
Package ‘dbscan’
October 23, 2019

Version 1.1-5

Date 2019-10-22

Title Density Based Clustering of Applications with Noise (DBSCAN) and
Related Algorithms

Description A fast reimplementation of several density-based algorithms of
the DBSCAN family for spatial data. Includes the DBSCAN (density-based spatial
clustering of applications with noise) and OPTICS (ordering points to identify
the clustering structure) clustering algorithms HDBSCAN (hierarchical DB-
SCAN) and the LOF (local outlier
factor) algorithm. The implementations use the kd-tree data structure (from
library ANN) for faster k-nearest neighbor search. An R interface to fast kNN
and fixed-radius NN search is also provided.
See Hahsler M, Piekenbrock M and Doran D (2019) <doi:10.18637/jss.v091.i01>.

Imports Rcpp (>= 1.0.0), graphics, stats, methods

LinkingTo Rcpp

Suggests fpc, microbenchmark, testthat, dendextend, igraph, knitr,
DMwR

VignetteBuilder knitr

URL https://github.com/mhahsler/dbscan

BugReports https://github.com/mhahsler/dbscan/issues

License GPL (>= 2)

Copyright ANN library is copyright by University of Maryland, Sunil
Arya and David Mount. All other code is copyright by Michael
Hahsler and Matthew Piekenbrock.

SystemRequirements C++11

NeedsCompilation yes

Author Michael Hahsler [aut, cre, cph],
Matthew Piekenbrock [aut, cph],
Sunil Arya [ctb, cph],
David Mount [ctb, cph]

Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>

1

https://github.com/mhahsler/dbscan
https://github.com/mhahsler/dbscan/issues

2 dbscan

Repository CRAN

Date/Publication 2019-10-23 08:00:02 UTC

R topics documented:

dbscan . 2
DS3 . 6
extractFOSC . 7
frNN . 10
glosh . 12
hdbscan . 13
hullplot . 16
jpclust . 17
kNN . 19
kNNdist . 21
lof . 22
moons . 24
NN . 25
optics . 26
pointdensity . 29
reachability . 31
sNN . 34
sNNclust . 36

Index 38

dbscan DBSCAN

Description

Fast reimplementation of the DBSCAN (Density-based spatial clustering of applications with noise)
clustering algorithm using a kd-tree. The implementation is significantly faster and can work with
larger data sets then dbscan in fpc.

Usage

dbscan(x, eps, minPts = 5, weights = NULL, borderPoints = TRUE, ...)

S3 method for class 'dbscan_fast'
predict(object, newdata = NULL, data, ...)

dbscan 3

Arguments

x a data matrix or a dist object. Alternatively, a frNN object with fixed-radius
nearest neighbors can also be specified (see Example section). In this case eps
can be missing and will be taken form the frNN object.

eps size of the epsilon neighborhood.

minPts number of minimum points in the eps region (for core points). Default is 5
points.

weights numeric; weights for the data points. Only needed to perform weighted cluster-
ing.

borderPoints logical; should border points be assigned. The default is TRUE for regular DB-
SCAN. If FALSE then border points are considered noise (see DBSCAN* in
Campello et al, 2013).

object a DBSCAN clustering object.

data the data set used to create the DBSCAN clustering object.

newdata new data set for which cluster membership should be predicted.

... additional arguments are passed on to fixed-radius nearest neighbor search algo-
rithm. See frNN for details on how to control the search strategy.

Details

Note: use dbscan::dbscan to call this implementation when you also use package fpc.

This implementation of DBSCAN (Hahsler et al, 2019) implements the original algorithm as de-
scribed by Ester et al (1996). DBSCAN estimates the density around each data point by counting
the number of points in a user-specified eps-neighborhood and applies a used-specified minPts
thresholds to identify core, border and noise points. In a second step, core points are joined into a
cluster if they are density-reachable (i.e., there is a chain of core points where one falls inside the
eps-neighborhood of the next). Finally, border points are assigned to clusters. The algorithm only
needs parameters eps and minPts.

Border points are arbitrarily assigned to clusters in the original algorithm. DBSCAN* (see Campello
et al 2013) treats all border points as noise points. This is implemented with borderPoints =
FALSE.

Setting parameters for DBSCAN: minPts is often set to be dimensionality of the data plus one or
higher. The knee in kNNdistplot can be used to find suitable values for eps.

See frNN for more information on the parameters related to nearest neighbor search.

A precomputed frNN object can be supplied as x. In this case eps does not need to be specified.
This option us useful for large data sets, where a sparse distance matrix is available. See frNN how
to create frNN objects.

predict can be used to predict cluster memberships for new data points. A point is considered a
member of a cluster if it is within the eps neighborhood of a member of the cluster. Points which
cannot be assigned to a cluster will be reported as members of the noise cluster 0.

4 dbscan

Value

An object of class ’dbscan_fast’ with the following components:

eps value of the eps parameter.

minPts value of the minPts parameter.

cluster A integer vector with cluster assignments. Zero indicates noise points.

Author(s)

Michael Hahsler

References

Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast Density-Based Clustering with R. Jour-
nal of Statistical Software, 91(1), 1-30. doi: 10.18637/jss.v091.i01

Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. Institute for Computer Science,
University of Munich. Proceedings of 2nd International Conference on Knowledge Discovery and
Data Mining (KDD-96), 226-231.

Campello, R. J. G. B.; Moulavi, D.; Sander, J. (2013). Density-Based Clustering Based on Hierar-
chical Density Estimates. Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery
in Databases, PAKDD 2013, Lecture Notes in Computer Science 7819, p. 160.

See Also

kNNdistplot, frNN, dbscan in fpc.

Examples

Example 1: use dbscan on the iris data set
data(iris)
iris <- as.matrix(iris[,1:4])

find suitable eps parameter using a k-NN plot for k = dim + 1
Look for the knee!
kNNdistplot(iris, k = 5)
abline(h=.5, col = "red", lty=2)

res <- dbscan(iris, eps = .5, minPts = 5)
res

pairs(iris, col = res$cluster + 1L)

use precomputed frNN
fr <- frNN(iris, eps = .5)
dbscan(fr, minPts = 5)

Example 2: use data from fpc
set.seed(665544)
n <- 100

https://doi.org/10.18637/jss.v091.i01

dbscan 5

x <- cbind(
x = runif(10, 0, 10) + rnorm(n, sd = 0.2),
y = runif(10, 0, 10) + rnorm(n, sd = 0.2)
)

res <- dbscan(x, eps = .3, minPts = 3)
res

plot clusters and add noise (cluster 0) as crosses.
plot(x, col=res$cluster)
points(x[res$cluster==0,], pch = 3, col = "grey")

hullplot(x, res)

predict cluster membership for new data points
(Note: 0 means it is predicted as noise)
newdata <- x[1:5,] + rnorm(10, 0, .2)
predict(res, newdata, data = x)

compare speed against fpc version (if microbenchmark is installed)
Note: we use dbscan::dbscan to make sure that we do now run the
implementation in fpc.
Not run:
if (requireNamespace("fpc", quietly = TRUE) &&

requireNamespace("microbenchmark", quietly = TRUE)) {
t_dbscan <- microbenchmark::microbenchmark(

dbscan::dbscan(x, .3, 3), times = 10, unit = "ms")
t_dbscan_linear <- microbenchmark::microbenchmark(

dbscan::dbscan(x, .3, 3, search = "linear"), times = 10, unit = "ms")
t_dbscan_dist <- microbenchmark::microbenchmark(

dbscan::dbscan(x, .3, 3, search = "dist"), times = 10, unit = "ms")
t_fpc <- microbenchmark::microbenchmark(

fpc::dbscan(x, .3, 3), times = 10, unit = "ms")

r <- rbind(t_fpc, t_dbscan_dist, t_dbscan_linear, t_dbscan)
r

boxplot(r,
names = c('fpc', 'dbscan (dist)', 'dbscan (linear)', 'dbscan (kdtree)'),
main = "Runtime comparison in ms")

speedup of the kd-tree-based version compared to the fpc implementation
median(t_fpc$time) / median(t_dbscan$time)

}
End(Not run)

Example 3: manually create a frNN object for dbscan (dbscan only needs ids and eps)
nn <- structure(list(ids = list(c(2,3), c(1,3), c(1,2,3), c(3,5), c(4,5)), eps = 1),

class = c("NN", "frNN"))
nn
dbscan(nn, minPts = 2)

6 DS3

DS3 DS3: Spatial data with arbitrary shapes

Description

Contains 8000 2-d points, with 6 "natural" looking shapes, all of which have an sinusoid-like shape
that intersects with each cluster.

Usage

data("DS3")

Format

A data frame with 8000 observations on the following 2 variables.

X a numeric vector

Y a numeric vector

Details

Originally used as a benchmark data set for the Chameleon clustering algorithm[1] to illustrate the
a data set containing arbitrarily shaped spatial data surrounded by both noise and artifacts.

Source

Obtained at https://cs.joensuu.fi/sipu/datasets/

References

Karypis, George, Eui-Hong Han, and Vipin Kumar (1999). "Chameleon: Hierarchical clustering
using dynamic modeling." Computer 32(8): 68-75.

Examples

data(DS3)
plot(DS3, pch=20, cex=0.25)

extractFOSC 7

extractFOSC Framework for Optimal Selection of Clusters

Description

Generic reimplementation of the Framework for Optimal Selection of Clusters (FOSC; Campello
et al, 2013). Can be parameterized to perform unsupervised cluster extraction through a stability-
based measure, or semisupervised cluster extraction through either a constraint-based extraction
(with a stability-based tiebreaker) or a mixed (weighted) constraint and stability-based objective
extraction.

Usage

extractFOSC(x, constraints = NA, alpha = 0, minPts = 2L,
prune_unstable = FALSE,
validate_constraints = FALSE)

Arguments

x a valid hclust object.

constraints Either a list or matrix of pairwise constraints. If not supplied, an unsupervised
measure of stability is used to make local cuts and extract the optimal clusters.
See details.

alpha numeric; weight between [0, 1] for mixed-objective semi-supervised extraction.
Defaults to 0.

minPts numeric; Defaults to 2. Only needed if class-less noise is a valid label in the
model.

prune_unstable logical; should significantly unstable subtrees be pruned? The default is FALSE
for the original optimal extraction framework (see Campello et al, 2013). See
details for what TRUE implies.

validate_constraints

logical; should constraints be checked for validity? See details for what are
considered valid constraints.

Details

Campello et al (2013) suggested a ’Framework for Optimal Selection of Clusters’ (FOSC) as a
framework to make local (non-horizontal) cuts to any cluster tree hierarchy. This function imple-
ments the original extraction algorithms as described by the framework for hclust objects. Tradi-
tional cluster extraction methods from hierarchical representations (such as ’hclust’ objects) gener-
ally rely on global parameters or cutting values which are used to partition a cluster hierarchy into a
set of disjoint, flat clusters. Although such methods are widespread, using global parameter settings
are inherently limited in that they cannot capture patterns within the cluster hierarchy at varying
local levels of granularity.

Rather than partitioning a hierarchy based on the number of the cluster one expects to find (k)
or based on some linkage distance threshold (H), the FOSC proposes that the optimal clusters

8 extractFOSC

may exist at varying distance thresholds in the hierarchy. To enable this idea, FOSC requires one
parameter (minPts) that represents the minimum number of points that constitute a valid cluster.
The first step of the FOSC algorithm is to traverse the given cluster hierarchy divisely, recording
new clusters at each split if both branches represent more than or equal to minPts. Branches that
contain less than minPts points at one or both branches inherit the parent clusters identity. Note that
using FOSC, due to the constraint that minPts must be greater than or equal to 2, it is possible that
the optimal cluster solution chosen makes local cuts that render parent branches of sizes less than
minPts as noise, which are denoted as 0 in the final solution.

Traversing the original cluster tree using minPts creates a new, simplified cluster tree that is then
post-processed recursively to extract clusters that maximize for each cluster Ci the cost function

max
δ2,...,δk

J =

k∑
i=2

δiS(Ci)

where S(Ci) is the stability-based measure as

S(Ci) =
∑
xj∈Ci

(
1

hmin(xj , Ci)
− 1

hmax(Ci)
)

δi represents an indicator function, which constrains the solution space such that clusters must be
disjoint (cannot assign more than 1 label to each cluster). The measure S(Ci) used by FOSC is
an unsupervised validation measure based on the assumption that, if you vary the linkage/distance
threshold across all possible values, more prominent clusters that survive over many threshold vari-
ations should be considered as stronger candidates of the optimal solution. For this reason, using
this measure to detect clusters is referred to as an unsupervised, stability-based extraction approach.
In some cases it may be useful to enact instance-level constraints that ensure the solution space con-
forms to linkage expectations known a priori. This general idea of using preliminary expectations
to augment the clustering solution will be referred to as semisupervised clustering. If constraints
are given in the call to extractFOSC, the following alternative objective function is maximized:

J =
1

2nc

n∑
j=1

γ(xj)

nc is the total number of constraints given and γ(xj) represents the number of constraints involving
object xj that are satisfied. In the case of ties (such as solutions where no constraints were given),
the unsupervised solution is used as a tiebreaker. See Campello et al (2013) for more details.

As a third option, if one wishes to prioritize the degree at which the unsupervised and semisuper-
vised solutions contribute to the overall optimal solution, the parameter α can be set to enable the
extraction of clusters that maximize the mixed objective function

J = αS(Ci) + (1− α)γ(Ci))

FOSC expects the pairwise constraints to be passed as either 1) an n(n − 1)/2 vector of integers
representing the constraints, where 1 represents should-link, -1 represents should-not-link, and 0
represents no preference using the unsupervised solution (see below for examples). Alternatively,
if only a few constraints are needed, a named list representing the (symmetric) adjacency list can

extractFOSC 9

be used, where the names correspond to indices of the points in the original data, and the values
correspond to integer vectors of constraints (positive indices for should-link, negative indices for
should-not-link). Again, see the examples section for a demonstration of this.

The parameters to the input function correspond to the concepts discussed above. The minPts
parameter to represent the minimum cluster size to extract. The optional constraints param-
eter contains the pairwise, instance-level constraints of the data. The optional alpha parame-
ters controls whether the mixed objective function is used (if alpha is greater than 0). If the
validate_constraints parameter is set to true, the constraints are checked (and fixed) for sym-
metry (if point A has a should-link constraint with point B, point B should also have the same
constraint). Asymmetric constraints are not supported.

Unstable branch pruning was not discussed by Campello et al (2013), however in some data sets
it may be the case that specific subbranches scores are significantly greater than sibling and parent
branches, and thus sibling branches should be considered as noise if their scores are cumulatively
lower than the parents. This can happen in extremely nonhomogeneous data sets, where there exists
locally very stable branches surrounded by unstable branches that contain more than minPts points.
prune_unstable = TRUE will remove the unstable branches.

Value

cluster A integer vector with cluster assignments. Zero indicates noise points (if any).

hc The original hclust object augmented with the n-1 cluster-wide objective scores
from the extraction encoded in the ’stability’, ’constraint’, and ’total’ named
members.

Author(s)

Matt Piekenbrock

References

Campello, Ricardo JGB, Davoud Moulavi, Arthur Zimek, and Joerg Sander (2013). "A framework
for semi-supervised and unsupervised optimal extraction of clusters from hierarchies." Data Mining
and Knowledge Discovery 27(3): 344-371.

See Also

hdbscan, cutree

Examples

data("moons")

Regular HDBSCAN using stability-based extraction (unsupervised)
cl <- hdbscan(moons, minPts = 5)
cl$cluster

Constraint-based extraction from the HDBSCAN hierarchy
(w/ stability-based tiebreaker (semisupervised))
cl_con <- extractFOSC(cl$hc, minPts = 5,

10 frNN

constraints = list("12" = c(49, -47)))
cl_con$cluster

Alternative formulation: Constraint-based extraction from the HDBSCAN hierarchy
(w/ stability-based tiebreaker (semisupervised)) using distance thresholds
dist_moons <- dist(moons)
cl_con2 <- extractFOSC(cl$hc, minPts = 5,

constraints = ifelse(dist_moons < 0.1, 1L,
ifelse(dist_moons > 1, -1L, 0L)))

cl_con2$cluster # same as the second example

frNN Find the Fixed Radius Nearest Neighbors

Description

This function uses a kd-tree to find the fixed radius nearest neighbors (including distances) fast.

Usage

frNN(x, eps, query = NULL, sort = TRUE, search = "kdtree", bucketSize = 10,
splitRule = "suggest", approx = 0)

Arguments

x a data matrix, a dist object or a frNN object.
eps neighbors radius (dist <= eps).
query a data matrix with the points to query. If query is not specified, the NN for all

the points in x is returned. If query is specified then x needs to be a data matrix.
sort sort the neighbors by distance? This is expensive and can be done later using

sort().
search nearest neighbor search strategy (one of "kdtree" or "linear", "dist").
bucketSize max size of the kd-tree leafs.
splitRule rule to split the kd-tree. One of "STD", "MIDPT", "FAIR", "SL_MIDPT",

"SL_FAIR" or "SUGGEST" (SL stands for sliding). "SUGGEST" uses ANNs
best guess.

approx use approximate nearest neighbors. All NN up to a distance of a factor of
1+approx eps may be used. Some actual NN may be omitted leading to spu-
rious clusters and noise points. However, the algorithm will enjoy a significant
speedup.

Details

For details on the parameters see kNN.

Note: self-matches are not returned!

To create a frNN object from scratch, you need to supply at least the elements id with a list of
integer vectors with the nearest neighbor ids for each point and eps (see below).

frNN 11

Value

An object of class frNN (subclass of NN) containing a list with the following components:

id a list of integer vectors. Each vector contains the ids of the fixed radius nearest
neighbors.

dist a list with distances (same structure as ids).

eps eps used.

Author(s)

Michael Hahsler

References

David M. Mount and Sunil Arya (2010). ANN: A Library for Approximate Nearest Neighbor
Searching, http://www.cs.umd.edu/~mount/ANN/.

See Also

NN and kNN for k nearest neighbor search.

Examples

data(iris)
x <- iris[, -5]

Example 1: Find fixed radius nearest neighbors for each point
nn <- frNN(x, eps=.5)

Number of neighbors
hist(sapply(adjacencylist(nn), length),

xlab = "k", main="Number of Neighbors",
sub = paste("Neighborhood size eps =", nn$eps))

Explore neighbors of point i = 10
i <- 10
nn$id[[i]]
nn$dist[[i]]
plot(x, col = ifelse(1:nrow(iris) %in% nn$id[[i]], "red", "black"))

get an adjacency list
head(adjacencylist(nn))

plot the fixed radius neighbors (and then reduced to a radius of .3)
plot(nn, x)
plot(frNN(nn, eps = .3), x)

Example 2: find fixed-radius NN for query points
q <- x[c(1,100),]
nn <- frNN(x, eps = .5, query = q)

http://www.cs.umd.edu/~mount/ANN/

12 glosh

plot(nn, x, col = "grey")
points(q, pch = 3, lwd = 2)

glosh Global-Local Outlier Score from Hierarchies

Description

Calculate the Global-Local Outlier Score from Hierarchies (GLOSH) score for each data point using
a kd-tree to speed up kNN search.

Usage

glosh(x, k = 4, ...)

Arguments

x an hclust object, data matrix, or dist object.

k size of the neighborhood.

... further arguments are passed on to kNN.

Details

GLOSH compares the density of a point to densities of any points associated within current and
child clusters (if any). Points that have a substantially lower density than the density mode (cluster)
they most associate with are considered outliers. GLOSH is computed from a hierarchy a clusters.

Specifically, consider a point x and a density or distance threshold lambda. GLOSH is calculated by
taking 1 minus the ratio of how long any of the child clusters of the cluster x belongs to "survives"
changes in lambda to the highest lambda threshold of x, above which x becomes a noise point.

Scores close to 1 indicate outliers. For more details on the motivation for this calculation, see
Campello et al (2015).

Value

A numeric vector of length equal to the size of the original data set containing GLOSH values for
all data points.

Author(s)

Matt Piekenbrock

References

Campello, Ricardo JGB, Davoud Moulavi, Arthur Zimek, and Joerg Sander. "Hierarchical density
estimates for data clustering, visualization, and outlier detection." ACM Transactions on Knowledge
Discovery from Data (TKDD) 10, no. 1 (2015): 5.

hdbscan 13

See Also

kNN, pointdensity, lof.

Examples

set.seed(665544)
n <- 100
x <- cbind(

x=runif(10, 0, 5) + rnorm(n, sd=0.4),
y=runif(10, 0, 5) + rnorm(n, sd=0.4)
)

calculate LOF score
glosh <- glosh(x, k=3)

distribution of outlier scores
summary(glosh)
hist(glosh, breaks=10)

simple function to plot point size is proportional to GLOSH score
plot_glosh <- function(x, glosh){

plot(x, pch = ".", main = "GLOSH (k=3)")
points(x, cex = glosh*3, pch = 1, col="red")
text(x[glosh > 0.80,], labels = round(glosh, 3)[glosh > 0.80], pos = 3)

}
plot_glosh(x, glosh)

GLOSH with any hierarchy
x_dist <- dist(x)
x_sl <- hclust(x_dist, method = "single")
x_upgma <- hclust(x_dist, method = "average")
x_ward <- hclust(x_dist, method = "ward.D2")

Compare what different linkage criterion consider as outliers
glosh_sl <- glosh(x_sl, k = 3)
plot_glosh(x, glosh_sl)

glosh_upgma <- glosh(x_upgma, k = 3)
plot_glosh(x, glosh_upgma)

glosh_ward <- glosh(x_ward, k = 3)
plot_glosh(x, glosh_ward)

GLOSH is automatically computed with HDBSCAN
all(hdbscan(x, minPts = 3)$outlier_scores == glosh(x, k = 3))

hdbscan HDBSCAN

14 hdbscan

Description

Fast implementation of the HDBSCAN (Hierarchical DBSCAN) and its related algorithms using
Rcpp.

Usage

hdbscan(x, minPts, xdist = NULL,
gen_hdbscan_tree = FALSE,
gen_simplified_tree = FALSE)

S3 method for class 'hdbscan'
print(x, ...)
S3 method for class 'hdbscan'
plot(x, scale="suggest",

gradient=c("yellow", "red"), show_flat = FALSE, ...)

Arguments

x a data matrix or a dist object.
minPts integer; Minimum size of clusters. See details.
xdist an optional precomputed dist object. May reduce computation time if supplied.
gen_hdbscan_tree

logical; should the robust single linkage tree be explicitly computed. (see cluster
tree in Chaudhuri et al, 2010).

gen_simplified_tree

logical; should the simplified hierarchy be explicitly computed. (see Campello
et al, 2013).

... additional arguments are passed on to the appropriate S3 methods (such as plot-
ting parameters).

scale integer; used to scale condensed tree based on the graphics device. Lower scale
results in wider trees.

gradient character vector; the colors to build the condensed tree coloring with.
show_flat logical; whether to draw boxes indicating the most stable clusters.

Details

This fast implementation of HDBSCAN (Hahsler et al, 2019) computes the hierarchical cluster
tree representing density estimates along with the stability-based flat cluster extraction proposed by
Campello et al. (2013). HDBSCAN essentially computes the hierarchy of all DBSCAN* cluster-
ings, and then uses a stability-based extraction method to find optimal cuts in the hierarchy, thus
producing a flat solution.

Additional, related algorithms including the "Global-Local Outlier Score from Hierarchies" (GLOSH)
(see section 6 of Campello et al., 2015) outlier scores and ability to cluster based on instance-level
constraints (see section 5.3 of Campello et al. 2015) are supported. The algorithms only need the
parameter minPts.

Note that minPts not only acts as a minimum cluster size to detect, but also as a "smoothing" factor
of the density estimates implicitly computed from HDBSCAN.

hdbscan 15

Value

A object of class ’hdbscan’ with the following components:

cluster A integer vector with cluster assignments. Zero indicates noise points.

minPts value of the minPts parameter.
cluster_scores

The sum of the stability scores for each salient (’flat’) cluster. Corresponds to
cluster ids given the in ’cluster’ member.

membership_prob

The ’probability’ or individual stability of a point within its clusters. Between 0
and 1.

outlier_scores

The outlier score (GLOSH) of each point.

hc An ’hclust’ object of the HDBSCAN hierarchy.

Author(s)

Matt Piekenbrock

References

Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast Density-Based Clustering with R. Jour-
nal of Statistical Software, 91(1), 1-30. doi: 10.18637/jss.v091.i01

Campello RJGB, Moulavi D, Sander J (2013). Density-Based Clustering Based on Hierarchical
Density Estimates. Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery in
Databases, PAKDD 2013, Lecture Notes in Computer Science 7819, p. 160.

Campello RJGB, Moulavi D, Zimek A, Sander J (2015). Hierarchical density estimates for data
clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from
Data (TKDD), 10(5):1-51.

See Also

dbscan

Examples

cluster the moons data set with HDBSCAN
data(moons)

res <- hdbscan(moons, minPts = 5)
res

plot(res)

plot(moons, col = res$cluster + 1L)

DS3 from Chameleon
data("DS3")

https://doi.org/10.18637/jss.v091.i01

16 hullplot

res <- hdbscan(DS3, minPts = 50)
res

Plot the simplified tree, highlight the most stable clusters
plot(res, show_flat = TRUE)

Plot the actual clusters
plot(DS3, col=res$cluster+1L, cex = .5)

hullplot Plot Convex Hulls of Clusters

Description

This function produces a two-dimensional scatter plot with added convex hulls for clusters.

Usage

hullplot(x, cl, col = NULL, cex = 0.5, hull_lwd = 1, hull_lty = 1,
solid = TRUE, alpha = .2, main = "Convex Cluster Hulls", ...)

Arguments

x a data matrix. If more than 2 columns are provided, then the data is plotted using
the first two principal components.

cl a clustering. Either a numeric cluster assignment vector or a clustering object (a
list with an element named cluster).

col colors used for clusters. Defaults to the standard palette. The first color (default
is black) is used for noise/unassigned points (cluster id 0).

cex expansion factor for symbols.

hull_lwd, hull_lty

line width and line type used for the convex hull.

main main title.

solid, alpha draw filled polygons instead of just lines for the convex hulls? alpha controls
the level of alpha shading.

... additional arguments passed on to plot.

Author(s)

Michael Hahsler

jpclust 17

Examples

set.seed(2)
n <- 400

x <- cbind(
x = runif(4, 0, 1) + rnorm(n, sd=0.1),
y = runif(4, 0, 1) + rnorm(n, sd=0.1)
)

cl <- rep(1:4, time = 100)

original data with true clustering
hullplot(x, cl, main = "True clusters")
use differnt symbols
hullplot(x, cl, main = "True clusters", pch = cl)
just the hulls
hullplot(x, cl, main = "True clusters", pch = NA)
a version suitable for b/w printing)
hullplot(x, cl, main = "True clusters", solid = FALSE, col = "black", pch = cl)

run some clustering algorithms and plot the resutls
db <- dbscan(x, eps = .07, minPts = 10)
hullplot(x, db, main = "DBSCAN")

op <- optics(x, eps = 10, minPts = 10)
opDBSCAN <- extractDBSCAN(op, eps_cl = .07)
hullplot(x, opDBSCAN, main = "OPTICS")

opXi <- extractXi(op, xi = 0.05)
hullplot(x, opXi, main = "OPTICSXi")

Extract minimal 'flat' clusters only
opXi <- extractXi(op, xi = 0.05, minimum = TRUE)
hullplot(x, opXi, main = "OPTICSXi")

km <- kmeans(x, centers = 4)
hullplot(x, km, main = "k-means")

hc <- cutree(hclust(dist(x)), k = 4)
hullplot(x, hc, main = "Hierarchical Clustering")

jpclust Jarvis-Patrick Clustering

Description

Fast C++ implementation of the Jarvis-Patrick clustering which first builds a shared nearest neigh-
bor graph (k nearest neighbor sparsification) and then places two points in the same cluster if they
are in each other’s nearest neighbor list and they share at least kt nearest neighbors.

18 jpclust

Usage

jpclust(x, k, kt, ...)

Arguments

x a data matrix/data.frame (Euclidean distance is used), a precomputed dist object
or a kNN object created with kNN().

k Neighborhood size for nearest neighbor sparsification. If x is a kNN object then
k may be missing.

kt threshold on the number of shared nearest neighbors (including the points them-
selves) to form clusters.

... additional arguments are passed on to the k nearest neighbor search algorithm.
See kNN for details on how to control the search strategy.

Details

Note: Following the original paper, the shared nearest neighbor list is constructed as the k neighbors
plus the point itself (as neighbor zero). Therefore, the threshold kt can be in the range [1, k].

Fast nearest neighbors search with kNN() is only used if x is a matrix. In this case Euclidean distance
is used.

Value

A object of class ’general_clustering’ with the following components:

cluster A integer vector with cluster assignments. Zero indicates noise points.

type name of used clustering algorithm.

param list of used clustering parameters.

Author(s)

Michael Hahsler

References

R. A. Jarvis and E. A. Patrick. 1973. Clustering Using a Similarity Measure Based on Shared Near
Neighbors. IEEE Trans. Comput. 22, 11 (November 1973), 1025-1034.

See Also

kNN

kNN 19

Examples

data("DS3")

use a shared neighborhood of 20 points and require 12 shared neighbors
cl <- jpclust(DS3, k = 20, kt = 12)
cl

plot(DS3, col = cl$cluster+1L, cex = .5)
Note: JP clustering does not consider noise and thus,
the sine wave points chain clusters together.

use a precomputed kNN object instead of the original data.
nn <- kNN(DS3, k = 30)
nn

cl <- jpclust(nn, k = 20, kt = 12)
cl

cluster with noise removed (use low pointdensity to identify noise)
d <- pointdensity(DS3, eps = 25)
hist(d, breaks = 20)
DS3_noiseless <- DS3[d > 110,]

cl <- jpclust(DS3_noiseless, k = 20, kt = 10)
cl

plot(DS3_noiseless, col = cl$cluster+1L, cex = .5)

kNN Find the k Nearest Neighbors

Description

This function uses a kd-tree to find all k nearest neighbors in a data matrix (including distances)
fast.

Usage

kNN(x, k, query = NULL, sort = TRUE, search = "kdtree", bucketSize = 10,
splitRule = "suggest", approx = 0)

Arguments

x a data matrix, a dist object or a kNN object.

k number of neighbors to find.

query a data matrix with the points to query. If query is not specified, the NN for all
the points in x is returned. If query is specified then x needs to be a data matrix.

search nearest neighbor search strategy (one of "kdtree", "linear" or "dist").

20 kNN

sort sort the neighbors by distance? Note that this is expensive and sort = FALSE is
much faster. kNN objects can be sorted using sort().

bucketSize max size of the kd-tree leafs.

splitRule rule to split the kd-tree. One of "STD", "MIDPT", "FAIR", "SL_MIDPT",
"SL_FAIR" or "SUGGEST" (SL stands for sliding). "SUGGEST" uses ANNs
best guess.

approx use approximate nearest neighbors. All NN up to a distance of a factor of
1+approx eps may be used. Some actual NN may be omitted leading to spu-
rious clusters and noise points. However, the algorithm will enjoy a significant
speedup.

Details

search controls if a kd-tree or linear search (both implemented in the ANN library; see Mount and
Arya, 2010). Note, that these implementations cannot handle NAs. search="dist" precomputes
Euclidean distances first using R. NAs are handled, but the resulting distance matrix cannot contain
NAs. To use other distance measures, a precomputed distance matrix can be provided as x (search
is ignored).

bucketSize and splitRule influence how the kd-tree is built. approx uses the approximate nearest
neighbor search implemented in ANN. All nearest neighbors up to a distance of eps/(1+approx)
will be considered and all with a distance greater than eps will not be considered. The other points
might be considered. Note that this results in some actual nearest neighbors being omitted leading
to spurious clusters and noise points. However, the algorithm will enjoy a significant speedup. For
more details see Mount and Arya (2010).

Note: self-matches are removed (only an issue if no query is specified).

Value

An object of class kNN containing a list with the following components:

dist a matrix with distances.

id a matrix with ids.

k number of k used.

Author(s)

Michael Hahsler

References

David M. Mount and Sunil Arya (2010). ANN: A Library for Approximate Nearest Neighbor
Searching, http://www.cs.umd.edu/~mount/ANN/.

See Also

NN and frNN for fixed radius nearest neighbors.

http://www.cs.umd.edu/~mount/ANN/

kNNdist 21

Examples

data(iris)
x <- iris[, -5]

Example 1: finding kNN for all points in a data matrix (using a kd-tree)
nn <- kNN(x, k=5)
nn

explore neighborhood of point 10
i <- 10
nn$id[i,]
plot(x, col = ifelse(1:nrow(iris) %in% nn$id[i,], "red", "black"))

visualize the 5 nearest neighbors
plot(nn, x)

visualize a reduced 2-NN graph
plot(kNN(nn, k = 2), x)

Example 2: find kNN for query points
q <- x[c(1,100),]
nn <- kNN(x, k=10, query = q)

plot(nn, x, col = "grey")
points(q, pch = 3, lwd = 2)

Example 3: find kNN using distances
d <- dist(x, method = "manhattan")
nn <- kNN(d, k=1)

plot(nn, x)

kNNdist Calculate and plot the k-Nearest Neighbor Distance

Description

Fast calculation of the k-nearest neighbor distances in a matrix of points. The plot can be used to
help find a suitable value for the eps neighborhood for DBSCAN. Look for the knee in the plot.

Usage

kNNdist(x, k, all = FALSE, ...)
kNNdistplot(x, k = 4, ...)

Arguments

x the data set as a matrix or a dist object.

k number of nearest neighbors used (use minPoints).

22 lof

all should a matrix with all used neighbors be returned?

... further arguments are passed on to kNN.

Details

See kNN for a discussion of the kd-tree related parameters.

Value

kNNdist returns a numeric vector with the distance to its k nearest neighbor. If all = TRUE then a
matrix with k columns containing the distances to all 1st, 2nd, ..., k nearest neighbors is returned
instead.

Author(s)

Michael Hahsler

See Also

kNN.

Examples

data(iris)
iris <- as.matrix(iris[,1:4])

Find the 4-NN distance for each observation (see ?kNN
for different search strategies)
kNNdist(iris, k=4)

Get a matrix with distances to the 1st, 2nd, ..., 4th NN.
kNNdist(iris, k=4, all = TRUE)

Produce a k-NN distance plot to determine a suitable eps for
DBSCAN (the knee is around a distance of .5)
kNNdistplot(iris, k=4)

cl <- dbscan(iris, eps = .5, minPts = 4)
pairs(iris, col = cl$cluster+1L)
Note: black are noise points

lof Local Outlier Factor Score

Description

Calculate the Local Outlier Factor (LOF) score for each data point using a kd-tree to speed up kNN
search.

lof 23

Usage

lof(x, k = 4, ...)

Arguments

x a data matrix or a dist object.

k size of the neighborhood.

... further arguments are passed on to kNN.

Details

LOF compares the local density of an point to the local densities of its neighbors. Points that
have a substantially lower density than their neighbors are considered outliers. A LOF score of
approximately 1 indicates that density around the point is comparable to its neighbors. Scores
significantly larger than 1 indicate outliers.

Note: If there are more than k duplicate points in the data, then lof can become NaN caused by an
infinite local density. In this case we set lof to 1. The paper by Breunig et al (2000) suggests a
different method of removing all duplicate points first.

Value

A numeric vector of length ncol(x) containing LOF values for all data points.

Author(s)

Michael Hahsler

References

Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000). LOF: identifying density-based local
outliers. In ACM Int. Conf. on Management of Data, pages 93-104.

See Also

kNN, pointdensity, glosh.

Examples

set.seed(665544)
n <- 100
x <- cbind(

x=runif(10, 0, 5) + rnorm(n, sd=0.4),
y=runif(10, 0, 5) + rnorm(n, sd=0.4)
)

calculate LOF score
lof <- lof(x, k=3)

distribution of outlier factors

24 moons

summary(lof)
hist(lof, breaks=10)

point size is proportional to LOF
plot(x, pch = ".", main = "LOF (k=3)")
points(x, cex = (lof-1)*3, pch = 1, col="red")
text(x[lof>2,], labels = round(lof, 1)[lof>2], pos = 3)

moons Moons Data

Description

Contains 100 2-d points, half of which are contained in two moons or "blobs"" (25 points each
blob), and the other half in asymmetric facing crescent shapes. The three shapes are all linearly
separable.

Usage

data("moons")

Format

A data frame with 100 observations on the following 2 variables.

X a numeric vector
Y a numeric vector

Details

This data was generated with the following Python commands using the SciKit-Learn library.
dontrun import sklearn.datasets as data moons, _ = data.make_moons(n_samples=50, noise=0.05)
blobs, _ = data.make_blobs(n_samples=50, centers=[(-0.75,2.25), (1.0, 2.0)], cluster_std=0.25)
test_data = np.vstack([moons, blobs])

Source

See the HDBSCAN notebook from github documentation: http://hdbscan.readthedocs.io/
en/latest/how_hdbscan_works.html

References

1. Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel et al. "Scikit-learn: Machine learning in Python." Journal of Ma-
chine Learning Research 12, no. Oct (2011): 2825-2830.

Examples

data(moons)
plot(moons, pch=20)

http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

NN 25

NN Nearest Neighbors Auxiliary Functions

Description

Helper functions for nearest neighbors (kNN and frNN).

Usage

adjacencylist(x, ...)
S3 method for class 'NN'
plot(x, data, main = NULL, ...)

Arguments

x a nearest neighbor object (of class kNN or frNN).

... further arguments are currently ignored.

data data with the coordinates for plotting.

main main title for the plot.

Value

adjacencylist returns a list with one element for each original data point. Each element contains
the row ids of the nearest neighbors. The adjacency list can be used to create for example a graph
object.

Author(s)

Michael Hahsler

See Also

frNN and kNN.

Examples

data(iris)
x <- iris[, -5]

finding kNN directly in data (using a kd-tree)
nn <- kNN(x, k=5)
nn

plot the kNN where NN are shown as line conecting points.
plot(nn, x)

show the first few elements of the adjacency list
head(adjacencylist(nn))

26 optics

create a graph and find connected components (if igraph is installed)
if("igraph" %in% installed.packages()){

library("igraph")
g <- graph_from_adj_list(adjacencylist(nn))
comp <- components(g)
plot(x, col = comp$membership)

detect clusters (communities) with the label propagation algorithm
cl <- membership(cluster_label_prop(g))
plot(x, col = cl)

}

optics OPTICS

Description

Implementation of the OPTICS (Ordering points to identify the clustering structure) clustering al-
gorithm using a kd-tree.

Usage

optics(x, eps = NULL, minPts = 5, ...)

extractDBSCAN(object, eps_cl)
extractXi(object, xi, minimum = FALSE, correctPredecessors = TRUE)

S3 method for class 'optics'
predict(object, newdata = NULL, data, ...)

Arguments

x a data matrix or a dist object.

eps upper limit of the size of the epsilon neighborhood. Limiting the neighborhood
size improves performance and has no or very little impact on the ordering as
long as it is not set too low. If not specified, the largest minPts-distance in the
data set is used which gives the same result as infinity.

minPts the parameter is used to identify dense neighborhoods and the reachability dis-
tance is calculated as the distance to the minPts nearest neighbor. Controls the
smoothness of the reachability distribution. Default is 5 points.

eps_cl Threshold to identify clusters (eps_cl <= eps).

xi Steepness threshold to identify clusters hierarchically using the Xi method.

object an object of class optics. For predict it needs to contain not just an ordering, but
also an extracted clustering.

data the data set used to create the OPTICS clustering object.

optics 27

newdata new data set for which cluster membership should be predicted.

minimum boolean representing whether or not to extract the minimal (non-overlapping)
clusters in the Xi clustering algorithm.

correctPredecessors

boolean Correct a common artifacting by pruning the steep up area for points
that have predecessors not in the cluster–found by the ELKI framework, see
details below.

... additional arguments are passed on to fixed-radius nearest neighbor search algo-
rithm. See frNN for details on how to control the search strategy.

Details

This implementation of OPTICS (Hahsler et al, 2019) implements the original algorithm as de-
scribed by Ankerst et al (1999). OPTICS is an ordering algorithm using similar concepts to DB-
SCAN. However, for OPTICS eps is only an upper limit for the neighborhood size used to reduce
computational complexity. Note that minPts in OPTICS has a different effect then in DBSCAN. It
is used to define dense neighborhoods, but since eps is typically set rather high, this does not effect
the ordering much. However, it is also used to calculate the reachability distance and larger values
will make the reachability distance plot smoother.

OPTICS linearly orders the data points such that points which are spatially closest become neigh-
bors in the ordering. The closest analog to this ordering is dendrogram in single-link hierarchical
clustering. The algorithm also calculates the reachability distance for each point. plot() produces
a reachability-plot which shows each points reachability distance where the points are sorted by
OPTICS. Valleys represent clusters (the deeper the valley, the more dense the cluster) and high
points indicate points between clusters.

extractDBSCAN extracts a clustering from an OPTICS ordering that is similar to what DBSCAN
would produce with an eps set to eps_cl (see Ankerst et al, 1999). The only difference to a DB-
SCAN clustering is that OPTICS is not able to assign some border points and reports them instead
as noise.

extractXi extract clusters hiearchically specified in Ankerst et al (1999) based on the steepness of
the reachability plot. One interpretation of the xi parameter is that it classifies clusters by change
in relative cluster density. The used algorithm was originally contributed by the ELKI framework
and is explained in Schubert et al (2018), but contains a set of fixes.

See frNN for more information on the parameters related to nearest neighbor search.

Value

An object of class ’optics’ with components:

eps value of eps parameter.

minPts value of minPts parameter.

order optics order for the data points in x.

reachdist reachability distance for each data point in x.

coredist core distance for each data point in x.

If extractDBSCAN was called, then in addition the following components are available:

28 optics

eps_cl reachability distance for each point in x.

cluster assigned cluster labels in the order of the data points in x.

If extractXi was called, then in addition the following components are available:

xi Steepness thresholdx.

cluster assigned cluster labels in the order of the data points in x.

clusters_xi data.frame containing the start and end of each cluster found in the OPTICS
ordering.

Author(s)

Michael Hahsler and Matthew Piekenbrock

References

Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast Density-Based Clustering with R. Jour-
nal of Statistical Software, 91(1), 1-30. doi: 10.18637/jss.v091.i01

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Joerg Sander (1999). OPTICS: Ordering
Points To Identify the Clustering Structure. ACM SIGMOD international conference on Manage-
ment of data. ACM Press. pp. 49-60.

Erich Schubert, Michael Gertz (2018). Improving the Cluster Structure Extracted from OPTICS
Plots. Lernen, Wissen, Daten, Analysen (LWDA 2018). pp. 318-329.

See Also

frNN, as.reachability.

Examples

set.seed(2)
n <- 400

x <- cbind(
x = runif(4, 0, 1) + rnorm(n, sd=0.1),
y = runif(4, 0, 1) + rnorm(n, sd=0.1)
)

plot(x, col=rep(1:4, time = 100))

run OPTICS (Note: we use the default eps calculation)
res <- optics(x, minPts = 10)
res

get order
res$order

plot produces a reachability plot
plot(res)

https://doi.org/10.18637/jss.v091.i01

pointdensity 29

plot the order of points in the reachability plot
plot(x, col = "grey")
polygon(x[res$order,])

extract a DBSCAN clustering by cutting the reachability plot at eps_cl
res <- extractDBSCAN(res, eps_cl = .065)
res

plot(res) ## black is noise
hullplot(x, res)

re-cut at a higher eps threshold
res <- extractDBSCAN(res, eps_cl = .1)
res
plot(res)
hullplot(x, res)

extract hierarchical clustering of varying density using the Xi method
res <- extractXi(res, xi = 0.05)
res

plot(res)
hullplot(x, res)

Xi cluster structure
res$clusters_xi

use OPTICS on a precomputed distance matrix
d <- dist(x)
res <- optics(d, minPts = 10)
plot(res)

pointdensity Calculate Local Density at Each Data Point

Description

Calculate the local density at each data point as either the number of points in the eps-neighborhood
(as used in DBSCAN) or the kernel density estimate (kde) of a uniform kernel. The function uses a
kd-tree for fast fixed-radius nearest neighbor search.

Usage

pointdensity(x, eps, type = "frequency",
search = "kdtree", bucketSize = 10,
splitRule = "suggest", approx = 0)

30 pointdensity

Arguments

x a data matrix.

eps radius of the eps-neighborhood, i.e., bandwidth of the uniform kernel).

type "frequency" or "density". should the raw count of points inside the eps-
neighborhood or the kde be returned.

search, bucketSize, splitRule, approx

algorithmic parameters for frNN.

Details

DBSCAN estimates the density around a point as the number of points in the eps-neighborhood of
the point (including the query point itself). The kde using a uniform kernel is just this count divided
by 2epsn, where n is the number of points in x.

Points with low local density often indicate noise (see e.g., Wishart (1969) and Hartigan (1975)).

Value

A vector of the same length as data points (rows) in x with the count or density values for each data
point.

Author(s)

Michael Hahsler

References

WISHART, D. (1969), Mode Analysis: A Generalization of Nearest Neighbor which Reduces
Chaining Effects, in Numerical Taxonomy, Ed., A.J. Cole, Academic Press, 282-311.

John A. Hartigan (1975), Clustering Algorithms, John Wiley \& Sons, Inc., New York, NY, USA.

See Also

frNN.

Examples

set.seed(665544)
n <- 100
x <- cbind(

x=runif(10, 0, 5) + rnorm(n, sd=0.4),
y=runif(10, 0, 5) + rnorm(n, sd=0.4)
)

plot(x)

calculate density
d <- pointdensity(x, eps = .5, type = "density")

density distribution
summary(d)

reachability 31

hist(d, breaks = 10)

point size is proportional to Density
plot(x, pch = 19, main = "Density (eps = .5)", cex = d*5)

Wishart (1969) single link clustering method
1. remove noise with low density
f <- pointdensity(x, eps = .5, type = "frequency")
x_nonoise <- x[f >= 5,]

2. use single-linkage on the non-noise points
hc <- hclust(dist(x_nonoise), method = "single")
plot(x, pch = 19, cex = .5)
points(x_nonoise, pch = 19, col= cutree(hc, k = 4)+1L)

reachability Density Reachability Structures

Description

Class "reachability" provides general functions for representing various hierarchical representations
as "reachability plots", as originally defined by Ankerst et al (1999). Methods include fast imple-
mentations of the conversion algorithms introduced by Sanders et al (2003) to convert between
dendrograms and reachability plot objects.

Usage

as.reachability(object, ...)

S3 method for class 'optics'
as.reachability(object, ...)

S3 method for class 'dendrogram'
as.reachability(object, ...)

S3 method for class 'reachability'
as.dendrogram(object, ...)

S3 method for class 'reachability'
print(x, ...)

S3 method for class 'reachability'
plot(x, order_labels = FALSE,
xlab = "Order", ylab = "Reachability dist.",
main = "Reachability Plot", ...)

32 reachability

Arguments

object any R object that can be made into one of class "reachability", such as an object
of class "optics" or "dendrogram".

x object of class "reachability".

order_labels whether to plot text labels for each points reachability distance.

xlab x-axis label, defaults to "Order".

ylab y-axis label, defaults to "Reachability dist.".

main Title of the plot, defaults to "Reachability Plot".

... graphical parameters, or arguments for other methods.

Details

Dendrograms are a popular visualization tool for representing hierarchical relationships. In ag-
glomerative clustering, dendrograms can be constructed using a variety of linkage criterion (such
as single or complete linkage), many of which are frequently used to 1) visualize the density-based
relationships in the data or 2) extract cluster labels from the data the dendrogram represents.

The original ordering algorithm OPTICS as described by Ankerst et al (1999) introduced the notion
of 2-dimensional representation of so-called "density-reachability" that was shown to be useful for
data visualization. This representation was shown to essentially convey the same information as the
more traditional dendrogram structure by Sanders et al (2003).

Different hierarchical representations, such as dendrograms or reachability plots, may be preferable
depending on the context. In smaller datasets, cluster memberships may be more easily identifi-
able through a dendrogram representation, particularly is the user is already familiar with tree-like
representations. For larger datasets however, a reachability plot may be preferred for visualizing
macro-level density relationships.

The central idea behind a reachability plot is that the ordering in which points are plotted identifies
underlying hierarchical density representation. OPTICS linearly orders the data points such that
points which are spatially closest become neighbors in the ordering. Valleys represent clusters,
which can be represented hierarchically. Although the ordering is crucial to the structure of the
reachability plot, its important to note that OPTICS, like DBSCAN, is not entirely deterministic
and, just like the dendrogram, isomorphisms may exist

A variety of cluster extraction methods have been proposed using reachability plots. Because both
cluster extraction depend directly on the ordering OPTICS produces, they are part of the optics
interface. Nonetheless, reachability plots can be created directly from other types of linkage trees,
and vice versa.

See optics for more information on how OPTICS is formulated. extractDBSCAN and extractXi
are the two cluster extraction methods presented in the original OPTICS publication.

Value

An object of class ’reachability’ with components:

order order to use for the data points in x.

reachdist reachability distance for each data point in x.

reachability 33

Author(s)

Matthew Piekenbrock

References

Ankerst, M., M. M. Breunig, H.-P. Kriegel, J. Sander (1999). OPTICS: Ordering Points To Identify
the Clustering Structure. ACM SIGMOD international conference on Management of data. ACM
Press. pp. 49–60.

Sander, J., X. Qin, Z. Lu, N. Niu, and A. Kovarsky (2003). Automatic extraction of clusters from
hierarchical clustering representations. Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer Berlin Heidelberg.

See Also

dendrogram, optics, extractDBSCAN, extractXi, hclust.

Examples

set.seed(2)
n <- 20

x <- cbind(
x = runif(4, 0, 1) + rnorm(n, sd=0.1),
y = runif(4, 0, 1) + rnorm(n, sd=0.1)

)

plot(x, xlim=range(x), ylim=c(min(x)-sd(x), max(x)+sd(x)), pch=20)
text(x = x, labels = 1:nrow(x), pos=3)

run OPTICS
res <- optics(x, eps = 10, minPts = 2)
res

plot produces a reachability plot
plot(res)

Extract reachability components from OPTICS
reach <- as.reachability(res)
reach

plot still produces a reachability plot; points ids
(rows in the original data) can be displayed with order_labels = TRUE
plot(reach, order_labels = TRUE)

Reachability objects can be directly converted to dendrograms
dend <- as.dendrogram(reach)
dend
plot(dend)

A dendrogram can be converted back into a reachability object
plot(as.reachability(dend))

34 sNN

sNN Shared Nearest Neighbors

Description

Calculates the number of shared nearest neighbors and the shared nearest neighbor similarity de-
fined by Javis and Patrick (1973).

Usage

sNN(x, k, kt = NULL, jp = FALSE, sort = TRUE, search = "kdtree", bucketSize = 10,
splitRule = "suggest", approx = 0)

Arguments

x a data matrix, a dist object or a kNN object.

k number of neighbors to consider to calculate the shared nearest neighbors.

kt threshold on the number of shared nearest neighbors graph. Edges are only
preserved if kt or more neighbors are shared.

jp use the definition by Javis and Patrick (1973), where shared neighbors are only
counted between points that are in each other’s neighborhood, otherwise 0 is
returned. If FALSE, then the number of shared neighbors is returned, even if the
points are not neighbors.

search nearest neighbor search strategy (one of "kdtree", "linear" or "dist").

sort sort by the number of shared nearest neighbors? Note that this is expensive and
sort = FALSE is much faster. sNN objects can be sorted using sort().

bucketSize max size of the kd-tree leafs.

splitRule rule to split the kd-tree. One of "STD", "MIDPT", "FAIR", "SL_MIDPT",
"SL_FAIR" or "SUGGEST" (SL stands for sliding). "SUGGEST" uses ANNs
best guess.

approx use approximate nearest neighbors. All NN up to a distance of a factor of
1+approx eps may be used. Some actual NN may be omitted leading to spu-
rious clusters and noise points. However, the algorithm will enjoy a significant
speedup.

Details

The number of shared nearest neighbors is the intersection of the kNN neighborhood of two points.
Note: that each point is considered to be part of its own kNN neighborhood. The range for the
shared nearest neighbors is [0,k].

sNN 35

Value

An object of class sNN (subclass of kNN and NN) containing a list with the following components:

id a matrix with ids.

dist a matrix with the distances.

shared a matrix with the number of shared nearest neighbors.

k number of k used.

Author(s)

Michael Hahsler

References

R. A. Jarvis and E. A. Patrick. 1973. Clustering Using a Similarity Measure Based on Shared Near
Neighbors. IEEE Trans. Comput. 22, 11 (November 1973), 1025-1034.

See Also

NN and kNN for k nearest neighbors.

Examples

data(iris)
x <- iris[, -5]

finding kNN and add the number of shared nearest neighbors.
k <- 5
nn <- sNN(x, k = k)
nn

shared nearest neighbor distribution
table(as.vector(nn$shared))

explore neighborhood of point 10
i <- 10
nn$shared[i,]

plot(nn, x)

apply a threshold to create a sNN graph with edges
if more than 3 neighbors are shared.
plot(sNN(nn, kt = 3), x)

36 sNNclust

sNNclust Shared Nearest Neighbor Clustering

Description

Implements the shared nearest neighbor clustering algorithm by Ertoz, Steinbach and Kumar.

Usage

sNNclust(x, k, eps, minPts, borderPoints = TRUE, ...)

Arguments

x a data matrix/data.frame (Euclidean distance is used), a precomputed dist object
or a kNN object created with kNN().

k Neighborhood size for nearest neighbor sparsification to create the shared NN
graph.

eps Two objects are only reachable from each other if they share at least eps nearest
neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point
to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

... additional arguments are passed on to the k nearest neighbor search algorithm.
See kNN for details on how to control the search strategy.

Details

Algorithm:

1) Constructs a shared nearest neighbor graph for a given k. The edge weights are the number of
shared k nearest neighbors (in the range of [0, k]).

2) Find each points SNN density, i.e., the number of points which have a similarity of eps or greater.

3) Find the core points, i.e., all points that have an SNN density greater than MinPts.

4) Form clusters from the core points and assign border points (i.e., non-core points which share at
least eps neighbors with a core point).

Note that steps 2-4 are DBSCAN and that eps is used on a similarity (the number of shared neigh-
bors) and not on a distance like in DBSCAN.

Value

A object of class ’general_clustering’ with the following components:

cluster A integer vector with cluster assignments. Zero indicates noise points.

type name of used clustering algorithm.

param list of used clustering parameters.

sNNclust 37

Author(s)

Michael Hahsler

References

Levent Ertoz, Michael Steinbach, Vipin Kumar, Finding Clusters of Different Sizes, Shapes, and
Densities in Noisy, High Dimensional Data, SIAM International Conference on Data Mining, 2003,
47-59.

See Also

jpclust

Examples

data("DS3")

Out of k = 20 NN 7 (eps) have to be shared to create a link in the sNN graph.
A point needs a least 16 (minPts) links in the sNN graph to be a core point.
Noise points have cluster id 0 and are shown in black.
cl <- sNNclust(DS3, k = 20, eps = 7, minPts = 16)
plot(DS3, col = cl$cluster + 1L, cex = .5)

Index

∗Topic clustering
dbscan, 2
extractFOSC, 7
hdbscan, 13
hullplot, 16
jpclust, 17
optics, 26
reachability, 31
sNNclust, 36

∗Topic datasets
DS3, 6
moons, 24

∗Topic hierarchical clustering
reachability, 31

∗Topic hierarchical
hdbscan, 13

∗Topic model
dbscan, 2
extractFOSC, 7
frNN, 10
glosh, 12
hdbscan, 13
jpclust, 17
kNN, 19
kNNdist, 21
lof, 22
NN, 25
optics, 26
pointdensity, 29
reachability, 31
sNN, 34
sNNclust, 36

∗Topic plot
hullplot, 16
kNNdist, 21

adjacencylist (NN), 25
as.dendrogram (reachability), 31
as.reachability, 28
as.reachability (reachability), 31

cutree, 9

DBSCAN (dbscan), 2
dbscan, 2, 4, 15
dendrogram, 33
density (pointdensity), 29
DS3, 6

extractDBSCAN, 32, 33
extractDBSCAN (optics), 26
extractFOSC, 7
extractXi, 32, 33
extractXi (optics), 26

frNN, 3, 4, 10, 20, 25, 27, 28, 30
frnn (frNN), 10

GLOSH (glosh), 12
glosh, 12, 23

hclust, 33
HDBSCAN (hdbscan), 13
hdbscan, 9, 13
hullplot, 16

jpclust, 17, 37

kNN, 10, 11, 13, 18, 19, 22, 23, 25, 35, 36
knn (kNN), 19
kNNdist, 21
kNNdistplot, 3, 4
kNNdistplot (kNNdist), 21

LOF (lof), 22
lof, 13, 22

moons, 24

NN, 11, 20, 25, 35
nn (NN), 25

OPTICS (optics), 26

38

INDEX 39

optics, 26, 32, 33

plot.hdbscan (hdbscan), 13
plot.NN (NN), 25
plot.reachability (reachability), 31
pointdensity, 13, 23, 29
predict.dbscan_fast (dbscan), 2
predict.optics (optics), 26
print.hdbscan (hdbscan), 13
print.reachability (reachability), 31

reachability, 31

sNN, 34
snn (sNN), 34
sNNclust, 36
snnclust (sNNclust), 36
sort.frNN (frNN), 10
sort.kNN (kNN), 19
sort.sNN (sNN), 34

	dbscan
	DS3
	extractFOSC
	frNN
	glosh
	hdbscan
	hullplot
	jpclust
	kNN
	kNNdist
	lof
	moons
	NN
	optics
	pointdensity
	reachability
	sNN
	sNNclust
	Index

