
Package ‘deldir’
July 15, 2020

Version 0.1-28

Date 2020-07-15

Title Delaunay Triangulation and Dirichlet (Voronoi) Tessellation

Author Rolf Turner

Maintainer Rolf Turner <r.turner@auckland.ac.nz>

Depends R (>= 0.99)

Suggests polyclip

Imports graphics, grDevices

Description Calculates the Delaunay triangulation and the Dirichlet
or Voronoi tessellation (with respect to the entire plane) of
a planar point set. Plots triangulations and tessellations in
various ways. Clips tessellations to sub-windows. Calculates
perimeters of tessellations. Summarises information about the
tiles of the tessellation.

LazyData true

ByteCompile true

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-07-15 13:50:03 UTC

R topics documented:
deldir . 2
divchain . 9
divchain.default . 10
divchain.deldir . 11
duplicatedxy . 13
grapherXmpl . 14
lawSummary . 15
niProperties . 17

1

2 deldir

plot.deldir . 18
plot.divchain . 20
plot.tile.list . 21
plot.triang.list . 24
print.deldir . 25
print.tileInfo . 26
seaweed . 28
tile.centroids . 29
tile.list . 30
tileInfo . 31
tilePerim . 32
triang.list . 34
triMat . 35
which.tile . 36

Index 38

deldir Delaunay triangulation and Dirichlet tessellation

Description

This function computes the Delaunay triangulation (and hence the Dirichlet or Voronoi tesselation)
of a planar point set according to the second (iterative) algorithm of Lee and Schacter — see REF-
ERENCES. The triangulation is made to be with respect to the whole plane by suspending it from
so-called ideal points (-Inf,-Inf), (Inf,-Inf) (Inf,Inf), and (-Inf,Inf). The triangulation is also enclosed
in a finite rectangular window. A set of dummy points may be added, in various ways, to the set of
data points being triangulated.

Usage

deldir(x, y, dpl=NULL, rw=NULL, eps=1e-09, sort=TRUE, plotit=FALSE,
round=TRUE,digits=6, z=NULL, zdum=NULL, suppressMsge=FALSE, ...)

Arguments

x,y These arguments specify the coordinates of the point set being triangulated or
tessellated. These can be given by two separate arguments x and y which are
vectors or by a single argument x which is either a data frame or a generic list,
possibly one of class ppp. (See package spatstat.)
If x is a data frame then the x coordinates of the points to be triangulated or
tessellated are taken to be the column of this data frame which is named “x” if
there is one, else the first column of the data frame which is not named either
“y” or “z”. The y coordinates are taken to be the column of this data frame
which is named “y” if there is one. If there is no column named “y” but there
are columns named “x” and “z” then the y coordinates are taken to be the first

deldir 3

“other” column. If there no columns named either “x” or “y”, then the x coor-
dinates are taken to be the first column not named “z” and the y coordinates are
taken to be the second column not named “z”.
If there is a column named “z” and if the argument z (see below) is NULL, then
this the column named “z” is taken to be the value of z.
If x is a list (but not a data frame) then it must have components named x and
y, and possibly a component named z. The x and y components give the x and
y coordinates respectively of the points to be triangulated or tessellated. If x is
not of class ppp, if it has a component z and if argument z is NULL, then the z
argument is set equal to this component z. If x is of class “ppp”, if the argument
z is NULL, if x is “marked” (see package spatstat) and if the marks of x are a
vector or a factor (as opposed to a data frame) then the z argument is set equal
to these marks. In this case x should not have a component z, and at any rate
such a component would be ignored.

dpl A list describing the structure of the dummy points to be added to the data being
triangulated. The addition of these dummy points is effected by the auxiliary
function dumpts(). The list may have components:

• ndx: The x-dimension of a rectangular grid; if either ndx or ndy is null, no
grid is constructed.

• ndy: The y-dimension of the aforementioned rectangular grid.
• nrad: The number of radii or “spokes”, emanating from each data point,

along which dummy points are to be added.
• nper: The number of dummy points per spoke.
• fctr: A numeric “multiplicative factor” determining the length of each

spoke; each spoke is of length equal to fctr times the mean nearest neigh-
bour distance of the data. (This distance is calculated by the auxiliary func-
tion mnnd().)

• x: A vector of x-coordinates of “ad hoc” dummy points
• y: A vector of the corresponding y-coordinates of “ad hoc” dummy points

rw The coordinates of the corners of the rectangular window enclosing the trian-
gulation, in the order (xmin, xmax, ymin, ymax). Any data points (including
dummy points) outside this window are discarded. If this argument is omitted,
it defaults to values given by the range of the data, plus and minus 10 percent.

eps A value of epsilon used in testing whether a quantity is zero, mainly in the
context of whether points are collinear. If anomalous errors arise, it is possible
that these may averted by adjusting the value of eps upward or downward.

sort Logical argument; if TRUE (the default) the data (including dummy points) are
sorted into a sequence of “bins” prior to triangulation; this makes the algorithm
slightly more efficient. Normally one would set sort equal to FALSE only if one
wished to observe some of the fine detail of the way in which adding a point to
a data set affected the triangulation, and therefore wished to make sure that the
point in question was added last. Essentially this argument would get used only
in a de-bugging process.

plotit Logical argument; if TRUE a plot is produced. The nature of the plot may be con-
trolled by using the ... argument to pass appropriate arguments to plot.deldir().

4 deldir

Without “further instruction” a plot of the points being triangulated and of both
the triangulation and the tessellation is produced;

round Logical scalar. Should the data stored in the returned value be rounded to digits
decimal digits? This is essentially for cosmetic purposes. This argument is
a “new addtion” to deldir(), as of version 0.1-26. Previously rounding was
done willy-nilly. The change was undertaken when Kodi Arfer pointed out that
the rounding might have unwanted effects upon “downstream” operations.

digits The number of decimal places to which all numeric values in the returned list
should be rounded. Defaults to 6. Ignored if round (see above) is set to FALSE.

z An optional vector of “auxiliary” values or “weights” associated with the re-
spective points. (NOTE: These “weights” are values associated with the points
and hence with the tiles of the tessellation produced. They DO NOT affect the
tessellation, i.e. the tessellation produced is the same as is it would be if there
were no weights. The deldir package DOES NOT do weighted tessellation.
The so-called weights in fact need not be numeric.)
If z is left NULL then it is taken to be the third column of x, if x is a data frame
or to be the z component of x if x is a generic list. If z is left NULL and if x is
of class “ppp” and is “marked” (see package spatstat) and if in addition the
marks are atomic (i.e. not a data frame) then z is taken to be the marks of x.

zdum Values of z to be associated with any dummy points that are created. See Warn-
ings.

suppressMsge Logical scalar indicating whether a message (alerting the user to changes from
previous versions of deldir) should be suppressed.

... Auxiliary arguments add, wlines, wpoints, number, nex, col, lty, pch, xlim,
and ylim (and possibly other plotting parameters) may be passed to plot.deldir()
through ... if plotit=TRUE.

Details

This package is a (straightforward) adaptation of the Splus library section “delaunay” to R. That
library section is an implementation of the Lee-Schacter algorithm, which was originally written as
a stand-alone Fortran program in 1987/88 by Rolf Turner, while with the Division of Mathematics
and Statistics, CSIRO, Sydney, Australia. It was re-written as an Splus function (using dynamically
loaded Fortran code), by Rolf Turner while visiting the University of Western Australia, May, 1995.

Further revisions were made December 1996. The author gratefully acknowledges the contribu-
tions, assistance, and guidance of Mark Berman, of D.M.S., CSIRO, in collaboration with whom
this project was originally undertaken. The author also acknowledges much useful advice from
Adrian Baddeley, formerly of D.M.S., CSIRO (now Professor of Statistics at Curtin University).
Daryl Tingley of the Department of Mathematics and Statistics, University of New Brunswick pro-
vided some helpful insight. Special thanks are extended to Alan Johnson, of the Alaska Fisheries
Science Centre, who supplied two data sets which were extremely valuable in tracking down some
errors in the code.

Don MacQueen, of Lawrence Livermore National Lab, wrote an Splus driver function for the old
stand-alone version of this software. That driver, which was available on Statlib, is now deprecated
in favour of the current package “delaunay” package. Don also collaborated in the preparation of
that package.

See the ChangeLog for information about further revisions and bug-fixes.

deldir 5

Value

A list (of class deldir), invisible if plotit=TRUE, with components:

delsgs A data frame with 6 columns. The first 4 entries of each row are the coor-
dinates of the points joined by an edge of a Delaunay triangle, in the order
(x1,y1,x2,y2). The last two entries are the indices of the two points which are
joined.

dirsgs A data frame with 10 columns. The first 4 entries of each row are the coordinates
of the endpoints of one the edges of a Dirichlet tile, in the order (x1,y1,x2,y2).
The fifth and sixth entries, in the columns named ind1 and ind2, are the indices
of the two points, in the set being triangulated, which are separated by that
edge. The seventh and eighth entries, in the columns named bp1 and bp2 are
logical values. The entry in column bp1 indicates whether the first endpoint of
the corresponding edge of a Dirichlet tile is a boundary point (a point on the
boundary of the rectangular window). Likewise for the entry in column bp2 and
the second endpoint of the edge.
The nineth and tenth entries, in columns named thirdv1 and thirdv2 are the
indices of the respective third vertices of the Delaunay triangle whose circum-
centres constitute the corresponding endpoints of the edge under consideration.
(The other two vertices of the triangle in question are indexed by the entries of
columns ind1 and ind2.)
The entries of columns thirdv1 and thirdv2 may (also) take the values $-1, -2,
-3$, and -4. This will be the case if the circumcentre in question lies outside
of the rectangular window rw. In these circumstances the corresponding end-
point of the tile edge is the intersection of the line joining the two circumcentres
with the boundary of rw, and the numeric value of the entry of column “thirdv1”
(respectively “thirdv2”) indicates which side. The numbering follows the con-
vention for numbering the sides of a plot region in R: 1 for the bottom side, 2 for
the left hand side, 3 for the top side and 4 for the right hand side.
Note that the entry in column thirdv1 will be negative if and only if the cor-
responding entry in column bp1 is TRUE. Similarly for columns thirdv2 and
bp2.

summary a data frame with 9, 10 or 11 columns and n.data + n.dum rows (see below).
The rows correspond to the points in the set being triangulated. Note that the
row names are the indices of the points in the orginal sequence of points being
triangulated/tessellated. Usually these will be the sequence 1, 2, ..., npd ("n
plus dummy"). However if there were duplicated points then the row name
corresponding to a point is the first of the indices of the set of duplicated points
in which the given point appears. The columns are:

• x (the x-coordinate of the point)
• y (the y-coordinate of the point)
• pt.type (a character vector with entries “data” and “dummy”; present only

if n.dum > 0)
• z (the auxiliary values or “weights”; present only if these were specified)
• n.tri (the number of Delaunay triangles emanating from the point)
• del.area (1/3 of the total area of all the Delaunay triangles emanating from

the point)

6 deldir

• del.wts (the corresponding entry of the del.area column divided by the
sum of this column)

• n.tside (the number of sides — within the rectangular window — of the
Dirichlet tile surrounding the point)

• nbpt (the number of points in which the Dirichlet tile intersects the bound-
ary of the rectangular window)

• dir.area (the area of the Dirichlet tile surrounding the point)
• dir.wts (the corresponding entry of the dir.area column divided by the

sum of this column).

Note that the factor of 1/3 associated with the del.area column arises because
each triangle occurs three times — once for each corner.

n.data the number of real (as opposed to dummy) points in the set which was triangu-
lated, with any duplicate points eliminated. The first n.data rows of summary
correspond to real points.

n.dum the number of dummy points which were added to the set being triangulated,
with any duplicate points (including any which duplicate real points) eliminated.
The last n.dum rows of summary correspond to dummy points.

del.area the area of the convex hull of the set of points being triangulated, as formed by
summing the del.area column of summary.

dir.area the area of the rectangular window enclosing the points being triangulated, as
formed by summing the dir.area column of summary.

rw the specification of the corners of the rectangular window enclosing the data, in
the order (xmin, xmax, ymin, ymax).

ind.orig A vector of the indices of the points (x,y) in the set of coordinates initially sup-
plied (as data points or as dummy points) to deldir() before duplicate points
(if any) were removed. These indices are used by triang.list().

Remark:

If ndx >= 2 and ndy >= 2, then the rectangular window IS the convex hull, and so the values of
del.area and dir.area (if the latter is not NULL) are identical.

Side Effects

If plotit=TRUE a plot of the triangulation and/or tessellation is produced or added to an existing
plot.

Notes on error messages

In the underlying Fortran code, error traps have been set for 17 different errors, which are identified
by an error number nerror. When one of these traps detects an error, the value of nerror is passed
back along the call stack to the R function deldir() that calls the Fortran subroutines. (I.e. to
this function, the documentation of which you are currently reading.) The deldir() function then
prints out a message and returns (invisibly) a NULL value. The message consists only of the value
of nerror. A glossary of the meanings of the values of nerror is to be found in the file err.list,
located in the top level of the package directory (“folder” if you are a Windoze weenie).

deldir 7

Note that the values 4, 14 and 15 of nerror do not cause deldir() to return a NULL value but rather
cause a message to be printed, storage (memory) to be re-allocated (increased) and deldir() to be
re-started so as to take advantage of the increased amount of storage.

In version 0.1-16 of deldir a new error trap was introduced, and this new trap triggers a genuine
error and does so in a direct and perspicuous manner.

This new error trap relates to “triangle problems”. It was drawn to my attention by Adam Dadvar (on
18 December, 2018) that in some data sets collinearity problems may cause the “triangle finding”
procedure, used by the algorithm to successively add new points to a tessellation, to go into an
infinite loop. A symptom of the collinearity is that the vertices of a putative triangle appear not to
be in anticlockwise order irrespective of whether they are presented in the order i,j,k or k,j,i.
The result of this anomaly is that the procedure keeps alternating between moving to “triangle”
i,j,k and moving to “triangle” k,j,i, forever.

The new error trap, set in trifnd, the triangle finding subroutine, detects such occurrences of
“clockwise in either orientation” vertices. The trap causes the deldir() function to throw an error
rather than disappearing into a black hole. The error is thrown “directly” rather than via passing a
nerror number back up the call stack. The facility for triggering an error in this manner was not
available when the deldir package was originally written. In the reasonably near future the deldir
package will be adjusted so that all error traps throw errors in the “direct” manner, and use of the
nerror numbers will be eliminated.

When an error of the “triangle problems” nature occurs, a possible remedy is to increase the value
of the eps argument of deldir(). (See the Examples.) There may conceiveably be other problems
that lead to infinite loops and so I have put in another error trap to detect whether the procedure has
inspected more triangles than actually exist, and if so to throw an error.

Note that the strategy of increasing the value of eps is probably the appropriate one in most (if not
all) of the cases where errors of this nature arise. (Similarly this strategy is probably the appropriate
response to errors with nerror equal to 3, 12 and 13.) However it is impossible to be sure. The
intricacy and numerical delicacy of triangulations is too great for anyone to be able to foresee all
the possibilities that could arise.

If there is any doubt as the appropriateness of the “increase eps” strategy, the user is advised to do
his or her best to explore the data set, graphically or by other means, and thereby determine what is
actually going on and why problems are occurring.

Warnings

1. The process for determining if points are duplicated changed between versions 0.1-9 and 0.1-
10. Previously there was an argument frac for this function, which defaulted to 0.0001. Points
were deemed to be duplicates if the difference in x-coordinates was less than frac times the
width of rw and y-coordinates was less than frac times the height of rw. This process has
been changed to one which uses duplicated() on the data frame whose columns are x and y.
As a result it may happen that points which were previously eliminated as duplicates will no
longer be eliminated. (And possibly vice-versa.)

2. The components delsgs and summary of the value returned by deldir() are now data frames
rather than matrices. The component summary was changed to allow the “auxiliary” values
z to be of arbitrary mode (i.e. not necessarily numeric). The component delsgs was then
changed for consistency. Note that the other “matrix-like” component dirsgs has been a data
frame since time immemorial.

8 deldir

A message alerting the user to the foregoing two items is printed out the first time that
deldir() is called with suppressMsge=FALSE in a given session. In succeeding calls to
deldir() in the same session, no message is printed. (I.e. the “alerting” message is printed
at most once in any given session.)
The “alerting” message is not produced via the warning() function, so suppressWarnings()
will not suppress its appearance. To effect such suppression (necessary only on the first call
to deldir() in a given session) one must set the suppressMsge argument of deldir equal to
TRUE.

3. If any dummy points are created, and if a vector z, of “auxiliary” values or “weights” asso-
ciated with the points being triangulated, is supplied, then it is up to the user to supply the
corresponding auxiliary values or weights associated with the dummy points. These values
should be supplied as zdum. If zdum is not supplied then the auxiliary values or weights asso-
ciated with the dummy points are all taken to be missing values (i.e. NA).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

Lee, D. T., and Schacter, B. J. Two algorithms for constructing a Delaunay triangulation, Int. J.
Computer and Information Sciences, Vol. 9, No. 3, 1980, pp. 219 – 242.

Ahuja, N. and Schacter, B. J. (1983). Pattern Models. New York: Wiley.

See Also

plot.deldir(), tile.list(), triang.list()

Examples

x <- c(2.3,3.0,7.0,1.0,3.0,8.0)
y <- c(2.3,3.0,2.0,5.0,8.0,9.0)

Let deldir() choose the rectangular window.
dxy1 <- deldir(x,y)

User chooses the rectangular window.
dxy2 <- deldir(x,y,rw=c(0,10,0,10))

Put dummy points at the corners of the rectangular
window, i.e. at (0,0), (10,0), (10,10), and (0,10)
dxy3 <- deldir(x,y,dpl=list(ndx=2,ndy=2),rw=c(0,10,0,10))

Plot the triangulation created (but not the tesselation).
Not run:
dxy2 <- deldir(x,y,rw=c(0,10,0,10),plot=TRUE,wl='tr')

End(Not run)

Auxiliary values associated with points; 4 dummy points to be

divchain 9

added so 4 dummy "z-values" provided.
z <- c(1.63,0.79,2.84,1.56,0.22,1.07)
zdum <- rep(42,4)
dxy4 <- deldir(x,y,dpl=list(ndx=2,ndy=2),rw=c(0,10,0,10),z=z,zdum=zdum)

Example of collinearity error.
Not run:

dniP <- deldir(niProperties) # Throws an error

End(Not run)
dniP <- deldir(niProperties,eps=1e-8) # No error.

divchain Dividing chain; generic.

Description

Generic function for creating the “dividing chain” of a Dirchlet tesselation. The tessellation must
have been created from a set of points having associated categorical “weights”. The dividing chain
consists of those edges of Dirichlet tiles which separate points having different values of the given
weights.

Usage

divchain(x, ...)

Arguments

x Either an object specifying coordinates or an object of class “deldir”.

... Arguements to be passed to the appropriate method for this generic function.

Details

If x is a (numeric) vector it will be taken to be the “x” coordinates of the points being tessellated.
In this case the . . . \ arguments must contain a vector y specifying the “y” coordinates. The . . . \
arguments must also contain a factor z specifying the relevant “weights” argument. The argument
x may also be a data frame or list from which the coordinates and the weights will be extracted. See
divchain.default() for details.

If x is an object of class class “deldir” then it must have been created with an appropriate (factor)
“weights” argument, otherwise an error is given.

Value

An object of class “divchain”. See divchain.deldir() for details.

Note

This function was created in response to a question asked on stackoverflow.com by a user named
“Dan”.

10 divchain.default

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

divchain.default() divchain.deldir() deldir() plot.divchain()

Examples

set.seed(42)
x <- runif(50)
y <- runif(50)
z <- factor(kmeans(cbind(x,y),centers=4)$cluster)
dc1 <- divchain(x,y,z,rw=c(0,1,0,1))
dxy <- deldir(x,y,z=z,rw=c(0,1,0,1))
dc2 <- divchain(dxy)

divchain.default Dividing chain; default method.

Description

Create the “dividing chain” of the Dirchlet tesselation of a given set of points having distinguishing
(categorical) “weights”. This dividing chain consists of those edges of Dirichlet tiles which separate
points having different values of the given weights.

Usage

Default S3 method:
divchain(x, y, z, ...)

Arguments

x,y These provide the coordinates of the set of points being tesselated. Argument x
may be a data frame or a list, in particular one of class ppp. (See the spatstat
package.) For a full description see the discussion of these arguments in the help
for deldir().

z A factor specifying “auxiliary” values or “weights” If this argument is left NULL
then it is extracted, if possible, from the components of x. See deldir() for
further details.

... Other arguments to be passed to deldir.

Value

An object of class divchain. See divchain.deldir() for details.

divchain.deldir 11

Note

This function was created in response to a question asked on stackoverflow.com by a user named
“Dan”.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

divchain.deldir() deldir() plot.divchain()

Examples

set.seed(42)
x <- runif(50)
y <- runif(50)
z <- factor(kmeans(cbind(x,y),centers=4)$cluster)
dcxy <- divchain(x,y,z,rw=c(0,1,0,1))

divchain.deldir Dividing chain; “deldir” method.

Description

Create the “dividing chain” of a Dirchlet tesselation. The tessellation must have been created from
a set of points having associated categorical “weights”. The dividing chain consists of those edges
of Dirichlet tiles which separate points having different values of the given weights.

Usage

S3 method for class 'deldir'
divchain(x, ...)

Arguments

x An object of class “deldir”. This object must have been created in such a way
that the points of the set being tessellated have associate categorical “weights”.
That is, deldir() must have been called with a factor valued z argument or the
x argument to deldir() must have had an appropriate component which could
be taken to be z.

... Not used.

12 divchain.deldir

Value

An object of class “divchain” consisting of a data frame with columns named “x0”, “y0”, “x1”,“y1”,
“v01”, “v02”, “v03”, “v11”, “v12” and “v13”.

The columns named “x0” and “y0” consist of the coordinates of one endpoint of an edge of a
Dirichlet tile and the columns named “x1” and “y1” consist of the coordinates of the other endpoint.

The columns named “vij”, i = 0, 1, j = 1, 2, 3, consist of the indices of the vertices of the Delaunay
triangles whose circumcentres constitute the respective endpoints of the corresponding edge of a
Dirichlet tile. The entries of column “vi3” may (also) take the values $-1, -2, -3$, and -4. This will
be the case if the circumcentre in question lay outside of the rectangular window rw (see deldir())
enclosing the points being tessellated. In these circumstances the corresponding endpoint of the
tile edge is the intersection of the line joining the two circumcentres with the boundary of rw, and
the numeric value of the entry of column “vi3” indicates which side. The numbering follows the
convention for numbering the sides of a plot region in R: 1 for the bottom side, 2 for the left side, 3
for the top side and 4 for the right side.

Note that the triple of vertices uniquely identify the endpoint of the tile edge.

The object has an attribute rw which is equal to the specification of the rectangular window within
which the class “deldir” object x was constructed. (See deldir().)

Note

This function was created in response to a question asked on stackoverflow.com by a user named
“Dan”.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

divchain.default() deldir() plot.divchain()

Examples

set.seed(42)
x <- runif(50)
y <- runif(50)
z <- factor(kmeans(cbind(x,y),centers=4)$cluster)
dxy <- deldir(x,y,z=z,rw=c(0,1,0,1))
dc <- divchain(dxy)

duplicatedxy 13

duplicatedxy Determine duplicated points.

Description

Find which points among a given set are duplicates of others.

Usage

duplicatedxy(x, y)

Arguments

x Either a vector of x coordinates of a set of (two dimensional) points, or a list (or
data frame) with columns x and y giving the coordinates of a set of such points.

y A vector of y coordinates of a set of (two dimensional) points. Ignored if x is a
list or data frame.

Details

Often it is of interest to associate each Dirichlet tile in a tessellation of a planar point set with the
point determining the tile. This becomes problematic if there are duplicate points in the set being
tessellated/triangulated. Duplicated points are automatically eliminated “internally” by deldir().
The association between tiles and the indices of the original set of points is now preserved by the
component ind.orig of the object returned by deldir(). However confusion could still arise.

If it is of interest to associate Dirichlet tiles with the points determining them, then it is better to
proceed by eliminating duplicate points to start with. This function (duplicatedxy()) provides a
convenient way of doing so.

Value

A logical vector of length equal to the (original) number of points being considered, with entries
TRUE if the corresponding point is a duplicate of a point with a smaller index, and FALSE otherwise.

Warning

Which indices will be considered to be indices of duplicated points (i.e. get TRUE values) will of
course depend on the order in which the points are presented.

Note

The real work is done by the base R function duplicated().

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

14 grapherXmpl

See Also

duplicated(), deldir()

Examples

set.seed(42)
xy <- data.frame(x=runif(20),y=runif(20))
Lots of duplicated points.
xy <- rbind(xy,xy[sample(1:20,20,TRUE),])
Scramble.
ii <- sample(1:40,40)
x <- xy$x[ii]
y <- xy$y[ii]
Unduplicate!
iii <- !duplicatedxy(x,y)
xu <- x[iii]
yu <- y[iii]
The i-th tile is determined by (xu[i],yu[i]):
dxy <- deldir(xu,yu)

grapherXmpl grapherXmpl

Description

A data set taken from an example in the grapherator package. This data set demonstrates handling
a data set with duplicated points.

Usage

grapherXmpl

Format

A data frame with 250 observations on the following 2 variables.

x a numeric vector

y a numeric vector

Details

There are 25 duplicated points, so the net number of observations is 225. These data constitute a
structure (named coordinates) generated internally in the function addEdgesDelaunay. The call
is to be found in the examples in the help file for the plot.grapherator() in the grapherator
package. The relevant example initially threw an error, revealing a bug in deldir() that was trig-
gered when there were duplicated points in the data.

lawSummary 15

Source

The grapherator package, https://CRAN.R-project.org/package=grapherator

Examples

dgX <- deldir(grapherXmpl) # Now works!!!`

lawSummary Produce a Lewis-Aboav-Weaire summary of a tessellation.

Description

Produce a summary of a Direchlet (Voronoi) tessellation in terms of parameters relevant to Lewis’s
law and Aboav-Weaire’s law. Note that “law” in the function name corresponds to “Lewis-Aboav-
Weaire”.

Usage

lawSummary(object)

Arguments

object An object of class "deldir" as returned by the function deldir().

Details

Tiles are stripped away from the tessellation in “layers”. Layer 1 consists of “boundary” tiles,
i.e. tiles having at least one vertex on the enclosing rectangle (determined by the rw argument of
deldir()). Layer 2 consists of tiles which are neighbours of tiles in layer 1 (i.e. tiles determined
by points that are Delaunay neighbours of points determining the tiles in layer 1). Layer 3 consists
of tiles which are neighbours of tiles in layer 2.

The parameters of interest in respect of the Lewis-Aboav-Weaire summary are then calculated in
terms of the tiles that remain after the three layers have been stripped away, which will be referred
to as “interior” tiles. These parameters are:

• the areas of each of the interior tiles

• the number of edges of each of the interior tiles

• the number of edges of all neighbouring tiles of each of the interior tiles.

Note that the neighbouring tiles of the interior tiles may include tiles which are not themselves
interior tiles (i.e. tiles which are in layer 3).

This function was created at the request of Kai Xu (Fisheries College, Jimei University, Xiamen,
Fujian, China 361021).

https://CRAN.R-project.org/package=grapherator

16 lawSummary

Value

If no tiles remain after the three layers have been stripped away, then the returned value is NULL.
Otherwise the returned value is a list with components calculated in terms of the remaining (“inte-
rior”) tiles. These components are:

• tile.vertices A list whose entries are data frames giving the coorinates of the vertices of
the interior tiles.

• tile.areas A vector of the areas of the interior tiles in the tessellation in question.

• num.edges A vector of the number of edges of each such tile.

• num.nbr.edges A list with a component for each point, in the set being tessellated, whose
corresponding tile is an interior tile. Each component of this list is the vector of the number
of edges of the interior tiles determined by points which are Delaunay neighbours of the point
corresponding to the list component in question.

• totnum.nbr.edges A vector whose entries consist of the sums of the vectors in the foregoing
list.

The returned list also has attributes as follows:

• i1 An integer vector whose entries are in the indices of the tiles in layer 1.

• i2 An integer vector whose entries are in the indices of the tiles in layer 2.

• i3 An integer vector whose entries are in the indices of the tiles in layer 3.

• i.kept An integer vector whose entries are in the indices of the tiles that are kept, i.e. those
that remain after the three layers have been stripped away.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tile.list() tile.centroids()

Examples

A random pattern:
set.seed(42)
xy1 <- data.frame(x=runif(400,0,20),y=runif(400,0,20))
dxy1 <- deldir(xy1)
ldxy1 <- lawSummary(dxy1)
tl1 <- tile.list(dxy1)
plot(0,0,type="n",xlim=c(-2,35),ylim=c(0,20),asp=1,xlab="x",ylab="y",bty="l")
plot(tl1,showpoints=FALSE,add=TRUE)
points(xy1[attr(ldxy1,"i1"),],pch=20,col="yellow")
points(xy1[attr(ldxy1,"i2"),],pch=20,col="blue")
points(xy1[attr(ldxy1,"i3"),],pch=20,col="green")
points(xy1[attr(ldxy1,"i.kept"),],pch=20,col="red")
legend("right",pch=20,col=c("yellow","blue","green","red"),

legend=c("layer 1","layer 2","layer 3","interior"))

niProperties 17

A highly structured pattern (example due to Kai Xu):
set.seed(115)
x <- c(rep(1:20,10),rep((1:20)+0.5,10))
y <- c(rep(1:10,each=20),rep((1:10)+0.5,each=20))*sqrt(3)
a <- runif(400,0,2*pi)
b <- runif(400,-1,1)
x <- x+0.1*cos(a)*b
y <- y+0.1*sin(a)*b
xy2 <- data.frame(x,y)
dxy2 <- deldir(xy2)
ldxy2 <- lawSummary(dxy2)
tl2 <- tile.list(dxy2)
plot(0,0,type="n",xlim=c(-2,35),ylim=c(0,20),asp=1,xlab="x",ylab="y",bty="l")
plot(tl2,showpoints=FALSE,add=TRUE)
points(xy2[attr(ldxy2,"i1"),],pch=20,col="yellow")
points(xy2[attr(ldxy2,"i2"),],pch=20,col="blue")
points(xy2[attr(ldxy2,"i3"),],pch=20,col="green")
points(xy2[attr(ldxy2,"i.kept"),],pch=20,col="red")
legend("right",pch=20,col=c("yellow","blue","green","red"),

legend=c("layer 1","layer 2","layer 3","interior"))

niProperties Northern Ireland properties.

Description

The locations (in longitude and latitude) of a number of properties (land holdings) in Northern
Ireland.

Usage

data("niProperties")

Format

A data frame with 240 observations on the following 2 variables.

x A numeric vector of longitudes.

y A numeric vector of latitudes.

Source

These data were kindly provided by Adam Dadvar of the Cartesian Limited consulting service.
URL: http://www.cartesian.com.

18 plot.deldir

Examples

data(niProperties)
It is unnecessary to use \code{data} since \code{niProperties} is
a "first class object". It is "lazily loaded".
plot(niProperties)

plot.deldir Plot objects produced by deldir

Description

This is a method for plot.

Usage

S3 method for class 'deldir'
plot(x,add=FALSE,wlines=c('both','triang','tess'),

wpoints=c('both','real','dummy','none'),
number=FALSE,cex=1,nex=1,col=NULL,lty=NULL,
pch=NULL,xlim=NULL,ylim=NULL,axes=FALSE,
xlab=if(axes) 'x' else '',ylab=if(axes) 'y' else'',
showrect=FALSE,...)

Arguments

x An object of class "deldir" as constructed by the function deldir.

add logical argument; should the plot be added to an existing plot?

wlines "which lines?". I.e. should the Delaunay triangulation be plotted (wlines=’triang’),
should the Dirichlet tessellation be plotted (wlines=’tess’), or should both be
plotted (wlines=’both’, the default) ?

wpoints "Which points to plot?". I.e. should the real points be plotted (wpoints=’real’),
should the dummy points be plotted (wpoints=’dummy’), should both be plotted
(wpoints=’both’, the default) or should no points be plotted (wpoints=’none’)?

number Logical argument, defaulting to FALSE; if TRUE then the points plotted will be
labelled with their index numbers (corresponding to the row numbers of the
matrix "summary" in the output of deldir).

cex The value of the character expansion argument cex to be used with the plotting
symbols for plotting the points.

nex The value of the character expansion argument cex to be used by the text func-
tion when numbering the points with their indices. Used only if number=TRUE.

col The colour numbers for plotting the triangulation, the tesselation, the data points,
the dummy points, and the point numbers, in that order; defaults to c(1,1,1,1,1).
If fewer than five numbers are given, they are recycled. (If more than five num-
bers are given, the redundant ones are ignored.)

plot.deldir 19

lty The line type numbers for plotting the triangulation and the tesselation, in that
order; defaults to 1:2. If only one value is given it is repeated. (If more than two
numbers are given, the redundant ones are ignored.)

pch The plotting symbols for plotting the data points and the dummy points, in that
order; may be either integer or character; defaults to 1:2. If only one value is
given it is repeated. (If more than two values are given, the redundant ones are
ignored.)

xlim The limits on the x-axis. Defaults to rw[1:2] where rw is the rectangular window
specification returned by deldir().

ylim The limits on the y-axis. Defaults to rw[3:4] where rw is the rectangular window
specification returned by deldir().

axes Logical scalar. Should axes be drawn on the plot?

xlab Label for the x-axis. Defaults to x if axes is TRUE and to the empty string if
axes is FALSE. Ignored if add=TRUE.

ylab Label for the y-axis. Defaults to y if axes is TRUE and to the empty string if
axes is FALSE. Ignored if add=TRUE.

showrect Logical scalar; show the enclosing rectangle rw (see deldir()) be plotted?

... Further plotting parameters to be passed to plot() segments() or points() or
text(). Unlikely to be used.

Details

The points in the set being triangulated are plotted with distinguishing symbols. By default the real
points are plotted as circles (pch=1) and the dummy points are plotted as triangles (pch=2).

Side Effects

A plot of the points being triangulated is produced or added to an existing plot. As well, the edges
of the Delaunay triangles and/or of the Dirichlet tiles are plotted. By default the triangles are plotted
with solid lines (lty=1) and the tiles with dotted lines (lty=2).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir()

Examples

Not run:
try <- deldir(x,y,list(ndx=2,ndy=2),c(0,10,0,10))
plot(try)
#
deldir(x,y,list(ndx=4,ndy=4),plot=TRUE,add=TRUE,wl='te',

col=c(1,1,2,3,4),num=TRUE)
Plots the tesselation, but does not save the results.

20 plot.divchain

try <- deldir(x,y,list(ndx=2,ndy=2),c(0,10,0,10),plot=TRUE,wl='tr',
wp='n')

Plots the triangulation, but not the points, and saves the
returned structure.

End(Not run)

plot.divchain Plot a dividing chain.

Description

Plot the dividing chain of a Dirchlet tesselation. The tessellation must have been created from a
set of points having associated categorical “weights”. The dividing chain consists of those edges of
Dirichlet tiles which separate points having different values of the given weights.

Usage

S3 method for class 'divchain'
plot(x, add = FALSE, ...)

Arguments

x An object of class “divchain”. See divchain.deldir() for details.

add Logical scalar. It add=TRUE the plot of the dividing chain is added to an existing
plot.

... Graphical parameters such as main, xlab, col.main, col.lab. In particular
if bty is supplied (as a value other than n) a “box” will be drawn around the
plot that is formed when add=FALSE. Also a non-standard graphical parameter
boxcol may be supplied which will be taken to be the colour with which the box
is drawn. If a col argument is supplied, this determines the colour for plotting
the segments constituting the dividing chain.

Value

None.

Note

This function was created in response to a question asked on stackoverflow.com by a user named
“Dan”.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

divchain() divchain.default() divchain.deldir() deldir()

plot.tile.list 21

Examples

set.seed(42)
x <- runif(50)
y <- runif(50)
z <- factor(kmeans(cbind(x,y),centers=4)$cluster)
dc <- divchain(x,y,z,rw=c(0,1,0,1))
plot(dc,lwd=2,col="blue",bty="o")

plot.tile.list Plot Dirchlet (Voronoi) tiles

Description

A method for plot. Plots (sequentially) the tiles associated with each point in the set being tessel-
lated.

Usage

S3 method for class 'tile.list'
plot(x, verbose = FALSE, close = FALSE, pch = 1,

fillcol = getCol(x,warn=warn), col.pts=NULL,
col.num=NULL,border=NULL, showpoints = !number,
add = FALSE, asp = 1, clipp=NULL, xlab = "x",
ylab = "y", main = "", warn=FALSE,
number=FALSE,adj=NULL,...)

Arguments

x A list of the tiles in a tessellation, as produced the function tile.list().

verbose Logical scalar; if TRUE the tiles are plotted one at a time (with a “Go?” prompt
after each) so that the process can be watched.

close Logical scalar; if TRUE the outer edges of of the tiles (i.e. the edges which are
contained in the enclosing rectangle) are drawn. Otherwise tiles on the periphery
of the tessellation are left “open”.

pch The plotting character (or vector of plotting characters) with which to plot the
points of the pattern which was tessellated. Ignored if showpoints is FALSE.

fillcol Optional vector (possibly of length 1, i.e. a scalar) whose entries can be inter-
preted as colours by col2rgb(). The i-th entry indicates with which colour to
fill the i-th tile. Note that an NA entry cause the tile to be left unfilled. This
argument will be replicated to have length equal to the number of tiles.

col.pts Optional vector like unto fillcol whose entries can be interpreted as colours
by col2rgb(). The i-th entry indicates with which colour to plot the i-th point.
This argument will be replicated to have length equal to the number of tiles.
Ignored if showpoints is FALSE.

22 plot.tile.list

col.num Optional vector like unto col.pts. Determines the colours in which the point
numbers (see number below). This argument will be replicated to have length
equal to the number of tiles. Ignored if number is FALSE.

border A scalar indicating the colour with which to plot the tile boundaries. Defaults
to black unless all of the fill colours specified by fillcol are black, in which
case it defaults to white. If length(border) > 1 then an error is given.

showpoints Logical scalar; if TRUE the points of the pattern which was tesselated are plotted.

add Logical scalar; should the plot of the tiles be added to an existing plot?

asp The aspect ratio of the plot; integer scalar or NA. Set this argument equal to NA to
allow the data to determine the aspect ratio and hence to make the plot occupy
the complete plotting region in both x and y directions. This is inadvisable; see
the Warnings.

clipp An object specifying a polygon to which the tessellation being plotted should be
clipped. It should consist either of:

• a list containing two components x and y giving the coordinates of the ver-
tices of a single polygon. The last vertex should not repeat the first vertex.
Or:

• a list of list(x,y) structures giving the coordinates of the vertices of several
polygons.

If this argument is provided then the plot of the tessellation is “clipped” to the
polygon specified by clipp.

xlab Label for the x-axis (used only if add is FALSE).

ylab Label for the y-axis (used only if add is FALSE).

main A title for the plot (used only if add is FALSE).

warn Logical scalar passed to the internal function getCol(). Should a warning be
issued if the z components of the entries of x cannot all be interpreted as colours.
See Notes.

number Logical scalar; if TRUE the numbers of the points determining the tiles are plotted
in the tiles. Note that if number is TRUE then showpoints defaults to FALSE

adj The “adjustment” argument to text(). If number and showpoints are both
TRUE it defaults to -1 (so that the numbers and point symbols are not superim-
posed). If number is TRUE and showpoints is FALSE it defaults to 0. If number
is FALSE it is ignored.

... Optional arguments; may be passed to points() and text().

Value

NULL; side effect is a plot.

Warnings

• The behaviour of this function with respect to “clipping” has changed substantially since the
previous release of deldir, i.e. 1.1-0. The argument clipwin has been re-named clipp
(“p” for “polygon”). Clipping is now effected via the new package polyclip. The spatstat

plot.tile.list 23

package is no longer used. The argument use.gpclib has been eliminated, since gpclib
(which used to be called upon by spatstat has been superceded by polyclip which has an
unrestrictive license.

• As of release 0.1-1 of the deldir package, the argument fillcol to this function replaces the
old argument polycol, but behaves somewhat differently.

• The argument showrect which was present in versions of this function prior to release 0.1-1
has been eliminated. It was redundant.

• As of release 0.1-1 the col.pts argument might behave somewhat differently from how it
behaved in the past.

• The arguments border, clipp, and warn are new as of release 0.1-1.

• Users, unless they really understand what they are doing and why they are doing it, are strongly
advised not to set the value of asp but rather to leave asp equal to its default value of 1. Any
other value distorts the tesselation and destroys the perpendicular appearance of lines which
are indeed perpendicular. (And conversely can cause lines which are not perpendicular to
appear as if they are.)

Notes

• If clipp is not NULL and showpoints is TRUE then it is possible that some of the points
“shown” will not fall inside any of the plotted tiles. (This will happen if the parts of the tiles
in which they fall have been “clipped” out.) If a tile is clipped out completely then the point
which determines that tile is not plotted irrespective of the value of showpoints.

• If the z components of the entries of x cannot all be interpreted as colours (e.g. if there
aren’t any z components, which will be the case if no such values were supplied in the call to
deldir()) then the internal function getCol() returns NA. This value of fillcol results (as
is indicated by the argument list entry for fillcol) in (all of) the tiles being left unfilled.

• The new behaviour in respect of the colours with which to fill the plotted tiles, and the argu-
ment clipp were added at the request of Chris Triggs.

• The argument asp was added at the request of Zubin Dowlaty.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir(), tile.list(), triang.list(), plot.triang.list()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
z <- deldir(x,y,rw=c(0,1,0,1))
w <- tile.list(z)
plot(w)
ccc <- heat.colors(20) # Or topo.colors(20), or terrain.colors(20)

or cm.colors(20), or rainbow(20).

24 plot.triang.list

plot(w,fillcol=ccc,close=TRUE)
if(require(polyclip)) {

CP <- list(x=c(0.49,0.35,0.15,0.20,0.35,0.42,
0.43,0.62,0.46,0.63,0.82,0.79),

y=c(0.78,0.86,0.79,0.54,0.58,0.70,
0.51,0.46,0.31,0.20,0.37,0.54))

plot(w,clipp=CP,showpoints=FALSE,fillcol=topo.colors(20))
}
plot(w,number=TRUE,col.num="red")
plot(w,number=TRUE,col.num="red",cex=0.5)
plot(w,showpoints=TRUE,number=TRUE,col.pts="green",col.num="red")

plot.triang.list Plot Delaunay triangles

Description

A method for plot. Plots the triangles of a Delaunay triangulation of a set of points in the plane.

Usage

S3 method for class 'triang.list'
plot(x, showrect = FALSE, add = FALSE,

xlab = "x", ylab = "y", main = "", asp = 1, ...)

Arguments

x An object of class “triang.list” as produced by triang.list().

showrect Logical scalar; show the enclosing rectangle rw (see deldir()) be plotted?

add Logical scalar; should the plot of the triangles be added to an existing plot?

xlab Label for the x-axis.

ylab Label for the y-axis.

main A title for the plot (used only if add is FALSE).

asp The aspect ratio of the plot; integer scalar or NA. Set this argument equal to NA to
allow the data to determine the aspect ratio and hence to make the plot occupy
the complete plotting region in both x and y directions. This is inadvisable; see
the Warnings.

... Arguments passed to polygon() which does the actual plotting of the triangles.

Value

None. This function has the side effect of producing (or adding to) a plot.

print.deldir 25

Warnings

The user is strongly advised not to set the value of asp but rather to leave asp equal to its default
value of 1. Any other value distorts the tesselation and destroys the perpendicular appearance of
lines which are indeed perpendicular. (And conversely can cause lines which are not perpendicular
to appear as if they are.)

The argument asp was added at the request of Zubin Dowlaty.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir(), plot.triang.list(), tile.list(), plot.tile.list()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
d <- deldir(x,y)
ttt <- triang.list(d)
plot(ttt,border="red",showrect=TRUE)
sss <- tile.list(d)
plot(sss)
plot(ttt,add=TRUE,border="blue")

print.deldir Print some information about a tessellation/triangulation.

Description

Prints a very brief description of an object of class "deldir" as returned by deldir().

Usage

S3 method for class 'deldir'
print(x,digits=NULL,...)

Arguments

x A Delaunay triangulation and Dirichlet (Voronoi) tessellation of a set of points
(object of class "deldir").

digits Integer scalar. The number of digits to which to round the numeric information
before printing. Note this may be give negative values. (See round().)

... Not used.

26 print.tileInfo

Details

This is a method for the generic print() function.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

print()

Examples

set.seed(42)
x <- rnorm(200,0,4)
y <- rnorm(200,0,4)
dxy1 <- deldir(x,y)
dxy2 <- deldir(x,y,rw=c(-12,12,-11,11))
dxy1
dxy2
print(dxy1,digits=4)

print.tileInfo Print a summary of tile information.

Description

Print a reasonably readable summary of an object of class tileInfo as produced by the tileInfo()
function.

Usage

S3 method for class 'tileInfo'
print(x, digits = 4, ...)

Arguments

x An object of class tileInfo as produced by the tileInfo() function.

digits The (maximum) number of decimal digits to which the output is to be printed.

... Not used. Present for compatibility with the generic print() function.

print.tileInfo 27

Details

The list produced by tileInfo() is a bit messy and hard to comprehend, especially if there is
a large number of tiles. This print method produces a screen display which is somewhat more
perspicuous.

There are three components to the display:

• A matrix, each row of which is the vector of edge lengths of the tile. The number of columns
is the maximum of the lengths of the edge length vectors. Rows corresponding to shorter
vectors are filled in with blanks. The row names of the matrix indicate the number of the
point corresponding to the tile. Note that this number is the index of the point in the original
sequence of points that is being tessellated.

• A table of the edge counts of the tiles.

• A simple print out of the areas of the tiles (rounded to a maximum of digits decimal digits).

This screen display is for “looking at” only. In order to do further calculations on the output of
tileInfo it is necessary to delve into the bowels of x and extract the relevant bits.

In order to get a decent looking display you may (if there are tiles with a large number of edges)
need to widen the window in which you are displaying the output and increase the value of the
width option. E.g. use options(width=120).

Value

None.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tileInfo()

Examples

set.seed(179)
x <- runif(100)
y <- runif(100)
dxy <- deldir(x,y,rw=c(0,1,0,1))
ixy1 <- tileInfo(dxy)
print(ixy1)
ixy2 <- tileInfo(dxy,bndry=TRUE)
print(ixy2)

28 seaweed

seaweed seaweed

Description

A data frame whose columns are the coordinates of the centroids of the cells in a seaweed frond.
The points are estimates-by-eye of where the centroids of the cells occur.

Usage

data("seaweed")

Format

A data frame with 266 observations on the following 2 variables.

x The x-coordinates of the cell centroids.

y The y-coordinates of the cell centroids.

Source

These data were kindly supplied by Dr. John Bothwell of the Department of Biosciences, Durham
University. The data were collected by Kevin Yun and Georgia Campbell, members of Dr. Both-
well’s research group.

Examples

data(seaweed)
It is unnecessary to use \code{data} since \code{seaweed} is
a "first class object". It is "lazily loaded".

dsw <- deldir(seaweed)
isw <- tileInfo(dsw)
Expand the width of the terminal window.
options(width=120)
isw
tsw <- tile.list(dsw)
plot(tsw,number=TRUE,col.num="red",cex=0.5,adj=0.5)

tile.centroids 29

tile.centroids Compute centroids of Dirchlet (Voronoi) tiles

Description

Given a list of Dirichlet tiles, as produced by tile.list(), produces a data frame consisting of the
centroids of those tiles.

Usage

tile.centroids(xxx)

Arguments

xxx A list of the tiles (produced by tile.list()) in a Dirichlet tessellation of a set
of planar points.

Value

A data frame with two columns named x and y. Each row of this data frame consitutes the centroid
of one of the Dirichlet tiles.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

URL http://en.wikipedia.org/wiki/Centroid

See Also

tile.list()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
d <- deldir(x,y)
l <- tile.list(d)
g <- tile.centroids(l)
Not run:
plot(l,close=TRUE)
points(g,pch=20,col="red")

End(Not run)

30 tile.list

tile.list Create a list of tiles in a tessellation

Description

For each point in the set being tessellated produces a list entry describing the Dirichlet/Voronoi tile
containing that point.

Usage

tile.list(object,minEdgeLength=NULL)

Arguments

object An object of class deldir as produced by the function deldir().

minEdgeLength Positive numeric scalar specifying the minimum length that an edge of a tile may
have. It is used to eliminate edges that are effectively of zero length, which can
cause tiles to be “invalid”. This argument defaults to sqrt(.Machine$double.eps)
time the diameter (length of the diagonal) of the “rectangular window” associ-
ated with the tessellation. This rectangular window is available as the rw com-
ponent of object.

Value

A list with one entry for each of the points in the set being tesselated. Each entry is in turn a list
with components

ptNum The index of the point in the original sequence of points that is being tessellated.
Note that if a point is one of a set of duplicated points then ptNum is the first of
the indices of the points in this set.

pt The coordinates of the point whose tile is being described.

ptType The “type” of the pt, either “data” or “dummy”. Present only if any dummy
points were specified in the call to deldir().

x The x coordinates of the vertices of the tile, in anticlockwise order.

y The y coordinates of the vertices of the tile, in anticlockwise order.

bp Vector of logicals indicating whether the tile vertex is a “real” vertex, or a bound-
ary point, i.e. a point where the tile edge intersects the boundary of the enclosing
rectangle.

z The “auxiliary value” or “weight” associated with the pt; present only if such
values were supplied in the call to deldir().

area The area of the tile.

Acknowledgement

The author expresses sincere thanks to Majid Yazdani who found and pointed out a serious bug in
tile.list in a previous version (0.0-5) of the deldir package.

tileInfo 31

Warning

The set of vertices of each tile may be “incomplete”. Only vertices which lie within the enclosing
rectangle, and “boundary points” are listed.

Note that the enclosing rectangle may be specified by the user in the call to deldir().

In contrast to some earlier versions of deldir, the corners of the enclosing rectangle are now include
as vertices of tiles. I.e. a tile which in fact extends beyond the rectangular window and contains
a corner of that window will have that corner added to its list of vertices. Thus the corresponding
polygon is the intersection of the tile with the enclosing rectangle.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir(), plot.tile.list() triang.list() plot.triang.list()

Examples

x <- runif(20)
y <- runif(20)
z <- deldir(x,y)
w <- tile.list(z)

z <- deldir(x,y,rw=c(0,1,0,1))
w <- tile.list(z)

z <- deldir(x,y,rw=c(0,1,0,1),dpl=list(ndx=2,ndy=2))
w <- tile.list(z)

tileInfo Extract information from a tile list.

Description

Produces a summary of information about the tiles in an object of class deldir as produced by the
function deldir().

Usage

tileInfo(object, bndry = FALSE)

Arguments

object An object of class deldir as produced by the function deldir().
bndry Logical scalar. If TRUE then the “boundary” tiles (those tiles having edges form-

ing part of the “rectangular window” enclosing the tessellation) are included in
the summary. Otherwise they are not included.

32 tilePerim

Value

A list with components:

indivTiles This is itself a list with one entry for each tile in “object”. It is in fact a named
list, the names being of form tile.n, where n is equal to the value of ptNum (see
below) corresponding to the tile. The entries of indivTiles are themselves in
turn lists with entries edgeLengths (a vector of the lengths of the edges of the
tiles), numEdges (an integer equal to the number of edges of the tile), area (a
positive number equal to the area of the tile) and ptNum (an integer equal to the
number of the point determining the tile). Note that ptNum is the number of the
point in the original sequence of points that were tessellated.

allEdgeCounts An integer vector of the edge counts (given by numEdge for each tile) of the tiles.

tabEdgeCounts A table of numEdge.

allEdgeLengths A vector of all of the tile edge lengths; a catenation of the edgeLengths com-
ponents of the entries of indivTiles. Note that there will be many duplicate
lengths since each tile edge is, in general, an edge of two tiles.

Areas A vector of the areas of the tiles.
uniqueEdgeLengths

A vector of the lengths of the tiles edges with the duplicates (which occur in
allEdgeLengths) being eliminated. Each tile edge is represented only once.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir() tile.list() print.tileInfo()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
dxy <- deldir(x,y,rw=c(0,1,0,1))
ixy1 <- tileInfo(dxy)
ixy2 <- tileInfo(dxy,bndry=TRUE)

tilePerim Calculate tile perimeters.

Description

Calculates the perimeters of all of the Dirichlet (Voronoi) tiles in a tessellation of a set of planar
points. Also calculates the sum and the mean of these perimeters.

tilePerim 33

Usage

tilePerim(object,inclbdry=TRUE)

Arguments

object An object of class tile.list (as produced by tile.list() specifying the
Dirichlet (Voronoi) tiles in a tessellation of a set of planar points.

inclbdry Logical scalar. Should boundary segments (edges of tiles at least one of whose
endpoints lies on the enclosing rectangle rw (see deldir()) be included in the
perimeter?

Value

A list with components

perimeters A vector consisting of the values of the perimeters of the Dirichlet tiles in the
tessellation.

totalPerim The sum of perimeters.

meanPerim The mean of perimeters.

Note

Function added at the request of Haozhe Zhang.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tile.list(), plot.tile.list()

Examples

x <- runif(20)
y <- runif(20)
z <- deldir(x,y,rw=c(0,1,0,1))
w <- tile.list(z)
p1 <- tilePerim(w)
p0 <- tilePerim(w,inclbdry=FALSE)
p1$totalPerim - p0$totalPerim # Get 4 = the perimeter of rw.
ss <- apply(as.matrix(z$dirsgs[,1:4]),1,

function(x){(x[1]-x[3])^2 + (x[2]-x[4])^2})
2*sum(sqrt(ss)) - p0$totalPerim # Get 0; in tilePerim() each interior

edge is counted twice.

34 triang.list

triang.list Create a list of Delaunay triangles

Description

From an object of class “deldir” produces a list of the Delaunay triangles in the triangulation of a
set of points in the plane.

Usage

triang.list(object)

Arguments

object An object of class “deldir” as produced by deldir().

Value

A list each of whose components is a 3 × 3, 3 × 4 or 3 × 5 data frame corresponding to one of
the Delaunay triangles specified by “object”. The rows of each such data frame correspond to the
vertices of the corresponding Delaunay triangle. The columns are:

• ptNum (the index of the point in the original sequence of points that is being triangulated. Note
that if a point is one of a set of duplicated points then ptNum is the first of the indices of the
points in this set.)

• ptType (the type of the vertex; “data” or “dummy”; present only if there were any dummy
points specified)

• x (the x-coordinate of the vertex)

• y (the x-coordinate of the vertex)

• z (the “auxiliary value” or “weight” z associated with the vertex; present only if such values
were supplied in the call to deldir())

The returned value has an attribute “rw” consisting of the enclosing rectangle of the triangulation.

Note

The code of this function was taken more-or-less directly from code written by Adrian Baddeley
for the “delaunay()” function in the “spatstat” package.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir(), plot.triang.list(), tile.list(), plot.tile.list()

triMat 35

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
z <- sample(1:100,20)
d <- deldir(x,y,z=z)
ttt <- triang.list(d)

triMat Produce matrix of triangle vertex indices.

Description

Lists the indices of the vertices of each Delaunay triangle in the triangulation of a planar point set.
The indices are listed (in increasing numeric order) as the rows of an n × 3 matrix where n is the
number of Delaunay triangles in the triangulation.

Usage

triMat(object)

Arguments

object An object of class deldir (as produced by the funtion deldir()) specifying the
Delaunay triangulation and Dirichlet (Voronoi) tesselation of a planar point set.

Details

This function was suggested by Robin Hankin of the School of Mathematical and Computing Sci-
ences at Auckland University of Technology.

Value

An n × 3 matrix where n is the number of Delaunay triangles in the triangulation specified by
object. The ith row consists of the indices (in the original list of points being triangulated) of
vertices of the ith Delaunay triangle. The indices are listed in increasing numeric order in each row.

Note

Earlier versions of this function (prior to release 0.1-14 of deldir) could sometimes give incorrect
results. This happened if the union of three contiguous Delaunay triangles happened to constitute
another triangle. This latter triangle would appear in the list of triangles produced by triMat() but
is not itself a Delaunay triangle. The updated version of triMat() now checks for this possibility
and gives (I think!) correct results.

Many thanks to Jay Call, who pointed out this bug to me.

36 which.tile

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir() triang.list() plot.triang.list()

Examples

These are the data used by Jay Call to illustrate the bug
that appeared in a previous incarnation of triMat.
xy <- data.frame(

x = c(0.048,0.412,0.174,0.472,0.607,0.565,0.005,0.237,0.810,0.023),
y = c(0.512,0.928,0.955,0.739,0.946,0.134,0.468,0.965,0.631,0.782)

)
dxy <- deldir(xy)
M <- triMat(dxy)
plot(dxy,wlines="triang",num=TRUE,axes=FALSE,col=c(1,1,1,1,2))
The triangle with vertices {4,5,8} was listed in the output of
the previous (buggy) version of triMat(). It is NOT a Delaunay
triangle and hence should NOT be listed.

which.tile Determine the tile containing a given point.

Description

Finds the Dirchlet/Voronoi tile of a tessellation produced by deldir that contains a given point.

Usage

which.tile(x, y, tl)

Arguments

x The x coordinate of the point in question.

y The y coordinate of the point in question.

tl A tile list, as produced by the function tile.list() from a tessellation pro-
duced by deldir().

Details

Just minimises the distance from the point in question to the points of the pattern determining the
tiles.

Value

An integer equal to the index of the tile in which the given point lies.

which.tile 37

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tile.list() deldir().

Examples

set.seed(42)
x <- runif(20,0,100)
y <- runif(20,0,100)
dxy <- deldir(x,y)
txy <- tile.list(dxy)
i <- which.tile(30,50,txy) # The value of i here is 14.
plot(txy,showpoints=FALSE)
text(x,y,labels=1:length(txy),col="red")
points(30,50,pch=20,col="blue")

Index

∗ datasets
grapherXmpl, 14
niProperties, 17
seaweed, 28

∗ hplot
plot.deldir, 18
plot.tile.list, 21

∗ spatial
deldir, 2
divchain, 9
divchain.default, 10
divchain.deldir, 11
lawSummary, 15
plot.divchain, 20
plot.triang.list, 24
tile.centroids, 29
tile.list, 30
tileInfo, 31
tilePerim, 32
triang.list, 34
triMat, 35
which.tile, 36

∗ utilities
duplicatedxy, 13
print.deldir, 25
print.tileInfo, 26

col2rgb, 21

deldir, 2, 10–12, 14, 15, 19, 20, 23–25, 30–37
divchain, 9, 20
divchain.default, 9, 10, 10, 12, 20
divchain.deldir, 9–11, 11, 20
duplicated, 7, 13, 14
duplicatedxy, 13

grapherXmpl, 14

lawSummary, 15

niProperties, 17

plot.deldir, 4, 8, 18
plot.divchain, 10–12, 20
plot.tile.list, 21, 25, 31, 33, 34
plot.triang.list, 23, 24, 25, 31, 34, 36
polygon, 24
print, 26
print.deldir, 25
print.tileInfo, 26, 32

round, 25

seaweed, 28

tile.centroids, 16, 29
tile.list, 8, 16, 21, 23, 25, 29, 30, 32–34,

36, 37
tileInfo, 27, 31
tilePerim, 32
triang.list, 6, 8, 23, 24, 31, 34, 36
triMat, 35

which.tile, 36

38

	deldir
	divchain
	divchain.default
	divchain.deldir
	duplicatedxy
	grapherXmpl
	lawSummary
	niProperties
	plot.deldir
	plot.divchain
	plot.tile.list
	plot.triang.list
	print.deldir
	print.tileInfo
	seaweed
	tile.centroids
	tile.list
	tileInfo
	tilePerim
	triang.list
	triMat
	which.tile
	Index

