Package ‘dcGOR’

July 27, 2015
Type Package

Title Analysis of Ontologies and Protein Domain Annotations
Version 1.0.6

Date 2015-7-26

Author Hai Fang and Julian Gough

Maintainer Hai Fang <hfang@well.ox.ac.uk>

Depends R (>= 3.1.0), Matrix, igraph, dnet

Imports methods

Suggests foreach, doMC, ape

Description There lacks a package for analysing domain-centric ontologies and annotations, particu-
larly those in the dcGO database. The dcGO (http://supfam.org/SUPERFAMILY/dcGO) is a com-
prehensive domain-centric database for annotating protein domains using a panel of ontolo-
gies including Gene Ontology. With the package, users are expected to analyse and visualise do-
main-centric ontologies and annotations. Supported analyses include but are not lim-
ited to: easy access to a wide range of ontologies and their domain-centric annota-
tions; able to build customised ontologies and annotations; domain-based enrichment analy-
sis and visualisation; construction of a domain (semantic similarity) network according to ontol-
ogy annotations; significance analysis for estimating a contact (statistical significance) net-
work via Random Walk with Restart; and high-performance parallel computing. The new func-
tionalities are: 1) to create domain-centric ontologies; 2) to predict ontology terms for input pro-
tein sequences (precisely domain content in the form of architectures) plus to assess the predic-
tions; 3) to reconstruct ancestral discrete characters using maximum likelihood/parsimony.

URL http://supfam.org/dcGOR, http://cran.r-project.org/package=dcGOR,
http://dcgor.r-forge.r-project.org,
https://github.com/hfang-bristol/dcGOR

Collate 'ClassMethod-dcGOR.1' 'dcDAGannotate.r' 'dcRDatal.oader.r'
'dcEnrichment.r' 'visEnrichment.r' 'dcDAGdomainSim.r'
'dcRWRpipeline.r' 'dcConverter.r' 'dcBuildInfoDataFrame.r'
'dcBuildAnno.r' 'dcBuildOnto.r' 'dcAlgoPropagate.r’
'dcAlgoPredict.r' 'dcAlgoPredictMain.r' 'dcAlgoPredictGenome.r'
'dcAncestralML.r' 'dcAncestralMP.r' 'dcSubtreeClade.r'
'dcSubtreeTips.r' 'dcTreeConnectivity.r' 'dcDuplicated.r’

1


http://supfam.org/dcGOR
http://cran.r-project.org/package=dcGOR
http://dcgor.r-forge.r-project.org
https://github.com/hfang-bristol/dcGOR

2 R topics documented:

'deSplitArch.r' 'dcAlgo.r' 'dcFunArgs.r' 'dcSparseMatrix.r'
'dcList2Matrix.r' 'dcAlgoPredictPR.1' 'dcSupraBetter.r'
'dcRWRpredict.r' 'dcNaivePredict.r'

License GPL-2

biocViews Bioinformatics
NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-27 10:52:03

R topics documented:

AdjData-class . . . . . .. e 4
Ancestral_domainome . . . . . . ... .. e 4
Anno-class . . . .. L e e e e e 5
Anno-method . . . . . . .. e e e 7
AnnoData-class . . . . . . . . . e e 9
Cnetwork-class . . . . . . . . . . . e e e 9
Cnetwork-method . . . . . . . . . . . . . .. 11
Coutput-class . . . . . . . e 12
Coutput-method . . . . . . . . . . e e 14
dcAlgo . . . . L e 15
dcAlgoPredict . . . . . . . . . 17
dcAlgoPredictGenome . . . . . . ... e e 20
dcAlgoPredictMain . . . . . . . ... e 23
dcAlgoPredictPR . . . . . . . .. 26
dcAlgoPropagate . . . . . . . .. e 28
dcAncestralML . . . . . . . .. e e e e 30
dcAncestralMP . . . . . .. L e 33
dcBuildAnno . . . . . . .. e e e e e e 35
dcBuildInfoDataFrame . . . . . . . . . . . . . . . . ... 36
decBuildOnto . . . . . . . . . e 37
dcConverter . . . . . . . . . e e e e e e e e e e e e e e 39
dcDAGannotate . . . . . . . . . . e e e e e e e e e e e e 40
dcDAGdomainSim . . . . . . ... 42
deDuplicated . . . . . . . .. 46
dcEnrichment . . . . . . . . . . . . e e e 48
decFunArgs . . . . . . e e 54
deList2ZMatriX . . . . . . . o e e e e e e e 55
dcNaivePredict . . . . . . . . . e e e e 56
dcRDataloader . . . . . . . . . . . . . . . 58
dcRWRpipeline . . . . . . .. ... 60
dcRWRpredict. . . . . . . . . e e e 63
deSparseMatrix . . . . . . ... e e 66
deSplitArch . . . . . . . e 67
dcSubtreeClade . . . . . . . . . . . .. e e e e 68

deSubtreeTips . . . . . . . oo 69



R topics documented: 3

deSupraBetter . . . . . . . . e e e e e 70
dcTreeConnectivity . . . . . . . . . . . . e 72
Dnetwork-class . . . . . . . . . . e 73
Dnetwork-method . . . . . . . . . . ... 75
Eoutput-class . . . . . . . . . e 76
Eoutput-method . . . . . . . . . . 78
eTOL . . . . e 79
InfoDataFrame-class . . . . . . . . . . . . . . . . e e 81
InfoDataFrame-method . . . . . . . . . . . . ... . ... 82
InterPro . . . . . . e 84
InterPro2GOBP . . . . . . . . . e e 85
InterPro2GOCC . . . . . . . . . e e e e e 86
InterPro2GOMEF . . . . . . . . . e 87
Onto-class . . . . . . . . e e e e 88
Onto-method . . . . . . . . . . e e e 90
onto. DO . . . . e e e 91
onto.GOBP . . . . . . . 92
onto.GOCC . . . . . . . e e e e 92
onto.GOMF . . . . . . . e e e e 93
onto. HPMI . . . . . . . . e 94
onto.HPON . . . . . . . e 95
onto.HPPA . . . . . . . e 95
onto.MP . . . . . e 96
Pfam . . . . . e 97
Pfam2GOBP . . . . . . .. e e 98
Pfam2GOCC . . . . . . . e e e e 99
Pfam2GOMF . . . . . . . . e 100
Rfam . . . . e e e e 101
Rfam2GOBP . . . . . . . e e 102
Rfam2GOCC . . . . . . . e 103
Rfam2GOMF . . . . . . . . e 104
SCOPAfa . . . . . e 105
SCOPAfa2DO . . . . . e e e 106
SCOPfa2GOBP . . . . . . . e 107
SCOP£a2GOCC . . . . . . . e 108
SCOPfa2GOMF . . . . . . e e e 109
SCOPfa2HPMI . . . . . . . e 110
SCOPfa2HPON . . . . . . . e e e 111
SCOPfa2HPPA . . . . . . e e e 112
SCOPLa2MP . . . . . . 113
SCOPsE . . . . e 114
SCOPsf2DO . . . . . e e 115
SCOPsf2GOBP . . . . . . e e e 116
SCOPSf2GOCC . . . . . . . e 117
SCOPsSf2GOMEF . . . . . . e 118
SCOPsSf2ZHPMI . . . . . . . e e e 119
SCOPsSf2HPON . . . . . . . 120

SCOPsfZHPPA . . . . . o 121



4 Ancestral _domainome

SCOPS2ZMP . . . o e 122
visEnrichment . . . . . . . . .. e 123
Index 127
AdjData-class Definition for VIRTUAL S4 class AdjData
Description

AdjData is union of other classes: either matrix or dgCMatrix (a sparse matrix in the package
Matrix). It is used as a virtual class

Value

Class AdjData

See Also

Onto-class

Ancestral_domainome Ancestral superfamily domain repertoires in Eukaryotes

Description

An object of class "Anno" that contains information about domain repertoires (a complete set of do-
mains: domain-ome) in Eukaryotes (including extant and ancestral genomes). This data is prepared
based on 1) SUPERFAMILY database which provides domain and architecture assignments to all
completely sequenced genomes including eukaryotic genomes; 2) ancestral domain architecture
repertoires inferred by applying Dollo parsimony to eukaryotic part of species tree of life (sTOL),
from which ancestral superfamily domain and architecture repertoires at all branching points in eu-
karyotic evolution are inferred. This allows us to list ancestral domain and architecture repertoires
that were present at these points. Based on the observed/inferred domain and architecture reper-
toires, we also define genome-specific plasticity potential for an individual domain as how many
different architectures (or architecture diversity) it can be formed in an extant/ancestral genome. As
a result, for each genome, domain repertoires (domainome) are represented as a profile of states on
domains, where non-zero entry indicates a domain for which how many different architectures have
occurred in the genome.

Usage

data(Ancestral_domainome)



Anno-class 5

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of 2019 domains X 875 terms/genomes (including 438 extant

genomes and 437 ancestral genomes), with each entry telling how many different architectures
a domain has in a genome. Note: zero entry also means that this domain is absent in the
genome

termData: variables describing terms/genomes (i.e. columns in annoData), including ex-
tant/ancestral genome information: "left_id" (unique and used as internal id), "right_id" (used
in combination with "left_id" to define the post-ordered binary tree structure), "taxon_id"
(NCBI taxonomy id, if matched), "genome" (2-letter genome identifiers used in SUPER-
FAMILY, if being extant), "name" (NCBI taxonomy name, if matched), "rank" (NCBI taxon-
omy rank, if matched), "branchlength" (branch length in relevance to the parent), and "com-
mon_name" (NCBI taxonomy common name, if matched and existed)

domainData: variables describing domains (i.e. rows in annoData), including information
about domains: "sunid" for SCOP id, "level" for SCOP level, "classification" for SCOP clas-
sification, "description” for SCOP description

References

Fang et al. (2013) A daily-updated tree of (sequenced) life as a reference for genome research.
Scientific reports, 3:2015.

Morais et al. (2011) SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nu-
cleic Acids Res, 39(Database issue):D427-34.

Andreeva et al. (2008) Data growth and its impact on the SCOP database: new developments.
Nucleic Acids Res, 36(Database issue):D419-425

Examples

data(Ancestral_domainome)

Ancestral_domainome

# retrieve info on terms/genomes
termData(Ancestral_domainome)

# retrieve info on SCOP domains
domainData(Ancestral_domainome)

# retrieve the first 5 rows and columns of data
x <- annoData(Ancestral_domainome)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

Anno-class Definition for §4 class Anno

Description

Anno has 3 slots: annoData, termData and domainData



6 Anno-class

Value

Class Anno

Slots
annoData An object of S4 class AnnoData, containing data matrix with the column number equal
to nrow(termData) and the row number equal to nrow(domainData).
termData An object of S4 class InfoDataFrame, describing information on columns in annoData.

domainData An object of S4 class InfoDataFrame, describing information on rows in annoData.

Creation

An object of this class can be created via: new("Anno"”, annoData,termData, domainData)

Methods
Class-specific methods:

e dim(): retrieve the dimension in the object

* annoData(): retrieve the slot ’annoData’ in the object

* termData(): retrieve the slot termData’ (as class InfoDataFrame) in the object

* domainData(): retrieve the slot ’"domainData’ (as class InfoDataFrame) in the object
* tData(): retrieve termData (as data.frame) in the object

* dData(): retrieve domainData (as data.frame) in the object

* termNames(): retrieve term names (ie, row names of termData) in the object

* domanNames(): retrieve domain names (ie, row names of domainData) in the object
Standard generic methods:

* str(): compact display of the content in the object

* show(): abbreviated display of the object

* as(matrix, "Anno"): convert a matrix to an object of class Anno

* as(dgCMatrix, "Anno"): convert a dgCMatrix (a sparse matrix) to an object of class Anno

* [1i,J]: get the subset of the same class

Access
Ways to access information on this class:

¢ showClass(”Anno"): show the class definition

* showMethods(classes="Anno"): show the method definition upon this class
* getSlots(”Anno"): get the name and class of each slot in this class

* slotNames("Anno"): get the name of each slot in this class

e selectMethod(f, signature="Anno"): retrieve the definition code for the method ’f’ de-
fined in this class



Anno-method 7

See Also

Anno-method

Examples

# create an object of class Anno, only given a matrix
annoData <- matrix(runif(50),nrow=10,ncol=5)
as(annoData, "Anno")

# create an object of class Anno, given a matrix plus information on its columns/rows
# 1) create termData: an object of class InfoDataFrame

data <- data.frame(x=1:5, y=I(LETTERS[1:5]), row.names=paste("Term”,

1:5, sep="_"))

termData <- new("InfoDataFrame"”, data=data)

termData

# 2) create domainData: an object of class InfoDataFrame

data <- data.frame(x=1:10, y=I(LETTERS[1:10]),

row.names=paste("”Domain”, 1:10, sep="_"))
domainData <- new("InfoDataFrame", data=data)
domainData

# 3) create an object of class Anno

# VERY IMPORTANT: make sure having consistent names between annoData and domainData (and termData)
annoData <- matrix(runif(50),nrow=10,ncol=5)

rownames (annoData) <- rowNames(domainData)
colnames(annoData) <- rowNames(termData)

x <= new("Anno”, annoData=annoData, domainData=domainData,
termData=termData)

X

# 4) look at various methods defined on class Anno

dim(x)

annoData(x)

termData(x)

tData(x)

domainData(x)

dData(x)

termNames (x)

domainNames (x)

# 5) get the subset

x[1:3,1:2]

Anno-method Methods defined for S4 class Anno

Description

Methods defined for class Anno.



Anno-method

Usage
## S4 method for signature 'Anno'
dim(x)
## S4 method for signature 'Anno'
annoData(x)
## S4 method for signature 'Anno'
termData(x)
## S4 method for signature 'Anno'
domainData(x)
## S4 method for signature 'Anno'
tData(object)
## S4 method for signature 'Anno'
dData(object)
## S4 method for signature 'Anno'
termNames (object)
## S4 method for signature 'Anno'
domainNames(object)
## S4 method for signature 'Anno'
show(object)
## S4 method for signature 'Anno,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
Arguments
X an object of class Anno
object an object of class Anno
i an index
j an index
additional parameters
drop a logic for matrices and arrays. If TRUE the result is coerced to the lowest possi-
ble dimension. This only works for extracting elements, not for the replacement
See Also

Anno-class



AnnoData-class 9

AnnoData-class Definition for VIRTUAL S4 class AnnoData

Description
AnnoData is union of other classes: either matrix or dgCMatrix (a sparse matrix in the package
Matrix). It is used as a virtual class

Value

Class AnnoData

See Also

Anno-class

Cnetwork-class Definition for S4 class Cnetwork

Description

Cnetwork is an S4 class to store a contact network, such as the one from RWR-based contact
between samples/terms by dcRWRpipeline. It has 2 slots: nodelnfo and adjMatrix

Value

Class Cnetwork

Slots

nodeInfo An object of S4 class InfoDataFrame, describing information on nodes/domains.

adjMatrix An object of S4 class AdjData, containing symmetric adjacency data matrix for an
indirect domain network

Creation

An object of this class can be created via: new("Cnetwork”,nodeInfo, adjMatrix)



10

Methods

Cnetwork-class

Class-specific methods:

dim(): retrieve the dimension in the object

adjMatrix(): retrieve the slot ’adjMatrix’ in the object

nodeInfo(): retrieve the slot ‘'nodelnfo’ (as class InfoDataFrame) in the object
nInfo(): retrieve nodelnfo (as data.frame) in the object

nodeNames(): retrieve node/term names (ie, row names of nodelnfo) in the object

Standard generic methods:

Access

str(): compact display of the content in the object
show(): abbreviated display of the object
as(matrix, "Cnetwork™): convert a matrix to an object of class Cnetwork

as(dgCMatrix, "Cnetwork"): convert a dgCMatrix (a sparse matrix) to an object of class
Cnetwork

[i]: get the subset of the same class

Ways to access information on this class:

See Also

showClass("Cnetwork"): show the class definition
showMethods(classes="Cnetwork"”): show the method definition upon this class
getSlots("Cnetwork™): get the name and class of each slot in this class
slotNames("Cnetwork"): get the name of each slot in this class

selectMethod(f, signature="Cnetwork"): retrieve the definition code for the method ’f’
defined in this class

Cnetwork-method

Examples

# create an object of class Cnetwork, only given a matrix
adjM <- matrix(runif(25),nrow=5,ncol=5)
as(adjM, "Cnetwork™)

# create an object of class Cnetwork, given a matrix plus information on nodes

#1)
data

create nodel: an object of class InfoDataFrame

non

<- data.frame(id=paste(”"Domain”, 1:5, sep="_"),

level=rep("”SCOP",5), description=I(LETTERS[1:5]),
row.names=paste(”Domain”, 1:5, sep="_"))
nodel <- new("InfoDataFrame"”, data=data)

nodel

# 2)

create an object of class Cnetwork



Cnetwork-method

# VERY IMPORTANT: make sure having consistent names between nodeInfo and adjMatrix
adjM <- matrix(runif(25),nrow=5,ncol=5)

colnames(adjM) <- rownames(adjM) <- rowNames(nodel)

x <- new("Cnetwork”, adjMatrix=adjM, nodelInfo=nodel)

X

# 3) look at various methods defined on class Cnetwork
dim(x)

adjMatrix(x)

nodeInfo(x)

nInfo(x)

nodeNames (x)

# 4) get the subset

x[1:2]

11

Cnetwork-method Methods defined for S4 class Cnetwork

Description

Methods defined for class Cnetwork.

Usage

## S4 method for signature 'Cnetwork'
dim(x)

## S4 method for signature 'Cnetwork'
adjMatrix(x)

## S4 method for signature 'Cnetwork’
nodeInfo(x)

## S4 method for signature 'Cnetwork'
nInfo(object)

## S4 method for signature 'Cnetwork
nodeNames (object)

## S4 method for signature 'Cnetwork'
show(object)

## S4 method for signature 'Cnetwork,ANY,ANY,ANY'

x[i, j, ..., drop = FALSE]
Arguments
X an object of class Cnetwork

object an object of class Cnetwork



12 Coutput-class

i an index
] an index
additional parameters

drop alogic for matrices and arrays. If TRUE the result is coerced to the lowest possi-
ble dimension. This only works for extracting elements, not for the replacement

See Also

Cnetwork-class

Coutput-class Definition for S4 class Coutput

Description

Coutput is an S4 class to store output by dcRWRpipeline.

Value

Class Coutput

Slots

ratio A symmetrix matrix, containing ratio

zscore A symmetrix matrix, containing z-scores

pvalue A symmetrix matrix, containing p-values

adjp A symmetrix matrix, containing adjusted p-values

cnetwork An object of S4 class Cnetwork, storing contact network.

Creation

An object of this class can be created via: new("Coutput”, ratio,zscore, pvalue, adjp, cnetwork)

Methods
Class-specific methods:

* ratio(): retrieve the slot 'ratio’ in the object

* zscore(): retrieve the slot *zscore’ in the object

* pvalue(): retrieve the slot "pvalue’ in the object

* adjp(): retrieve the slot *adjp’ in the object

* cnetwork(): retrieve the slot *cnetwork’ in the object

* write(): write the object into a local file
Standard generic methods:

* str(): compact display of the content in the object
* show(): abbreviated display of the object



Coutput-class 13

Access

Ways to access information on this class:

¢ showClass("Coutput”): show the class definition

* showMethods(classes="Coutput"”): show the method definition upon this class
* getSlots("Coutput”): get the name and class of each slot in this class

* slotNames("Coutput”): get the name of each slot in this class

e selectMethod(f, signature="Coutput"”): retrieve the definition code for the method ’f’
defined in this class

See Also

Coutput-method

Examples

## Not run:
# 1) load onto.GOMF (as 'Onto' object)
g <- dcRDatalLoader('onto.GOMF')

# 2) load SCOP superfamilies annotated by GOMF (as 'Anno' object)
Anno <- dcRDataloader ('SCOP.sf2GOMF')

# 3) prepare for ontology appended with annotation information
dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths",
verbose=TRUE)

# 4) calculate pair-wise semantic similarity between 10 randomly chosen domains
alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,10)

dnetwork <- dcDAGdomainSim(g=dag, domains=domains,

method.domain="BM.average"”, method.term="Resnik”, parallel=FALSE,

verbose=TRUE)

dnetwork

# 5) estimate RWR dating based sample/term relationships

# define sets of seeds as data

# each seed with equal weight (i.e. all non-zero entries are '1')
data <- data.frame(aSeeds=c(1,0,1,0,1), bSeeds=c(0,0,1,0,1))
rownames(data) <- id(dnetwork)[1:5]

# calcualte their two contact graph

coutput <- dcRWRpipeline(data=data, g=dnetwork, parallel=FALSE)
coutput

# 6) write into the file 'Coutput.txt' in your local directory

—n

write(coutput, file='Coutput.txt', saveBy="adjp")

# 7) retrieve several slots directly
ratio(coutput)
zscore(coutput)



14

pvalue(coutput)

adjp(coutput)

cnetwork(coutput)

## End(Not run)

Coutput-method

Coutput-method

Methods defined for S4 class Coutput

Description

Methods defined for S4 class Coutput.

Usage
## S4 method
show(object)

## S4 method
ratio(x)

## S4 method
zscore(x)

## S4 method
pvalue(x)

## S4 method
adjp(x)

## S4 method
cnetwork(x)

for

for

for

for

for

for

signature

signature

signature

signature

signature

signature

## S4 method for signature
write(x, file = "Coutput.txt”, saveBy
"pvalue”, "zscore", "ratio"), verbose

Arguments

object
X
file

saveBy

verbose

'Coutput’

'Coutput’

'Coutput’

'Coutput’

'Coutput'’

'Coutput’

'Coutput’

C(”adjp”,
D)

an object of S4 class Coutput. Usually this is an output from dcRWRpipeline

an object of S4 class Coutput. Usually this is part of the output from dcRWRpipeline

a character specifying a file name written into. By default, it is ’Coutput.txt’

which statistics will be saved. It can be "pvalue" for p value, "adjp" for adjusted

p value, "zscore" for z-score, "ratio" for ratio

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display



dcAlgo 15

Value

write(x) also returns a symmetrix matrix storing the specific statistics

See Also

Coutput-class

dcAlgo Function to apply dcGO algorithm to infer domain-centric ontology

Description

dcAlgo is supposed to apply dcGO algorithm to infer domain-centric ontology from input files. It
requires two input files: 1) an annotation file containing annotations between proteins/genes and
ontology terms; 2) an architecture file containing domain architectures for proteins/genes.

Usage
dcAlgo(anno.file, architecture.file, output.file = NULL, ontology =
c(NA,
"GOBP", "GOMF", "GOCC", "DO", "HPPA", "HPMI", "HPON", "MP", "EC", "KW",
"UP"),
feature.mode = c(”"supra”, "individual”, "comb”), min.overlap = 3,

fdr.cutoff = 0.001, hscore.type = c("zscore”, "fdr"), parallel = TRUE,
multicores = NULL, verbose = T, RData.ontology.customised = NULL,
RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments

anno.file an annotation file containing annotations between proteins/genes and ontology
terms. For example, a file containing annotations between human genes and HP
terms can be found in http://dcgor.r-forge.r-project.org/data/Algo/
HP_anno. txt. As seen in this example, the input file must contain the header
(in the first row) and two columns: 1st column for ’SeqID’ (actually these IDs
can be anything), 2nd column for "termID’ (HP terms). Note: the file should use
the tab delimiter as the field separator between columns

architecture.file
an architecture file containing domain architectures (including individual do-
mains) for proteins/genes. For example, a file containing human genes and do-
main architectures can be found in http://dcgor.r-forge.r-project.org/
data/Algo/SCOP_architecture.txt. As seen in this example, the input file
must contain the header (in the first row) and two columns: 1st column for ’Se-
qID’ (actually these IDs can be anything), 2nd column for ’ Architecture’ (SCOP
domain architectures, each represented as comma-separated domains). Note:
the file should use the tab delimiter as the field separator between columns


http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt
http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt
http://dcgor.r-forge.r-project.org/data/Algo/SCOP_architecture.txt
http://dcgor.r-forge.r-project.org/data/Algo/SCOP_architecture.txt

16

output.file

ontology

feature.mode

min.overlap

fdr.cutoff

hscore. type

parallel

multicores

verbose

dcAlgo

an output file containing results. If not NULL, a tab-delimited text file will be
also written out, with 1st column ’Feature_id’ for features/domains, 2nd column
"Term_id’ for ontology terms, 3rd column ’Score’ for hypergeometric scores
(indicative of strength for feature-term associations). Otherwise, there is no
output file (by default)

the ontology identity. It can be "GOBP" for Gene Ontology Biological Process,
"GOMEF" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology
Cellular Component, "DO" for Disease Ontology, "HPPA" for Human Pheno-
type Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inher-
itance, "HPON" for Human Phenotype ONset and clinical course, "MP" for
Mammalian Phenotype, "EC" for Enzyme Commission, "KW" for UniProtKB
KeyWords, "UP" for UniProtKB UniPathway. For details on the eligibility for
pairs of input domain and ontology, please refer to the online Documentations
at http://supfam.org/dcGOR/docs.html. If NA, then the user has to input a
customised RData-formatted file (see RData.ontology.customised below)

the mode of how to define the features thereof. It can be: "supra" for combi-
nations of one or two successive domains (including individual domains; con-
sidering the order), "individual" for individual domains only, and "comb" for all
possible combinations (including individual domains; ignoring the order)

the minimum number of overlaps with each term in consideration. By default,
it sets to a minimum of 3

the fdr cutoff to call the significant associations between features and terms. By
default, it sets to le-3

the type of defining the hypergeometric score. It can be: "zscore" for z-score
(by default), "fdr" for fdr (after being transformed via —1 * logs(fdr))

logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

RData.ontology.customised

RData.location

a file name for RData-formatted file containing an object of S4 class ’Onto’ (i.g.
ontology). By default, it is NULL. It is only needed when the user wants to
perform customised analysis using their own ontology. See dcBuildOnto for
how to creat this object

the characters to tell the location of built-in RData files. See dcRDataloader
for details


http://supfam.org/dcGOR/docs.html

dcAlgoPredict 17

Value

a data frame containing three columns: Ist column ’Feature_id’ for features, 2nd ’Term_id’ for
terms, and 3rd ’Score’ for the hypergeometric score indicative of strength of associations beteen
features and terms

Note

When ’output.file’ is specified, a tab-delimited text file is output, with the column names: 1st col-
umn ’Feature_id’ for features, 2nd *Term_id’ for terms, and 3rd ’Score’ for the hypergeometric
score indicative of strength of associations beteen features and terms

See Also

dcRDataloader, dcSplitArch, dcConverter, dcDuplicated, dcAlgoPropagate

Examples

## Not run:

# 1) Prepare input file: anno.file and architecture.file

anno.file <- "http://dcgor.r-forge.r-project.org/data/Algo/HP_anno. txt"
architecture.file <-
"http://dcgor.r-forge.r-project.org/data/Algo/SCOP_architecture.txt”

# 2) Do inference using built-in ontology

res <- dcAlgo(anno.file, architecture.file, ontology="HPPA",
feature.mode="supra”, parallel=FALSE)

res[1:5,]

# 3) Advanced usage: using customised ontology

X <-
base::load(base::url("http://dcgor.r-forge.r-project.org/data/onto.HPPA.RData"))
RData.ontology.customised <- 'onto.HPPA.RData'

base::save(list=x, file=RData.ontology.customised)
#list.files(pattern="'*.RData')

## you will see an RData file 'onto.HPPA.RData' in local directory

res <- dcAlgo(anno.file, architecture.file, feature.mode="supra"”,
parallel=FALSE, RData.ontology.customised=RData.ontology.customised)

res[1:5,]

## End(Not run)

dcAlgoPredict Function to predict ontology terms given domain architectures (in-
cluding individual domains)




18 dcAlgoPredict

Description

dcAlgoPredict is supposed to predict ontology terms given domain architectures (including indi-
vidual domains). It involves 3 steps: 1) splitting an architecture into individual domains and all
possible consecutive domain combinations (viewed as component features); 2) merging hscores
among component features; 3) scaling merged hscores into predictive scores across terms.

Usage

dcAlgoPredict(data, RData.HIS = c(NA, "Feature2GOBP.sf",
"Feature2GOMF .sf",

"Feature2GOCC.sf", "Feature2HPPA.sf", "Feature2GOBP.pfam”,
"Feature2GOMF .pfam”", "Feature2GOCC.pfam"”, "Feature2HPPA.pfam”,
"Feature2GOBP.interpro”, "Feature2GOMF.interpro",

"Feature2GOCC. interpro”,

"Feature2HPPA.interpro"”), merge.method = c("sum”, "max", "sequential"”),
scale.method = c("log”, "linear"”, "none"), feature.mode = c("supra"”,
"individual”, "comb"), slim.level = NULL, max.num = NULL,

parallel = TRUE, multicores = NULL, verbose =T,
RData.HIS.customised = NULL,

RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments
data an input data vector containing domain architectures. An architecture is repre-
sented in the form of comma-separated domains
RData.HIS RData to load. This RData conveys two bits of information: 1) feature (domain)

type; 2) ontology. It stores the hypergeometric scores (hscore) between fea-

tures (individual domains or consecutive domain combinations) and ontology

terms. The RData name tells which domain type and which ontology to use.

It can be: SCOP sf domains/combinations (including "Feature2GOBP.sf", "Fea-
ture2GOME.st", "Feature2GOCC.st", "Feature2HPPA .sf"), Pfam domains/combinations
(including "Feature2GOBP.pfam", "Feature2GOMF.pfam", "Feature2GOCC.pfam",
"Feature2HPPA.pfam"), InterPro domains (including "Feature2GOBP.interpro",
"Feature2GOMF.interpro", "Feature2GOCC.interpro", "Feature2HPPA..interpro").

If NA, then the user has to input a customised RData-formatted file (see RData.HIS. customised
below)

merge.method  the method used to merge predictions for each component feature (individual
domains and their combinations derived from domain architecture). It can be
one of "sum" for summing up, "max" for the maximum, and "sequential" for the
sequential weighting. The sequential weighting is done via: )., %, where
R; is the i'" ranked highest hscore

scale.method  the method used to scale the predictive scores. It can be: "none" for no scaling,
"linear" for being linearily scaled into the range between O and 1, "log" for
the same as "linear" but being first log-transformed before being scaled. The
scaling between 0 and 1 is done via: SS*%, where S,,;n and S, are the

minimum and maximum values for .S

m,aw_s'min



dcAlgoPredict 19

feature.mode  the mode of how to define the features thereof. It can be: "supra" for combi-
nations of one or two successive domains (including individual domains; con-
sidering the order), "individual" for individual domains only, and "comb" for all
possible combinations (including individual domains; ignoring the order)

slim.level whether only slim terms are returned. By defaut, it is NULL and all predicted
terms will be reported. If it is specified as a vector containing any values from 1
to 4, then only slim terms at these levels will be reported. Here is the meaning
of these values: 1’ for very general terms, "2’ for general terms, ’3’ for specific
terms, and *4’ for very specific terms

max . num whether only top terms per sequence are returned. By defaut, it is NULL and no
constraint is imposed. If an integer is specified, then all predicted terms (with
scores in a decreasing order) beyond this number will be discarded. Notably,
this parameter works after the preceding parameter slim.level

parallel logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

RData.HIS.customised
a file name for RData-formatted file containing an object of S3 class "HIS’. By
default, it is NULL. It is only needed when the user wants to perform customised
analysis. See dcAlgoPropagate on how this object is created

RData.location the characters to tell the location of built-in RData files. See dcRDataloader
for details

Value

a named list of architectures, each containing predictive scores

Note

none

See Also

dcRDataloader, dcSplitArch, dcConverter, dcAlgoPropagate, dcAlgoPredictMain, dcAlgoPredictGenome



20 dcAlgoPredictGenome

Examples

## Not run:

# 1) randomly generate 5 domains and/or domain architectures
x <- dcRDatalLoader (RData="Feature2GOMF.sf")

data <- sample(names(x$hscore), 5)

# 2) get predictive scores of all predicted terms for this domain architecture
## using 'sequential' method (by default)

pscore <- dcAlgoPredict(data=data, RData.HIS="Feature2GOMF.sf",
parallel=FALSE)

## using 'max' method

pscore_max <- dcAlgoPredict(data=data, RData.HIS="Feature2GOMF.sf",
merge.method="max", parallel=FALSE)

## using 'sum' method

pscore_sum <- dcAlgoPredict(data=data, RData.HIS="Feature2GOMF.sf",
merge.method="sum"”, parallel=FALSE)

# 3) advanced usage

## a) focus on those terms at the 2nd level (general)

pscore <- dcAlgoPredict(data=data, RData.HIS="Feature2GOMF.sf",
slim.level=2, parallel=FALSE)

## b) visualise predictive scores in the ontology hierarchy
#i## load the ontology

g <- dcRDatalLoader("onto.GOMF", verbose=FALSE)

ig <- dcConverter(g, from='Onto', to='igraph', verbose=FALSE)
### do visualisation for the 1st architecture

data <- pscore[[1]]

subg <- dnet::dDAGinduce(ig, nodes_query=names(data),
path.mode="shortest_paths")

dnet::visDAG(g=subg, data=data, node.info="term_id")

## End(Not run)

dcAlgoPredictGenome Function to predict ontology terms for genomes with domain architec-
tures (including individual domains)

Description

dcAlgoPredictGenome is supposed to predict ontology terms for genomes with domain architec-
tures (including individual domains).

Usage

dcAlgoPredictGenome(input.file, RData.HIS = c(NULL, "Feature2GOBP.sf",
"Feature2GOMF.sf", "Feature2GOCC.sf", "Feature2HPPA.sf",
"Feature2GOBP.pfam",

"Feature2GOMF.pfam", "Feature2GOCC.pfam"”, "Feature2HPPA.pfam”,
"Feature2GOBP.interpro”, "Feature2GOMF.interpro",



dcAlgoPredictGenome

21

"Feature2GOCC.interpro”,

"Feature2HPPA.interpro”), weight.method = c("none"”, "copynum”, "ic",
"both"), merge.method = c("sum”, "max", "sequential”),
scale.method = c("log", "linear", "none"), feature.mode = c("supra”,

"individual”, "comb"), slim.level = NULL, max.num = NULL,
parallel = TRUE, multicores = NULL, verbose = T,
RData.HIS.customised = NULL,

RData.location

"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments

input.file

RData.HIS

weight.method

merge.method

scale.method

feature.mode

an input file containing genomes and their domain architectures (including indi-
vidual domains). For example, a file containing Hominidae genomes and their
domain architectures can be found in http://dcgor.r-forge.r-project.org/
data/Feature/Hominidae.txt. As seen in this example, the input file must
contain the header (in the first row) and two columns: 1st column for ’Genome’
(a genome like a container), 2nd column for ’Architecture’ (SCOP domain ar-
chitectures, each represented as comma-separated domains). Alternatively, the
input.file can be a matrix or data frame, assuming that input file has been read.
Note: the file should use the tab delimiter as the field separator between columns

RData to load. This RData conveys two bits of information: 1) feature (domain)

type; 2) ontology. It stores the hypergeometric scores (hscore) between fea-

tures (individual domains or consecutive domain combinations) and ontology

terms. The RData name tells which domain type and which ontology to use.

It can be: SCOP sf domains/combinations (including "Feature2GOBP.sf", "Fea-
ture2GOME.sf", "Feature2GOCC.sf", "Feature2HPPA .sf"), Pfam domains/combinations
(including "Feature2GOBP.pfam", "Feature2GOMEF.pfam", "Feature2GOCC.pfam",
"Feature2ZHPPA.pfam"), InterPro domains (including "Feature2GOBP.interpro",
"Feature2GOMF.interpro", "Feature2GOCC.interpro", "Feature2HPPA .interpro™).

If NA, then the user has to input a customised RData-formatted file (see RData.HIS.customised
below)

the method used how to weight predictions. It can be one of "none" (no weight-
ing; by default), "copynum" for weighting copynumber of architectures, and
"ic" for weighting information content (ic) of the term, "both" for weighting
both copynumber and ic

the method used to merge predictions for each component feature (individual
domains and their combinations derived from domain architecture). It can be
one of "sum" for summing up, "max" for the maximum, and "sequential" for the
sequential merging. The sequential merging is done via: ) ., RT, where R; is
the i** ranked highest hscore

the method used to scale the predictive scores. It can be: "none" for no scaling,
"linear" for being linearily scaled into the range between O and 1, "log" for
the same as "linear" but being first log-transformed before being scaled. The
scaling between 0 and 1 is done via: %, where S,,,;» and S, are the
minimum and maximum values for .S

the mode of how to define the features thereof. It can be: "supra" for combi-
nations of one or two successive domains (including individual domains; con-


http://dcgor.r-forge.r-project.org/data/Feature/Hominidae.txt
http://dcgor.r-forge.r-project.org/data/Feature/Hominidae.txt

22

slim.level

max.num

parallel

multicores

verbose

dcAlgoPredictGenome

sidering the order), "individual" for individual domains only, and "comb" for all
possible combinations (including individual domains; ignoring the order)

whether only slim terms are returned. By defaut, it is NULL and all predicted
terms will be reported. If it is specified as a vector containing any values from 1
to 4, then only slim terms at these levels will be reported. Here is the meaning
of these values: 1’ for very general terms, "2’ for general terms, ’3’ for specific
terms, and *4’ for very specific terms

whether only top terms per sequence are returned. By defaut, it is NULL and no
constraint is imposed. If an integer is specified, then all predicted terms (with
scores in a decreasing order) beyond this number will be discarded. Notably,
this parameter works after the preceding parameter slim.level

logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

RData.HIS.customised

RData.location

Value

a file name for RData-formatted file containing an object of S3 class "HIS’. By
default, it is NULL. It is only needed when the user wants to perform customised
analysis. See dcAlgoPropagate on how this object is created

the characters to tell the location of built-in RData files. See dcRDataloader
for details

a matrix of terms X genomes, containing the predicted scores (per genome) as a whole

Note

none

See Also

dcRDataloader, dcAlgoPropagate, dcAlgoPredict

Examples

## Not run:

# 1) Prepare an input file containing domain architectures

input.file <-

"http://dcgor.r-forge.r-project.org/data/Feature/Hominidae. txt"



dcAlgoPredictMain 23

# 2) Do prediction using built-in data

output <- dcAlgoPredictGenome(input.file, RData.HIS="Feature2GOMF.sf",
parallel=FALSE)

dim(output)

output[1:10,]

# 3) Advanced usage: using customised data

X <-
base::load(base::url("http://dcgor.r-forge.r-project.org/data/Feature2GOMF.sf.RData"))
RData.HIS.customised <- 'Feature2GOMF.sf.RData'

base::save(list=x, file=RData.HIS.customised)
#list.files(pattern='*.RData')

## you will see an RData file 'Feature2GOMF.sf.RData' in local directory
output <- dcAlgoPredictGenome(input.file, parallel=FALSE,
RData.HIS.customised=RData.HIS.customised)

dim(output)

output[1:10,]

## End(Not run)

dcAlgoPredictMain Function to predict ontology terms given an input file containing do-
main architectures (including individual domains)

Description

dcAlgoPredictMain is supposed to predict ontology terms given an input file containing domain
architectures (including individual domains).

Usage

dcAlgoPredictMain(input.file, output.file = NULL, RData.HIS = c(NA,
"Feature2GOBP.sf", "Feature2GOMF.sf", "Feature2GOCC.sf",
"Feature2HPPA.sf",

"Feature2GOBP.pfam”", "Feature2GOMF.pfam"”, "Feature2GOCC.pfam”,
"Feature2HPPA.pfam”", "Feature2GOBP.interpro”, "Feature2GOMF.interpro”,
"Feature2GOCC. interpro”, "Feature2HPPA.interpro"), merge.method =

C("Sum",
"max", "sequential”), scale.method = c("log", "linear"”, "none"),
feature.mode = c(”"supra”, "individual”, "comb"), slim.level = NULL,

max.num = NULL, parallel = TRUE, multicores = NULL, verbose =T,
RData.HIS.customised = NULL,

RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")



24 dcAlgoPredictMain

Arguments

input.file an input file containing domain architectures (including individual domains).
For example, a file containing UniProt ID and domain architectures for hu-
man proteins can be found in http://dcgor.r-forge.r-project.org/data/
Feature/hs.txt. Asseen in this example, the input file must contain the header
(in the first row) and two columns: 1st column for *SeqID’ (actually these IDs
can be anything), 2nd column for ’Architecture’ (SCOP domain architectures,
each represented as comma-separated domains). Alternatively, the input.file can
be a matrix or data frame, assuming that input file has been read. Note: the file
should use the tab delimiter as the field separator between columns

output.file an output file containing predicted results. If not NULL, a tab-delimited text file
will be also written out; otherwise, there is no output file (by default)

RData.HIS RData to load. This RData conveys two bits of information: 1) feature (domain)
type; 2) ontology. It stores the hypergeometric scores (hscore) between fea-
tures (individual domains or consecutive domain combinations) and ontology
terms. The RData name tells which domain type and which ontology to use.
It can be: SCOP sf domains/combinations (including "Feature2GOBP.sf", "Fea-
ture2GOME.sf", "Feature2GOCC.sf", "Feature2HPPA .sf"), Pfam domains/combinations
(including "Feature2GOBP.pfam", "Feature2GOME.pfam", "Feature2GOCC.pfam",
"Feature2ZHPPA.pfam"), InterPro domains (including "Feature2GOBP.interpro",
"Feature2GOMF.interpro", "Feature2GOCC.interpro", "Feature2HPPA..interpro").
If NA, then the user has to input a customised RData-formatted file (see RData.HIS. customised
below)

merge.method  the method used to merge predictions for each component feature (individual
domains and their combinations derived from domain architecture). It can be
one of "sum" for summing up, "max" for the maximum, and "sequential" for the
sequential merging. The sequential merging is done via: )., %, where R; is
the i** ranked highest hscore

scale.method  the method used to scale the predictive scores. It can be: "none" for no scaling,
"linear" for being linearily scaled into the range between O and 1, "log" for
the same as "linear" but being first log-transformed before being scaled. The
scaling between 0 and 1 is done via: SS_%, where S, and S, are the

minimum and maximum values for S

maxz —Pmin

feature.mode  the mode of how to define the features thereof. It can be: "supra" for combi-
nations of one or two successive domains (including individual domains; con-
sidering the order), "individual" for individual domains only, and "comb" for all
possible combinations (including individual domains; ignoring the order)

slim.level whether only slim terms are returned. By defaut, it is NULL and all predicted
terms will be reported. If it is specified as a vector containing any values from 1
to 4, then only slim terms at these levels will be reported. Here is the meaning
of these values: 1’ for very general terms, "2’ for general terms, ’3’ for specific
terms, and ’4’ for very specific terms

max . num whether only top terms per sequence are returned. By defaut, it is NULL and no
constraint is imposed. If an integer is specified, then all predicted terms (with
scores in a decreasing order) beyond this number will be discarded. Notably,
this parameter works after the preceding parameter slim.level


http://dcgor.r-forge.r-project.org/data/Feature/hs.txt
http://dcgor.r-forge.r-project.org/data/Feature/hs.txt

dcAlgoPredictMain

parallel

multicores

verbose

25

logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

RData.HIS.customised

RData.location

Value

a file name for RData-formatted file containing an object of S3 class "HIS’. By
default, it is NULL. It is only needed when the user wants to perform customised
analysis. See dcAlgoPropagate on how this object is created

the characters to tell the location of built-in RData files. See dcRDataloader
for details

a data frame containing three columns: 1st column the same as the input file (e.g. ’SeqID’), 2nd for
"Term’ (predicted ontology terms), 3rd for *Score’ (along with predicted scores)

Note

When ’output.file’ is specified, a tab-delimited text file is written out, with the column names: 1Ist
column the same as the input file (e.g. SeqID’), 2nd for *Term’ (predicted ontology terms), 3rd for
’Score’ (along with predicted scores)

See Also

dcRDataloader, dcAlgoPropagate, dcAlgoPredict

Examples

## Not run:

# 1) Prepare an input file containing domain architectures
input.file <- "http://dcgor.r-forge.r-project.org/data/Feature/hs.txt"

# 2) Do prediction using built-in data
output <- dcAlgoPredictMain(input.file, RData.HIS="Feature2GOMF.sf",

parallel=FALSE)
output[1:5,]

# 3) Advanced usage: using customised data

X <-

base::load(base::url("http://dcgor.r-forge.r-project.org/data/Feature2GOMF.sf.RData"))
RData.HIS.customised <- 'Feature2GOMF.sf.RData'



26 dcAlgoPredictPR

base::save(list=x, file=RData.HIS.customised)
#list.files(pattern='%_RData')

## you will see an RData file 'Feature2GOMF.sf.RData' in local directory
output <- dcAlgoPredictMain(input.file, parallel=FALSE,
RData.HIS.customised=RData.HIS.customised)

output[1:5,]

## End(Not run)

dcAlgoPredictPR Function to assess the prediction performance via Precision-Recall
(PR) analysis

Description

dcAlgoPredictPR is supposed to assess the prediction performance via Precision-Recall (PR) anal-
ysis. It requires two input files: 1) a Glod Standard Positive (GSP) file containing known annota-
tions between proteins/genes and ontology terms; 2) a prediction file containing predicted terms for
proteins/genes. Note: the known annotations will be recursively propagated towards the root of the

ontology.
Usage
dcAlgoPredictPR(GSP.file, prediction.file, ontology = c(NA, "GOBP",
"GOMF",
”GOCCH , ”DOH R HHPPAH R ”HPMI n R HHPONH R ”MP” ) HECH , HKW” R IIUPH) R
num. threshold = 10, bin = c¢("uniform”, "quantile"), verbose =T,

RData.ontology.customised = NULL,
RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments

GSP.file a Glod Standard Positive (GSP) file containing known annotations between pro-
teins/genes and ontology terms. For example, a file containing annotations be-
tween human genes and HP terms can be found in http://dcgor.r-forge.
r-project.org/data/Algo/HP_anno.txt. As seen in this example, the in-
put file must contain the header (in the first row) and two columns: 1st column
for ’SeqID’ (actually these IDs can be anything), 2nd column for ’termID’ (HP
terms). Alternatively, the GSPfile can be a matrix or data frame, assuming that
GSP file has been read. Note: the file should use the tab delimiter as the field
separator between columns

prediction.file
a prediction file containing proteins/genes, their predicted terms along with pre-
dictive scores. As seen in an example below, this file is usually created via
dcAlgoPredictMain, containing three columns: 1st column for ’SeqID’ (actu-
ally these IDs can be anything), 2nd column for *Term’ (ontology terms), 3rd


http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt
http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt

dcAlgoPredictPR

ontology

num. threshold

bin

verbose

27

column for ’Score’ (predictive score). Alternatively, the prediction.file can be a
matrix or data frame, assuming that prediction file has been read. Note: the file
should use the tab delimiter as the field separator between columns

the ontology identity. It can be "GOBP" for Gene Ontology Biological Process,
"GOMEF" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology
Cellular Component, "DO" for Disease Ontology, "HPPA" for Human Pheno-
type Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inher-
itance, "HPON" for Human Phenotype ONset and clinical course, "MP" for
Mammalian Phenotype, "EC" for Enzyme Commission, "KW" for UniProtKB
KeyWords, "UP" for UniProtKB UniPathway. For details on the eligibility for
pairs of input domain and ontology, please refer to the online Documentations
at http://supfam.org/dcGOR/docs.html. If NA, then the user has to input a
customised RData-formatted file (see RData.ontology.customised below)

an integer to specify how many PR points (as a function of the score threshold)
will be calculated

how to bin the scores. It can be "uniform" for binning scores with equal inter-
val (ie with uniform distribution), and ’quantile’ for binning scores with eual
frequency (ie with equal number)

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

RData.ontology.customised

RData.location

Value

a file name for RData-formatted file containing an object of S4 class ’Onto’ (i.g.
ontology). By default, it is NULL. It is only needed when the user wants to
perform customised analysis using their own ontology. See dcBuildOnto for
how to creat this object

the characters to tell the location of built-in RData files. See dcRDataloader
for details

a data frame containing two columns: Ist column ’Precision’ for precision, 2nd ’Recall’ for recall.
The row has the names corresponding to the score threshold.

Note

Prediction coverage: the ratio between predicted targets in number and GSP targets in number
F-measure: the maximum of a harmonic mean between precision and recall along PR curve

See Also

dcRDataloader, dcConverter, dcDuplicated, dcAlgoPredictMain

Examples

## Not run:

# 1) Generate prediction file with HPPA predicitions for human genes
architecture.file <-
"http://dcgor.r-forge.r-project.org/data/Algo/SCOP_architecture.txt”


http://supfam.org/dcGOR/docs.html

28 dcAlgoPropagate
prediction.file <- "SCOP_architecture.HPPA_predicted.txt"”
res <- dcAlgoPredictMain(input.file=architecture.file,
output.file=prediction.file, RData.HIS="Feature2HPPA.sf",
parallel=FALSE)
# 2) Calculate Precision and Recall
GSP.file <- "http://dcgor.r-forge.r-project.org/data/Algo/HP_anno. txt"
res_PR <- dcAlgoPredictPR(GSP.file=GSP.file,
prediction.file=prediction.file, ontology="HPPA")
res_PR
# 3) Plot PR-curve
plot(res_PR[,2], res_PR[,1], xlim=c(@,1), ylim=c(0,1), type="b",
xlab="Recall"”, ylab="Precision”)
## End(Not run)
dcAlgoPropagate Function to propagate ontology annotations according to an input file

Description

dcAlgoPropagate is supposed to propagate ontology annotations, given an input file. This input
file contains original annotations between domains/features and ontology terms, along with the
hypergeometric scores (hscore) in support for their annotations. The annotations are propagated
to the ontology root (either retaining the maximum hscore or additively accumulating the hscore).
After the propogation, the ontology terms of increasing levels are determined based on the concept
of Information Content (IC) to product a slim version of ontology. It returns an object of S3 class

"non:

"HIS" with three components: "hscore", "ic" and "slim".

Usage

dcAlgoPropagate(input.file, ontology = c(NA, "GOBP", "GOMF", "GOCC",
"DO",

"HPPA", "HPMI", "HPON", "MP", "EC", "KW", "UP"), propagation = c("max",
"sum"), output.file = "HIS.RData", verbose =T,
RData.ontology.customised = NULL,

RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments

input.file an input file used to build the object. This input file contains original an-
notations between domains/features and ontology terms, along with the hy-
pergeometric scores (hscore) in support for their annotations. For example, a
file containing original annotations between SCOP domain architectures and
GO terms can be found in http://dcgor.r-forge.r-project.org/data/
Feature/Feature2GO.sf.txt. Asseen in this example, the input file must con-
tain the header (in the first row) and three columns: 1st column for ’Feature_id’


http://dcgor.r-forge.r-project.org/data/Feature/Feature2GO.sf.txt
http://dcgor.r-forge.r-project.org/data/Feature/Feature2GO.sf.txt

dcAlgoPropagate

ontology

propagation

output.file

verbose

29

(here SCOP domain architectures), 2nd column for *Term_id’ (GO terms), and
3rd column for ’Score’ (hscore). Alternatively, the input.file can be a matrix or
data frame, assuming that input file has been read. Note: the file should use the
tab delimiter as the field separator between columns

the ontology identity. It can be "GOBP" for Gene Ontology Biological Process,
"GOMEF" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology
Cellular Component, "DO" for Disease Ontology, "HPPA" for Human Pheno-
type Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inher-
itance, "HPON" for Human Phenotype ONset and clinical course, "MP" for
Mammalian Phenotype, "EC" for Enzyme Commission, "KW" for UniProtKB
KeyWords, "UP" for UniProtKB UniPathway. For details on the eligibility for
pairs of input domain and ontology, please refer to the online Documentations
at http://supfam.org/dcGOR/docs.html. If NA, then the user has to input a
customised RData-formatted file (see RData.ontology.customised below)

how to propagate the score. It can be "max" for retaining the maximum hscore
(by default), "sum" for additively accumulating the hscore

an output file used to save the HIS object as an RData-formatted file (see *Value’
for details). If NULL, this file will be saved into "HIS.RData" in the current
working local directory. If NA, there will be no output file

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

RData.ontology.customised

RData.location

Value

a file name for RData-formatted file containing an object of S4 class ’Onto’ (i.g.
ontology). By default, it is NULL. It is only needed when the user wants to
perform customised analysis using their own ontology. See dcBuildOnto for
how to creat this object

the characters to tell the location of built-in RData files. See dcRDataloader
for details

an object of S3 class HIS, with following components:

* hscore: a list of features, each with a term-named vector containing hscore

* ic: a term-named vector containing information content (IC). Terms are ordered first by IC
and then by longest-path level, making sure that for terms with the same IC, parental terms
always come first

e slim: alist of four slims, each with a term-named vector containing information content (IC).
Slim 1’ for very general terms, ’2’ for general terms, ’3’ for specific terms, ’4’ for very
specific terms

Note

None

See Also

dcRDataloader, dcConverter, dcAlgo, dcList2Matrix


http://supfam.org/dcGOR/docs.html

30 dcAncestralML

Examples

## Not run:

# build an "HIS" object for GO Molecular Function

input.file <-
"http://dcgor.r-forge.r-project.org/data/Feature/Feature2GO.sf.txt"
Feature2GOMF.sf <- dcAlgoPropagate(input.file=input.file,
ontology="GOMF", output.file="Feature2GOMF.sf.RData")

names (Feature2GOMF . sf)

Feature2GOMF . sf$hscore[1]

Feature2GOMF.sf$ic[1:10]

Feature2GOMF.sf$slim[1]

# extract hscore as a matrix with 3 columns (Feature_id, Term_id, Score)
hscore <- Feature2GOMF.sf$hscore

hscore_mat <- dcList2Matrix(hscore)

colnames(hscore_mat) <- c("Feature_id"”, "Term_id", "Score")
dim(hscore_mat)

hscore_mat[1:10,]

## End(Not run)

dcAncestralML Function to reconstruct ancestral discrete states using fast maximum
likelihood algorithm

Description

dcAncestralML is supposed to reconstruct ancestral discrete states using fast maximum likelihood
algorithm. It takes inputs both the phylo-formatted tree and discrete states in the tips. The algorithm
assumes that state changes can be described by a probablistic reversible model. It first determines
transition matrix between states (also considering branch lengths), then uses dynamic programming
(from tips to the root) to estimate conditional maximum likelihood, and finally reconstructs the
ancestral states (from the root to tips). If the ties occur at the root, the state at the root is set to the
last state in ties (for example, usually being ’present’ for *present’-’absent’ two states).

Usage
dcAncestralML(data, phy, transition.model = c("different”, "symmetric”,
"same"”, "customised”), customised.model = NULL, edge.length.power = 1,

initial.estimate = 0.1, output.detail = F, parallel =T,
multicores = NULL, verbose = T)

Arguments

data an input data matrix storing discrete states for tips (in rows) X characters (in
columns). The rows in the matrix are for tips. If the row names do not exist,
then addumedly they have the same order as in the tree tips. More wisely, users
provide row names which can be matched to the tip labels of the tree. The row



dcAncestralML 31

names can be more than found in the tree labels, and they should contain all
those in the tree labels
phy an object of class "phylo’
transition.model
a character specifying the transition model. It can be: "different" for all-transition-
different model (such as matriz(c(0,1,2,0),2)), "symmetric" for the symmet-
ric model (such as matriz(c(0, 1, 1,0), 2) or matriz(c(0,1,2,1,0,3,2,3,0), 3)),
"same" for all-transition-same model (such as matriz(c(0,1,1,0),2)), "cus-
tomised" for the user-customised model (see the next parameter)
customised.model
a matrix customised for the transition model. It can be: matriz(c(0,1,1,0), 2),
matriz(c(0,1,2,0),2), or matriz(c(0,1,2,1,0,3,2,3,0),3)
edge.length.power
a non-negative value giving the exponent transformation of the branch lengths.
It is useful when determining transition matrix between states
initial.estimate
the initial value used for the maximum likelihood estimation

output.detail logical to indicate whether the output is returned as a detailed list. If TRUE,
a nested list is returned: a list of characters (corresponding to columns of in-
put data matrix), in which each element is a list consisting of three compo-
nents ("states", "transition" and "relative"). If FALSE, a matrix is returned: the
columns respond to the input data columns, and rows responding to all node
index in the phylo-formatted tree

parallel logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

Value

It depends on the ’output.detail’. If FALSE (by default), a matrix is returned, with the columns
responding to the input data columns, and rows responding to node index in the phylo-formatted
tree. If TRUE, a nested list is returned. Outer-most list is for characters (corresponding to columns
of input data matrix), in which each elemenl is a list (inner-most) consisting of three components

non

("states", "transition" and "relative"):

* states: a named vector storing states (extant and ancestral states)
e transition: an estimated transition matrix between states

* relative: a matrix of nodes X states, storing conditional maximum likelihood being relative
to each state



32 dcAncestralML

Note

This fast dynamic programming for ancestral discrete state reconstruction is partially inspired by
a joint estimation procedure as described in http://mbe.oxfordjournals.org/content/17/6/
890.full

See Also

dcAncestralMP, dcDuplicated

Examples

# 1) a newick tree that is imported as a phylo-formatted tree
tree <- "(((t1:5,t2:5):2,(t3:4,t4:4):3):2,(t5:4,t6:4):6);"
phy <- ape::read.tree(text=tree)

# 2) an input data matrix storing discrete states for tips (in rows) X four characters (in columns)
datal <- matrix(c(@,rep(1,3),rep(0,2)), ncol=1)

data2 <- matrix(c(rep(@,4),rep(1,2)), ncol=1)

data <- cbind(datal, datal, datal, data2)

colnames(data) <- c("C1", "C2", "C3", "C4")

## reconstruct ancestral states, without detailed output

res <- dcAncestralML(data, phy, parallel=FALSE)

res

# 3) an input data matrix storing discrete states for tips (in rows) X only one character
data <- matrix(c(@,rep(1,3),rep(@,2)), ncol=1)

## reconstruct ancestral states, with detailed output

res <- dcAncestralML(data, phy, parallel=FALSE, output.detail=TRUE)

res

## get the inner-most list

res <- res[[1]]

## visualise the tree with ancestral states and their conditional probability
Ntip <- ape::Ntip(phy)

Nnode <- ape: :Nnode(phy)

color <- c("white”,"gray")

## visualise main tree

ape::plot.phylo(phy, type="p", use.edge.length=TRUE, label.offset=1,

show. tip.label=TRUE, show.node.label=FALSE)

## visualise tips (state 1 in gray, state @ in white)

x <- data[,1]

ape::tiplabels(pch=22, bg=color[as.numeric(x)+1], cex=2, adj=1)

## visualise internal nodes

### thermo bar to illustrate relative probability (state 1 in gray, state @ in white)
ape: :nodelabels(thermo=res$relative[Ntip+1:Nnode,2:1],

piecol=color[2:1], cex=0.75)

### labeling reconstructed ancestral states

ape: :nodelabels(text=res$states[Ntip+1:Nnode], node=Ntip+1:Nnode,
frame="none", col="red", bg="transparent”, cex=0.75)


http://mbe.oxfordjournals.org/content/17/6/890.full
http://mbe.oxfordjournals.org/content/17/6/890.full

dcAncestralMP

33

dcAncestralMP

Function to reconstruct ancestral discrete states using maximum par-
simony algorithm

Description

dcAncestralMP is supposed to reconstruct ancestral discrete states using a maximum parsimony-
modified Fitch algorithm. In a from-tip-to-root manner, ancestral state for an internal node is de-
termined if a state is shared in a majority by all its children. If two or more states in a majority
are equally shared, this internal node is temporarily marked as an unknown tie, which is further
resolved in a from-root-to-tip manner: always being the same state as its direct parent holds. If the
ties also occur at the root, the state at the root is set to the last state in ties (for example, usually
being "present’ for *present’-’absent’ two states).

Usage

dcAncestralMP(data, phy, output.detail = F, parallel =T,

multicores =

Arguments

data

phy
output.detail

parallel

multicores

verbose

NULL, verbose = T)

an input data matrix/frame storing discrete states for tips (in rows) X characters
(in columns). The rows in the matrix are for tips. If the row names do not exist,
then addumedly they have the same order as in the tree tips. More wisely, users
provide row names which can be matched to the tip labels of the tree. The row
names can be more than found in the tree labels, and they should contain all
those in the tree labels

an object of class "phylo’

logical to indicate whether the output is returned as a detailed list. If TRUE,
a nested list is returned: a list of characters (corresponding to columns of in-
put data matrix), in which each element is a list consisting of three compo-
nents ("states", "transition" and "relative"). If FALSE, a matrix is returned: the
columns respond to the input data columns, and rows responding to all node

index in the phylo-formatted tree

logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display



34 dcAncestralMP

Value

It depends on the ’output.detail’. If FALSE (by default), a matrix is returned, with the columns
responding to the input data columns, and rows responding to node index in the phylo-formatted
tree. If TRUE, a nested list is returned. Outer-most list is for characters (corresponding to columns
of input data matrix), in which each elemenl is a list (inner-most) consisting of three components

non

("states", "transition" and "relative"):

* states: a named vector storing states (extant and ancestral states)
* transition: a posterior transition matrix between states

* relative: a matrix of nodes X states, storing relative probability

Note

This maximum parsimony algorithm for ancestral discrete state reconstruction is attributable to the
basic idea as described in http://sysbio.oxfordjournals.org/content/20/4/406.short

See Also

dcAncestralML, dcTreeConnectivity, dcDuplicated

Examples

# 1) a newick tree that is imported as a phylo-formatted tree
tree <- "(((t1:5,t2:5):2,(t3:4,t4:4):3):2,(t5:4,t6:4):6);"
phy <- ape::read.tree(text=tree)

# 2) an input data matrix storing discrete states for tips (in rows) X four characters (in columns)
datal <- matrix(c(@,rep(1,3),rep(0,2)), ncol=1)

data2 <- matrix(c(rep(@,4),rep(1,2)), ncol=1)

data <- cbind(datal, datal, datal, data2)

colnames(data) <- c("C1", "C2", "C3", "C4")

## reconstruct ancestral states, without detailed output

res <- dcAncestralMP(data, phy, parallel=FALSE)

res

# 3) an input data matrix storing discrete states for tips (in rows) X only one character
data <- matrix(c(Q,rep(1,3),rep(0,2)), ncol=1)

## reconstruct ancestral states, with detailed output

res <- dcAncestralMP(data, phy, parallel=FALSE, output.detail=TRUE)

res

## get the inner-most list

res <- res[[1]]

## visualise the tree with ancestral states and their conditional probability
Ntip <- ape::Ntip(phy)

Nnode <- ape: :Nnode(phy)

color <- c("white"”,"gray")

## visualise main tree

ape::plot.phylo(phy, type="p", use.edge.length=TRUE, label.offset=1,

show. tip.label=TRUE, show.node.label=FALSE)

## visualise tips (state 1 in gray, state @ in white)

x <- data[,1]


http://sysbio.oxfordjournals.org/content/20/4/406.short

dcBuildAnno 35

ape: :tiplabels(pch=22, bg=color[as.numeric(x)+1], cex=2, adj=1)

## visualise internal nodes

### thermo bar to illustrate relative probability (state 1 in gray, state @ in white)
ape: :nodelabels(thermo=res$relative[Ntip+1:Nnode,2:1],

piecol=color[2:1], cex=0.75)

### labeling reconstructed ancestral states

ape: :nodelabels(text=res$states[Ntip+1:Nnode], node=Ntip+1:Nnode,

—n

frame="none", col="red"”, bg="transparent”, cex=0.75)

dcBuildAnno Function to build an object of the S4 class Anno from input files

Description

dcBuildAnno is supposed to build an object of of the S4 class Anno, given input files. These input
files include 1) a file containing domain information, 2) a file containing term information, and 3) a
file containing associations between domains and terms.

Usage

dcBuildAnno(domain_info.file, term_info.file, association.file,
output.file = "Anno.RData")

Arguments

domain_info.file
an input file containing domain information. For example, a file containing In-
terPro domains (InterPro) can be found in http://dcgor.r-forge.r-project.
org/data/InterPro/InterPro.txt. As seen in this example, the input file
must contain the header (in the first row), and entries in the first column intend
to be domain ID (and must be unique). Note: the file should use the tab delimiter
as the field separator between columns

term_info.file an input file containing term information. For example, a file containing Gene
Ontology (GO) terms can be found in http://dcgor.r-forge.r-project.
org/data/InterPro/GO. txt. As seen in this example, the input file must con-
tain the header (in the first row) and four columns: 1st column for term ID (must
be unique), 2nd column for term name, 3rd column for term namespace, and 4th
column for term distance. These four columns must be provided, but the content
for the last column can be arbitrary (if it is hard to prepare). Note: the file should
use the tab delimiter as the field separator between columns

association.file
an input file containing associations between domains and terms. For exam-
ple, a file containing associations between InterPro domains and GO Molecular
Function (GOMF) terms can be found in http://dcgor.r-forge.r-project.
org/data/InterPro/Domain2GOMF. txt. As seen in this example, the input file
must contain the header (in the first row) and two columns: 1st column for do-
main ID (corresponding to the first column in ’domain_info.file’), 2nd column


http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt
http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt
http://dcgor.r-forge.r-project.org/data/InterPro/GO.txt
http://dcgor.r-forge.r-project.org/data/InterPro/GO.txt
http://dcgor.r-forge.r-project.org/data/InterPro/Domain2GOMF.txt
http://dcgor.r-forge.r-project.org/data/InterPro/Domain2GOMF.txt

36 dcBuildInfoDataFrame

for term ID (corresponding to the first column in ’term_info.file’). If there are
additional columns, these columns will be ignored. Note: the file should use the
tab delimiter as the field separator between columns

output.file an output file used to save the built object as an RData-formatted file. If NULL,
this file will be saved into "Anno.RData" in the current working local directory

Value

Any use-specified variable that is given on the right side of the assigement sign ’<-’, which contains
the built Anno object. Also, an RData file specified in "output.file" is saved in the local directory.

Note

If there are no use-specified variable that is given on the right side of the assigement sign ’<-’, then
no object will be loaded onto the working environment.

See Also

Anno

Examples

## Not run:

# build an "Anno” object that contains SCOP domain superfamilies (sf) annotated by GOBP terms
InterPro2GOMF <-
dcBuildAnno(domain_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt",
term_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/GO.txt",
association.file="http://dcgor.r-forge.r-project.org/data/InterPro/Domain2GOMF.txt",
output.file="InterPro2GOMF.RData")

InterPro2GOMF

## End(Not run)

dcBuildInfoDataFrame  Function to build an object of the S4 class InfoDataframe from an
input file

Description
dcBuildInfoDataFrame is supposed to build an object of of the S4 class InfoDataFrame, given an
input file. This input file can, for example, contain the domain information.

Usage

dcBuildInfoDataFrame(input.file, output.file = "InfoDataFrame.RData")



dcBuildOnto 37

Arguments

input.file an input file used to build the object. For example, a file containing InterPro
domains (InterPro) can be found in http://dcgor.r-forge.r-project.org/
data/InterPro/InterPro.txt. As seen in this example, the input file must
contain the header (in the first row), and entries in the first column intend to
be domain identities (and must be unique). Note: the file should use the tab
delimiter as the field separator between columns

output.file an output file used to save the built object as an RData-formatted file. If NULL,
this file will be saved into "InfoDataFrame.RData" in the current working local
directory

Value

Any use-specified variable that is given on the right side of the assigement sign ’<-’, which contains
the built dcBuildInfoDataFrame object. Also, an RData file specified in "output.file" is saved in
the local directory.

Note

If there are no use-specified variable that is given on the right side of the assigement sign ’<-’, then
no object will be loaded onto the working environment.

See Also

InfoDataFrame

Examples

## Not run:

# build an "InfoDataFrame” object that contains information on InterPro domains (InterPro)
InterPro <-
dcBuildInfoDataFrame(input.file="http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt",
output.file="InterPro.RData")

InterPro

## End(Not run)

dcBuildOnto Function to build an object of the S4 class Onto from input files

Description
dcBuildOnto is supposed to build an object of of the S4 class Onto, given input files. These input
files include 1) a file containing term relations, and 2) a file containing term/node information.
Usage

dcBuildOnto(relations.file, nodes.file, output.file = "Onto.RData")


http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt
http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt

38 dcBuildOnto

Arguments

relations.file an input file containing term relations (i.e. edges from parent terms to child
terms). For example, a file containing relations between GO Molecular Func-
tion (GOMF) terms can be found in http://dcgor.r-forge.r-project.org/
data/onto/igraph_GOMF_edges.txt. As seen in this example, the input file
must contain the header (in the first row) and two columns: 1st column for par-
ent term ID, and 2nd column for child term ID. Note: the file should use the tab
delimiter as the field separator between columns

nodes.file an input file containing term/node information. For example, a file contain-
ing GO Molecular Function (GOMF) terms can be found in http://dcgor.
r-forge.r-project.org/data/onto/igraph_GOMF_nodes.txt. As seen in
this example, the input file must contain the header (in the first row) and five
columns: 1st column 'name’ for node names (actually term ID; must be unique),
2nd column ’term_id’ for term ID, 3rd ’term_name’ for term name, 4th col-
umn ’term_namespace’ for term namespace, and Sth column ’term_distance’
for term distance. These five columns must be provided, the content in the first
two columns are identical, and the content for the last column can be arbitrary
(if it is hard to prepare). Note: the file should use the tab delimiter as the field
separator between columns

output.file an output file used to save the built object as an RData-formatted file. If NULL,
this file will be saved into "Onto.RData" in the current working local directory
Value
Any use-specified variable that is given on the right side of the assigement sign ’<-’, which contains
the built Onto object. Also, an RData file specified in "output.file" is saved in the local directory.
Note

If there are no use-specified variable that is given on the right side of the assigement sign ’<-’, then
no object will be loaded onto the working environment.

See Also
Onto
Examples
## Not run:
# build an "Onto"” object for GO Molecular Function
onto.GOMF <-

dcBuildOnto(relations.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_edges.txt",
nodes.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_nodes.txt",
output.file="onto.GOMF.RData")

onto.GOMF

## End(Not run)


http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_edges.txt
http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_edges.txt
http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_nodes.txt
http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_nodes.txt

dcConverter 39

dcConverter Function to convert an object between graph classes

Description
dcConverter is supposed to convert an object between classes ’Onto’ and ’igraph’, or between
’Dnetwork’ and ’igraph’, or between ’Cnetwork’ and ’igraph’.

Usage

dcConverter(obj, from = c("Onto”, "igraph”, "Dnetwork"”, "Cnetwork"),
to = c("igraph”, "Onto"”, "Dnetwork”, "Cnetwork"), verbose = TRUE)

Arguments
obj an object of class "Onto", "igraph", "Dnetwork" or "Cnetwork"
from a character specifying the class converted from. It can be one of "Onto", "igraph",
"Dnetwork" and "Dnetwork"
to a character specifying the class converted to. It can be one of "Onto", "igraph",
"Dnetwork" and "Dnetwork”
verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display
Value

an object of class "Onto", "igraph", "Dnetwork" or "Cnetwork"

Note

Conversion is also supported between classes ’Onto’ and ’igraph’, or between 'Dnetwork’ and
’igraph’, or between *Cnetwork’ and ’igraph’

See Also

dcRDataloader, Onto-class, Dnetwork-class, Cnetwork-class

Examples

## Not run:

# 1) conversion between 'Onto' and 'igraph'

# 1a) load onto.GOMF (as 'Onto' object)

on <- dcRDatalLoader('onto.GOMF')

on

# 1b) convert the object from 'Onto' to 'igraph' class
ig <- dcConverter(on, from='Onto', to='igraph')

ig

# 1c) convert the object from 'igraph' to 'Onto' class
dcConverter(ig, from='igraph', to='Onto"')



40 dcDAGannotate

# 2) conversion between 'Dnetwork' and 'igraph'

# 2a) computer a domain semantic network (as 'Dnetwork' object)
g <- dcRDatalLoader('onto.GOMF')

Anno <- dcRDataloader ('SCOP.sf2GOMF')

dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths”,
verbose=FALSE)

alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,5) # randomly sample 5 domains
dnetwork <- dcDAGdomainSim(g=dag, domains=domains,
method.domain="BM.average"”, method.term="Resnik”, parallel=FALSE,
verbose=FALSE)

dnetwork

# 2b) convert the object from 'Dnetwork' to 'igraph' class

ig <- dcConverter(dnetwork, from='Dnetwork', to='igraph')

ig

# 2c) convert the object from 'igraph' to 'Dnetwork' class
dcConverter(ig, from='igraph', to='Dnetwork"')

## End(Not run)

dcDAGannotate Function to generate a subgraph of a direct acyclic graph (DAG) in-
duced by the input annotation data

Description

dcDAGannotate is supposed to produce a subgraph induced by the input annotation data, given a
direct acyclic graph (DAG; an ontology). The input is a graph of "igraph" or "Onto" object, a list
of the vertices containing annotation data, and the mode defining the paths to the root of DAG.
The induced subgraph contains vertices (with annotation data) and their ancestors along with the
defined paths to the root of DAG. The annotations at these vertices (including their ancestors) are
also updated according to the true-path rule: a domain annotated to a term should also be annotated
by its all ancestor terms.

Usage

dcDAGannotate(g, annotations, path.mode = c(”all_paths”,
"shortest_paths”,
"all_shortest_paths"), verbose = TRUE)

Arguments
g an object of class "igraph" or Onto
annotations an object of class Anno, that is, the vertices/nodes for which annotation data are

provided



dcDAGannotate

41

path.mode the mode of paths induced by vertices/nodes with input annotation data. It can be
"all_paths" for all possible paths to the root, "shortest_paths" for only one path
to the root (for each node in query), "all_shortest_paths" for all shortest paths to
the root (i.e. for each node, find all shortest paths with the equal lengths)
verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display
Value

* subg: an induced subgraph, an object of class "igraph" or "Onto" (the same as input). In
addition to the original attributes to nodes and edges, the return subgraph is also appended
by new node attributes: "annotations", which contains a list of domains either as original
annotations or inherited annotations; "IC", which stands for information content defined as
negative 10-based log-transformed frequency of domains annotated to that term.

Note

For the mode "shortest_paths", the induced subgraph is the most concise, and thus informative for
visualisation when there are many nodes in query, while the mode "all_paths" results in the complete

subgraph.

See Also

dcRDataloader, dcEnrichment, dcDAGdomainSim, dcConverter

Examples

## Not run:

# 1) load onto.GOMF (as 'Onto' object)
g <- dcRDatalLoader('onto.GOMF")

# 2) load SCOP superfamilies annotated by GOMF (as 'Anno' object)
Anno <- dcRDataloader ('SCOP.sf2GOMF')

# 3) prepare for annotation data
# randomly select 5 terms vertices (and their annotation data)
annotations <- Anno[,sample(1:dim(Anno)[2], 5)]

# 4) obtain the induced subgraph according to the input annotation data
# 4a) based on all possible paths (i.e. the complete subgraph induced)
dcDAGannotate(g, annotations, path.mode="all_paths"”, verbose=TRUE)

# 4b) based on shortest paths (i.e. the most concise subgraph induced)
dag <- dcDAGannotate(g, annotations, path.mode="shortest_paths”,
verbose=TRUE)

# 5) color-code nodes/terms according to the number of annotations
if(class(dag)=='0nto') dag <- dcConverter(dag, from='Onto',
to="igraph')

data <- sapply(V(dag)$annotations, length)

names(data) <- V(dag)$name

dnet::visDAG(g=dag, data=data, node.info="both")



42

## End(Not run)

dcDAGdomainSim

dcDAGdomainSim

Function to calculate pair-wise semantic similarity between domains
based on a direct acyclic graph (DAG) with annotated data

Description

dcDAGdomainSim is supposed to calculate pair-wise semantic similarity between domains based on
a direct acyclic graph (DAG) with annotated data. It first calculates semantic similarity between
terms and then derives semantic similarity between domains from terms-term semantic similarity.
Parallel computing is also supported for Linux or Mac operating systems.

Usage

dcDAGdomainSim(g, domains = NULL, method.domain = c("BM.average”,

"BM.max",

"BM.complete”,

"Schlicker”,

"average"”, "max"), method.term = c("Resnik”, "Lin",
"Jiang", "Pesquita"), force = TRUE, fast = TRUE,

parallel = TRUE, multicores = NULL, verbose = TRUE)

Arguments

g

domains

method.domain

an object of class "igraph" or Onto. It must contain a node attribute called ’an-
notations’ for storing annotation data (see example for howto)

the domains between which pair-wise semantic similarity is calculated. If NULL,
all domains annotatable in the input dag will be used for calcluation, which is
very prohibitively expensive!

the method used for how to derive semantic similarity between domains from
semantic similarity between terms. It can be "average" for average similarity
between any two terms (one from domain 1, the other from domain 2), "max"
for the maximum similarity between any two terms, "BM.average" for best-
matching (BM) based average similarity (i.e. for each term of either domain,
first calculate maximum similarity to any term in the other domain, then take
average of maximum similarity; the final BM-based average similiary is the
pre-calculated average between two domains in pair), "BM.max" for BM based
maximum similarity (i.e. the same as "BM.average", but the final BM-based
maximum similiary is the maximum of the pre-calculated average between two
domains in pair), "BM.complete" for BM-based complete-linkage similarity (in-
spired by complete-linkage concept: the least of any maximum similarity be-
tween a term of one domain and a term of the other domain). When comparing
BM-based similarity between domains, "BM.average" and "BM.max" are sen-
sitive to the number of terms invovled; instead, "BM.complete" is much robust
in this aspect. By default, it uses "BM.average".



dcDAGdomainSim

method. term

force

fast

parallel

multicores

verbose

Value

43

the method used to measure semantic similarity between terms. It can be "Resnik"
for information content (IC) of most informative common ancestor (MICA) (see
http://arxiv.org/pdf/cmp-1g/9511007.pdf), "Lin" for 2*IC at MICA di-
vided by the sum of IC at pairs of terms (see http://webdocs.cs.ualberta.
ca/~lindek/papers/sim.pdf), "Schlicker" for weighted version of 'Lin’ by
the 1-prob(MICA) (see http://www.ncbi.nlm.nih.gov/pubmed/16776819),
"Jiang" for 1 - difference between the sum of IC at pairs of terms and 2*IC
at MICA (see http://arxiv.org/pdf/cmp-1g/9709008.pdf), "Pesquita" for
graph information content similarity related to Tanimoto-Jacard index (ie. summed
information content of common ancestors divided by summed information con-
tent of all ancestors of term1 and term2 (see http://www.ncbi.nlm.nih.gov/
pubmed/18460186))

logical to indicate whether the only most specific terms (for each domain) will
be used. By default, it sets to true. It is always advisable to use this since it is
computationally fast but without compromising accuracy (considering the fact
that true-path-rule has been applied when running dcDAGannotate)

logical to indicate whether a vectorised fast computation is used. By default, it
sets to true. It is always advisable to use this vectorised fast computation; since
the conventional computation is just used for understanding scripts

logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

an object of S4 class Dnetwork. It is a weighted and undirect graph, with following slots:

* nodeInfo: an object of S4 class, describing information on nodes/domains

* adjMatrix: an object of S4 class AdjData, containing symmetric adjacency data matrix for
pair-wise semantic similarity between domains

Note

For the mode "shortest_paths", the induced subgraph is the most concise, and thus informative for
visualisation when there are many nodes in query, while the mode "all_paths" results in the complete

subgraph.

See Also

dcRDataloader, dcDAGannotate, dcConverter, Dnetwork-class


http://arxiv.org/pdf/cmp-lg/9511007.pdf
http://webdocs.cs.ualberta.ca/~lindek/papers/sim.pdf
http://webdocs.cs.ualberta.ca/~lindek/papers/sim.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16776819
http://arxiv.org/pdf/cmp-lg/9709008.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18460186
http://www.ncbi.nlm.nih.gov/pubmed/18460186

44 dcDAGdomainSim

Examples

## Not run:

# 1) Semantic similarity between SCOP domain superfamilies (sf)

## 1a) load onto.GOMF (as 'Onto' object)

g <- dcRDatalLoader('onto.GOMF")

## 1b) load SCOP superfamilies annotated by GOMF (as 'Anno' object)
Anno <- dcRDataloader ('SCOP.sf2GOMF')

## 1c) prepare for ontology appended with annotation information
dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths”,
verbose=FALSE)

## 1d) calculate pair-wise semantic similarity between 8 randomly chosen domains
alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,8)

dnetwork <- dcDAGdomainSim(g=dag, domains=domains,
method.domain="BM. average", method.term="Resnik"”, parallel=FALSE,
verbose=TRUE)

dnetwork

## 1e) convert it to an object of class 'igraph'

ig <- dcConverter(dnetwork, from='Dnetwork', to='igraph')

ig

## 1f) visualise the domain network

### extract edge weight (with 2-digit precision)

x <- signif(E(ig)$weight, digits=2)

### rescale into an interval [1,4] as edge width

edge.width <- 1 + (x-min(x))/(max(x)-min(x))*3

### do visualisation

dnet::visNet(g=ig, vertex.shape="sphere”, edge.width=edge.width,
edge.label=x, edge.label.cex=0.7)

HHHEHHARHEE R A

# 2) Semantic similarity between Pfam domains (Pfam)

## 2a) load onto.GOMF (as 'Onto' object)

g <- dcRDatalLoader('onto.GOMF')

## 2b) load Pfam domains annotated by GOMF (as 'Anno' object)
Anno <- dcRDatalLoader ('Pfam2GOMF")

## 2c) prepare for ontology appended with annotation information
dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths”,
verbose=FALSE)

## 2d) calculate pair-wise semantic similarity between 8 randomly chosen domains
alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,8)

dnetwork <- dcDAGdomainSim(g=dag, domains=domains,
method.domain="BM.average"”, method.term="Resnik”, parallel=FALSE,
verbose=TRUE)

dnetwork

## 2e) convert it to an object of class 'igraph'

ig <- dcConverter(dnetwork, from='Dnetwork', to='igraph')

ig

## 2f) visualise the domain network

#i## extract edge weight (with 2-digit precision)

x <- signif(E(ig)$weight, digits=2)

### rescale into an interval [1,4] as edge width



dcDAGdomainSim

edge.width <= 1 + (x-min(x))/(max(x)-min(x))*3

### do visualisation

dnet::visNet(g=ig, vertex.shape="sphere”, edge.width=edge.width,
edge.label=x, edge.label.cex=0.7)

AR AR AR A

# 3) Semantic similarity between InterPro domains (InterPro)

## 3a) load onto.GOMF (as 'Onto' object)

g <- dcRDatalLoader('onto.GOMF")

## 3b) load InterPro domains annotated by GOMF (as 'Anno' object)
Anno <- dcRDataloader('InterPro2GOMF')

## 3c) prepare for ontology appended with annotation information
dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths”,
verbose=FALSE)

## 3d) calculate pair-wise semantic similarity between 8 randomly chosen domains
alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,8)

dnetwork <- dcDAGdomainSim(g=dag, domains=domains,
method.domain="BM. average", method.term="Resnik"”, parallel=FALSE,
verbose=TRUE)

dnetwork

## 3e) convert it to an object of class 'igraph'

ig <- dcConverter(dnetwork, from='Dnetwork', to='igraph')

ig

## 3f) visualise the domain network

### extract edge weight (with 2-digit precision)

x <- signif(E(ig)$weight, digits=2)

### rescale into an interval [1,4] as edge width

edge.width <- 1 + (x-min(x))/(max(x)-min(x))*3

### do visualisation

dnet::visNet(g=ig, vertex.shape="sphere”, edge.width=edge.width,
edge.label=x, edge.label.cex=0.7)

HHHHHHAREEEE AR A

# 4) Semantic similarity between Rfam RNA families (Rfam)

## 4a) load onto.GOBP (as 'Onto' object)

g <- dcRDatalLoader('onto.GOBP')

## 4b) load Rfam families annotated by GOBP (as 'Anno' object)

Anno <- dcRDatalLoader ('Rfam2GOBP')

## 4c) prepare for ontology appended with annotation information

dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths”,
verbose=FALSE)

## 4d) calculate pair-wise semantic similarity between 8 randomly chosen RNAs
alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,8)

dnetwork <- dcDAGdomainSim(g=dag, domains=domains,
method.domain="BM.average"”, method.term="Resnik”, parallel=FALSE,
verbose=TRUE)

dnetwork

## 4e) convert it to an object of class 'igraph'

ig <- dcConverter(dnetwork, from='Dnetwork', to='igraph')

ig

## 4f) visualise the domain network

45



46 dcDuplicated

#i## extract edge weight (with 2-digit precision)

x <- signif(E(ig)$weight, digits=2)

### rescale into an interval [1,4] as edge width

edge.width <= 1 + (x-min(x))/(max(x)-min(x))*3

### do visualisation

dnet::visNet(g=ig, vertex.shape="sphere”, edge.width=edge.width,
edge.label=x, edge.label.cex=0.7)

HHHHHAHHHHEER AR AR R

# 5) Advanced usage: customised data for ontology and annotations

# 5a) customise ontology

g <-
dcBuildOnto(relations.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_edges.txt",
nodes.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_nodes.txt",
output.file="ontology.RData")

# 5b) customise Anno

Anno <-
dcBuildAnno(domain_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt",
term_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/GO.txt",
association.file="http://dcgor.r-forge.r-project.org/data/InterPro/Domain2GOMF.txt",
output.file="annotations.RData")

## 5c) prepare for ontology appended with annotation information

dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths”,
verbose=FALSE)

## 5d) calculate pair-wise semantic similarity between 8 randomly chosen domains
alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,8)

dnetwork <- dcDAGdomainSim(g=dag, domains=domains,

method.domain="BM.average"”, method.term="Resnik"”, parallel=FALSE,

verbose=TRUE)

dnetwork

## 5e) convert it to an object of class 'igraph'

ig <- dcConverter(dnetwork, from='Dnetwork', to='igraph')

ig

## 5f) visualise the domain network

### extract edge weight (with 2-digit precision)

x <- signif(E(ig)$weight, digits=2)

### rescale into an interval [1,4] as edge width

edge.width <- 1 + (x-min(x))/(max(x)-min(x))*3

### do visualisation

dnet::visNet(g=ig, vertex.shape="sphere”, edge.width=edge.width,

edge.label=x, edge.label.cex=0.7)

## End(Not run)

dcDuplicated Function to determine the duplicated patterns from input data matrix

Description

dcDuplicated is supposed to determine the duplicated vectorised patterns from a matrix or data



dcDuplicated 47

frame. The patterns can come from column-wise vectors or row-wise vectors. It returns an integer
vector, in which the value indicates from which it duplicats.

Usage

dcDuplicated(data, pattern.wise = c("column”, "row”), verbose = T)
Arguments

data an input data matrix/frame

pattern.wise a character specifying in which wise to define patterns from input data. It can
be ’column’ for column-wise vectors, and 'row’ for row-wise vectors

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

Value

an interger vector, in which an entry indicates from which it duplicats. When viewing column-
wise patterns (or row-wise patterns), the returned integer vector has the same length as the column
number (or the row number) of input data.

Note

none

See Also

dcAncestralMP, dcAncestralMP, dcAlgo

Examples

# an input data matrix storing discrete states for tips (in rows) X four characters (in columns)
datal <- matrix(c(@,rep(1,3),rep(0,2)), ncol=1)

data2 <- matrix(c(rep(@,4),rep(1,2)), ncol=1)

data3 <- matrix(c(1,rep(@,3),rep(1,2)), ncol=1)

data <- cbind(datal, data2, datal, data3)

colnames(data) <- c("C1", "C2", "C3", "C4")

data

# determine the duplicated patterns from inut data matrix

res <- dcDuplicated(data, pattern.wise="column")

## return an integer vector

res

## get index for unique patterns

ind <- sort(unique(res))

## As seen above, the returned integer vector tells there are 3 unique patterns:
## they are in columns (1, 2, 4). The column 3 is duplicated from column 1.



48 dcEnrichment

dcEnrichment Function to conduct ontology enrichment analysis given a group of
domains

Description

dcEnrichment is supposed to conduct enrichment analysis for an input group of domains using
a specified ontology. It returns an object of S4 class "Eoutput". Enrichment analysis is based on
either Fisher’s exact test or Hypergeometric test. The test can respect the hierarchy of the ontology.
The user can customise the background domains; otherwise, the function will use all annotatable
domains as the test background

Usage

dcEnrichment(data, background = NULL, domain = c(NA, "SCOP.sf",
"SCOP.fa",

"Pfam”, "InterPro”, "Rfam"), ontology = c(NA, "GOBP", "GOMF", "GOCC",
"DO",

"HPPA", "HPMI", "HPON", "MP", "EC", "KW", "UP"), sizeRange = c(10,
1000),

min.overlap = 3, which_distance = NULL, test = c("HypergeoTest",
"FisherTest"”, "BinomialTest”), p.adjust.method = c("BH", "BY",

"bonferroni”,
"holm”, "hochberg"”, "hommel”), ontology.algorithm = c("none”, "pc”,
Ilelimll,

"lea"), elim.pvalue = 0.01, lea.depth = 2, verbose =T,
domain.RData = NULL, ontology.RData = NULL, annotations.RData = NULL,
RData.location = "http://dcgor.r-forge.r-project.org/data")

Arguments
data an input vector. It contains id for a list of domains, for example, sunids for
SCOP domains
background a background vector. It contains id for a list of background domains, for exam-

ple, sunids for SCOP domains. If NULL, by default all annotatable domains are
used as background

domain the domain identity. It can be one of ’SCOP.sf’ for SCOP superfamilies, ’SCOP.fa’
for SCOP families, ’Pfam’ for Pfam domains, ’InterPro’ for InterPro domains,
’Rfam’ for Rfam RNA families

ontology the ontology identity. It can be "GOBP" for Gene Ontology Biological Process,
"GOMEF" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology
Cellular Component, "DO" for Disease Ontology, "HPPA" for Human Pheno-
type Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inher-
itance, "HPON" for Human Phenotype ONset and clinical course, "MP" for
Mammalian Phenotype, "EC" for Enzyme Commission, "KW" for UniProtKB
KeyWords, "UP" for UniProtKB UniPathway. For details on the eligibility for



dcEnrichment 49

pairs of input domain and ontology, please refer to the online Documentations
at http://supfam.org/dcGOR/docs.html

sizeRange the minimum and maximum size of members of each term in consideration. By
default, it sets to a minimum of 10 but no more than 1000

min.overlap the minimum number of overlaps. Only those terms that overlap with input data
at least min.overlap (3 domains by default) will be processed

which_distance which distance of terms in the ontology is used to restrict terms in consideration.
By default, it sets to "'NULL’ to consider all distances

test the statistic test used. It can be "FisherTest" for using fisher’s exact test, "Hyper-
geoTest" for using hypergeometric test, or "BinomialTest" for using binomial
test. Fisher’s exact test is to test the independence between domain group (do-
mains belonging to a group or not) and domain annotation (domains annotated
by a term or not), and thus compare sampling to the left part of background
(after sampling without replacement). Hypergeometric test is to sample at ran-
dom (without replacement) from the background containing annotated and non-
annotated domains, and thus compare sampling to background. Unlike hyper-
geometric test, binomial test is to sample at random (with replacement) from the
background with the constant probability. In terms of the ease of finding the sig-
nificance, they are in order: hypergeometric test > binomial test > fisher’s exact
test. In other words, in terms of the calculated p-value, hypergeometric test <
binomial test < fisher’s exact test

p.adjust.method
the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni",
"holm", "hochberg" and "hommel". The first two methods "BH" (widely used)
and "BY" control the false discovery rate (FDR: the expected proportion of false
discoveries amongst the rejected hypotheses); the last four methods "bonfer-
roni", "holm", "hochberg" and "hommel" are designed to give strong control of
the family-wise error rate (FWER). Notes: FDR is a less stringent condition
than FWER

ontology.algorithm
the algorithm used to account for the hierarchy of the ontology. It can be one of

non non

"none", "pc", "elim" and "lea". For details, please see "Note’

elim.pvalue the parameter only used when "ontology.algorithm" is "elim". It is used to con-
trol how to declare a signficantly enriched term (and subsequently all domains
in this term are eliminated from all its ancestors)

lea.depth the parameter only used when "ontology.algorithm" is "lea". It is used to con-
trol how many maximum depth is uded to consider the children of a term (and
subsequently all domains in these children term are eliminated from the use for
the recalculation of the signifance at this term)

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

domain.RData  a file name for RData-formatted file containing an object of S4 class ’Info-
DataFrame’ (i.g. domain). By default, it is NULL. It is only needed when
the user wants to customise enrichment analysis using their own data. See
dcBuildInfoDataFrame for how to creat this object


http://supfam.org/dcGOR/docs.html

50

dcEnrichment

ontology.RData a file name for RData-formatted file containing an object of S4 class ’Onto’ (i.g.

ontology). By default, it is NULL. It is only needed when the user wants to
customise enrichment analysis using their own data. See dcBuildOnto for how
to creat this object

annotations.RData

a file name for RData-formatted file containing an object of S4 class ’Anno’ (i.g.
annotations). By default, it is NULL. It is only needed when the user wants to
customise enrichment analysis using their own data. See dcBuildAnno for how
to creat this object

RData.location the characters to tell the location of built-in RData files. See dcRDatalLoader

Value

for details

an object of S4 class Eoutput, with following slots:

Note

domain: a character specifying the domain identity
ontology: a character specifying the ontology used

term_info: a matrix of nTerm X 5 containing term information, where nTerm is the number
of terms in consideration, and the 5 columns are "term_id" (i.e. "Term ID"), "term_name" (i.e.
"Term Name"), "namespace" (i.e. "Term Namespace"), "distance" (i.e. "Term Distance") and
"IC" (i.e. "Information Content for the term based on annotation frequency by it")

anno: a list of terms, each storing annotated domain members (also within the background
domains). Always, terms are identified by "term_id" and domain members identified by their
ids (e.g. sunids for SCOP domains)

data: a vector containing input data in consideration. It is not always the same as the input
data as only those mappable and annotatable are retained

background: a vector containing background in consideration. It is not always the same as
the input background as only those mappable/annotatable are retained

overlap: a list of terms, each storing domains overlapped between domains annotated by a
term and domains in the input data (i.e. the domains of interest). Always, terms are identified
by "term_id" and domain members identified by their IDs (e.g. sunids for SCOP domains)

zscore: a vector containing z-scores
pvalue: a vector containing p-values

adjp: a vector containing adjusted p-values. It is the p value but after being adjusted for
multiple comparisons

The interpretation of the algorithms used to account for the hierarchy of the ontology is:

* "none": does not consider the ontology hierarchy at all.

» "lea": computers the significance of a term in terms of the significance of its children at the

maximum depth (e.g. 2). Precisely, once domains are already annotated to any children terms
with a more signficance than itself, then all these domains are eliminated from the use for
the recalculation of the signifance at that term. The final p-values takes the maximum of the
original p-value and the recalculated p-value.



dcEnrichment 51

e "elim": computers the significance of a term in terms of the significance of its all children.
Precisely, once domains are already annotated to a signficantly enriched term under the cutoff
of e.g. pvalue<le-2, all these domains are eliminated from the ancestors of that term).

» "pc": requires the significance of a term not only using the whole domains as background
but also using domains annotated to all its direct parents/ancestors as background. The final
p-value takes the maximum of both p-values in these two calculations.

* "Notes": the order of the number of significant terms is: "none" > "lea" > "elim" > "pc".

See Also

dcRDataloader, dcDAGannotate, Eoutput-class, visEnrichment, dcConverter

Examples

## Not run:

# 1) Enrichment analysis for SCOP domain superfamilies (sf)

## 1a) load SCOP.sf (as 'InfoDataFrame' object)

SCOP.sf <- dcRDataloader('SCOP.sf")

### randomly select 50 domains as a list of domains of interest

data <- sample(rowNames(SCOP.sf), 50)

## 1b) perform enrichment analysis, producing an object of S4 class 'Eoutput'’
eoutput <- dcEnrichment(data, domain="SCOP.sf", ontology="GOMF")

eoutput

## 1c) view the top 10 significance terms

view(eoutput, top_num=10, sortBy="pvalue”, details=TRUE)

## 1d) visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

## 1e) the same as above but using a customised background

### randomly select 500 domains as background

background <- sample(rowNames(SCOP.sf), 500)

### perform enrichment analysis, producing an object of S4 class 'Eoutput'
eoutput <- dcEnrichment(data, background=background, domain="SCOP.sf",
ontology="GOMF")

eoutput

### view the top 10 significance terms

view(eoutput, top_num=10, sortBy="pvalue”, details=TRUE)

### visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

B s

# 2) Enrichment analysis for Pfam domains (Pfam)

## 2a) load Pfam (as 'InfoDataFrame' object)

Pfam <- dcRDatalLoader('Pfam')

### randomly select 100 domains as a list of domains of interest
data <- sample(rowNames(Pfam), 100)

## 2b) perform enrichment analysis, producing an object of S4 class 'Eoutput'’
eoutput <- dcEnrichment(data, domain="Pfam", ontology="GOMF")
eoutput

## 2c) view the top 10 significance terms

view(eoutput, top_num=10, sortBy="pvalue”, details=TRUE)



52

dcEnrichment

## 2d) visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

## 2e) the same as above but using a customised background

### randomly select 1000 domains as background

background <- sample(rowNames(Pfam), 1000)

### perform enrichment analysis, producing an object of S4 class 'Eoutput'

eoutput <- dcEnrichment(data, background=background, domain="Pfam",

ontology="GOMF")

eoutput

### view the top 10 significance terms

view(eoutput, top_num=10, sortBy="pvalue”, details=TRUE)

### visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

HHHHHAAHEAE AR

# 3) Enrichment analysis for InterPro domains (InterPro)

## 3a) load InterPro (as 'InfoDataFrame' object)

InterPro <- dcRDatalLoader('InterPro')

### randomly select 100 domains as a list of domains of interest

data <- sample(rowNames(InterPro), 100)

## 3b) perform enrichment analysis, producing an object of S4 class 'Eoutput'
eoutput <- dcEnrichment(data, domain="InterPro”, ontology="GOMF")

eoutput

## 3c) view the top 10 significance terms

view(eoutput, top_num=1@, sortBy="pvalue”, details=TRUE)

## 3d) visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

## 3e) the same as above but using a customised background

### randomly select 1000 domains as background

background <- sample(rowNames(InterPro), 1000)

### perform enrichment analysis, producing an object of S4 class 'Eoutput'
eoutput <- dcEnrichment(data, background=background, domain="InterPro"”,
ontology="GOMF")

eoutput

### view the top 10 significance terms

view(eoutput, top_num=1@, sortBy="pvalue”, details=TRUE)

### visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

HHHEHHHEHEE AR

# 4) Enrichment analysis for Rfam RNA families (Rfam)

## 4a) load Rfam (as 'InfoDataFrame' object)

Rfam <- dcRDatalLoader('Rfam')

### randomly select 100 RNAs as a list of RNAs of interest

data <- sample(rowNames(Rfam), 100)

## 4b) perform enrichment analysis, producing an object of S4 class 'Eoutput'
eoutput <- dcEnrichment(data, domain="Rfam”, ontology="GOBP")

eoutput

## 4c) view the top 10 significance terms



dcEnrichment 53

view(eoutput, top_num=10, sortBy="pvalue", details=FALSE)

## 4d) visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment (eoutput)

## 4e) the same as above but using a customised background

### randomly select 1000 RNAs as background

background <- sample(rowNames(Rfam), 1000)

### perform enrichment analysis, producing an object of S4 class 'Eoutput'

eoutput <- dcEnrichment(data, background=background, domain="Rfam",

ontology="GOBP")

eoutput

### view the top 10 significance terms

view(eoutput, top_num=10, sortBy="pvalue", details=FALSE)

### visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

AR AR AR A

# 5) Advanced usage: customised data for domain, ontology and annotations

# 5a) create domain, ontology and annotations

## for domain

domain <-
dcBuildInfoDataFrame(input.file="http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt",
output.file="domain.RData")

## for ontology
dcBuildOnto(relations.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_edges.txt",
nodes.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_nodes.txt",
output.file="ontology.RData")

## for annotations
dcBuildAnno(domain_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt",
term_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/GO.txt",
association.file="http://dcgor.r-forge.r-project.org/data/InterPro/Domain2GOMF.txt",
output.file="annotations.RData")

## 5b) prepare data and background

### randomly select 100 domains as a list of domains of interest

data <- sample(rowNames(domain), 100)

### randomly select 1000 domains as background

background <- sample(rowNames(domain), 1000)

## 5c) perform enrichment analysis, producing an object of S4 class 'Eoutput’
eoutput <- dcEnrichment(data, background=background,

domain.RData='domain.RData', ontology.RData='ontology.RData',
annotations.RData='annotations.RData')

eoutput

## 5d) view the top 10 significance terms

view(eoutput, top_num=1@, sortBy="pvalue”, details=TRUE)

### visualise the top 10 significant terms in the ontology hierarchy

### color-coded according to 10-based negative logarithm of adjusted p-values (adjp)
visEnrichment(eoutput)

## End(Not run)



54 dcFunArgs

dcFunArgs Function to assign (and evaluate) arguments with default values for
an input function

Description

dcFunArgs is supposed to assign (and evaluate) arguments with default values for an input function.

Usage

dcFunArgs(fun, action = F, verbose = T)

Arguments
fun an input function name (character string)
action logical to indicate whether the function will act as it should be (with assigned
values in the current environment). By default, it sets to FALSE
verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display
Value

a list containing arguments and their default values

Note
This function is potentially useful when debugging. Because the developer does not have to specify
default values for all arguments except those arguments are of interest

See Also

dcAlgoPredictMain

Examples

fun <- "dcAlgoPredictMain”
dcFunArgs(fun)



dcList2Matrix 55

dcList2Matrix Function to convert a list into a matrix containing three columns

Description

dcList2Matrix is supposed to convert a list into a matrix containing three columns

Usage

dcList2Matrix(x, verbose = T)

Arguments
X a list, its each component must be a named vector
verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display
Value

a matrix containing three columns: Ist for the input list names (if exist, otherises an increasing
integer), 2nd for the vector names of each list component, and 3rd for the vector values of each list
component

Note

none

See Also

dcAlgoPropagate

Examples

## Not run:

# load an object 'HIS'

Feature2GOMF.sf <- dcRDatalLoader (RData='Feature2GOMF.sf')
# get a list

x <- Feature2GOMF.sf$hscore

# convert the list into a matrix

res <- dcList2Matrix(x)

dim(res)

res(1:10,]

## End(Not run)



56 dcNaivePredict

dcNaivePredict Function to perform naive prediction from input known annotations

Description

dcNaivePredict is supposed to perform naive prediction from input known annotations. For each
gene/protein, a term to be predicted are simply the frequency of that term appearing in the known
annotations.

Usage

dcNaivePredict(data, GSP.file, output.file = NULL, ontology = c(NA,
"GOBP",

IIGOMF n , IIGOCCII , IIDOII s IIHPPAII s IIHPMIH s HHPONH s HMPII s IIEC” s IIKWII , IIUPII) s
max.num = 1000, verbose = T, RData.ontology.customised = NULL,
RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments
data an input vector containing genes/proteins to be predicted
GSP.file a Glod Standard Positive (GSP) file containing known annotations between pro-

teins/genes and ontology terms. For example, a file containing annotations be-
tween human genes and HP terms can be found in http://dcgor.r-forge.
r-project.org/data/Algo/HP_anno.txt. As seen in this example, the in-
put file must contain the header (in the first row) and two columns: 1st column
for ’SeqID’ (actually these IDs can be anything), 2nd column for "termID’ (HP
terms). Alternatively, the GSP.file can be a matrix or data frame, assuming that
GSP file has been read. Note: the file should use the tab delimiter as the field
separator between columns

output.file an output file containing predicted results. If not NULL, a tab-delimited text file
will be also written out; otherwise, there is no output file (by default)

ontology the ontology identity. It can be "GOBP" for Gene Ontology Biological Process,
"GOME" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology
Cellular Component, "DO" for Disease Ontology, "HPPA" for Human Pheno-
type Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inher-
itance, "HPON" for Human Phenotype ONset and clinical course, "MP" for
Mammalian Phenotype, "EC" for Enzyme Commission, "KW" for UniProtKB
KeyWords, "UP" for UniProtKB UniPathway. For details on the eligibility for
pairs of input domain and ontology, please refer to the online Documentations
at http://supfam.org/dcGOR/docs.html. If NA, then the user has to input a
customised RData-formatted file (see RData.ontology.customised below)

max. num an integer to specify how many terms will be predicted for each gene/protein

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display


http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt
http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt
http://supfam.org/dcGOR/docs.html

dcNaivePredict 57

RData.ontology.customised
a file name for RData-formatted file containing an object of S4 class ’Onto’ (i.g.
ontology). By default, it is NULL. It is only needed when the user wants to
perform customised analysis using their own ontology. See dcBuildOnto for
how to creat this object

RData.location the characters to tell the location of built-in RData files. See dcRDatalLoader
for details

Value

a data frame containing three columns: Ist column the same as the input file (e.g. ’SeqID’), 2nd for
"Term’ (predicted ontology terms), 3rd for *Score’ (along with predicted scores)

Note

When ’output.file’ is specified, a tab-delimited text file is written out, with the column names: 1st
column the same as the input file (e.g. *SeqID’), 2nd for *Term’ (predicted ontology terms), 3rd for
’Score’ (along with predicted scores).

See Also

dcRDataloader, dcAlgoPropagate

Examples

## Not run:

# 1) prepare genes to be predicted

input.file <-

"http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt"

#input.file <- "http://dcgor.r-forge.r-project.org/data/Algo/SCOP_architecture.txt”
input <- utils::read.delim(input.file, header=TRUE, sep="\t",
colClasses="character")

data <- unique(input[,1])

# 2) do naive prediction

GSP.file <- "http://dcgor.r-forge.r-project.org/data/Algo/HP_anno.txt"
res <- dcNaivePredict(data=data, GSP.file=GSP.file, ontology="HPPA")
res(1:10,]

# 3) calculate Precision and Recall

res_PR <- dcAlgoPredictPR(GSP.file=GSP.file, prediction.file=res,
ontology="HPPA")

res_PR

# 4) plot PR-curve
plot(res_PR[,2], res_PR[,1], xlim=c(@,1), ylim=c(0,1), type="b",

xlab="Recall"”, ylab="Precision”)

## End(Not run)



58 dcRDatal_oader

dcRDataloader Function to load dcGOR built-in RData

Description

dcRDataloader is supposed to load RData that are used by package dcGOR.

Usage
dcRDatalLoader (RData = c(NA, "SCOP.sf"”, "SCOP.fa", "Pfam”, "InterPro",
"Rfam”,
"onto.GOBP", "onto.GOMF", "onto.GOCC", "onto.D0O", "onto.HPPA",
"onto.HPMI",

"onto.HPON", "onto.MP", "onto.EC", "onto.KW", "onto.UP",
"SCOP.sf2GOBP",

"SCOP.sf2GOMF", "SCOP.sf2GOCC", "SCOP.sf2D0Q", "SCOP.sf2HPPA",
"SCOP.sf2HPMI",

"SCOP.sf2HPON", "SCOP.sf2MP", "SCOP.sf2EC", "SCOP.sf2KW"”, "SCOP.sf2UP",
"SCOP.fa2GOBP", "SCOP.fa2GOMF", "SCOP.fa2GOCC", "SCOP.fa2D0",

"SCOP. fa2HPPA",

"SCOP.fa2HPMI", "SCOP.fa2HPON", "SCOP.fa2MP", "SCOP.fa2EC",

"SCOP. fa2Kw",

"SCOP.fa2UP", "Pfam2GOBP", "Pfam2GOMF", "Pfam2GOCC"”, "InterPro2GOBP",
"InterPro2GOMF", "InterPro2GOCC"”, "Rfam2GOBP", "Rfam2GOMF",
"Rfam2GOCC”,

"Ancestral_domainome"”, "eTOL", "Feature2GOBP.sf", "Feature2GOMF.sf",
"Feature2GOCC.sf", "Feature2HPPA.sf", "Feature2GOBP.pfam",
"Feature2GOMF .pfam"”, "Feature2GOCC.pfam", "Feature2HPPA.pfam",
"Feature2GOBP.interpro"”, "Feature2GOMF.interpro”,
"Feature2GOCC.interpro”,

"Feature2HPPA.interpro”), domain = c(NA, "SCOP.sf", "SCOP.fa", "Pfam",
"InterPro”, "Rfam"), ontology = c(NA, "GOBP", "GOMF", "GOCC", "DO",
"HPPA",

"HPMI”, "HPON", "MP", "EC", "KW", "UP"), verbose = T,

RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments

RData which built-in RData to load. If NOT NA, this RData will be always loaded.
It can be: domains/RNAs (including ’SCOP.sf’, ’SCOP.fa’, ’Pfam’, ’InterPro’,
’Rfam’), ontologies (including *onto.GOBP’, ’onto. GOMF’, *onto.GOCC’, *onto.DO’,
’onto.HPPA’, ’onto.HPMI’, ’onto.HPON’, ’onto.MP’, ’onto.EC’, onto. KW’,
“onto.UP’), annotations (including ’SCOP.sf2GOBP’, ’SCOP.sf2GOMF’, ’SCOP.sf2GOCC’,
’SCOP.sf2DO’, ’SCOP.sf2HPPA’, ’SCOP.sf2HPMTI’, ’SCOP.sf2HPON’, ’SCOP.sf2MP’,
’SCOP.sf2EC’, ’SCOP.sf2ZKW’, ’SCOP.sf2UP’, ’SCOP.fa2GOBP’, ’SCOP.fa2GOMF’,
’SCOP.fa2GOCC’, ’SCOP.fa2D0O’, ’SCOP.fa2HPPA’, ’SCOP.fa2HPMI’, ’SCOP.fa2HPON’,



dcRDataloader

domain

ontology

verbose

RData.location

Value

59

’SCOP.fa2MP’, ’SCOP.fa2EC’, ’SCOP.fa2KW’, ’SCOP.fa2UP’, "Pfam2GOBP’,
"Pfam2GOMF’, 'Pfam2GOCC’, ’InterPro2GOBP’, ’InterPro2GOMF’, ’Inter-
Pro2GOCC’, ’Rfam2GOBP’, 'Rfam2GOMF’, *'Rfam2GOCC’), domainome in
eukaryotic genomes (including * Ancestral_domainome’, ’eTOL’), and databases
used for predictiing ontology terms from input protein domain contents. On the
meanings, please refer to the Documentations

domain part of annotation RData to load. When RData is NA and this plus
next are NOT NA, then this plus next one are used to specify which annotation
RData to load. In addition to NA, it can also be: *SCOP.st’, ’'SCOP.fa’, ’Pfam’
and ’InterPro’

ontology part of annotation RData to load. This only works together with the
previous ’domain’ parameter. In addition to NA, it can also be: 'GOBP’, " GOMF’,
’GOCC’, ’DO’, "HPPA’, "HPMI’, "THPON’, "MP’, ’EC’, ’KW’, "UP’

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

the characters to tell the location of built-in RData files. By default, it remotely
locates athttps://github.com/hfang-bristol/RDataCentre/blob/master/
dcGOR and http://dcgor.r-forge.r-project.org/data. For the user equipped
with fast internet connection, this option can be just left as default. But it is al-
ways advisable to download these files locally. Especially when the user needs
to run this function many times, there is no need to ask the function to remotely
download every time (also it will unnecessarily increase the runtime). For ex-
amples, these files (as a whole or part of them) can be first downloaded into your
current working directory, and then set this option as: RData.location = ".”.
If RData to load is already part of package itself, this parameter can be ignored
(since this function will try to load it via function data first). Here is the UNIX
command for downloading all RData files (preserving the directory structure):
wget —r — (2 — A” x .RData” — np — nH — —cut — dirs = 0" http :
//degor.r — forge.r — project.org/data”

any use-specified variable that is given on the right side of the assigement sign ’<-’, which contains

the loaded RData.

Note

If there are no use-specified variable that is given on the right side of the assigement sign ’<-’, then
no RData will be loaded onto the working environment.

See Also

dcEnrichment

Examples

# Always, load from specified RData directly
SCOP.sf <- dcRDataloader (RData="'SCOP.sf"')


https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR
https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR
http://dcgor.r-forge.r-project.org/data

60 dcRWRpipeline

Pfam <- dcRDatalLoader (RData='Pfam')

InterPro <- dcRDatalLoader(RData='InterPro')

Rfam <- dcRDatalLoader (RData='Rfam')

onto.GOMF <- dcRDatalLoader(RData='onto.GOMF')

# But for annotaion data, there are two ways to do so:

# 1) in a direct way

SCOP.sf2GOMF <- dcRDatalLoader (RData='SCOP.sf2GOMF ')

# 2) in an indirect way: specify both domain and ontology
SCOP.sf2GOMF <- dcRDatalLoader (domain='SCOP.sf', ontology='GOMF')

dcRWRpipeline Function to setup a pipeine to estimate RWR-based contact strength
between samples from an input domain-sample data matrix and an
input graph
Description

dcRWRpipeline is supposed to estimate sample relationships (ie. contact strength between sam-
ples) from an input domain-sample matrix and an input graph (such as a domain-domain semantic
network). The pipeline includes: 1) random walk restart (RWR) of the input graph using the input
matrix as seeds; 2) calculation of contact strength (inner products of RWR-smoothed columns of
input matrix); 3) estimation of the contact signficance by a randomalisation procedure. It supports
two methods how to use RWR: “direct’ for directly applying RWR in the given seeds; "indirectly’ for
first pre-computing affinity matrix of the input graph, and then deriving the affinity score. Parallel
computing is also supported for Linux or Mac operating systems.

Usage
dcRWRpipeline(data, g, method = c("indirect”, "direct"),
normalise = c("laplacian”, "row", "column”, "none"), restart = 0.75,
normalise.affinity.matrix = c("none”, "quantile"),
permutation = c("random”, "degree"”), num.permutation = 100,
p.adjust.method = c("BH", "BY", "bonferroni”, "holm”, "hochberg”,

"hommel™),
adjp.cutoff = 0.05, parallel = TRUE, multicores = NULL, verbose = T)

Arguments

data an input domain-sample data matrix used for seeds. Each value in input domain-
sample matrix does not necessarily have to be binary (non-zeros will be used as
a weight, but should be non-negative for easy interpretation).

g an object of class "igraph" or Dnetwork

method the method used to calculate RWR. It can be ’direct’ for directly applying RWR,
’indirect’ for indirectly applying RWR (first pre-compute affinity matrix and
then derive the affinity score)

normalise the way to normalise the adjacency matrix of the input graph. It can be ’lapla-

cian’ for laplacian normalisation, 'row’ for row-wise normalisation, ’column’
for column-wise normalisation, or "none’



dcRWRpipeline 61

restart the restart probability used for RWR. The restart probability takes the value from
0 to 1, controlling the range from the starting nodes/seeds that the walker will
explore. The higher the value, the more likely the walker is to visit the nodes
centered on the starting nodes. At the extreme when the restart probability is
zero, the walker moves freely to the neighbors at each step without restarting
from seeds, i.e., following a random walk (RW)

normalise.affinity.matrix
the way to normalise the output affinity matrix. It can be 'none’ for no normali-
sation, ’quantile’ for quantile normalisation to ensure that columns (if multiple)
of the output affinity matrix have the same quantiles

permutation how to do permutation. It can be ’degree’ for degree-preserving permutation,
’random’ for permutation in random

num.permutation
the number of permutations used to for generating the distribution of contact
strength under randomalisation

p.adjust.method
the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni",
"holm", "hochberg" and "hommel". The first two methods "BH" (widely used)
and "BY" control the false discovery rate (FDR: the expected proportion of false
discoveries amongst the rejected hypotheses); the last four methods "bonfer-
roni", "holm", "hochberg" and "hommel" are designed to give strong control of
the family-wise error rate (FWER). Notes: FDR is a less stringent condition
than FWER

adjp.cutoff the cutoff of adjusted pvalue to construct the contact graph

parallel logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach" and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value
an object of class "iContact", a list with following components:
* ratio: a symmetric matrix storing ratio (the observed against the expected) between pairwise
samples
* zscore: a symmetric matrix storing zscore between pairwise samples
* pval: a symmetric matrix storing pvalue between pairwise samples

* adjpval: a symmetric matrix storing adjusted pvalue between pairwise samples



62 dcRWRpipeline

* icontact: the constructed contact graph (as an ’igraph’ object) under the cutoff of adjusted
value

* Amatrix: a pre-computated affinity matrix when using ’inderect’ method; NULL otherwise

* call: the call that produced this result

Note

The choice of which method to use RWR depends on the number of seed sets and the number of
permutations for statistical test. If the total product of both numbers are huge, it is better to use
’indrect’ method (for a single run).

See Also

dcRDataloader, dcDAGannotate, dcDAGdomainSim, dcConverter

Examples

## Not run:
# 1) load onto.GOMF (as 'Onto' object)
g <- dcRDatalLoader('onto.GOMF')

# 2) load SCOP superfamilies annotated by GOMF (as 'Anno' object)
Anno <- dcRDataloader ('SCOP.sf2GOMF')

# 3) prepare for ontology appended with annotation information
dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths",
verbose=TRUE)

# 4) calculate pair-wise semantic similarity between 1@ randomly chosen domains
alldomains <- unique(unlist(nInfo(dag)$annotations))

domains <- sample(alldomains,10)

dnetwork <- dcDAGdomainSim(g=dag, domains=domains,

method.domain="BM.average"”, method.term="Resnik"”, parallel=FALSE,

verbose=TRUE)

dnetwork

# 5) estimate RWR dating based sample/term relationships

# define sets of seeds as data

# each seed with equal weight (i.e. all non-zero entries are '1')
data <- data.frame(aSeeds=c(1,0,1,0,1), bSeeds=c(0,0,1,0,1))
rownames(data) <- id(dnetwork)[1:5]

# calcualte their two contact graph

coutput <- dcRWRpipeline(data=data, g=dnetwork, parallel=FALSE)
coutput

## End(Not run)



dcRWRpredict 63

dcRWRpredict Function to perform RWR-based ontology term predictions from input
known annotations and an input graph

Description

dcRWRpredict is supposed to perform ontology term predictions based on Random Walk with
Restart (RWR) from input known annotations and an input graph.

Usage
dcRWRpredict(data, g, output.file = NULL, ontology = c(NA, "GOBP",
"GOMF",
"GOCC”, "DO", "HPPA", "HPMI", "HPON", "MP", "EC", "KW", "UP"),
method = c("indirect”, "direct”), normalise = c("laplacian”, "row”,
"column”, "none"), restart = 0.75, normalise.affinity.matrix =
c("none”,
"quantile"), leave.one.out = T, propagation = c("max", "sum"),

scale.method = c("log", "linear", "none"), parallel = TRUE,
multicores = NULL, verbose = T, RData.ontology.customised = NULL,
RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR")

Arguments
data an input gene-term data matrix containing known annotations used for seeds.
Each value in input matrix does not necessarily have to be binary (non-zeros
will be used as a weight, but should be non-negative for easy interpretation).
Also, data can be a list, each containing the known annotated genes
g an object of class "igraph" or Dnetwork

output.file an output file containing predicted results. If not NULL, a tab-delimited text file
will be also written out; otherwise, there is no output file (by default)

ontology the ontology identity. It can be "GOBP" for Gene Ontology Biological Process,
"GOMF" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology
Cellular Component, "DO" for Disease Ontology, "HPPA" for Human Pheno-
type Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inher-
itance, "HPON" for Human Phenotype ONset and clinical course, "MP" for
Mammalian Phenotype, "EC" for Enzyme Commission, "KW" for UniProtKB
KeyWords, "UP" for UniProtKB UniPathway. For details on the eligibility for
pairs of input domain and ontology, please refer to the online Documentations
at http://supfam.org/dcGOR/docs.html. If NA, then the user has to input a
customised RData-formatted file (see RData.ontology.customised below)

method the method used to calculate RWR. It can be "direct’ for directly applying RWR,
’indirect’ for indirectly applying RWR (first pre-compute affinity matrix and
then derive the affinity score)


http://supfam.org/dcGOR/docs.html

64

normalise

restart

dcRWRpredict

the way to normalise the adjacency matrix of the input graph. It can be ’lapla-
cian’ for laplacian normalisation, 'row’ for row-wise normalisation, ’column’
for column-wise normalisation, or 'none’

the restart probability used for RWR. The restart probability takes the value from
0 to 1, controlling the range from the starting nodes/seeds that the walker will
explore. The higher the value, the more likely the walker is to visit the nodes
centered on the starting nodes. At the extreme when the restart probability is
zero, the walker moves freely to the neighbors at each step without restarting
from seeds, i.e., following a random walk (RW)

normalise.affinity.matrix

leave.one.out

propagation

scale.method

parallel

multicores

verbose

the way to normalise the output affinity matrix. It can be 'none’ for no normali-
sation, ’quantile’ for quantile normalisation to ensure that columns (if multiple)
of the output affinity matrix have the same quantiles

logical to indicate whether the leave-one-out test is used for predictions. By
default, it sets to true for doing leave-one-out test (that is, known seeds are
removed)

how to propagate the score. It can be "max" for retaining the maximum score
(by default), "sum" for additively accumulating the score

the method used to scale the predictive scores. It can be: "none" for no scaling,
"linear" for being linearily scaled into the range between O and 1, "log" for
the same as "linear" but being first log-transformed before being scaled. The
scaling between 0 and 1 is done via: SS_%, where S,,,;n and S, are the

.. . 'mam_snmn
minimum and maximum values for S

logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. Partly because parallel backends
available will be system-specific (now only Linux or Mac OS). Also, it will de-
pend on whether these two packages "foreach” and "doMC" have been installed.
It can be installed via: source("http://bioconductor.org/biocLite.R");
biocLite(c("foreach”,"doMC")). If not yet installed, this option will be dis-
abled

an integer to specify how many cores will be registered as the multicore parallel
backend to the *foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled
logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

RData.ontology.customised

RData.location

Value

a file name for RData-formatted file containing an object of S4 class ’Onto’ (i.g.
ontology). By default, it is NULL. It is only needed when the user wants to
perform customised analysis using their own ontology. See dcBuildOnto for
how to creat this object

the characters to tell the location of built-in RData files. See dcRDataloader
for details

a data frame containing three columns: 1st column the same as the input file (e.g. ’SeqID’), 2nd for
"Term’ (predicted ontology terms), 3rd for *Score’ (along with predicted scores)



dcRWRpredict 65

Note

When ’output.file’ is specified, a tab-delimited text file is written out, with the column names: 1st
column the same as the input file (e.g. *SeqID’), 2nd for *Term’ (predicted ontology terms), 3rd
for *Score’ (along with predicted scores). The choice of which method to use RWR depends on the
number of seed sets and whether using leave-one-out test. If the total product of both numbers are
huge, it is better to use ’indrect’ method (for a single run). Also, when using leave-one-out test, it
has to be use ’indrect’ method.

See Also

dcRDataloader, dcAlgoPropagate, dcList2Matrix

Examples

## Not run:

# 1) define an input network

## 1a) an igraph object that contains a functional protein association network in human.
### The network is extracted from the STRING database (version 9.1).

### Only those associations with medium confidence (score>=400) are retained
org.Hs.string <- dnet::dRDatalLoader(RData='org.Hs.string")

## 1b) restrict to those edges with confidence score>=999

### keep the largest connected component

network <- igraph::subgraph.edges(org.Hs.string,
eids=E(org.Hs.string)[combined_score>=999])

g <- dnet::dNetInduce(g=network, nodes_query=V(network)$name,

largest.comp=TRUE)

## Notably, in reality, 1b) can be replaced by:

#g <- igraph::subgraph.edges(org.Hs.string, eids=E(org.Hs.string)[combined_score>=4001])
## 1c) make sure there is a 'weight' edge attribute

E(g)$weight <- E(g)$combined_score

#i## use EntrezGene ID as default 'name' node attribute

V(g)$name <- V(g)$geneid

g

# 2) define the known annotations as seeds
anno.file <- "http://dcgor.r-forge.r-project.org/data/Algo/HP_anno. txt"
data <- dcSparseMatrix(anno.file)

# 3) perform RWR-based ontology term predictions

res <- dcRWRpredict(data=data, g=g, ontology="HPPA", parallel=FALSE)
res[1:10,]

# 4) calculate Precision and Recall

GSP.file <- anno.file

prediction.file <- res

res_PR <- dcAlgoPredictPR(GSP.file=GSP.file,
prediction.file=prediction.file, ontology="HPPA")

res_PR

# 5) Plot PR-curve
plot(res_PR[,2], res_PR[,1], xlim=c(@,1), ylim=c(0,1), type="b",
xlab="Recall"”, ylab="Precision”)



66

## End(Not run)

dcSparseMatrix

dcSparseMatrix

Function to create a sparse matrix for an input file with three columns

Description

dcSparseMatrix is supposed to create a sparse matrix for an input file with three columns.

Usage

dcSparseMatrix(input.file, verbose = T)

Arguments

input.file

verbose

Value

an input file containing three columns: 1st column for rows, 2nd for columns,
and 3rd for numeric values. Alternatively, the input.file can be a matrix or data
frame, assuming that input file has been read. Note: the file should use the tab
delimiter as the field separator between columns

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

a list containing arguments and their default values

Note

None

See Also

dcAlgoPredictMain

Examples

# create a sparse matrix of 4 X 2

input.file <- rbind(c('R1','C1',1), c('R2",'C1',1), c('R2','C2',1),
c('R3",'C2',1), c('R4','C1',1))

res <- dcSparseMatrix(input.file)

res

# get a full matrix

as.matrix(res)



dcSplitArch

dcSplitArch Function to obtain a list of features via splitting an input architecture

Description

dcSplitArch is supposed to obtain a list of features via splitting an input architecture.

Usage
dcSplitArch(da, feature.mode = c("supra”, "individual”, "comb"), sep =
ignore = "_gap_", verbose = T)

Arguments
da an input architecture. For example, a comma-separated string

feature.mode  the mode of how to define the features thereof. It can be: "supra" for combi-
nations of one or two successive domains (including individual domains; con-
sidering the order), "individual" for individual domains only, and "comb" for all
possible combinations (including individual domains; ignoring the order)

sep a character string to separate. By default, it is comma ’;

ignore a character string to ignore. By default, it is *_gap_’. This ignored character will
affect the features defined as being *supra’ (see examples below)

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

Value

a vector containing splitted features.

Note

none

See Also

dcAlgo, dcAlgoPredict

Examples

da <- "_gap_,100895,57610,_gap_,57610,47473"
# get features defined as being "supra”
dcSplitArch(da, feature.mode="supra")

# get features defined as being "individual”
dcSplitArch(da, feature.mode="individual”)

# get features defined as being "comb”
dcSplitArch(da, feature.mode="comb")



68 dcSubtreeClade

dcSubtreeClade Function to extract a subtree under a given clade from a phylo-
formatted phylogenetic tree

Description

dcSubtreeClade is supposed to extract a subtree under a given clade from a phylo-formatted phy-
logenetic tree. In addition to the tree in subject, another input is a built-in integer specifying an
internal node/clade of interest. Alternatively, the internal node of interest can be given by its label
(if there are internal node labels). As a result, a subtree under a given clade is also represented as
an object of class 'phylo’.

Usage

dcSubtreeClade(phy, choose.node = NULL, choose.node.label = NULL,
verbose = T)

Arguments
phy an object of class *phylo’
choose.node an integer specifying which internal node is chosen. For an object of class

’phylo’, the tree has built-in ID for internal nodes, ranging from Ntip 4 1 to
Ntip + Nnode, where Ntip and Nnode are the number of tips and internal
nodes. Internal nodes are indexed in a pre-ordered manner. The subtree under
the given interna node will be extracted

choose.node.label
a character specifying which internal node is chosen. For the tree with internal
node labels, the extraction of subtree can be done in this way

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

Value

an object of class "phylo’

Note

If a valid "choose.node’ is given, then "choose.node.label” will be ignored.

See Also

dcTreeConnectivity



dcSubtreeTips 69

Examples

# 1) a newick tree without internal node labels

tree <- "(((t1:5,t2:5):2,(t3:4,t4:4):3):2,(t5:4,t6:4):6);"
phy <- ape::read.tree(text=tree)

phy

Ntip <- ape::Ntip(phy)

Nnode <- ape: :Nnode(phy)

ape: :plot.phylo(phy, type="p", use.edge.length=TRUE)

ape: :nodelabels(node=Ntip+1:Nnode, col="red”, bg="white")
# a subtree specified via a built-in internal node ID
subphy <- dcSubtreeClade(phy, choose.node=Ntip+2)

subphy

ape: :plot.phylo(subphy, type="p", use.edge.length=TRUE)

# 2) a newick tree with internal node labels

tree <- "(((t1:5,t2:5)i3:2,(t3:4,t4:4)i4:3)i2:2,(t5:4,t6:4)i5:6)i1;"
phy <- ape::read.tree(text=tree)

phy

ape: :plot.phylo(phy, type="p", use.edge.length=TRUE,
show.node. label=TRUE)

# a subtree specified via an internal node label
subphy <- dcSubtreeClade(phy, choose.node.label="i2")
subphy

ape::plot.phylo(subphy, type="p", use.edge.length=TRUE,
show.node. label=TRUE)

dcSubtreeTips Function to extract a tip-induced subtree from a phylo-formatted phy-
logenetic tree

Description

dcSubtreeTips is supposed to extract a tip-induced subtree from a phylo-formatted phylogenetic
tree. In addition to the tree in subject, another input is a vector containing tip labels of interest.
From valid tip lables, there are two types of subtree to extract. One is first induce clade (an internal
node) from tip labels, and then the subtree is extracted under the induced clade. Another type is
to extract a subtree only containing given tip labels; in this situation, some internal nodes perhaps
need to further trimmed. The resulting subtree is also represented as an object of class ’phylo’.

Usage
dcSubtreeTips(phy, choose.tip.labels = NULL, subtree.type = c("clade”,
"tips_only"), verbose = T)

Arguments

phy an object of class "phylo’
choose.tip.labels
a character specifying which tips are chosen



70 dcSupraBetter

subtree. type a character specifying how to extract subtree from given tips. It can be ’clade’
or 'tips_only’. The former is first induce clade (an internal node) from tip labels,
and then to extract the subtree under the induced clade. The latter is to directly
extract the subtree only containing given tip labels, (if necessary), after trimming
out unnecessary internal nodes

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

Value

an object of class 'phylo’

Note

nonde

See Also

dcTreeConnectivity, dcSubtreeClade

Examples

# 1) with internal node labels
tree <- "(((t1:5,t2:5)i3:2,(t3:4,t4:4)i4:3)i2:2,(t5:4,t6:4)i5:6)i1;"
phy <- ape::read.tree(text=tree)

ape::plot.phylo(phy, type="p", use.edge.length=TRUE,
show.node. label=TRUE)

# 2) tip labels of interest

choose.tip.labels <- c('t1','t2",'t3")

# 2a) extract subtree via an induced clade

subphy <- dcSubtreeTips(phy, choose.tip.labels, subtree.type="clade")
ape::plot.phylo(subphy, type="p", use.edge.length=TRUE,
show.node. label=TRUE)

# 2b) extract subtree containing only tips

subphy <- dcSubtreeTips(phy, choose.tip.labels,
subtree.type="tips_only")

ape::plot.phylo(subphy, type="p", use.edge.length=TRUE,
show.node. label=TRUE)

dcSupraBetter Function to find supra-domains with better scores than their individual
domains

Description

dcSupraBetter is supposed to find supra-domains with better scores than their individual domains.



dcSupraBetter

Usage

71

dcSupraBetter(input.file, output.file = NULL, verbose = T)

Arguments

input.file

output.file

verbose

Value

an input file used to build the object. This input file contains original an-
notations between domains/features and ontology terms, along with the hy-
pergeometric scores (hscore) in support for their annotations. For example, a
file containing original annotations between SCOP domain architectures and
GO terms can be found in http://dcgor.r-forge.r-project.org/data/
Feature/Feature2GO.sf.txt. As seen in this example, the input file must con-
tain the header (in the first row) and three columns: 1st column for ’Feature_id’
(here SCOP domain architectures), 2nd column for *Term_id’ (GO terms), and
3rd column for ’Score’ (hscore)

an output file containing results. If not NULL, a tab-delimited text file will be
also written out, with 1st column ’Feature_id’ for features/domains, 2nd column
"Term_id” for ontology terms, 3rd column ’Score’ for hypergeometric scores
(indicative of strength for feature-term associations). Otherwise, there is no
output file (by default)

logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

a data frame containing three columns: Ist column ’Feature_id’ for features, 2nd Term_id’ for
terms, and 3rd ’Score’ for the hypergeometric score indicative of strength of associations beteen

features and terms

Note

When ’output.file’ is specified, a tab-delimited text file is output, with the column names: 1st col-
umn 'Feature_id’ for features, 2nd Term_id’ for terms, and 3rd ’Score’ for the hypergeometric
score indicative of strength of associations beteen features and terms

See Also

dcList2Matrix

Examples

## Not run:
input.file <-

"http://dcgor.r-forge.r-project.org/data/Feature/Feature2GO.sf.txt"
res <- dcSupraBetter(input.file)

res(1:10,]

## End(Not run)


http://dcgor.r-forge.r-project.org/data/Feature/Feature2GO.sf.txt
http://dcgor.r-forge.r-project.org/data/Feature/Feature2GO.sf.txt

72 dcTreeConnectivity

dcTreeConnectivity Function to calculate the sparse connectivity matrix between parents
and children from a phylo-formatted phylogenetic tree

Description

dcTreeConnectivity is supposed to calculate the sparse connectivity matrix between parents and
children from a phylo-formatted phylogenetic tree. The matrix has internal nodes (in rows) and tips
plus internal nodes (in columns). For a row (an internal node; as a parent), the non-zeros indicate
all its descendants/children.

Usage

dcTreeConnectivity(phy, verbose = T)

Arguments
phy an object of class "phylo’
verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display
Value

a sparse matrix of Nnode X Ntip + Nnode, where Ntip and Nnode are the number of tips and
internal nodes. A non-zero entry indicates a pair of a parent and its child.

Note

None

See Also

dcTreeConnectivity

Examples

# a newick tree
tree <- "(((t1:5,t2:5):2,(t3:4,t4:4):3):2,(t5:4,t6:4):6);"
phy <- ape::read.tree(text=tree)

# connectivity matrix

res <- dcTreeConnectivity(phy)
dim(res)

# convert to a full Matrix
as.matrix(res)



Dnetwork-class 73

Dnetwork-class Definition for S4 class Dnetwork

Description

Dnetwork is an S4 class to store a domain network, such as the one from semantic similairty be-
tween pairs of domains by dcDAGdomainSim. It has 2 slots: nodelnfo and adjMatrix

Value

Class Dnetwork

Slots

nodeInfo An object of S4 class InfoDataFrame, describing information on nodes/domains.

adjMatrix An object of S4 class AdjData, containing symmetric adjacency data matrix for an
indirect domain network

Creation

An object of this class can be created via: new("Dnetwork”,nodeInfo, adjMatrix)

Methods
Class-specific methods:

e dim(): retrieve the dimension in the object

e adjMatrix(): retrieve the slot ’adjMatrix’ in the object

* nodeInfo(): retrieve the slot 'nodelnfo’ (as class InfoDataFrame) in the object

* nInfo(): retrieve nodelnfo (as data.frame) in the object

* nodeNames(): retrieve node/term names (ie, row names of nodelnfo) in the object

* id(): retrieve domain id (ie, column ’id’ of nodelnfo) in the object, if any

* level(): retrieve domain level (ie, column ’level” of nodelnfo) in the object, if any

* description(): retrieve domain description (ie, column ’description’ of nodelnfo) in the
object, if any

Standard generic methods:

e str(): compact display of the content in the object
* show(): abbreviated display of the object
* as(matrix, "Dnetwork"): convert a matrix to an object of class Dnetwork

* as(dgCMatrix, "Dnetwork"): convert a dgCMatrix (a sparse matrix) to an object of class
Dnetwork

e [i]: get the subset of the same class



74 Dnetwork-class

Access

Ways to access information on this class:

¢ showClass("Dnetwork"): show the class definition

* showMethods(classes="Dnetwork"): show the method definition upon this class
* getSlots("Dnetwork”): get the name and class of each slot in this class

* slotNames("Dnetwork”): get the name of each slot in this class

e selectMethod(f, signature="Dnetwork"): retrieve the definition code for the method ’f’
defined in this class

See Also

Dnetwork-method

Examples

# create an object of class Dnetwork, only given a matrix
adjM <- matrix(runif(25),nrow=5,ncol=5)
as(adjM, "Dnetwork")

# create an object of class Dnetwork, given a matrix plus information on nodes
# 1) create nodel: an object of class InfoDataFrame

data <- data.frame(id=paste(”"Domain”, 1:5, sep="_"),
level=rep("”SCOP",5), description=I(LETTERS[1:5]),

row.names=paste("Domain”, 1:5, sep="_"))
nodel <- new("InfoDataFrame"”, data=data)
nodel

# 2) create an object of class Dnetwork

# VERY IMPORTANT: make sure having consistent names between nodeInfo and adjMatrix
adjM <- matrix(runif(25),nrow=5,ncol=5)

colnames(adjM) <- rownames(adjM) <- rowNames(nodel)

x <- new("Dnetwork”, adjMatrix=adjM, nodeInfo=nodel)

X

# 3) look at various methods defined on class Dnetwork
dim(x)

adjMatrix(x)

nodeInfo(x)

nInfo(x)

nodeNames (x)

id(x)

level (x)

description(x)

# 4) get the subset

x[1:2]



Dnetwork-method

Dnetwork-method Methods defined for S4 class Dnetwork

Description

Methods defined for class Dnetwork.

Usage

## S4 method for signature 'Dnetwork’
dim(x)

## S4 method for signature 'Dnetwork'
adjMatrix(x)

## S4 method for signature 'Dnetwork’
nodeInfo(x)

## S4 method for signature 'Dnetwork’
nInfo(object)

## S4 method for signature 'Dnetwork’
nodeNames (object)

## S4 method for signature 'Dnetwork’
id(object)

## S4 method for signature 'Dnetwork’
level(object)

## S4 method for signature 'Dnetwork’
description(object)

## S4 method for signature 'Dnetwork’
show(object)

## S4 method for signature 'Dnetwork,ANY,ANY,ANY'

x[i, j, ..., drop = FALSE]

Arguments
X an object of class Dnetwork
object an object of class Dnetwork
i an index
] an index

additional parameters



76 Eoutput-class

drop alogic for matrices and arrays. If TRUE the result is coerced to the lowest possi-
ble dimension. This only works for extracting elements, not for the replacement

See Also

Dnetwork-class

Eoutput-class Definition for S4 class Eoutput

Description

Eoutput is an S4 class to store output from enrichment analysis by dcEnrichment.

Value

Class Eoutput

Slots

domain A character specifying the domain identity
ontology A character specifying the ontology identity

term_info A data.frame of nTerm X 5 containing term information, where nTerm is the number
of terms in consideration, and the 5 columns are "term_id" (i.e. "Term ID"), "term_name" (i.e.
"Term Name"), "namespace" (i.e. "Term Namespace"), "distance" (i.e. "Term Distance") and
"IC" (i.e. "Information Content for the term based on annotation frequency by it")

anno A list of terms, each storing annotated domains (also within the background domains). Al-
ways, terms are identified by "term_id" and domain members identified by their ids (e.g.
sunids for SCOP domains)

data A vector containing input data in dcEnrichment. It is not always the same as the input data
as only those mappable are retained

background A vector containing background in dcEnrichment. It is not always the same as the
input background (if provided by the user) as only those mappable are retained

overlap A list of terms, each storing domains overlapped between domains annotated by a term
and domains in the input data (i.e. the domains of interest). Always, terms are identified by
"term_id" and domain members identified by their ids (e.g. sunids for SCOP domains)

zscore A vector of terms, containing z-scores
pvalue A vector of terms, containing p-values

adjp A vector of terms, containing adjusted p-values. It is the p value but after being adjusted for
multiple comparisons

Creation

An object of this class can be created via: new("Eoutput”,domain, ontology, term_info, anno, data, overlap, zscc



Eoutput-class 77

Methods
Class-specific methods:

* zscore(): retrieve the slot *zscore’ in the object

* pvalue(): retrieve the slot "pvalue’ in the object

* adjp(): retrieve the slot "adjp’ in the object

* view(): retrieve an integrated data.frame used for viewing the object

* write(): write the object into a local file
Standard generic methods:

e str(): compact display of the content in the object

» show(): abbreviated display of the object

Access
Ways to access information on this class:

¢ showClass("Eoutput”): show the class definition

* showMethods(classes="Eoutput”): show the method definition upon this class
* getSlots("Eoutput”): get the name and class of each slot in this class

* slotNames("Eoutput”): get the name of each slot in this class

e selectMethod(f, signature="Eoutput"): retrieve the definition code for the method ’f’
defined in this class

See Also

Eoutput-method

Examples

## Not run:

# 1) load SCOP.sf (as 'InfoDataFrame' object)
SCOP.sf <- dcRDatalLoader('SCOP.sf")

# randomly select 20 domains

data <- sample(rowNames(SCOP.sf), 20)

# 2) perform enrichment analysis, producing an object of S4 class 'Eoutput'
eoutput <- dcEnrichment(data, domain="SCOP.sf", ontology="GOMF")
eoutput

# 3) write into the file 'Eoutput.txt' in your local directory
write(eoutput, file='Eoutput.txt')

# 4) view the top 5 significant terms
view(eoutput, top_num=5, sortBy="pvalue”, details=TRUE)

# 4) retrieve several slots directly
zscore(eoutput)[1:5]



78

Eoutput-method

pvalue(eoutput)[1:5]
adjp(eoutput)[1:5]

## End(Not run)

Eoutput-method

Methods defined for S4 class Eoutput

Description

Methods defined for S4 class Eoutput.

Usage

## S4 method for signature 'Eoutput'

show(object)

## S4 method for signature 'Eoutput'

zscore(x)

## S4 method for signature 'Eoutput'

pvalue(x)

## S4 method for signature 'Eoutput'

adjp(x)

## S4 method for signature 'Eoutput'

view(x, top_num

= 5, sortBy = c("pvalue", "adjp”,

"zscore"”, "nAnno"”, "nOverlap”, "none"), decreasing = NULL, details = T)

## S4 method for signature 'Eoutput'
write(x, file = "Eoutput.txt"”, verbose = T)

Arguments

object
X

top_num

sortBy

decreasing

an object of S4 class Eoutput. Usually this is an output from dcEnrichment
an object of S4 class Eoutput. Usually this is an output from dcEnrichment

the maximum number (5, by default) of terms will be viewed. If NULL or NA,
all terms will be viewed (this can be used for the subsequent saving)

which statistics will be used for sorting and viewing terms. It can be "pvalue" for
p value, "adjp" for adjusted p value, "zscore" for enrichment z-score, "nAnno"
for the number in domains annotated by a term, "nOverlap" for the number in
overlaps, and "none" for ordering simply according to ID of terms

logical to indicate whether to sort in a decreasing order. If it is null, by default

non

it will be true for "zscore", "nAnno" or "nOverlap"; otherwise false



eTOL 79
details logical to indicate whether the detailed information of terms is also viewed. By
default, it sets to TRUE for the inclusion
file a character specifying a file name written into. By default, it is ’Eoutput.txt’
verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display
Value

view(x) returns a data frame with following components:

term_id: term ID

nAnno: number in domains annotated by a term

nGroup: number in domains from the input group

nOverlap: number in overlaps

zscore: enrichment z-score

pvalue: p value

adjp: adjusted p value

term_name: term name

term_namespace: term namespace; optional, it is only appended when "details" is true
term_distance: term distance; optional, it is only appended when "details" is true

members: members (represented as domain IDs) in overlaps; optional, it is only appended
when "details" is true

write(x) also returns the same data frame as view(x), in addition to a specified local file.

See Also

Eoutput-class

eTOL

eukaryotic Tree Of Life (eTOL)

Description

A ’phylo’ object that contains information about eukaryotic part of species tree of life (¢eTOL). It
is a rooted binary tree. Tips represent extant genomes. Since its reconstruction is guided under
the NCBI taxonomy, each internal node is either mapped onto a unique taxonomic identifier or left
empty (assumedly a hypothetical unknown ancestral genome).

Usage

data(eTOL)



80 eTOL

Value
an object of class "phylo" with the following components:

* Nnode: the number of (internal) nodes

* tip.label: a vector giving the names of the tips (i.e., "left_id" to define the post-ordered
binary tree structure)

* node.label: a vector giving the names of the internal nodes (i.e., "left_id" to define the post-
ordered binary tree structure)

* genome_info: a matrix of all nodes (including tips and internal nodes) X 8, giving ex-
tant/ancestral genome information: "left_id" (unique and used as internal id), "right_id" (used
in combination with "left_id" to define the post-ordered binary tree structure), "taxon_id"
(NCBI taxonomy id, if matched), "genome" (2-letter genome identifiers used in SUPER-
FAMILY, if being extant), "name" (NCBI taxonomy name, if matched), "rank" (NCBI taxon-
omy rank, if matched), "branchlength" (branch length in relevance to the parent), and "com-
mon_name" (NCBI taxonomy common name, if matched and existed)

* edge: a two-column matrix of mode numeric where each row represents an edge of the tree;
the nodes and the tips are symbolized with numbers; the tips are numbered 1, 2, ..., and the
internal nodes are numbered after the tips. For each row, the first column gives the ancestor

* edge.length: a numeric vector giving the lengths of the branches given by *edge’
* root.length: a numeric value giving the length of the branch at the root

e connectivity: a matrix of internal nodes X all nodes (including tips and internal nodes),
with 1 for the presence of a ancestor-descenant path, and 0 otherwise

References

Fang et al. (2013) A daily-updated tree of (sequenced) life as a reference for genome research.
Scientific reports, 3:2015.

Examples

data(eTOL)

eTOL

# list all components

names(eTOL)

# extract information about the first 5 genomes
eTOL$genome_info[1:5,]

# look at the dimension of connectivity
dim(eTOL$connectivity)

## Not run:

# visualise the connectivity matrix

Ntip <- length(eTOL$tip.label) # number of tips

Nnode <- eTOL$Nnode # number of internal nodes

data <- eTOL$connectivity

visHeatmapAdv(data, Rowv=FALSE,Colv=FALSE, zlim=c(0,1),
colormap="gray-black"”,

add.expr=abline(v=c(1,Ntip+1, (Ntip+Nnode+1))-0.5, col="white"),
key=FALSE, labRow=NA, labCol=NA)

## End(Not run)



InfoDataFrame-class 81

InfoDataFrame-class Definition for S4 class InfoDataFrame

Description

InfoDataFrame has two slots: data and dimLabels.

Value

Class InfoDataFrame

Slots

data A data.frame containing terms (rows) and measured variables (columns).

dimLabels A character descripting labels for rows and columns.

Creation

An object of this class can be created via: new("InfoDataFrame”,data, dimLabels)

Methods

Class-specific methods:

e dim(): retrieve the dimension in the object

* nrow(): retrieve number of rows in the object

* ncol(): retrieve number of columns in the object

* rowNames(): retrieve names of rows in the object

* colNames(): retrieve names of columns in the object

e dimLabels(): retrieve the slot ’dimLabels’, containing labels used for display of rows and
columns in the object

* Data(): retrieve the slot ’data’ in the object
Standard generic methods:

e str(): compact display of the content in the object
» show(): abbreviated display of the object
* as(data.frame, "InfoDataFrame"): converta data.frame to an object of class InfoDataFrame

e [i,j]: get the subset of the same class



82 InfoDataFrame-method

Access

Ways to access information on this class:

¢ showClass("InfoDataFrame"): show the class definition

* showMethods(classes="InfoDataFrame"): show the method definition upon this class
* getSlots("InfoDataFrame”): get the name and class of each slot in this class

* slotNames("InfoDataFrame"): get the name of each slot in this class

e selectMethod(f, signature="InfoDataFrame"): retrieve the definition code for the method
’f” defined in this class

See Also

InfoDataFrame-method

Examples

# generate data on domain information on

data <- data.frame(x=1:10, y=I(LETTERS[1:10]),
row.names=paste("”Domain”, 1:10, sep="_"))
dimLabels <- c("rowLabels"”, "collLabels")

# create an object of class InfoDataFrame

x <- new("InfoDataFrame"”, data=data, dimLabels=dimLabels)
X

# alternatively, using coerce methods

x <- as(data, "InfoDataFrame")

X

# look at various methods defined on class Anno
dimLabels(x)

dim(x)

nrow(x)

ncol(x)

rowNames (x)

colNames(x)

Data(x)

x[1:3,]

InfoDataFrame-method  Methods defined for S4 class InfoDataFrame

Description

Methods defined for class InfoDataFrame.



InfoDataFrame-method 83
Usage
dimLabels(x)

## S4 method for signature 'InfoDataFrame'
dimLabels(x)

## S4 method for signature 'InfoDataFrame'
dim(x)

## S4 method for signature 'InfoDataFrame'
nrow(x)

## S4 method for signature 'InfoDataFrame'
ncol(x)

## S4 method for signature 'InfoDataFrame'
rowNames (x)

## S4 method for signature 'InfoDataFrame'
colNames(x)

## S4 method for signature 'InfoDataFrame'
Data(x)

## S4 method for signature 'InfoDataFrame'
show(object)

## S4 method for signature 'InfoDataFrame, ANY,ANY,ANY'

x[i, j, ..., drop = FALSE]

Arguments
X an object of class InfoDataFrame
object an object of class InfoDataFrame
i an index
J an index

additional parameters

drop alogic for matrices and arrays. If TRUE the result is coerced to the lowest possi-
ble dimension. This only works for extracting elements, not for the replacement

See Also

InfoDataFrame-class



84 InterPro

InterPro InterPro domains (InterPro).

Description

An object of class "InfoDataFrame" that contains information on InterPro domains (InterPro).
This data is prepared based on ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/
Current/entry.list.

Usage

data(InterPro)

Value

an object of class InfoDataFrame. It has slots for data and dimLabels:

* data: a data.frame containing information about 11638 annotatable domains (in rows), with 3
columns ("id" for InterPro ID, and "level" always equals "InterPro", "description" for InterPro
description)

* dimLabels: a character describing labels for rows and columns in data

References

Hunter et al. (2012) InterPro in 2011: new developments in the family and domain prediction
database. Nucleic Acids Res, 40(Database issue):D306-12.

See Also

InfoDataFrame-class

Examples

# load data

data(InterPro)

InterPro

# retrieve the dimension
dim(InterPro)

# retrieve names of columns
colNames(InterPro)

# retrieve the first 5 rows of data
Data(InterPro)[1:5,]


ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/entry.list
ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/entry.list

InterPro2GOBP 85

InterPro2GOBP Annotations of InterPro domains by Gene Ontology Biological Pro-
cess (GOBP).

Description

An object of class "Anno" that contains associations between Gene Ontology Biological Process
terms and InterPro domains. This data is prepared based on the InterPro database (see http: //www.
ebi.ac.uk/interpro/)and ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/
interpro2go.

Usage

data(InterPro2GOBP)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for Inter-
Pro ID, and "level" always equals "InterPro", "description" for InterPro description

References

Hunter et al. (2012) Manual GO annotation of predictive protein signatures: the InterPro approach
to GO curation. Database (Oxford), 2012:bar068.

See Also

Anno-class

Examples

# load data

data(InterPro2GOBP)

InterPro2GOBP

# retrieve info on ontology terms
termData(InterPro2GOBP)

# retrieve info on InterPro domains
domainData(InterPro2GOBP)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(InterPro2GOBP)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)


http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/interpro2go
ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/interpro2go

86 InterPro2GOCC

InterPro2GOCC Annotations of InterPro domains by Gene Ontology Cellular Compo-
nent (GOCC).

Description

An object of class "Anno" that contains associations between Gene Ontology Cellular Component

terms and InterPro domains. This data is prepared based on the InterPro database (see http: //www.
ebi.ac.uk/interpro/)and ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/
interpro2go.

Usage
data(InterPro2GOCC)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for Inter-
Pro ID, and "level" always equals "InterPro", "description" for InterPro description

References

Hunter et al. (2012) Manual GO annotation of predictive protein signatures: the InterPro approach
to GO curation. Database (Oxford), 2012:bar068.

See Also

Anno-class

Examples

# load data

data(InterPro2G0OCC)

InterPro2GOCC

# retrieve info on ontology terms
termData(InterPro2G0OCC)

# retrieve info on InterPro domains
domainData(InterPro2G0OCC)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(InterPro2GOCC)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)


http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/interpro2go
ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/interpro2go

InterPro2GOMF 87

InterPro2GOMF Annotations of InterPro domains by Gene Ontology Molecular Func-
tion (GOMF).

Description

An object of class "Anno" that contains associations between Gene Ontology Molecular Function

terms and InterPro domains. This data is prepared based on the InterPro database (see http: //www.
ebi.ac.uk/interpro/)and ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/
interpro2go.

Usage
data(InterPro2GOMF)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for Inter-
Pro ID, and "level" always equals "InterPro", "description" for InterPro description

References

Hunter et al. (2012) Manual GO annotation of predictive protein signatures: the InterPro approach
to GO curation. Database (Oxford), 2012:bar068.

See Also

Anno-class

Examples

# load data

data(InterPro2GOMF)

InterPro2GOMF

# retrieve info on ontology terms
termData(InterPro2GOMF)

# retrieve info on InterPro domains
domainData(InterPro2GOMF)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(InterPro2GOMF)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)


http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/interpro2go
ftp://anonymous@ftp.ebi.ac.uk/pub/databases/interpro/Current/interpro2go

88 Onto-class

Onto-class Definition for S4 class Onto

Description

Onto has 2 slots: nodelnfo and adjMatrix

Value

Class Onto

Slots

nodeInfo An object of S4 class InfoDataFrame, describing information on nodes/terms.

adjMatrix An object of S4 class AdjData, containing adjacency data matrix (for a direct graph),
with rows for parent (arrow-outbound) and columns for children (arrow-inbound)

Creation

An object of this class can be created via: new("Onto"”, nodeInfo,adjMatrix)

Methods
Class-specific methods:

e dim(): retrieve the dimension in the object

* adjMatrix(): retrieve the slot *adjMatrix’ in the object

* nodeInfo(): retrieve the slot 'nodelnfo’ (as class InfoDataFrame) in the object

* nInfo(): retrieve nodelnfo (as data.frame) in the object

* nodeNames (): retrieve node/term names (ie, row names of nodelnfo) in the object

e term_id(): retrieve term id (ie, column ’term_id’ of nodelnfo) in the object, if any

e term_name(): retrieve term id (ie, column "term_name’ of nodelnfo) in the object, if any

* term_namespace(): retrieve term id (ie, column ’term_namespace’ of nodelnfo) in the object,
if any

* term_distance(): retrieve term id (ie, column ’term_distance’ of nodelnfo) in the object, if
any

Standard generic methods:

* str(): compact display of the content in the object

* show(): abbreviated display of the object

e as(matrix, "Onto"): convert a matrix to an object of class Onto

* as(dgCMatrix, "Onto"): convert a dgCMatrix (a sparse matrix) to an object of class Onto

e [i]: get the subset of the same class



Onto-class 89

Access

Ways to access information on this class:

¢ showClass("Onto"): show the class definition

* showMethods(classes="0nto"): show the method definition upon this class
* getSlots("Onto"): get the name and class of each slot in this class

* slotNames("Onto"): get the name of each slot in this class

e selectMethod(f, signature="Onto"): retrieve the definition code for the method ’f’ de-
fined in this class

See Also

Onto-method

Examples

# create an object of class Onto, only given a matrix
adjM <- matrix(runif(25),nrow=5,ncol=5)
as(adjM, "Onto")

# create an object of class Onto, given a matrix plus information on nodes
# 1) create nodel: an object of class InfoDataFrame

data <- data.frame(term_id=paste("Term”, 1:5, sep="_"),
term_name=I(LETTERS[1:5]), term_namespace=rep("Namespace”,5),

term_distance=1:5, row.names=paste("Term”, 1:5, sep="_"))
nodel <- new("InfoDataFrame"”, data=data)
nodel

# 2) create an object of class Onto

# VERY IMPORTANT: make sure having consistent names between nodeInfo and adjMatrix
adjM <- matrix(runif(25),nrow=5,ncol=5)
colnames(adjM) <- rownames(adjM) <- rowNames(nodel)
x <- new("Onto", adjMatrix=adjM, nodeInfo=nodel)

X

# 3) look at various methods defined on class Onto
dim(x)

adjMatrix(x)

nodeInfo(x)

nInfo(x)

nodeNames (x)

term_id(x)

term_namespace(x)

term_distance(x)

# 4) get the subset

x[1:2]



90

Onto-method

Onto-method

Methods defined for S4 class Onto

Description

Methods defined for class Onto.

Usage

## S4 method for signature
dim(x)

## S4 method for signature
adjMatrix(x)

## S4 method for signature
nodeInfo(x)

## S4 method for signature
nInfo(object)

## S4 method for signature
nodeNames (object)

## S4 method for signature
term_id(object)

## S4 method for signature
term_name (object)

## S4 method for signature
term_namespace(object)

## S4 method for signature
term_distance(object)

## S4 method for signature
show(object)

## S4 method for signature

'Onto’

'Onto’

'Onto’

'Onto’

'Onto’

'Onto’

'Onto’

'Onto’

'Onto’

'Onto’

'Onto, ANY, ANY, ANY'

x[i, j, ..., drop = FALSE]
Arguments
X an object of class Onto

object an object of class Onto



onto.DO 91

i an index
j an index
additional parameters

drop alogic for matrices and arrays. If TRUE the result is coerced to the lowest possi-
ble dimension. This only works for extracting elements, not for the replacement

See Also

Onto-class

onto.DO Disease Ontology (DO).

Description

An R object that contains information on Gene Ontology Biological Process terms. These terms are
organised as a direct acyclic graph (DAG), which is further stored as an object of the class ’igraph’
(see http://igraph.org/r/doc/aaa-igraph-package.html). This data is prepared based on
http://sourceforge.net/p/diseaseontology/code/HEAD/tree/trunk/HumanDO.obo.

Usage
data(onto.DO)

Value

an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)

e adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Schriml et al. (2012) Disease Ontology: a backbone for disease semantic integration. Nucleic Acids
Res, 40:D940-946.

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.D0O)
onto.DO


http://igraph.org/r/doc/aaa-igraph-package.html

92 onto.GOCC

onto.GOBP Gene Ontology Biological Process (GOBP).

Description

An R object that contains information on Gene Ontology Biological Process terms. These terms are
organised as a direct acyclic graph (DAG), which is further stored as an object of the class ’igraph’
(see http://igraph.org/r/doc/aaa-igraph-package.html). This data is prepared based on
http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.0obo. Only
the edges with the relation (either ’is_a’ or *part_of’) are retained.

Usage
data(onto.GOBP)

Value
an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)

* adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Ashburner et al. (2000) Gene ontology: tool for the unification of biology. Nat Genet, 25:25-29.
Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.GOBP)
onto.GOBP

onto.GOCC Gene Ontology Cellular Component (GOCC).

Description

An R object that contains information on Gene Ontology Cellular Component terms. These terms
are organised as a direct acyclic graph (DAG), which is further stored as an object of the class
’igraph’ (see http://igraph.org/r/doc/aaa-igraph-package.html). This data is prepared
based on http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.0bo.
Only the edges with the relation (either ’is_a’ or "part_of”) are retained.


http://igraph.org/r/doc/aaa-igraph-package.html
http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.obo
http://igraph.org/r/doc/aaa-igraph-package.html
http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.obo

onto. GOMF 93

Usage
data(onto.GOCC)

Value
an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)

* adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Ashburner et al. (2000) Gene ontology: tool for the unification of biology. Nat Genet, 25:25-29.
Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.GOCC)
onto.GOCC

onto.GOMF Gene Ontology Molecular Function (GOMF).

Description

An R object that contains information on Gene Ontology Molecular Function terms. These terms are
organised as a direct acyclic graph (DAG), which is further stored as an object of the class igraph’
(see http://igraph.org/r/doc/aaa-igraph-package.html). This data is prepared based on
http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.0bo. Only
the edges with the relation (either ’is_a’ or "part_of’) are retained.

Usage
data(onto.GOMF)

Value

an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)


http://igraph.org/r/doc/aaa-igraph-package.html
http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.obo

94 onto.HPMI

e adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Ashburner et al. (2000) Gene ontology: tool for the unification of biology. Nat Genet, 25:25-29.
Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.GOMF)
onto.GOMF

onto.HPMI Human Phenotype Mode of Inheritance (HPMI).

Description

An R object that contains information on Human Phenotype Mode of Inheritance terms. These
terms are organised as a direct acyclic graph (DAG), which is further stored as an object of the
class ’igraph’ (see http://igraph.org/r/doc/aaa-igraph-package.html). This data is pre-
pared based on http://purl.obolibrary.org/obo/hp.obo.

Usage

data(onto.HPMI)

Value
an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)

e adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Robinson et al. (2012) The Human Phenotype Ontology: a tool for annotating and analyzing human
hereditary disease. Am J Hum Genet, 83:610-615.

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.HPMI)
onto.HPMI


http://igraph.org/r/doc/aaa-igraph-package.html
http://purl.obolibrary.org/obo/hp.obo

onto.HPON 95

onto.HPON Human Phenotype ONset and clinical course (HPON).

Description

An R object that contains information on Human Phenotype ONset and clinical course terms. These
terms are organised as a direct acyclic graph (DAG), which is further stored as an object of the
class ’igraph’ (see http://igraph.org/r/doc/aaa-igraph-package.html). This data is pre-
pared based on http://purl.obolibrary.org/obo/hp.obo.

Usage
data(onto.HPON)

Value
an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)

* adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Robinson et al. (2012) The Human Phenotype Ontology: a tool for annotating and analyzing human
hereditary disease. Am J Hum Genet, 83:610-615.

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.HPON)
onto.HPON

onto.HPPA Human Phenotype Phenotypic Abnormality (HPPA).

Description

An R object that contains information on Human Phenotype Phenotypic Abnormality terms. These
terms are organised as a direct acyclic graph (DAG), which is further stored as an object of the
class ’igraph’ (see http://igraph.org/r/doc/aaa-igraph-package.html). This data is pre-
pared based on http://purl.obolibrary.org/obo/hp.obo.


http://igraph.org/r/doc/aaa-igraph-package.html
http://purl.obolibrary.org/obo/hp.obo
http://igraph.org/r/doc/aaa-igraph-package.html
http://purl.obolibrary.org/obo/hp.obo

96 onto.MP

Usage
data(onto.HPPA)

Value
an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)

* adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Robinson et al. (2012) The Human Phenotype Ontology: a tool for annotating and analyzing human
hereditary disease. Am J Hum Genet, 83:610-615.

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.HPPA)
onto.HPPA

onto.MP Mammalian Phenotype (MP).

Description

An R object that contains information on Mammalian Phenotype terms. These terms are organ-
ised as a direct acyclic graph (DAG), which is further stored as an object of the class ’igraph’
(see http://igraph.org/r/doc/aaa-igraph-package.html). This data is prepared based on
ftp://ftp.informatics.jax.org/pub/reports/MPheno_OBO.ontology.

Usage
data(onto.MP)

Value

an object of S4 class Onto. It has slots for "nodeInfo" and "adjMatrix"

* nodeInfo: an object of S4 class InfoDataFrame, describing information on nodes/terms in-
cluding: "term_id" (i.e. Term ID), "term_name" (i.e. Term Name), "term_namespace" (i.e.
Term Namespace), and "term_distance" (i.e. Term Distance: the distance to the root; always
0 for the root itself)


http://igraph.org/r/doc/aaa-igraph-package.html

Pfam 97

e adjMatrix: an object of S4 class AdjData, containing adjacency data matrix, with rows for
parent (arrow-outbound) and columns for children (arrow-inbound)

References

Smith et al. (2009) The Mammalian Phenotype Ontology: enabling robust annotation and compar-
ative analysis. Wiley Interdiscip Rev Syst Biol Med, 1:390-399.

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

Examples

data(onto.MP)
onto.MP

Pfam Pfam domains (Pfam).

Description

An object of class "InfoDataFrame" that contains information on Pfam domains (Pfam). This
data is prepared based on ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/
database_files/pfamA.txt.gz.

Usage

data(Pfam)

Value

an object of class InfoDataFrame. It has slots for data and dimLabels:

* data: a data.frame containing information about 14831 domains (in rows), with 3 columns
"id" for Pfam accession ID, and "level" always equals "Pfam", "description” for Pfam de-
scription)

* dimLabels: a character describing labels for rows and columns in data

References

Finn et al. (2014) The Pfam protein families database. Nucleic Acids Res, 42(Database issue):D222-
D230.

See Also

InfoDataFrame-class


ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/database_files/pfamA.txt.gz
ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/database_files/pfamA.txt.gz

98 Pfam2GOBP

Examples

# load data

data(Pfam)

Pfam

# retrieve the dimension

dim(Pfam)

# retrieve names of columns
colNames(Pfam)

# retrieve the first 5 rows of data
Data(Pfam)[1:5,]

Pfam2GOBP Annotations of Pfam domains by Gene Ontology Biological Process
(GOBP).

Description

An object of class "Anno" that contains associations between Gene Ontology Biological Process
terms and Pfam domains. This data is prepared based on the Pfam database (see http://pfam.
xfam.org) and ftp://ftp.geneontology.org/pub/go/external2go/pfam2go.

Usage

data(Pfam2GOBP)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for Pfam
accession ID, and "level" always equals "Pfam", "description" for Pfam description
References

Finn et al. (2014) The Pfam protein families database. Nucleic Acids Res, 42(Database issue):D222-
D230.

See Also

Anno-class


http://pfam.xfam.org
http://pfam.xfam.org
ftp://ftp.geneontology.org/pub/go/external2go/pfam2go

Pfam2GOCC 99

Examples

# load data

data(Pfam2GOBP)

Pfam2GOBP

# retrieve info on ontology terms
termData(Pfam2GOBP)

# retrieve info on Pfam domains
domainData(Pfam2GOBP)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(Pfam2GOBP)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

Pfam2GOCC Annotations of Pfam domains by Gene Ontology Cellular Component
(GOCC).

Description

An object of class "Anno" that contains associations between Gene Ontology Cellular Component
terms and Pfam domains. This data is prepared based on the Pfam database (see http://pfam.
xfam.org) and ftp://ftp.geneontology.org/pub/go/external2go/pfam2go.

Usage
data(Pfam2G0OCC)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for Pfam
accession ID, and "level" always equals "Pfam", "description" for Pfam description

References

Finn et al. (2014) The Pfam protein families database. Nucleic Acids Res, 42(Database issue):D222-
D230.

See Also

Anno-class


http://pfam.xfam.org
http://pfam.xfam.org
ftp://ftp.geneontology.org/pub/go/external2go/pfam2go

100 Pfam2GOMF

Examples

# load data

data(Pfam2GOCC)

Pfam2G0OCC

# retrieve info on ontology terms
termData(Pfam2GOCC)

# retrieve info on Pfam domains
domainData(Pfam2GOCC)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(Pfam2GOCC)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

Pfam2GOMF Annotations of Pfam domains by Gene Ontology Molecular Function
(GOMF).

Description

An object of class "Anno" that contains associations between Gene Ontology Molecular Function
terms and Pfam domains. This data is prepared based on the Pfam database (see http://pfam.
xfam.org) and ftp://ftp.geneontology.org/pub/go/external2go/pfam2go.

Usage
data(Pfam2GOMF)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for Pfam
accession ID, and "level" always equals "Pfam", "description" for Pfam description

References

Finn et al. (2014) The Pfam protein families database. Nucleic Acids Res, 42(Database issue):D222-
D230.

See Also

Anno-class


http://pfam.xfam.org
http://pfam.xfam.org
ftp://ftp.geneontology.org/pub/go/external2go/pfam2go

Rfam 101

Examples

# load data

data(Pfam2GOMF)

Pfam2GOMF

# retrieve info on ontology terms
termData(Pfam2GOMF)

# retrieve info on Pfam domains
domainData(Pfam2GOMF)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(Pfam2GOMF)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

Rfam RNA families (Rfam).

Description

An object of class "InfoDataFrame" that contains information on RNA families (Rfam). This
data is prepared based on ftp://anonymous@ftp.sanger.ac.uk/pub/databases/Rfam/11.0/
database_files/rfam.txt.gz.

Usage

data(Rfam)

Value

an object of class InfoDataFrame. It has slots for data and dimLabels:

* data: adata.frame containing information about 2208 RNA families (in rows), with 3 columns
("id" for Rfam accession ID, and "level" always equals "Rfam", "description" for Rfam de-
scription)

» dimLabels: a character describing labels for rows and columns in data

References
Gardner et al. (2011) Rfam: Wikipedia, clans and the "decimal”" release. Nucleic Acids Res,
39(Database issue):D141-D145.

See Also

InfoDataFrame-class


ftp://anonymous@ftp.sanger.ac.uk/pub/databases/Rfam/11.0/database_files/rfam.txt.gz
ftp://anonymous@ftp.sanger.ac.uk/pub/databases/Rfam/11.0/database_files/rfam.txt.gz

102 Rfam2GOBP

Examples

# load data

data(Rfam)

Rfam

# retrieve the dimension

dim(Rfam)

# retrieve names of columns
colNames(Rfam)

# retrieve the first 5 rows of data
Data(Rfam)[1:5,]

Rfam2GOBP Annotations of Rfam RNA families by Gene Ontology Biological Pro-
cess (GOBP).

Description

An object of class "Anno" that contains associations between Gene Ontology Biological Process
terms and Rfam RNA families. This data is prepared based on the Rfam database (see http:
//rfam.xfam.org) and http://geneontology.org/external2go/rfam2go.

Usage

data(Rfam2GOBP)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of RNAs X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing RNAs (i.e. rows in annoData), including: "id" for Rfam
accession ID, and "level" always equals "Rfam", "description" for Rfam description
References
Gardner et al. (2011) Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Res,
39(Database issue):D141-D145.
See Also

Anno-class


http://rfam.xfam.org
http://rfam.xfam.org
http://geneontology.org/external2go/rfam2go

Rfam2GOCC 103

Examples

# load data

data(Rfam2GOBP)

Rfam2GOBP

# retrieve info on ontology terms
termData(Rfam2GOBP)

# retrieve info on Rfam RNAs
domainData(Rfam2GOBP)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(Rfam2GOBP)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

Rfam2GOCC Annotations of Rfam RNA families by Gene Ontology Cellular Com-
ponent (GOCC).

Description

An object of class "Anno" that contains associations between Gene Ontology Cellular Component
terms and Rfam RNA families. This data is prepared based on the Rfam database (see http:
//rfam.xfam.org) and http://geneontology.org/external2go/rfam2go.

Usage

data(Rfam2GOCC)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of RNAs X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing RNAs (i.e. rows in annoData), including: "id" for Rfam
accession ID, and "level" always equals "Rfam", "description" for Rfam description

References

Gardner et al. (2011) Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Res,
39(Database issue):D141-D145.

See Also

Anno-class


http://rfam.xfam.org
http://rfam.xfam.org
http://geneontology.org/external2go/rfam2go

104 Rfam2GOMF

Examples

# load data

data(Rfam2GOCC)

Rfam2G0OCC

# retrieve info on ontology terms
termData(Rfam2GOCC)

# retrieve info on Rfam RNAs
domainData(Rfam2GOCC)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(Rfam2GOCC)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

Rfam2GOMF Annotations of Rfam RNA families by Gene Ontology Molecular Func-
tion (GOMF).

Description

An object of class "Anno" that contains associations between Gene Ontology Molecular Function
terms and Rfam RNA families. This data is prepared based on the Rfam database (see http:
//rfam.xfam.org) and http://geneontology.org/external2go/rfam2go.

Usage
data(Rfam2GOMF)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of RNAs X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing RNAs (i.e. rows in annoData), including: "id" for Rfam
accession ID, and "level" always equals "Rfam", "description" for Rfam description

References

Gardner et al. (2011) Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Res,
39(Database issue):D141-D145.

See Also

Anno-class


http://rfam.xfam.org
http://rfam.xfam.org
http://geneontology.org/external2go/rfam2go

SCOPtfta 105

Examples

# load data

data(Rfam2GOMF)

Rfam2GOMF

# retrieve info on ontology terms
termData(Rfam2GOMF)

# retrieve info on Rfam RNAs
domainData(Rfam2GOMF)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(Rfam2GOMF)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. fa SCOP domain families (fa).

Description

An object of class "InfoDataFrame" that contains information on SCOP domain families (fa).

Usage

data(SCOP. fa)

Value

an object of class InfoDataFrame. It has slots for data and dimLabels:

* data: a data.frame containing information about 2223 domains (in rows), with 3 columns
("id" for SCOP sunid, and "level" for SCOP level, "description" for SCOP description)

» dimLabels: a character describing labels for rows and columns in data

References

Morais et al. (2011) SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nu-
cleic Acids Res, 39(Database issue):D427-34.

Andreeva et al. (2008) Data growth and its impact on the SCOP database: new developments.
Nucleic Acids Res, 36(Database issue):D419-425

See Also

InfoDataFrame-class



106 SCOPta2DO

Examples

# load data

data(SCOP.fa)

SCOP.fa

# retrieve the dimension
dim(SCOP. fa)

# retrieve names of columns
colNames(SCOP. fa)

# retrieve the first 5 rows of data
Data(SCOP.fa)[1:5,]

SCOP. fa2DO0 Annotations of SCOP domain families (fa) by Disease Ontology (DO).

Description

An object of class "Anno" that contains associations between Disease Ontology terms and SCOP
domain families (fa). This data is prepared based on the dcGO database (see http://supfam.org/
SUPERFAMILY/dcGO/).

Usage

data(SCOP.fa2D0)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description
References
Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-

types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

SCOPfa2GOBP 107

Examples

# load data

data(SCOP. fa2D0)

SCOP. fa2D0

# retrieve info on ontology terms
termData(SCOP.fa2D0)

# retrieve info on SCOP domains

domainData(SCOP. fa2D0)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.fa2D0)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP . fa2GOBP Annotations of SCOP domain families (fa) by Gene Ontology Biologi-
cal Process (GOBP).

Description

An object of class "Anno" that contains associations between Gene Ontology Biological Process
terms and SCOP domain families (fa). This data is prepared based on the dcGO database (see
http://supfam.org/SUPERFAMILY/dcGO/).

Usage
data(SCOP. fa2GOBP)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/

108 SCOPfa2GOCC

Examples

# load data

data(SCOP. fa2GOBP)

SCOP. fa2GOBP

# retrieve info on ontology terms

termData(SCOP. fa2GOBP)

# retrieve info on SCOP domains

domainData(SCOP. fa2GOBP)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.fa2GOBP)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. fa2GOCC Annotations of SCOP domain families (fa) by Gene Ontology Cellular
Component (GOCC).

Description

An object of class "Anno" that contains associations between Gene Ontology Cellular Component
terms and SCOP domain families (fa). This data is prepared based on the dcGO database (see
http://supfam.org/SUPERFAMILY/dcGO/).

Usage

data(SCOP. fa2G0OCC)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/

SCOPta2GOMF 109

Examples

# load data

data(SCOP. fa2GOCC)

SCOP. fa2GOCC

# retrieve info on ontology terms
termData(SCOP.fa2G0OCC)

# retrieve info on SCOP domains

domainData(SCOP. fa2GOCC)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.fa2GOCC)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP . fa2GOMF Annotations of SCOP domain families (fa) by Gene Ontology Molecu-
lar Function (GOMF).

Description

An object of class "Anno" that contains associations between Gene Ontology Molecular Function
terms and SCOP domain families (fa). This data is prepared based on the dcGO database (see
http://supfam.org/SUPERFAMILY/dcGO/).

Usage
data(SCOP. fa2GOMF)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/

110 SCOPfa2HPMI

Examples

# load data

data(SCOP. fa2GOMF)

SCOP. fa2GOMF

# retrieve info on ontology terms

termData(SCOP. fa2GOMF)

# retrieve info on SCOP domains

domainData(SCOP. fa2GOMF)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.fa2GOMF)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. fa2HPMI Annotations of SCOP domain families (fa) by Human Phenotype Mode
of Inheritance (HPMI).

Description

An object of class "Anno" that contains associations between HPMI terms and SCOP domain fami-
lies (fa). This data is prepared based on the dcGO database (see http://supfam.org/SUPERFAMILY/
dcG0/).

Usage

data(SCOP. fa2HPMI)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

SCOPta2HPON 111

Examples

# load data

data(SCOP. fa2HPMI)

SCOP. fa2HPMI

# retrieve info on ontology terms

termData(SCOP. fa2HPMI)

# retrieve info on SCOP domains

domainData(SCOP. fa2HPMI)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.fa2HPMI)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP . fa2HPON Annotations of SCOP domain families (fa) by Human Phenotype ON-
set and clinical course (HPON).

Description

An object of class "Anno" that contains associations between HPON terms and SCOP domain fami-
lies (fa). This data is prepared based on the dcGO database (see http://supfam.org/SUPERFAMILY/
dcG0/).

Usage
data(SCOP. fa2HPON)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

» domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

112 SCOPfa2HPPA

Examples

# load data

data(SCOP. fa2HPON)

SCOP. fa2HPON

# retrieve info on ontology terms

termData(SCOP. fa2HPON)

# retrieve info on SCOP domains

domainData(SCOP. fa2HPON)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.fa2HPON)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. fa2HPPA Annotations of SCOP domain families (fa) by Human Phenotype Phe-
notypic Abnormality (HPPA).

Description

An object of class "Anno" that contains associations between HPPA terms and SCOP domain fami-
lies (fa). This data is prepared based on the dcGO database (see http://supfam.org/SUPERFAMILY/
dcG0/).

Usage

data(SCOP. fa2HPPA)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

SCOPfa2MP 113

Examples

# load data

data(SCOP. fa2HPPA)

SCOP. fa2HPPA

# retrieve info on ontology terms

termData(SCOP. fa2HPPA)

# retrieve info on SCOP domains

domainData(SCOP. fa2HPPA)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.fa2HPPA)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. fa2MP Annotations of SCOP domain families (fa) by Mammalian Phenotype
(MP).

Description

An object of class "Anno" that contains associations between Mammalian Phenotype terms and
SCOP domain families (fa). This data is prepared based on the dcGO database (see http://
supfam.org/SUPERFAMILY/dcGO/).

Usage
data(SCOP.fa2MP)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

114 SCOPst

Examples

# load data

data(SCOP. fa2MP)

SCOP. fa2MP

# retrieve info on ontology terms
termData(SCOP.fa2MP)

# retrieve info on SCOP domains

domainData(SCOP. fa2MP)

# retrieve the first 5 rows and columns of annotation data
x <- annoData(SCOP.fa2MP)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. sf SCOP domain superfamilies (sf).

Description

An object of class "InfoDataFrame" that contains information on SCOP domain superfamilies (sf).

Usage

data(SCOP. sf)

Value

an object of class InfoDataFrame. It has slots for data and dimLabels:

* data: a data.frame containing information about 2223 domains (in rows), with 3 columns
("id" for SCOP sunid, and "level" for SCOP level, "description" for SCOP description)

» dimLabels: a character describing labels for rows and columns in data

References

Morais et al. (2011) SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nu-
cleic Acids Res, 39(Database issue):D427-34.

Andreeva et al. (2008) Data growth and its impact on the SCOP database: new developments.
Nucleic Acids Res, 36(Database issue):D419-425

See Also

InfoDataFrame-class



SCOPst2DO 115

Examples

# load data

data(SCOP.sf)

SCOP. sf

# retrieve the dimension
dim(SCOP. sf)

# retrieve names of columns
colNames(SCOP. sf)

# retrieve the first 5 rows of data
Data(SCOP.sf)[1:5,]

SCOP. sf2D0 Annotations of SCOP domain superfamilies (sf) by Disease Ontology
(DO,).

Description

An object of class "Anno" that contains associations between Disease Ontology terms and SCOP
domain superfamilies (sf). This data is prepared based on the dcGO database (see http://supfam.
org/SUPERFAMILY/dcGO/).

Usage

data(SCOP.sf2D0)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description
References
Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.
See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

116 SCOPsf2GOBP

Examples

# load data

data(SCOP.sf2D0)

SCOP. sf2D0

# retrieve info on ontology terms
termData(SCOP.sf2D0)

# retrieve info on SCOP domains
domainData(SCOP.sf2D0)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2D0)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. sf2GOBP Annotations of SCOP domain superfamilies (sf) by Gene Ontology Bi-
ological Process (GOBP).

Description

An object of class "Anno" that contains associations between Gene Ontology Biological Process
terms and SCOP domain superfamilies (sf). This data is prepared based on the dcGO database (see
http://supfam.org/SUPERFAMILY/dcGO/).

Usage

data(SCOP. sf2GOBP)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/

SCOPsf2GOCC 117

Examples

# load data

data(SCOP. sf2GOBP)

SCOP. sf2GOBP

# retrieve info on ontology terms

termData(SCOP. sf2GOBP)

# retrieve info on SCOP domains
domainData(SCOP.sf2GOBP)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2GOBP)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. sf2GOCC Annotations of SCOP domain superfamilies (sf) by Gene Ontology
Cellular Component (GOCC).

Description

An object of class "Anno" that contains associations between Gene Ontology Cellular Component
terms and SCOP domain superfamilies (sf). This data is prepared based on the dcGO database (see
http://supfam.org/SUPERFAMILY/dcGO/).

Usage

data(SCOP.sf2G0OCC)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/

118 SCOPst2GOMF

Examples

# load data

data(SCOP.sf2GOCC)

SCOP. sf2GOCC

# retrieve info on ontology terms
termData(SCOP.sf2GOCC)

# retrieve info on SCOP domains
domainData(SCOP.sf2GOCC)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2GOCC)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP . sf2GOMF Annotations of SCOP domain superfamilies (sf) by Gene Ontology
Molecular Function (GOMF).

Description

An object of class "Anno" that contains associations between Gene Ontology Molecular Function
terms and SCOP domain superfamilies (sf). This data is prepared based on the dcGO database (see
http://supfam.org/SUPERFAMILY/dcGO/).

Usage
data(SCOP. sf2GOMF)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/

SCOPst2HPMI 119

Examples

# load data

data(SCOP.sf2GOMF)

SCOP. sf2GOMF

# retrieve info on ontology terms

termData(SCOP. sf2GOMF)

# retrieve info on SCOP domains
domainData(SCOP.sf2GOMF)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2GOMF)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. sf2HPMI Annotations of SCOP domain superfamilies (sf) by Human Phenotype
Mode of Inheritance (HPMI).

Description

An object of class "Anno" that contains associations between HPMI terms and SCOP domain su-
perfamilies (sf). This data is prepared based on the dcGO database (see http://supfam.org/
SUPERFAMILY/dcGO/).

Usage

data(SCOP. sf2HPMI)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

120 SCOPsf2HPON

Examples

# load data

data(SCOP.sf2HPMI)

SCOP. sf2HPMI

# retrieve info on ontology terms
termData(SCOP.sf2HPMI)

# retrieve info on SCOP domains
domainData(SCOP.sf2HPMI)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2HPMI)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. sf2HPON Annotations of SCOP domain superfamilies (sf) by Human Phenotype
ONset and clinical course (HPON).

Description

An object of class "Anno" that contains associations between HPON terms and SCOP domain
superfamilies (sf). This data is prepared based on the dcGO database (see http://supfam.org/
SUPERFAMILY/dcGO/).

Usage
data(SCOP. sf2HPON)

Value

non

an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

» domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

SCOPst2HPPA 121

Examples

# load data

data(SCOP. sf2HPON)

SCOP. sf2HPON

# retrieve info on ontology terms

termData(SCOP. sf2HPON)

# retrieve info on SCOP domains
domainData(SCOP.sf2HPON)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2HPON)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. sf2HPPA Annotations of SCOP domain superfamilies (sf) by Human Phenotype
Phenotypic Abnormality (HPPA).

Description

An object of class "Anno" that contains associations between HPPA terms and SCOP domain su-
perfamilies (sf). This data is prepared based on the dcGO database (see http://supfam.org/
SUPERFAMILY/dcGO/).

Usage

data(SCOP. sf2HPPA)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

122 SCOPst2MP

Examples

# load data

data(SCOP. sf2HPPA)

SCOP. sf2HPPA

# retrieve info on ontology terms

termData(SCOP. sf2HPPA)

# retrieve info on SCOP domains
domainData(SCOP.sf2HPPA)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2HPPA)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

SCOP. sf2MP Annotations of SCOP domain superfamilies (sf) by Mammalian Phe-
notype (MP).

Description

An object of class "Anno" that contains associations between Mammalian Phenotype terms and
SCOP domain superfamilies (sf). This data is prepared based on the dcGO database (see http:
//supfam.org/SUPERFAMILY/dcGO/).

Usage

data(SCOP.sf2MP)

Value
an object of class Anno. It has slots for "annoData", "termData" and "domainData":

* annoData: a sparse matrix of domains X terms

* termData: variables describing ontology terms (i.e. columns in annoData), including: "ID"
(i.e. term ID), "Name" (i.e. term Names), "Namespace" (i.e. term Namespace), and "Dis-
tance" (i.e. term Distance to the ontology root)

* domainData: variables describing domains (i.e. rows in annoData), including: "id" for SCOP
sunid, and "level" for SCOP level, "description" for SCOP description

References

Fang H and Gough J. (2013) dcGO: database of domain-centric ontologies on functions, pheno-
types, diseases and more. Nucleic Acids Res, 41(Database issue):D536-44.

See Also

Anno-class


http://supfam.org/SUPERFAMILY/dcGO/
http://supfam.org/SUPERFAMILY/dcGO/

visEnrichment 123

Examples

# load data

data(SCOP.sf2MP)

SCOP. sf2MP

# retrieve info on ontology terms

termData(SCOP. sf2MP)

# retrieve info on SCOP domains
domainData(SCOP.sf2MP)

# retrieve the first 5 rows and columns of annotation data
X <- annoData(SCOP.sf2MP)[1:5,1:5]

X

# convert the above retrieval to the full matrix
as.matrix(x)

visEnrichment Function to visualise enrichment analysis outputs in the context of the
ontology hierarchy

Description

visEnrichment is supposed to visualise enrichment analysis outputs (represented as an "Eoutput’
object) in the context of the ontology hierarchy (direct acyclic graph; DAG). Only part of DAG
induced by those nodes/terms specified in query nodes (and the mode defining the paths to the root
of DAG) will be visualised. Nodes in query are framed in black (by default), and all nodes (in
query plus induced) will be color-coded according to a given data.type (’zscore’; otherwise taking
the form of 10-based negative logarithm for ’adjp’ or ’pvalue’). If no nodes in query, the top 5
significant terms (in terms of adjusted p-value) will be used for visualisation

Usage

visEnrichment(e, nodes_query = NULL, num_top_nodes = 5,

path.mode = c("all_shortest_paths”, "shortest_paths”, "all_paths"),
data.type = c("adjp"”, "pvalue”, "zscore"), height = 7, width = 7,
margin = rep(@.1, 4), colormap = c("yr", "bwr", "jet", "gbr"”, "wyr",
"br",

"rainbow”, "wb", "lightyellow-orange"”), ncolors = 4@, zlim = NULL,
colorbar = T, colorbar.fraction = 0.1, newpage =T,
layout.orientation = c("left_right"”, "top_bottom”, "bottom_top”,
"right_left"), node.info = c("both”, "none", "term_id", "term_name",
"full_term_name"”), graph.node.attrs = NULL, graph.edge.attrs = NULL,
node.attrs = NULL)

Arguments
e an object of S4 class Eoutput
nodes_query a verctor containing a list of nodes/terms in query. These nodes are used to pro-

duce a subgraph of the ontology DAG induced by them. If NULL, the top signifi-
cant terms (in terms of p-value) will be determined by the next 'num_top_nodes’



124

num_top_nodes

path.mode

data. type

height
width
margin

colormap

ncolors

zlim

colorbar

visEnrichment

anumeric value specifying the number of the top significant terms (in terms of p-
value) will be used. This parameter does not work if the previous 'nodes_query’
has been specified

the mode of paths induced by nodes in query. It can be "all_paths" for all pos-
sible paths to the root, "shortest_paths" for only one path to the root (for each
node in query), "all_shortest_paths" for all shortest paths to the root (i.e. for
each node, find all shortest paths with the equal lengths)

a character telling which data type for nodes in query is used to color-code
nodes. It can be one of ’adjp’ for adjusted p-values (by default), *pvalue’ for
p-values and ’zscore’ for z-scores. When ’adjp’ or 'pvalue’ is used, 10-based
negative logarithm is taken. For the style of how to color-code, please see the
next arguments: colormap, ncolors, zlim and colorbar

a numeric value specifying the height of device
a numeric value specifying the width of device
margins as units of length 4 or 1

short name for the colormap. It can be one of "yr" (yellow-red colormap; by
default), "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-
black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red col-
ormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that
is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated
HTML color names, e.g. "lightyellow-orange" (by default), "blue-black-yellow",
"royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of stan-
dard color names can be found in http://html-color-codes.info/color-names

the number of colors specified over the colormap

the minimum and maximum z/data values for which colors should be plotted,
defaulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

logical to indicate whether to append a colorbar. If data is null, it always sets to
false

colorbar.fraction

newpage

the relative fraction of colorbar block against the device size

logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

layout.orientation

node.info

the orientation of the DAG layout. It can be one of "left_right" for the left-right
layout (viewed from the DAG root point; by default), "top_bottom" for the top-
bottom layout, "bottom_top" for the bottom-top layout, and "right_left" for the
right-left layout

tells the ontology term information used to label nodes. It can be one of "both"
for using both of Term ID and Name (the first 15 characters; by default), "none"
for no node labeling, "term_id" for using Term ID, "term_name" for using Term
Name (the first 15 characters), and "full_term_name" for using the full Term
Name


http://html-color-codes.info/color-names

visEnrichment 125

graph.node.attrs

a list of global node attributes. These node attributes will be changed globally.
See 'Note’ below for details on the attributes

graph.edge.attrs

a list of global edge attributes. These edge attributes will be changed globally.
See "Note’ below for details on the attributes

node.attrs a list of local edge attributes. These node attributes will be changed locally; as

Value

such, for each attribute, the input value must be a named vector (i.e. using Term
ID as names). See ’Note’ below for details on the attributes

An object of class 'Ragraph’

Note

A list of global node attributes used in "graph.node.attrs":

"shape": the shape of the node: "circle", "rectangle", "rect", "box" and "ellipse"

"fixedsize": the logical to use only width and height attributes. By default, it sets to true for
not expanding for the width of the label

"fillcolor": the background color of the node

"color": the color for the node, corresponding to the outside edge of the node
"fontcolor": the color for the node text/labelings

"fontsize": the font size for the node text/labelings

"height": the height (in inches) of the node: 0.5 by default

"width": the width (in inches) of the node: 0.75 by default

"style": the line style for the node: "solid", "dashed", "dotted", "invis" and "bold"

A list of global edge attributes used in "graph.edge.attrs":

"color": the color of the edge: gray by default
"weight": the weight of the edge: 1 by default
"style": the line style for the edge: "solid", "dashed", "dotted", "invis" and "bold"

A list of local node attributes used in "node.attrs" (only those named Term IDs will be changed
locally!):

"label": a named vector specifying the node text/labelings

"shape": a named vector specifying the shape of the node: "circle", "rectangle", "rect", "box"
and "ellipse"

"fixedsize": a named vector specifying whether it sets to true for not expanding for the width
of the label

"fillcolor": a named vector specifying the background color of the node

"color": a named vector specifying the color for the node, corresponding to the outside edge
of the node



126 visEnrichment

* "fontcolor": a named vector specifying the color for the node text/labelings
 "fontsize": a named vector specifying the font size for the node text/labelings

* "height": a named vector specifying the height (in inches) of the node: 0.5 by default
» "width": a named vector specifying the width (in inches) of the node: 0.75 by default

* "style": a named vector specifying the line style for the node: "solid", "dashed", "dotted",
"invis" and "bold"

See Also

dcEnrichment, dcRDataloader, dcConverter

Examples

## Not run:

# 1) load SCOP.sf (as 'InfoDataFrame' object)
SCOP.sf <- dcRDatalLoader('SCOP.sf")

# randomly select 20 domains

data <- sample(rowNames(SCOP.sf), 20)

# 2) perform enrichment analysis, producing an object of S4 class 'Eoutput'
eoutput <- dcEnrichment(data, domain="SCOP.sf", ontology="GOMF")
eoutput

# 3) visualise the top 10 significant terms

# color-coded according to 10-based negative logarithm of p-values
visEnrichment (eoutput)

# color-coded according to zscore

visEnrichment(eoutput, data.type='zscore')

# 4) visualise the top 5 significant terms in the ontology hierarchy
nodes_query <- names(sort(adjp(eoutput))[1:5])

visEnrichment(eoutput, nodes_query=nodes_query)

# change the frame color: highlight (framed in blue) nodes/terms in query
nodes.highlight <- rep("blue”, length(nodes_query))
names(nodes.highlight) <- nodes_query

visEnrichment(eoutput, nodes_query=nodes_query,
node.attrs=list(color=nodes.highlight))

## End(Not run)



Index

*Topic S4 onto.HPON, 95
AdjData-class, 4 onto.HPPA, 95
Anno-class, 5 onto.MP, 96
Anno-method, 7 Pfam, 97
AnnoData-class, 9 Pfam2GOBP, 98
Cnetwork-class, 9 Pfam2GOCC, 99
Cnetwork-method, 11 Pfam2GOMF, 100
Coutput-class, 12 Rfam, 101
Coutput-method, 14 Rfam2GOBP, 102
Dnetwork-class, 73 Rfam2GOCC, 103
Dnetwork-method, 75 Rfam2GOMF, 104
Eoutput-class, 76 SCOP. fa, 105
Eoutput-method, 78 SCOP. fa2Do0, 106
InfoDataFrame-class, 81 SCOP. fa2GOBP, 107
InfoDataFrame-method, 82 SCOP. fa2G0cCC, 108
Onto-class, 88 SCOP. fa2GOMF, 109
Onto-method, 90 SCOP. fa2HPMI, 110

xTopic classes SCOP. fa2HPON, 111
AdjData-class, 4 SCOP. fa2HPPA, 112
Anno-class, 5 SCOP. fa2MP, 113
AnnoData-class, 9 SCOP.sf, 114
Cnetwork-class, 9 SCOP.sf2D0, 115
Coutput-class, 12 SCOP.sf2GOBP, 116
Dnetwork-class, 73 SCOP.sf2GOCC, 117
Eoutput-class, 76 SCOP.sf2GOMF, 118
InfoDataFrame-class, 81 SCOP.sf2HPMI, 119
Onto-class, 88 SCOP. sf2HPON, 120

xTopic datasets SCOP. sf2HPPA, 121
Ancestral_domainome, 4 SCOP.sf2MP, 122
eTOL, 79 *Topic methods
InterPro, 84 Anno-method, 7
InterPro2GOBP, 85 Cnetwork-method, 11
InterPro2GOCC, 86 Coutput-method, 14
InterPro2GOMF, 87 Dnetwork-method, 75
onto.DO, 91 Eoutput-method, 78
onto.GOBP, 92 InfoDataFrame-method, 82
onto.GOCC, 92 Onto-method, 90
onto.GOMF, 93 [,Anno,ANY,ANY, ANY-method
onto.HPMI, 94 (Anno-method), 7

127



128

[,Anno-method (Anno-method), 7
[,Cnetwork, ANY,ANY,ANY-method
(Cnetwork-method), 11
[,Cnetwork-method (Cnetwork-method), 11
[,Dnetwork, ANY, ANY, ANY-method
(Dnetwork-method), 75
[,Dnetwork-method (Dnetwork-method), 75
[,InfoDataFrame,ANY,ANY, ANY-method
(InfoDataFrame-method), 82
[,InfoDataFrame-method
(InfoDataFrame-method), 82
[,0Onto, ANY,ANY,ANY-method
(Onto-method), 90
[,0Onto-method (Onto-method), 90

AdjData, 9, 43, 73, 88, 91-97

AdjData (AdjData-class), 4

AdjData-class, 4

adjMatrix (Onto-method), 90

adjMatrix,Cnetwork-method
(Cnetwork-method), 11

adjMatrix,Dnetwork-method
(Dnetwork-method), 75

adjMatrix,Onto-method (Onto-method), 90

adjp (Eoutput-method), 78

adjp,Coutput-method (Coutput-method), 14

adjp,Eoutput-method (Eoutput-method), 78

Ancestral_domainome, 4

Anno, 5, 35, 36, 40, 85-87, 98—100, 102-104,
106-113, 115-122

Anno (Anno-class), 5

Anno-class, 5

Anno-method, 7

AnnoData, 6

AnnoData (AnnoData-class), 9

annoData (Anno-method), 7

annoData, Anno-method (Anno-method), 7

AnnoData-class, 9

Cnetwork, 12

Cnetwork (Cnetwork-class), 9

cnetwork (Coutput-method), 14

cnetwork, Coutput-method
(Coutput-method), 14

Cnetwork-class, 9

Cnetwork-method, 11

colNames (InfoDataFrame-method), 82

colNames, InfoDataFrame-method
(InfoDataFrame-method), 82

INDEX

Coutput (Coutput-class), 12
Coutput-class, 12
Coutput-method, 14

Data (InfoDataFrame-method), 82
Data, InfoDataFrame-method
(InfoDataFrame-method), 82
data.frame2InfoDataFrame
(InfoDataFrame-method), 82
dcAlgo, 15, 29,47, 67
dcAlgoPredict, 17, 22, 25, 67
dcAlgoPredictGenome, 19, 20
dcAlgoPredictMain, 19, 23, 26, 27, 54, 66
dcAlgoPredictPR, 26
dcAlgoPropagate, 17, 19, 22, 25, 28, 55, 57,
65
dcAncestralML, 30, 34
dcAncestralMP, 32, 33, 47
dcBuildAnno, 35, 50
dcBuildInfoDataFrame, 36, 49
dcBuildOnto, 16, 27, 29, 37, 50, 57, 64
dcConverter, 17,19, 27,29, 39, 41,43, 51,
62,126
dcDAGannotate, 40, 43, 51, 62
dcDAGdomainSim, 41, 42,62, 73
dcDuplicated, 17, 27, 32, 34, 46
dcEnrichment, 41, 48, 59, 76, 78, 126
dcFunArgs, 54
dcList2Matrix, 29, 55, 65, 71
dcNaivePredict, 56
dcRDataloader, 16, 17, 19, 22, 25, 27, 29, 39,
41,43, 50, 51, 57,58, 62,64, 65, 126
dcRWRpipeline, 9, 12, 14, 60
dcRWRpredict, 63
dcSparseMatrix, 66
dcSplitArch, 17,19, 67
dcSubtreeClade, 68, 70
dcSubtreeTips, 69
dcSupraBetter, 70
dcTreeConnectivity, 34, 68, 70, 72,72
dData (Anno-method), 7
dData, Anno-method (Anno-method), 7
description (Dnetwork-method), 75
description,Dnetwork-method
(Dnetwork-method), 75
dgCMatrix2Anno (Anno-method), 7
dgCMatrix2Cnetwork (Cnetwork-method), 11
dgCMatrix2Dnetwork (Dnetwork-method), 75
dgCMatrix20nto (Onto-method), 90



INDEX

dim, Anno-method (Anno-method), 7

dim,Cnetwork-method (Cnetwork-method),
11

dim,Dnetwork-method (Dnetwork-method),
75

dim, InfoDataFrame-method
(InfoDataFrame-method), 82

dim,Onto-method (Onto-method), 90

dimLabels (InfoDataFrame-method), 82

dimLabels, InfoDataFrame-method
(InfoDataFrame-method), 82

Dnetwork, 43, 60, 63

Dnetwork (Dnetwork-class), 73

Dnetwork-class, 73

Dnetwork-method, 75

domainData (Anno-method), 7

domainData, Anno-method (Anno-method), 7

domainNames (Anno-method), 7

domainNames, Anno-method (Anno-method), 7

Eoutput, 50, 123

Eoutput (Eoutput-class), 76
Eoutput-class, 76
Eoutput-method, 78
eTOL, 79

id (Dnetwork-method), 75

id,Dnetwork-method (Dnetwork-method), 75

InfoDataFrame, 6, 9, 36, 37, 73, 84, 88,
91-97,101, 105, 114

InfoDataFrame (InfoDataFrame-class), 81

InfoDataFrame-class, 81

InfoDataFrame-method, 82

InterPro, 84

InterPro2GOBP, 85

InterPro2GOCC, 86

InterPro2GOMF, 87

level (Dnetwork-method), 75
level,Dnetwork-method
(Dnetwork-method), 75

matrix2Anno (Anno-method), 7
matrix2Cnetwork (Cnetwork-method), 11
matrix2Dnetwork (Dnetwork-method), 75
matrix20nto (Onto-method), 90

ncol (InfoDataFrame-method), 82
ncol, InfoDataFrame-method
(InfoDataFrame-method), 82

129

nInfo (Onto-method), 90
nInfo,Cnetwork-method
(Cnetwork-method), 11
nInfo,Dnetwork-method
(Dnetwork-method), 75
nInfo,Onto-method (Onto-method), 90
nodeInfo (Onto-method), 90
nodeInfo,Cnetwork-method
(Cnetwork-method), 11
nodeInfo,Dnetwork-method
(Dnetwork-method), 75
nodeInfo,Onto-method (Onto-method), 90
nodeNames (Onto-method), 90
nodeNames,Cnetwork-method
(Cnetwork-method), 11
nodeNames,Dnetwork-method
(Dnetwork-method), 75
nodeNames,Onto-method (Onto-method), 90
nrow (InfoDataFrame-method), 82
nrow, InfoDataFrame-method
(InfoDataFrame-method), 82

Onto, 37, 38, 40, 42, 91-96
Onto (Onto-class), 88
Onto-class, 88
Onto-method, 90
onto.DO, 91
onto.GOBP, 92
onto.GOCC, 92
onto.GOMF, 93
onto.HPMI, 94
onto.HPON, 95
onto.HPPA, 95
onto.MP, 96

Pfam, 97

Pfam2GOBP, 98

Pfam2GOCC, 99

Pfam2GOMF, 100

pvalue (Eoutput-method), 78

pvalue,Coutput-method (Coutput-method),
14

pvalue,Eoutput-method (Eoutput-method),
78

ratio (Coutput-method), 14

ratio,Coutput-method (Coutput-method),
14

Rfam, 101



130

Rfam2GOBP, 102
Rfam2GOCC, 103
Rfam2GOMF, 104

rowNames (InfoDataFrame-method), 82
rowNames, InfoDataFrame-method
(InfoDataFrame-method), 82

SCOP.
SCOP.
SCOP.

fa, 105
fa2Do, 106
fa2GOBP, 107

INDEX

termData, Anno-method (Anno-method), 7
termNames (Anno-method), 7
termNames, Anno-method (Anno-method), 7

view (Eoutput-method), 78
view,Eoutput-method (Eoutput-method), 78
visEnrichment, 57, 123

write (Eoutput-method), 78
write,Coutput-method (Coutput-method),
14

SCOP. fa2G0cCC, 108

SCOP. fa2GOMF, 109 write,Eoutput-method (Eoutput-method),

SCOP. fa2HPMI, 110 78

SCOP. fa2HPON, 111

SCOP. fa2HPPA. 112 zscore (Eoutput-method), 78

SCOP.faZMP 113 zscore, Coutput-method (Coutput-method),

SCOP. sf, 114 14

SCOP. sF2D0. 115 zscore,Eoutput-method (Eoutput-method),
' i 78

SCOP.sf2GOBP, 116

SCOP. sf2GOCC, 117

SCOP. sf2GOMF, 118

SCOP.sf2HPMI, 119

SCOP. sf2HPON, 120

SCOP. sf2HPPA, 121

SCOP. sf2MP, 122

show, Anno-method (Anno-method), 7

show, Cnetwork-method (Cnetwork-method),
11

show, Coutput-method (Coutput-method), 14

show, Dnetwork-method (Dnetwork-method),
75

show, Eoutput-method (Eoutput-method), 78

show, InfoDataFrame-method
(InfoDataFrame-method), 82

show,Onto-method (Onto-method), 90

tData (Anno-method), 7

tData, Anno-method (Anno-method), 7

term_distance (Onto-method), 90

term_distance,Onto-method
(Onto-method), 90

term_id (Onto-method), 90

term_id,Onto-method (Onto-method), 90

term_name (Onto-method), 90

term_name,Onto-method (Onto-method), 90

term_namespace (Onto-method), 90

term_namespace,Onto-method
(Onto-method), 90

termData (Anno-method), 7



	AdjData-class
	Ancestral_domainome
	Anno-class
	Anno-method
	AnnoData-class
	Cnetwork-class
	Cnetwork-method
	Coutput-class
	Coutput-method
	dcAlgo
	dcAlgoPredict
	dcAlgoPredictGenome
	dcAlgoPredictMain
	dcAlgoPredictPR
	dcAlgoPropagate
	dcAncestralML
	dcAncestralMP
	dcBuildAnno
	dcBuildInfoDataFrame
	dcBuildOnto
	dcConverter
	dcDAGannotate
	dcDAGdomainSim
	dcDuplicated
	dcEnrichment
	dcFunArgs
	dcList2Matrix
	dcNaivePredict
	dcRDataLoader
	dcRWRpipeline
	dcRWRpredict
	dcSparseMatrix
	dcSplitArch
	dcSubtreeClade
	dcSubtreeTips
	dcSupraBetter
	dcTreeConnectivity
	Dnetwork-class
	Dnetwork-method
	Eoutput-class
	Eoutput-method
	eTOL
	InfoDataFrame-class
	InfoDataFrame-method
	InterPro
	InterPro2GOBP
	InterPro2GOCC
	InterPro2GOMF
	Onto-class
	Onto-method
	onto.DO
	onto.GOBP
	onto.GOCC
	onto.GOMF
	onto.HPMI
	onto.HPON
	onto.HPPA
	onto.MP
	Pfam
	Pfam2GOBP
	Pfam2GOCC
	Pfam2GOMF
	Rfam
	Rfam2GOBP
	Rfam2GOCC
	Rfam2GOMF
	SCOP.fa
	SCOP.fa2DO
	SCOP.fa2GOBP
	SCOP.fa2GOCC
	SCOP.fa2GOMF
	SCOP.fa2HPMI
	SCOP.fa2HPON
	SCOP.fa2HPPA
	SCOP.fa2MP
	SCOP.sf
	SCOP.sf2DO
	SCOP.sf2GOBP
	SCOP.sf2GOCC
	SCOP.sf2GOMF
	SCOP.sf2HPMI
	SCOP.sf2HPON
	SCOP.sf2HPPA
	SCOP.sf2MP
	visEnrichment
	Index

