iteration will be
used.

prior.dist use a normal prior or a mixture of two normals recognised automatically),

merge_within_persons

If a person took multiple booklets, this indicates whether plausible values are
generated per person (TRUE) or per booklet (FALSE)

Value

A data.frame with columns booklet_id, person_id, booklet_score and nPV plausible values named
PV1...PVn.

References

Marsman, M., Maris, G., Bechger, T. M., and Glas, C.A.C. (2016) What can we learn from plausible
values? Psychometrika. 2016; 81: 274-289. See also the vignette.

plot.DIF_stats 29

Examples

db = start_new_project(verbAggrRules, ":memory:",
person_properties=list(gender="<unknown>"))

add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)

f=fit_enorm(db)
pv_M=plausible_values(db,f,(mode=="Do")&(gender=="Male"))
pv_F=plausible_values(db,f,(mode=="Do")&(gender=="Female"))

par(mfrow=c(1,2))

plot(ecdf(pv_M$PV1),
main="Do: males versus females", xlab="Ability", col="red")

lines(ecdf(pv_F$PV1), col="green")
legend(-2.2,0.9, c("female", "male") ,

lty=1, col=c('green', 'red'), bty='n', cex=.75)

pv_M=plausible_values(db,f,(mode=="Want")&(gender=="Male"))
pv_F=plausible_values(db,f,(mode=="Want")&(gender=="Female"))

plot(ecdf(pv_M$PV1),
main="Want: males versus females", xlab=" Ability", col="red")

lines(ecdf(pv_F$PV1),col="green")
legend(-2.2,0.9, c("female", "male") ,

lty=1, col=c('green', 'red'), bty='n', cex=.75)

close_project(db)

plot.DIF_stats plot method for pairwise DIF statistics

Description

plot method for pairwise DIF statistics

Usage

S3 method for class 'DIF_stats'
plot(x, items = NULL, itemsX = items, itemsY = items, alpha = 0.05, ...)

Arguments

x object produced by DIF

items character vector of item id’s for a subset of the plot. Useful if you have many
items. If NULL all items are plotted.

itemsX character vector of item id’s for the X axis

30 plot.p2pass

itemsY character vector of item id’s for the Y axis

alpha significance level used to color the plot (two sided)

... further arguments to plot

Details

Plotting produces an image of the matrix of pairwise DIF statistics. The statistics are standard
normal deviates and colored to distinguish significant from non-significant values. If there is no
DIF, a proportion alpha will be significant be change.

plot.p2pass A plot method for probability_to_pass

Description

Plot equating information from probability_to_pass

Usage

S3 method for class 'p2pass'
plot(
x,
what = c("all", "equating", "sens/spec", "roc"),
booklet_id = NULL,
...

)

Arguments

x An object produced by function probability_to_pass

what information to plot, ’equating’, ’sens/spec’, ’roc, or ’all’

booklet_id vector of booklet_id’s to plot, if NULL all booklets are plotted

... Any additional plotting parameters; e.g., cex = 0.7.

plot.prms 31

plot.prms Plot for the extended nominal Response model

Description

The plot shows ’fit’ by comparing the expected score based on the model (grey line) with the average
scores based on the data (black line with dots) for groups of students with similar estimated ability.

Usage

S3 method for class 'prms'
plot(
x,
item_id = NULL,
dataSrc = NULL,
predicate = NULL,
nbins = 5,
ci = 0.95,
...

)

Arguments

x object produced by fit_enorm

item_id which item to plot, if NULL, one plot for each item is made

dataSrc data source, see details

predicate an expression to subset data in dataSrc

nbins number of ability groups

ci confidence interval for the error bars, between 0 and 1. Use 0 to suppress the
error bars. Default = 0.95 for a 95% confidence interval

... further arguments to plot

Details

The standard plot shows the fit against the sample on which the parameters were fitted. If dataSrc
is provided, the fit is shown against the observed data in dataSrc. This may be useful for plotting
the fit in different subgroups as a visual test for item level DIF. The confidence intervals denote the
uncertainty about the predicted pvalues within the ability groups for the sample size in dataSrc (if
not NULL) or the original data on which the model was fit.

Value

Silently, a data.frame with observed an expected values.

32 plot.rim

plot.rim A plot method for the interaction model

Description

Plot the item-total regressions fit by the interaction (or Rasch) model

Usage

S3 method for class 'rim'
plot(
x,
items = NULL,
summate = TRUE,
overlay = FALSE,
curtains = 10,
show.observed = TRUE,
...

)

Arguments

x An object produced by function fit_inter

items The items to plot (item_id’s). If NULL, all items will be plotted

summate If FALSE, regressions for polytomous items will be shown for each response
option separately; default is TRUE.

overlay If TRUE and more than one item is specified, there will be two plots, one for the
Rasch model and the other for the interaction model, with all items overlayed;
otherwise, one plot for each item with the two models overlayed. Ignored if
summate is FALSE. Default is FALSE

curtains 100*the tail probability of the sum scores to be shaded. Default is 10. Set to 0
to have no curtains shown at all.

show.observed If TRUE, the observed proportion correct at each sum score will be shown as
dots. Default is FALSE.

... Any additional plotting parameters.

Details

Customization of title and subtitle can be done by using the arguments main and sub. These ar-
guments can contain references to the variables item_id (if overlay=FALSE) or model (if over-
lay=TRUE) by prefixing them with a dollar sign, e.g. plot(m, main=’item: $item_id’)

probability_to_pass 33

probability_to_pass The probability to pass on a reference test given a score on a new
booklet

Description

Given response data that form a connected design, compute the probability to pass on the reference
set conditional on each score on one or more target tests.

Usage

probability_to_pass(
dataSrc,
parms,
ref_items,
pass_fail,
predicate = NULL,
target_booklets = NULL,
nIterations = 1000

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms parameters returned from fit_enorm. If uncertainty about parameter estimation
should be included in the computations, use ‘method=’Bayes’‘ and nIterations
equal or larger than nIterations in probability_to_pass

ref_items vector with id’s of items in the reference set, they must all occur in dataSrc

pass_fail pass-fail score on the reference set, the lowest score with which one passes

predicate An optional expression to subset data in dataSrc, if NULL all data is used
target_booklets

The target test booklet(s). A data.frame with columns booklet_id (if multiple
booklets) and item_id, if NULL (default) this will be derived from the dataSrc
and the probability to pass will be computed for each test score for each booklet
in your data.

nIterations The function uses an Markov-Chain Monte-Carlo method to calculate the prob-
ability to pass and this is the number of Monte-Carlo samples used.

Details

Note that this function is computationally intensive and can take some time to run, especially when
computing the probability to pass for multiple target booklets. Further technical details can be found
in a vignette.

34 profiles

Value

An object of type p2pass. Use coef() to extract the probablity to pass for each booklet and score.
Use plot() to plot the probabilities, sensitivity and specificity or a ROC-curve.

See Also

The function used to plot the results: plot.p2pass

profiles Profile analysis

Description

Expected and observed domain scores, conditional on the test score, per person or test score. Do-
mains are specified as categories of items using item_properties.

Usage

profiles(
dataSrc,
parms,
item_property,
predicate = NULL,
merge_within_persons = FALSE

)

profile_tables(parms, domains, item_property, design = NULL)

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score, an arbitrarily named column containing an item property
and optionally booklet_id

parms An object returned by fit_enorm

item_property the name of the item property used to define the domains. If dataSrc is a dexter
db then the item_property must match a known item property. If datasrc is
a data.frame, item_property must be equal to one of its column names. For
profile_tables item_property must match a column name in domains.

predicate An optional expression to subset data in dataSrc, if NULL all data is used
merge_within_persons

whether to merge different booklets administered to the same person.

domains data.frame with column item_id and a column with name equal to item_property

design data.frame with columns item_id and optionally booklet_id

profile_plot 35

Details

When using a unidimensional IRT Model like the extended nominal response model in dexter (see:
fit_enorm), the model is as a rule to simple to catch all the relevant dimensions in a test. Never-
theless, a simple model is quite useful in practice. Profile analysis can complement the model in
this case by indicating how a test-taker, conditional on her/his test score, performs on a number of
pre-specified domains, e.g. in case of a mathematics test the domains could be numbers, algebra
and geometry or in case of a digital test the domains could be animated versus non-animated items.
This can be done by comparing the achieved score on a domain with the expected score, given the
test score.

Value

profiles a data.frame with columns person_id, booklet_id, booklet_score, <item_property>, do-
main_score, expected_domain_score

profile_tables a data.frame with columns booklet_id, booklet_score, <item_property>, expected_domain_score

References

Verhelst, N. D. (2012). Profile analysis: a closer look at the PISA 2000 reading data. Scandinavian
Journal of Educational Research, 56 (3), 315-332.

profile_plot Profile plot

Description

Profile plot

Usage

profile_plot(
dataSrc,
item_property,
covariate,
predicate = NULL,
model = c("IM", "RM"),
x = NULL,
col = NULL,
...

)

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score and the item_property and the covariate of interest.

item_property The name of the item property defining the domains. The item property should
have exactly two distinct values in your data

36 ratedData

covariate name of the person property used to create the groups. There will be one line
for each distinct value.

predicate An optional expression to filter data, if NULL all data is used
model "IM" (default) or "RM" where "IM" is the interaction model and "RM" the Rasch

model. The interaction model is the default as it fits the data better or at least as
good as the Rasch model.

x Which value of the item_property to draw on the x axis, if NULL, one is chosen
automatically

col vector of colors to use for plotting
... further arguments to plot

Details

Profile plots can be used to investigate whether two (or more) groups of respondents attain the
same test score in the same way. The user must provide a (meaningful) classification of the items
in two non-overlapping subsets such that the test score is the sum of the scores on the subsets.
The plot shows the probabilities to obtain any combinations of subset scores with thin gray lines
indicating the combinations that give the same test score. The thick lines connect the most likely
combination for each test score in each group. When applied to educational test data, the plots can
be used to detect differences in the relative difficulty of (sets of) items for respondents that belong to
different groups and are matched on the test score. This provides a content-driven way to investigate
differential item functioning.

Examples

db = start_new_project(verbAggrRules, ":memory:",
person_properties=list(gender="unknown"))

add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)
profile_plot(db, item_property='mode', covariate='gender')

close_project(db)

ratedData Rated data

Description

A data set with rated data. A number of student performances are rated twice on several aspects by
independent judges. The ratings are binary and have been summed following the theory discussed
by Maris and Bechger (2006, Handbook of Statistics). Data are a small subset of data collected on
the State Exam Dutch as a second language for Speaking.

Format

A data set with 75 rows and 15 columns.

ratedDataProperties 37

ratedDataProperties Item properties in the rated data

Description

A data set of item properties related to the rated data. These are the aspects: IH = content, WZ =
word choice and phrasing, and WK = vocabulary.

Format

A data set with 14 rows and 2 columns: item_id and aspect

ratedDataRules Scoring rules for the rated data

Description

A set of (trivial) scoring rules for the rated data set

Format

A data set with 42 rows and 3 columns (item_id, response, item_score).

read_oplm_par Read item parameters from oplm PAR or CML files

Description

Read item parameters from oplm PAR or CML files

Usage

read_oplm_par(par_path)

Arguments

par_path path to a file in the (binary) OPLM PAR format or the human readable CML
format

Details

It is occasionally useful to calibrate new items on an existing scale. This function offers the pos-
sibility to read parameters from the proprietary oplm format so that they can be used to fix a new
calibration in Dexter on an existing scale of items that were calibrated in oplm.

38 standards_3dc

Value

depends on the input. For .PAR files a tibble with columns: item_id, item_score, beta, nbr, for
.CML files also several statistics columns that are outputted by OPLM as part of the calibration.

Examples

Not run:
\donttest{
par = read_oplm_par('/parameters.PAR')
f = fit_enorm(db, fixed_params=par)
}
End(Not run)

r_score_IM Simulation from the interaction model

Description

Simulate item scores conditional on test scores using the interaction model

Usage

r_score_IM(m, scores)

Arguments

m an object produced by function fit_inter

scores vector of test scores

Value

a matrix with item scores, one column per item and one row per test score. Row order equal to
scores

standards_3dc Standard setting

Description

Set performance standards on one or more test forms using the data driven direct consensus (3DC)
method

standards_3dc 39

Usage

standards_3dc(parms, design)

S3 method for class 'sts_par'
coef(object, ...)

S3 method for class 'sts_par'
plot(x, booklet_id = NULL, ...)

Arguments

parms parameters object returned from fit_enorm

design a data.frame with columns ‘cluster_id‘, ‘item_id‘ and optionally ‘booklet_id‘

object an object containing parameters for the 3DC standard setting procedure

... ignored Optionally you can include a column ‘booklet_id‘ to specify multiple
test forms for standard setting and/or columns ‘cluster_nbr‘ and ‘item_nbr‘ to
specify ordering of clusters and items in the forms and application.

x an object containing parameters for the 3DC standard setting procedure

booklet_id which test form to plot

Details

The data driven direct consensus (3DC) method of standard setting was invented by Gunter Maris
and described in Keuning et. al. (2017). To easily apply this procedure, we advise to use the free
digital 3DC application. This application can be downloaded from the Cito website, see the 3DC
application download page. If you want to apply the 3DC method using paper forms instead, you
can use the function plot3DC to generate the forms from the 3DC database.

Although the 3DC method is used as explained in Keuning et. al., the method we use for comput-
ing the forms is a simple maximum likelihood scaling from an IRT model, described in Moe and
Verhelst (2017)

Value

an object of type ‘sts_par‘

References

Keuning J., Straat J.H., Feskens R.C.W. (2017) The Data-Driven Direct Consensus (3DC) Proce-
dure: A New Approach to Standard Setting. In: Blomeke S., Gustafsson JE. (eds) Standard Setting
in Education. Methodology of Educational Measurement and Assessment. Springer, Cham

Moe E., Verhelst N. (2017) Setting Standards for Multistage Tests of Norwegian for Adult Im-
migrants In: Blomeke S., Gustafsson JE. (eds) Standard Setting in Education. Methodology of
Educational Measurement and Assessment. Springer, Cham

See Also

how to make a database for the 3DC standard setting application: standards_db

http://www.cito.com/our-expertise/implementation/3dc
http://www.cito.com/our-expertise/implementation/3dc

40 standards_db

Examples

library(dplyr)
db = start_new_project(verbAggrRules, ":memory:")

add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)

design = get_items(db) %>%
rename(cluster_id='behavior')

f = fit_enorm(db)

sts_par = standards_3dc(f, design)

plot(sts_par)

db_sts = standards_db(sts_par,'test.db',c('mildly aggressive','dangerously aggressive'))

standards_db Export a standard setting database for use by the free 3DC application

Description

This function creates an export (an sqlite database file) which can be used by the 3DC application.
This is a free application with which a standard setting session can be facilitated through a LAN
network using the Chrome browser. The 3DC application can be downloaded from 3DC application
download page

Usage

standards_db(
par.sts,
file_name,
standards,
population = NULL,
group_leader = "admin"

)

Arguments

par.sts an object containing parameters for the 3DC standard setting procedure pro-
duced by standards_3dc

file_name name of the exported database file

standards vector of 1 or more standards. In case there are multiple test forms and they
should use different performance standards, a list of such vectors. The names of
this list should correspond to the names of the testforms

http://www.cito.com/our-expertise/implementation/3dc
http://www.cito.com/our-expertise/implementation/3dc

start_new_project 41

population optional, a data.frame with three columns: ‘booklet_id‘,‘booklet_score‘,‘n‘ (where
n is a count)

group_leader login name of the group leader. The login password will always be ‘admin‘ but
can be changed in the 3DC application

start_new_project Start a new project

Description

Imports a complete set of scoring rules and starts a new project (data base)

Usage

start_new_project(rules, db_name = "dexter.db", person_properties = NULL)

Arguments

rules A data frame with columns item_id, response, and item_score. The order is
not important but spelling is. Any other columns will be ignored.

db_name A connection to an existing sqlite database or a string specifying a filename for
a new sqlite database to be created. If this name does not contain a path, the file
will be created in the work directory. Any existing file with the same name will
be overwritten. For an in-memory database you can use the string ":memory:".

person_properties

An optional list of person properties. Names should correspond to person_properties
intended to be used in the project. Values are used as default (missing) values.
The datatype will also be inferred from the values. Known person_properties
will be automatically imported when adding response data with add_booklet.

Details

This package only works with closed items (e.g. likert, MC or possibly short answer) it does not
score any open items. The first step to creating a project is to import an exhaustive list of all items
and all admissible responses, along with the score that any of the latter will be given. Responses
may be integers or strings but they will always be treated as strings. Scores must be integers, and
the minimum score for an item must be 0. When inputting data, all responses not specified in the
rules can optionally be treated as missing and ultimately scored 0, but it is good style to include the
missing responses in the list. NA values will be treated as the string "NA"’.

Value

a database connection object.

42 start_new_project_from_oplm

Examples

head(verbAggrRules)
db_name = tempfile(fileext='.db')
db = start_new_project(verbAggrRules, db_name,

person_properties = list(gender = "unknown"))

start_new_project_from_oplm

Start a new project from oplm files

Description

Creates a dexter project database and fills it with response data based on a .dat and .scr file

Usage

start_new_project_from_oplm(
dbname,
scr_path,
dat_path,
booklet_position = NULL,
responses_start = NULL,
response_length = 1,
person_id = NULL,
missing_character = c(" ", "9"),
use_discrim = FALSE,
format = "compressed"

)

Arguments

dbname filename/path of new dexter project database (will be overwritten if already ex-
ists)

scr_path path to the .scr file

dat_path path to the .dat file
booklet_position

vector of start and end of booklet position in the dat file, e.g. c(1,4), all positions
are counted from 1, start and end are both inclusive. If NULL, this is read from
the scr file.

responses_start

start position of responses in the .dat file. If NULL, this is read from the scr file.
response_length

length of individual responses, default=1

tia_tables 43

person_id optionally, a vector of start and end position of person_id in the .dat file. If
NULL, person id’s will be auto-generated.

missing_character

vector of character(s) used to indicate missing in .dat file, default is to use both
a space and a 9 as missing characters.

use_discrim if TRUE, the scores for the responses will be multiplied by the discrimination
parameters of the items

format not used, at the moment only the compressed format is supported.

Details

start_new_project_from_oplm builds a complete dexter database from a .dat and .scr file in the pro-
prietary oplm format. Three custom variables are added to the database: booklet_on_off, item_local_on_off,
item_global_on_off. These are taken from the .scr file and can be used in predicates in the various
dexter functions.

Booklet_position and responses_start are usually inferred from the scr file but since they are some-
times misspecified in the scr file they can be overridden. Response_length is not inferred from the
scr file since anything other than 1 is most often a mistake.

Value

a database connection object.

Examples

Not run: \donttest{
db = start_new_project_from_oplm('test.db',

'path_to_scr_file', 'path_to_dat_file',
booklet_position=c(1,3), responses_start=101,
person_id=c(50,62))

prms = fit_enorm(db,
item_global_on_off==1 & item_local_on_off==1 & booklet_on_off==1)

}
End(Not run)

tia_tables Simple test-item analysis

Description

Show simple Classical Test Analysis statistics at item and test level

44 touch_rules

Usage

tia_tables(
dataSrc,
predicate = NULL,
type = c("raw", "averaged", "compared"),
max_scores = c("observed", "theoretical")

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

type How to present the item level statistics: raw for each test booklet separately,
averaged averaged over the test booklet in which the item is included, with the
number of persons as weights, or compared, in which case the pvalues, correla-
tions with the sum score (rit), and correlations with the rest score (rit) are shown
in separate tables and compared across booklets

max_scores use the observed maximum item score or the theoretical maximum items score
according to the scoring rules in the database to compute pvalues and maximum
scores

Value

A list containing:

testStats a data.frame of statistics at test level

itemStats a data.frame (or list if type=’compared’) of statistics at item level

touch_rules Add or modify scoring rules

Description

Having to alter or add a scoring rule is occasionally necessary, e.g. in case of a key error. This
function offers the possibility to do so and also allows you to add new items to your project

Usage

touch_rules(db, rules)

Arguments

db a connection to a dexter project database

rules A data frame with columns item_id, response, and item_score. The order is
not important but spelling is. Any other columns will be ignored. See details

verbAggrData 45

Details

The rules should contain all rules that you want to change or add. This means that in case of a key
error in a single multiple choice question, you typically have to change two rules.

Value

If the scoring rules pass a sanity check, a small summary of changes is printed and nothing is
returned Otherwise this function returns a data frame listing the problems found, with 4 columns:
item_id: id of the problematic item less_than_two_scores: if TRUE, the item has only one distinct
score duplicated_responses: if TRUE, the item contains two or more identical response categories
min_score_not_zero: if TRUE, the minimum score of the item was not 0

Examples

Not run: \donttest{
given that in your dexter project there is an mc item with id 'itm_01',
which currently has key 'A' but you want to change it to 'C'.

new_rules = data.frame(item_id='itm_01', response=c('A','C'), item_score=c(0,1))
touch_rules(db, new_rules)
}
End(Not run)

verbAggrData Verbal aggression data

Description

A data set of self-reported verbal behaviour in different frustrating situations (Vansteelandt, 2000)

Format

A data set with 316 rows and 26 columns.

verbAggrProperties Item properties in the verbal aggression data

Description

A data set of item properties related to the verbal aggression data

Format

A data set with 24 rows and 5 columns.

46 verbAggrRules

verbAggrRules Scoring rules for the verbal aggression data

Description

A set of (trivial) scoring rules for the verbal aggression data set

Format

A data set with 72 rows and 3 columns (item_id, response, item_score).

Index

∗Topic datasets
ratedData, 36
ratedDataProperties, 37
ratedDataRules, 37
verbAggrData, 45
verbAggrProperties, 45
verbAggrRules, 46

ability, 3, 15
ability_tables (ability), 3
add_booklet, 5, 8, 41
add_item_properties, 7, 14
add_person_properties, 8
add_response_data (add_booklet), 5

close_project, 9
coef.p2pass, 9
coef.prms, 10
coef.sts_par (standards_3dc), 38

design_info, 10
dexter (dexter-package), 3
dexter-package, 3
DIF, 11, 29
distractor_plot, 12

expected_score (information), 24

fit_domains, 8, 13, 16
fit_enorm, 4, 10, 14, 24, 34, 35
fit_inter, 14, 16

get_booklets, 17
get_design, 17
get_items, 18
get_persons, 18
get_resp_data, 20
get_resp_matrix (get_resp_data), 20
get_responses, 19, 22
get_rules, 21
get_testscores, 22

get_variables, 19, 22

individual_differences, 23
information, 24

keys_to_rules, 25

open_project, 26

p_score (information), 24
plausible_scores, 15, 26
plausible_values, 15, 27
plot.DIF_stats, 12, 29
plot.p2pass, 30, 34
plot.prms, 15, 31
plot.rim, 14, 16, 32
plot.sts_par (standards_3dc), 38
probability_to_pass, 9, 30, 33
profile_plot, 8, 35
profile_tables (profiles), 34
profiles, 34

r_score (information), 24
r_score_IM, 38
ratedData, 36
ratedDataProperties, 37
ratedDataRules, 37
read_oplm_par, 37

standards_3dc, 38, 40
standards_db, 39, 40
start_new_project, 41
start_new_project_from_oplm, 42

tia_tables, 43
touch_rules, 7, 44

verbAggrData, 45
verbAggrProperties, 45
verbAggrRules, 46

47

	dexter-package
	ability
	add_booklet
	add_item_properties
	add_person_properties
	close_project
	coef.p2pass
	coef.prms
	design_info
	DIF
	distractor_plot
	fit_domains
	fit_enorm
	fit_inter
	get_booklets
	get_design
	get_items
	get_persons
	get_responses
	get_resp_data
	get_rules
	get_testscores
	get_variables
	individual_differences
	information
	keys_to_rules
	open_project
	plausible_scores
	plausible_values
	plot.DIF_stats
	plot.p2pass
	plot.prms
	plot.rim
	probability_to_pass
	profiles
	profile_plot
	ratedData
	ratedDataProperties
	ratedDataRules
	read_oplm_par
	r_score_IM
	standards_3dc
	standards_db
	start_new_project
	start_new_project_from_oplm
	tia_tables
	touch_rules
	verbAggrData
	verbAggrProperties
	verbAggrRules
	Index

