
Package ‘datamap’
February 19, 2015

Type Package

Title A system for mapping foreign objects to R variables and
environments

Version 0.1-1

Date 2009-12-03

Author Jeffrey Horner <jeffrey.horner@gmail.com>

Maintainer Jeffrey Horner <jeffrey.horner@gmail.com>

Description datamap utilizes variable bindings and objects of class
``UserDefinedDatabase'' to provide a simple mapping system to
foreign objects. Maps can be used as environments or attached
to the search path, and changes to either are persistent.
Mapped foreign objects are fetched in real-time and are never
cached by the mapping system.

Depends DBI

License GPL-2

LazyLoad yes

Repository CRAN

Date/Publication 2009-12-03 17:38:05

NeedsCompilation yes

R topics documented:
install . 2
mapAttach . 2
Mappers . 3
newMap . 3
newMapper . 5
uninstall . 6

Index 8

1

2 mapAttach

install Function for creating bindings to named foreign objects in a datamap
object

Description

install creates the binding for the named foreign object in the datamap object. The foreign object
is not created.

Usage

install(symbols, map)

Arguments

symbols A non-zero length character vector naming the bindings to be created in the map.

map A datamap object.

See Also

uninstall

mapAttach Attach a datamap object to the search path

Description

Creates a user defined database object and attaches it to the search path. Arguments are the same as
attach.

Usage

mapAttach(map,pos=2,name=NULL,warn.conflicts=TRUE)

Arguments

map datamap object.

pos integer specify where to attach map on search path.

name name to use for the attached database. If name is missing, then it defaults to
’datamap:MapType’ where MapType is the type of the datamap object.

warn.conflicts see attach.

Value

See attach.

Mappers 3

See Also

attach

Mappers Global list of Mappers

Description

Global list of datamap mappers.

See Also

newMapper

newMap Function for creating datamap objects

Description

A datamap is an object database for accessing and storing foreign objects. newMap creates the object
based on the provided mapper type.

Usage

newMap(type=character(), ...)

Arguments

type Character vector length one describing the mapper to use.

... Arguments to be passed to the mapper’s .init() function. They MUST be
named arguments, i.e. name=val.

Value

An object of class codedatamap.

See Also

newMapper

4 newMap

Examples

newMapper(
type="EXAMPLE",
init=function(map,symbols=c('foo','bar','baz'),len=3){

Install symbols that the users passes in from newMap().
lapply(symbols,install,map)

Now let's add some state to the internal portion of our map.
map$len <- len

Returning FALSE means failure
return(TRUE)
},
get = function(x) {
cat("I'll just get",x,"for you.\n")

len is pulled from the internal portion of the map
by lexical scoping rules. Anything can be returned here, but we
default to a numeric value
rnorm(len)
},
assign = function(x,val){
cat("Calling assign",val,"to",x,".\n")
},
finalize = function(map){
cat("Finalization can clear any state, like shutting down database\n")
cat("connections, socket connections, etc.\n")
},

The rest of the arguments are copied to the internal portion of the map.
foo = 'bar'
)

m <- newMap('EXAMPLE')

Summary of the map
m

[[works
m[['bar']]

datamaps are environments
with(m,bar)

use functions to access either installed objects
or those that aren't.
m$get('bar')

adding extra variables to the map.
with(m,x <- 'buzzle')

newMapper 5

m

attach the map the search path
and update either the map or the search path position.
changes are persistent
mapAttach(m)
baz
rm(m)
foo
detach('datamap:EXAMPLE')

newMapper Function for creating new mapper types

Description

A mapper is a collection of functions that define how a type of foreign object is accessed. newMapper
creates a new mapper object, assigns it a type, and places it in the global Mapper database.

Usage

newMapper(type=NULL, init=NULL, get=NULL, assign=NULL, finalize=NULL, ...)

Arguments

type Character vector length one describing the unique type of foreign objects avail-
able through the new mapper.

init A function whose signature is .init(map,...) where map is a new map ob-
ject and . . . are those from the newMap call. Returns TRUE for a successfull
initialization of the map object or FALSE on error.

get A function whose signature is .get(symbol) where symbol is a character vec-
tor of length one defining the name of the foreign object to fetch. Returns the
foreign object or UnboundValue(). NULL is also an acceptable value for .get.

assign A function whose signature is .assign(symbol,val) where symbol is a char-
acter string of length one defining the name of the foreign object to assign to
and val is the value the foreign object will take. There are no requirements on
the return value of .assign. NULL is also an acceptable value for .assign.

finalize A function whose signature is 'finalize(map)' where map is the object to
finalize. There are no requirements on .finalize’s return value. NULL is also
an acceptible value.

... Additional objects that are also added to the mapper environment. They MUST
be named arguments, i.e. name=val.

Value

Invisibly returns the new mapper, an object of class ’dataMapper’. newMapper is called for its side
effect of adding the new mapper to the global Mapper database.

6 uninstall

See Also

newMap

Examples

Complete example mapper
newMapper(
type="EXAMPLE",
init=function(map,symbols=c('foo','bar','baz'),len=3){

Install symbols that the users passes in from newMap().
lapply(symbols,install,map)

Now let's add some state to the internal portion of our map.
map$len <- len

Returning FALSE means failure
return(TRUE)
},
get = function(x) {
cat("I'll just get",x,"for you.\n")

len is pulled from the internal portion of the map
by lexical scoping rules. Anything can be returned here, but we
default to a numeric value
rnorm(len)
},
assign = function(x,val){
cat("Calling assign",val,"to",x,".\n")
},
finalize = function(map){
cat("Finalization can clear any state, like shutting down database\n")
cat("connections, socket connections, etc.\n")
},

The rest of the arguments are copied to the internal portion of the map.
foo = 'bar'
)

uninstall Function for removing named foreign objects from a datamap object

Description

uninstall removes the binding for the named foreign object from the datamap object. The foreign
object is not deleted.

uninstall 7

Usage

uninstall(symbols, map)

Arguments

symbols A non-zero length character vector naming the bindings to be removed from the
map.

map A datamap object.

See Also

install

Index

∗Topic environment
install, 2
mapAttach, 2
Mappers, 3
newMap, 3
newMapper, 5
uninstall, 6

∗Topic programming
install, 2
mapAttach, 2
Mappers, 3
newMap, 3
newMapper, 5
uninstall, 6

attach, 3

install, 2, 7

mapAttach, 2
Mappers, 3

newMap, 3, 6
newMapper, 3, 5

uninstall, 2, 6

8

	install
	mapAttach
	Mappers
	newMap
	newMapper
	uninstall
	Index

