Package ‘dataPreparation’

February 12, 2020

Title Automated Data Preparation
Version 0.4.3

Description Do most of the painful data preparation for a data science project with a mini-
mum amount of code; Take advantages of data.table efficiency and use some algorith-
mic trick in order to perform data preparation in a time and RAM efficient way.

Depends R (>=3.3.0), lubridate, stringr, Matrix, progress
License GPL-3 | file LICENSE

LazyData true

Encoding UTF-8

RoxygenNote 7.0.2

Suggests knitr, rmarkdown, kableExtra, pander, testthat (>= 2.0.0)
VignetteBuilder knitr

Imports data.table

BugReports https://github.com/ELToulemonde/dataPreparation/issues
NeedsCompilation no

Author Emmanuel-Lin Toulemonde [aut, cre]

Maintainer Emmanuel-Lin Toulemonde <el. toulemonde@protonmail . com>
Repository CRAN

Date/Publication 2020-02-12 14:20:02 UTC

R topics documented:

aggregateByKey oL Lo
as.POSIXct_fast e
build_bins e e
build_encoding e
build_scales
build_target_encoding L.
dataPrepNews oL e

https://github.com/ELToulemonde/dataPreparation/issues

2 adult
dateFormatUnifier e e 9
description e e e e e e 10
fastDiscretization e e e e e e e e e e 10
fastFilterVariables 11
fastHandleNa e 12
fastIsEqual e 13
fastRound e e e 14
fastScale e e 15
findAndTransformDates 16
findAndTransformNumerics e 18
generateDateDiffs oL 19
generateFactorFromDate 20
generateFromCharacter 21
generateFromFactor L. 22
identifyDates L e 23
messy_adulto 25
one_hot_encoder e 25
PrepareSeto e e e e e e 26
remove_percentile_outlier oL Lo 28
remove_rare_categorical Lo 29
remove_sd_outlier e 30
sameShape e e e 31
setAsNumericMatrix 0 e e e e e e e 33
setColAsCharacter i i i i e e e 33
setColAsDate e e e 34
setColAsFactor e 35
SetCOolASNUMETIC o e e e e e 36
shapeSet e e e 37
target_encode L. e e e 38
unFactor L e e 39
whichAreBijection 40
whichAreConstant e 41
whichArelncluded 42
whichArelnDouble 43

Index 45

adult Adult for UCI repository

Description

For examples and tutorials, and in order to build messy_adult, UCI adult data set is used.
Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean
records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNL-
WGT>1)&& (HRSWK>0))

aggregateByKey 3

Prediction task is to determine whether a person makes over 50K a year.

Usage

data("adult")

Format

A data.frame with 32561 rows and 15 variables.

References

https://archive.ics.uci.edu/ml/datasets/adult

aggregateByKey Automatic dataSet aggregation by key

Description

Automatic aggregation of a dataSet set according to a key.

Usage
aggregateByKey(dataSet, key, verbose = TRUE, thresh = 53, ...)
Arguments
dataSet Matrix, data.frame or data.table (with only numeric, integer, factor, logical,
character columns)
key Name of a column of dataSet according to which the set should be aggregated
(character)
verbose Should the algorithm talk? (logical, default to TRUE)
thresh Number of max values for frequencies count (numerical, default to 53)
Optional argument: functions: aggregation functions for numeric columns
(vector of function names (character), optional, if not set we use: c("mean",
llminll’ llmaXH’ "del))
Details

Perform aggregation depending on column type:
e If column is numeric functions are performed on the column. So 1 numeric column give
length(functions) new columns,

e If column is character or factor and have less than thresh different values, frequency count
of values is performed,

https://archive.ics.uci.edu/ml/datasets/adult

4 as.POSIXct_fast

e If column is character or factor with more than thresh different values, number of different
values for each key is performed,

¢ If column is logical, number of TRUE is computed.

In all cases, if the set as more rows than unique key, a number of lines will be computed.

Be careful using functions argument, given functions should be an aggregation function, meaning
that for multiple values it should only return one value.

Value

A data. table with one line per key elements and multiple new columns.

Examples

Not run:
Get generic dataset from R
data("adult")

Aggregate it using aggregateByKey, in order to extract characteristics for each country
adult_aggregated <- aggregateByKey(adult, key = 'country')

Exmple with other functions
power <- function(x){sum(x*2)}
adult_aggregated <- aggregateByKey(adult, key = 'country', functions = c("power”, "sqrt"))

sqrt is not an aggregation function, so it wasn't used.

End(Not run)
"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

as.POSIXct_fast Faster date transformation

Description

Based on the trick that often dates are repeated in a column, we make date transformation faster by
computing date transformation only on uniques.

Usage
as.POSIXct_fast(x, ...)
Arguments
X An object to be converted

other argument to pass to as.POSIXct

build_bins 5

Details

The more

Value

as.POSIXct and as.POSIXIt return an object of the appropriate class. If tz was specified, as. POSIXIt
will give an appropriate "tzone" attribute. Date-times known to be invalid will be returned as NA.

Examples

Work the same as as.POSIXct
as.POSIXct_fast(”2018-01-01", format="%Y-%m-%d")

build_bins Compute bins

Description

Compute bins for discretization of numeric variable (either equal_width or equal_fred).

Usage

build_bins(
dataSet,
cols = "auto”,
n_bins = 10,
type = "equal_width",
verbose = TRUE

)
Arguments
dataSet Matrix, data.frame or data.table
cols List of numeric column(s) name(s) of dataSet to transform. To transform all
characters, set it to "auto". (character, default to "auto™)
n_bins Number of group to compute (numeric, default to 10)
type Type of discretization ("equal_width" or "equal_freq")
verbose Should the algorithm talk? (Logical, default to TRUE)
Details

Using equal freq first bin will start at -Inf and last bin will end at +Inf.

Value

A list where each element name is a column name of data set and each element contains bins to
discretize this column.

6 build_encoding

Examples

Load data
data(messy_adult)
head(messy_adult)

Compute bins
bins <- build_bins(messy_adult, cols = "auto”, n_bins = 5, type = "equal_freq")
print(bins)

build_encoding Compute encoding

Description

Build a list of one hot encoding for each cols.

Usage
build_encoding(dataSet, cols = "auto", verbose = TRUE, min_frequency = 0, ...)
Arguments
dataSet Matrix, data.frame or data.table
cols List of numeric column(s) name(s) of dataSet to transform. To transform all
characters, set it to "auto". (character, default to "auto")
verbose Should the algorithm talk? (Logical, default to TRUE)

min_frequency The minimal share of lines that a category should represent (numeric, between
0 and 1, default to 0)

Other arguments such as name_separator to separate words in new columns
names (character, default to ".")

Details

To avoid creating really large sparce matrices, one can use param min_frequency to be sure that
only most representative values will be used to create a new column (and not outlayers or mistakes
in data).

Setting min_frequency to something gretter than 0 may cause the function to be slower (especially
for large dataSet).

Value

A list where each element name is a column name of data set and each element new_cols and values
the new columns that will be built during encoding.

build_scales 7

Examples

Get a data set
data(adult)
encoding <- build_encoding(adult, cols = "auto”, verbose = TRUE)

print(encoding)

To limit the number of generated columns, one can use min_frequency parameter:
build_encoding(adult, cols = "auto”, verbose = TRUE, min_frequency = 0.1)
Set to ©.1, it will create columns only for values that are present 10% of the time.

build_scales Compute scales

Description

Build a list of means and standard deviation for each cols.

Usage

build_scales(dataSet, cols = "auto”, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
cols List of numeric column(s) name(s) of dataSet to transform. To transform all
characters, set it to "auto". (character, default to "auto")
verbose Should the algorithm talk? (Logical, default to TRUE)
Value

A list where each element name is a column name of data set and each element contains means and
sd.

Examples

Get a data set
data(adult)
scales <- build_scales(adult, cols = "auto”, verbose = TRUE)

print(scales)

8 build_target_encoding

build_target_encoding Build target encoding

Description

Target encoding is the process of replacing a categorical value with the aggregation of the target
variable. build_target_encoding is used to compute aggregations.

Usage
build_target_encoding(
dataSet,
cols_to_encode,
target_col,
functions = "mean”,
verbose = TRUE
)
Arguments
dataSet Matrix, data.frame or data.table

cols_to_encode columns to aggregate according to (list)

target_col column to aggregate (character)

functions functions of aggregation (list or character, default to "mean")

verbose Should the algorithm talk? (Logical, default to TRUE)
Value

A list of data. table a data.table for each cols_to_encode each data.table containing a line by
unique value of column and len(functions) + 1 columns.

Examples

Build a data set

require(data.table)

dataSet <- data.table(student = c("Marie"”, "Marie"”, "Pierre”, "Louis"”, "Louis"),
grades = c(1, 1, 2, 3, 4))

Perform target_encoding construction
build_target_encoding(dataSet, cols_to_encode = "student”, target_col = "grades”,
functions = c("mean”, "sum"))

dataPrepNews 9

dataPrepNews Show the NEWS file

Description

Show the NEWS file of the dataPreparation package.

Usage

dataPrepNews ()

dateFormatUnifier Unify dates format

Description

Unify every column in a date format to the same date format.

Usage

dateFormatUnifier(dataSet, format = "Date”)

Arguments

dataSet Matrix, data.frame or data.table

format Desired target format: Date, POSIXct or POSIXIt, (character, default to Date)
Details

This function only handle Date, POSIXct and POSIXIt dates.
POSIXct format is a bit slower than Date but can keep hours-min.

Value

The same dataSet set but with dates column with the desired format.

Examples

build a data.table
require(data.table)
dataSet <- data.table(columnl = as.Date(”2016-01-01"), column2 = as.POSIXct("2017-01-01"))

Use the function
dataSet = dateFormatUnifier(dataSet, format = "Date")

Control result
sapply(dataSet, class)
return Date for both columns

10 fastDiscretization

description Describe data set

Description

Generate extensive description of a data set.

Usage

description(dataSet, level = 1, path_to_write = NULL, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
level Level of description (0: generic, 1: column by column) (numeric, default to 1)

path_to_write Path where the report should be written (character, default to NULL)
verbose Should the algorithm talk? (Logical, default to TRUE)

Examples

Load exemple set
data(messy_adult)

Describe it
description(messy_adult)

fastDiscretization Discretization

Description

Discretization of numeric variable (either equal_width or equal_fred).

Usage

fastDiscretization(dataSet, bins = NULL, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
bins Result of funcion build_bins, (list, default to NULL).

To perform the same discretization on train and test, it is recommended to com-
pute build_bins before. If it is kept to NULL, build_bins will be called.
bins could also be carefully hand written.

verbose Should the algorithm talk? (Logical, default to TRUE)

fastFilter Variables 11
Details
NAs will be putted in an NA category.
Value
Same dataset discretized by reference.
If you don’t want to edit by reference please provide set dataSet = copy(dataSet).
Examples
Load data
data(messy_adult)
head(messy_adult)
Compute bins
bins <- build_bins(messy_adult, cols = "auto”, n_bins = 5, type = "equal_freq")
Discretize
messy_adult <- fastDiscretization(messy_adult, bins = bins)
Control
head(messy_adult)
Example with hand written bins
data("adult™)
adult <- fastDiscretization(adult, bins = list(age = c(@, 40, +Inf)))
print(table(adult$age))
fastFilterVariables Filtering useless variables
Description
Delete columns that are constant or in double in your dataSet set.
Usage
fastFilterVariables(dataSet, level = 3, keep_cols = NULL, verbose = TRUE, ...)
Arguments
dataSet Matrix, data.frame or data.table
level which columns do you want to filter (1 = constant, 2 = constant and doubles,
3 = constant doubles and bijections, 4 = constant doubles bijections and in-
cluded)(numeric, default to 3)
keep_cols List of columns not to drop (list of character, default to NULL)
verbose Should the algorithm talk (logical or 1 or 2, default to TRUE)

optional parameters to be passed to the function when called from another func-
tion

12 fastHandleNa

Details

verbose can be set to 2 have full details from which functions, otherwise they don’t log. (verbose
=1 is equivalent to verbose = TRUE).

Value

The same dataSet but with fewer columns. Columns that are constant, in double, or bijection of
another have been deleted.

Examples

First let's build a data.frame with 3 columns: a constant column, and a column in double
df <- data.frame(coll = 1, col2 = rnorm(1e6), col3 = sample(c(1, 2), 1e6, replace = TRUE))
df$cold <- df$col2

df$col5[df$col3 == 1] = "a"

df$col5[df$col3 == 2] = "b" # Same info than in coll but with a for 1 and b for 2
head(df)

Let's filter columns:
df <- fastFilterVariables(df)
head(df)

fastHandleNa Handle NA values

Description

Handle NAs values depending on the class of the column.

Usage

fastHandleNa(
dataSet,
set_num = 0,
set_logical = FALSE,

set_char = "",
verbose = TRUE
)
Arguments
dataSet Matrix, data.frame or data.table
set_num NAs replacement for numeric column, (numeric or function, default to 0)
set_logical NAs replacement for logical column, (logical or function, default to FALSE)
set_char NAs replacement for character column, (character or function, default to "")

verbose Should the algorithm talk (logical, default to TRUE)

fastIsEqual 13

Details

To preserve RAM this function edits dataSet by reference. To keep object unchanged, please use
copy.

If you provide a function, it will be applied to the full column. So this function should handle NAs.
For factor columns, it will add NA to list of values.

Value

dataSet as a data. table with NAs replaced.

Examples

Build a useful dataSet set for example
require(data.table)
dataSet <- data.table(numCol = c(1, 2, 3, NA),
charCol = c("", "a", NA, "c"),
booleanCol = c(TRUE, NA, FALSE, NA))

To set NAs to @, FALSE and "" (respectively for numeric, logical, character)
fastHandleNa(copy(dataSet))

In a numeric column to set NAs as "missing”
fastHandleNa(copy(dataSet), set_char = "missing”)

In a numeric column, to set NAs to the minimum value of the column#'
fastHandleNa(copy(dataSet), set_num = min) # Won't work because min(c(1, NA)) = NA so put back NA
fastHandleNa(copy(dataSet), set_num = function(x)min(x,na.rm = TRUE)) # Now we handle NAs

In a numeric column, to set NAs to the share of NAs values
rateNA <- function(x){sum(is.na(x)) / length(x)}
fastHandleNa(copy(dataSet), set_num = rateNA)

fastIsEqual Fast checks of equality

Description

Performs quick check if two objects are equal.

Usage

fastIsEqual(objectl, object2)

Arguments

objectl An element, a vector, a data.frame, a data.table

object2 An element, a vector, a data.frame, a data.table

14 fastRound

Details

This function uses exponential search trick, so it is fast for very large vectors, data.frame and
data.table. This function is also very robust; you can compare a lot of stuff without failing.

Value

Logical (TRUE or FALSE) if the two objects are equals.

Examples

Test on a character
fastIskEqual("a", "a")
fastIsEqual("a", "b")

Test on a vector
myVector <- rep(x = "a", 10000)
fastIsEqual (myVector, myVector)

Test on a data.table
fastIsEqual (messy_adult, messy_adult)

fastRound Fast round

Description

Fast round of numeric columns in a data.table. Will only round numeric, so don’t worry about
characters. Also, it computes it column by column so your RAM is safe too.

Usage

fastRound(dataSet, cols = "auto”, digits = 2, verbose = TRUE)

Arguments
dataSet matrix, data.frame or data.table
cols List of numeric column(s) name(s) of dataSet to transform. To transform all
numerics columns, set it to "auto” (characters, default to "auto")
digits The number of digits after comma (numeric, default to 2)
verbose Should the algorithm talk? (logical, default to TRUE)
Details

It is performing round by reference on dataSet, column by column, only on numercial columns. So
that it avoid copying dataSet in RAM.

fastScale 15

Value

The same datasets but as a data.table and with numeric rounded.

Examples

First let's build a very large data.table with random numbers
require(data.table)
M <- as.data.table(matrix(runif (3e4), ncol = 10))

M_rouded <- fastRound(M, 2)
Lets add some character
ML, stringColumn := "a string”]

And use our function
M_rouded <- fastRound(M, 2)
It still work :) and you don't have to worry about the string.

fastScale scale

Description

Perform efficient scaling on a data set.

Usage

fastScale(dataSet, scales = NULL, way = "scale”, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
scales Result of funcion build_scales, (list, default to NULL).
To perform the same scaling on train and test, it is recommended to compute
build_scales before. If it is kept to NULL, build_scales will be called.
way should scaling or unscaling be performed? (character either "scale" or "unscale",
default to "scale")
verbose Should the algorithm talk? (Logical, default to TRUE)
Details

Scaling numeric values is usefull for some machine learning algorithm such as logistic regression
or neural networks.

Unscaling numeric values can be very usefull for most post-model analysis to do so set way to
"unscale".

This implementation of scale will be faster that scale for large data sets.

16 findAndTransformDates

Value

dataSet with columns scaled (or unscaled) by reference. Scaled means that each column mean
will be 0 and each column standard deviation will be 1.

Examples

Load data
data(adult)

compute scales
scales <- build_scales(adult, cols = "auto”, verbose = TRUE)

Scale data set
adult <- fastScale(adult, scales = scales, verbose = TRUE)

Control
print(mean(adult$age)) # Almost @
print(sd(adult$age)) # 1

To unscale it:
adult <- fastScale(adult, scales = scales, way = "unscale"”, verbose = TRUE)

Control
print(mean(adult$age)) # About 38.6
print(sd(adult$age)) # About 13.6

findAndTransformDates Identify date columns

Description

Find and transform dates that are hidden in a character column.
It use a bunch of default formats, and you can also add your own formats.

Usage

findAndTransformDates(
dataSet,
cols = "auto”,
formats = NULL,
n_test = 30,
ambiguities = "IGNORE",
verbose = TRUE

findAndTransformDates 17

Arguments
dataSet Matrix, data.frame or data.table
cols List of column(s) name(s) of dataSet to look into. To check all all columns, set
it to "auto". (characters, default to "auto")
formats List of additional Date formats to check (see strptime)
n_test Number of non-null rows on which to test (numeric, default to 30)
ambiguities How ambiguities should be treated (see details in ambiguities section) (charac-
ter, default to IGNORE)
verbose Should the algorithm talk? (Logical, default to TRUE)
Details

This function is using identifyDates to find formats. Please see it’s documentation. In case
identifyDates doesn’t find wanted formats you can either provide format in param formats or
use setColAsDate to force transformation.

Value

dataSet set (as a data.table) with identified dates transformed by reference.

Ambiguity

Ambiguities are often present in dates. For example, in date: 2017/01/01, there is no way to know
if format is YYYY/MM/DD or YYYY/DD/MM.

Some times ambiguity can be solved by a human. For example 17/12/31, a human might guess that
it is YY/MM/DD, but there is no sure way to know.

To be safe, findAndTransformDates doesn’t try to guess ambiguities.

To answer ambiguities problem, param ambiguities is now available. It can take one of the fol-
lowing values

¢ IGNORE function will then take the first format which match (fast, but can make some mistakes)

* WARN function will try all format and tell you - via prints - that there are multiple matches (and
won’t perform date transformation)

* SOLVE function will try to solve ambiguity by going through more lines, so will be slower. If
it is able to solve it, it will transform the column, if not it will print the various acceptable
formats.

If there are some columns that have no chance to be a match think of removing them from cols to
save some computation time.

Examples

Load exemple set

data(messy_adult)

head(messy_adult)

using the findAndTransformDates
findAndTransformDates(messy_adult, n_test = 5)
head(messy_adult)

18 findAndTransformNumerics

Example with ambiguities

Not run:

require(data.table)

data(messy_adult) # reload data

Add an ambiguity by sorting datel

messy_adult$datel = sort(messy_adult$datel, na.last = TRUE)

Try all three methods:

result_1 = findAndTransformDates(copy(messy_adult))

result_2 = findAndTransformDates(copy(messy_adult), ambiguities = "WARN")
result_3 = findAndTransformDates(copy(messy_adult), ambiguities = "SOLVE")

End(Not run)
"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

findAndTransformNumerics
Identify numeric columns in a dataSet set

Description

Function to find and transform characters that are in fact numeric.

Usage

findAndTransformNumerics(dataSet, cols = "auto”, n_test = 30, verbose = TRUE)
Arguments

dataSet Matrix, data.frame or data.table

cols List of column(s) name(s) of dataSet to look into. To check all all columns, set

it to "auto". (characters, default to "auto")

n_test Number of non-null rows on which to test (numeric, default to 30)

verbose Should the algorithm talk? (logical, default to TRUE)
Details

This function is looking for perfect transformation. If there are some mistakes in dataSet, consider
setting them to NA before.

If there are some columns that have no chance to be a match think of removing them from cols to
save some computation time.

Value

The dataSet set (as a data.table) with identified numeric transformed.

Warning

All these changes will happen by reference.

generateDateDiffs 19

Examples

Let's build a dataSet set

dataSet <- data.frame(ID = 1:5,
coll = ¢c("1.2", "1.3", "1.2", "1", "6"),
col2 = c("1,2", "1,3", "1,2", "1", "6")
)

using the findAndTransformNumerics
findAndTransformNumerics(dataSet, n_test = 5)

generateDateDiffs Date difference

Description

Perform the differences between all dates of the dataSet set and optionally with a static date.

Usage

generateDateDiffs(
dataSet,
cols = "auto",
analysisDate = NULL,
units = "years”,
drop = FALSE,
verbose = TRUE,

)
Arguments
dataSet Matrix, data.frame or data.table
cols List of date column(s) name(s) of dataSet to comute difference on. To transform

all dates, set it to "auto". (character, default to "auto")

analysisDate Static date (Date or POSIXct, optional)

units Unit of difference between too dates (string, default to ’years’)
drop Should cols be dropped after generation (logical, default to FALSE)
verbose should the function log (logical, default to TRUE)

Other arguments such as name_separator to separate words in new columns
names (character, default to ".")

Details

units is the same as difftime units, but with one more possiblity: years.

20 generateFactorFromDate

Value

dataSet (as a data. table) with more columns. A numeric column has been added for every couple
of Dates. The result is in years.

Examples

First build a useful dataSet set
require(data.table)
dataSet <- data.table(ID = 1:100,
datel = seq(from = as.Date("2010-01-01"),
to = as.Date("2015-01-01"),
length.out = 100),
date2 = seq(from = as.Date("1910-01-01"),
to = as.Date("2000-01-01"),
length.out = 100)
)

Now let's compute
dataSet <- generateDateDiffs(dataSet, cols = "auto”, analysisDate = as.Date("2016-11-14"))

generateFactorFromDate
Generate factor from dates

Description

Taking Date or POSIXct colums, and building factor columns from them.

Usage

generateFactorFromDate(
dataSet,
cols = "auto”,
type = "yearmonth"”,
drop = FALSE,
verbose = TRUE,

)
Arguments
dataSet Matrix, data.frame or data.table
cols List of date column(s) name(s) of dataSet to transform into factor. To transform
all dates, set it to "auto". (characters, default to "auto")
type "year", "yearquarter”, "yearmonth", "quarter" or "month", way to aggregate a

date, (character, default to "yearmonth")

drop Should cols be dropped after generation (logical, default to FALSE)

generateFromCharacter 21

verbose Should the function log (logical, default to TRUE)

Other arguments such as name_separator to separate words in new columns
names (character, default to ".")

Value

dataSet with new columns. dataSet is edited by reference.

Examples

Load set, and find dates
data(messy_adult)
messy_adult <- findAndTransformDates(messy_adult, verbose = FALSE)

Generate new columns

Generate year month columns

messy_adult <- generateFactorFromDate(messy_adult, cols = c("datel”, "date2", "numl"))
head(messy_adult[, .(datel.yearmonth, date2.yearmonth)])

Generate quarter columns
messy_adult <- generateFactorFromDate(messy_adult, cols = c("datel1”, "date2"), type = "quarter")
head(messy_adult[, .(datel.quarter, date2.quarter)])

generateFromCharacter Recode character

Description

Recode character into 3 new columns:

¢ was the value not NA, "NA", "",
¢ how often this value occures,

* the order of the value (ex: M/F => 2/1 because F comes before M in alphabet).

Usage

generateFromCharacter(
dataSet,
cols = "auto”,
verbose = TRUE,
drop = FALSE,

22 generateFromFactor

Arguments
dataSet Matrix, data.frame or data.table
cols List of character column(s) name(s) of dataSet to transform. To transform all
characters, set it to "auto". (character, default to "auto")
verbose Should the function log (logical, default to TRUE)
drop Should cols be dropped after generation (logical, default to FALSE)
Other arguments such as name_separator to separate words in new columns
names (character, default to ".")
Value

dataSet with new columns. dataSet is edited by reference.

Examples

Load data set
data(messy_adult)
messy_adult <- unFactor(messy_adult, verbose = FALSE) # un factor ugly factors

transform column "mail”
messy_adult <- generateFromCharacter(messy_adult, cols = "mail”)

head(messy_adult)

To transform all characters columns:

messy_adult <- generateFromCharacter(messy_adult, cols = "auto")
generateFromFactor Recode factor
Description

Recode factors into 3 new columns:

¢ was the value not NA, "NA", "",
¢ how often this value occures,

* the order of the value (ex: M/F => 2/1 because F comes before M in alphabet).

Usage

generateFromFactor(dataSet, cols = "auto”, verbose = TRUE, drop = FALSE, ...)

identifyDates 23

Arguments
dataSet Matrix, data.frame or data.table
cols list of character column(s) name(s) of dataSet to transform. To transform all
factors, set it to "auto". (character, default to "auto")
verbose Should the function log (logical, default to TRUE)
drop Should cols be dropped after generation (logical, default to FALSE)
Other arguments such as name_separator to separate words in new columns
names (character, default to ".")
Value

dataSet with new columns. dataSet is edited by reference.

Examples

Load data set
data(messy_adult)

transform column "type_employer”
messy_adult <- generateFromFactor(messy_adult, cols = "type_employer")

head(messy_adult)

To transform all factor columns:

messy_adult <- generateFromFactor(messy_adult, cols = "auto")
identifyDates Identify date columns
Description

Function to identify dates columns and give there format. It use a bunch of default formats. But
you can also add your own formats.

Usage

identifyDates(
dataSet,
cols = "auto”,
formats = NULL,
n_test = 30,
ambiguities = "IGNORE",
verbose = TRUE

24 identifyDates

Arguments
dataSet Matrix, data.frame or data.table
cols List of column(s) name(s) of dataSet to look into. To check all all columns, set
it to "auto". (characters, default to "auto")
formats List of additional Date formats to check (see strptime)
n_test Number of non-null rows on which to test (numeric, default to 30)
ambiguities How ambiguities should be treated (see details in ambiguities section) (charac-
ter, default to IGNORE)
verbose Should the algorithm talk? (Logical, default to TRUE)
Details

This function is looking for perfect transformation. If there are some mistakes in dataSet, consider
setting them to NA before.

In the unlikely case where you have numeric higher than as.numeric(as.POSIXct("1990-01-01"))
they will be considered as timestamps and you might have some issues. On the other side, if you
have timestamps before 1990-01-01, they won’t be found, but you can use setColAsDate to force
transformation.

Value

A named list with names being col names of dataSet and values being formats.

Ambiguity

Ambiguities are often present in dates. For example, in date: 2017/01/01, there is no way to know
if format is YYYY/MM/DD or YYYY/DD/MM.

Some times ambiguity can be solved by a human. For example 17/12/31, a human might guess that
it is YY/MM/DD, but there is no sure way to know.

To be safe, findAndTransformDates doesn’t try to guess ambiguities.

To answer ambiguities problem, param ambiguities is now available. It can take one of the fol-
lowing values

¢ IGNORE function will then take the first format which match (fast, but can make some mistakes)

* WARN function will try all format and tell you - via prints - that there are multiple matches (and
won’t perform date transformation)

* SOLVE function will try to solve ambiguity by going through more lines, so will be slower. If
it is able to solve it, it will transform the column, if not it will print the various acceptable
formats.

Examples

Load exemple set

data(messy_adult)

head(messy_adult)

using the findAndTransformDates
identifyDates(messy_adult, n_test = 5)

messy_adult 25

messy_adult Adult with some ugly columns added

Description

For examples and tutorials, messy_adult has been built using UCI adult.

Usage

data("messy_adult”)

Format

A data.table with 32561 rows and 24 variables.

Details

We added 9 really ugly columns to the data set:

* 4 dates with various formats and time stamp, containing NAs
* 1 constant column
* 3 numeric with different decimal separator

¢ 1 email address

one_hot_encoder One hot encoder

Description

Transform factor column into 0/1 columns with one column per values of the column.

Usage

one_hot_encoder(
dataSet,
encoding = NULL,
type = "integer”,
verbose = TRUE,
drop = FALSE

26 prepareSet

Arguments
dataSet Matrix, data.frame or data.table
encoding Result of funcion build_encoding, (list, default to NULL).
To perform the same encoding on train and test, it is recommended to compute
build_encoding before. If it is kept to NULL, build_encoding will be called.
type What class of columns is expected? "integer" (OL/1L), "numeric" (0/1), or "log-
ical" (TRUE/FALSE), (character, default to "integer")
verbose Should the function log (logical, default to TRUE)
drop Should cols be dropped after generation (logical, default to FALSE)
Details

If you don’t want to edit your data set consider sending copy (dataSet) as an input.

Please be carefull using this function, it will generate as many columns as there different values in
your column and might use a lot of RAM. To be safe, you can use parameter min_frequency in
build_encoding.

Value

dataSet edited by reference with new columns.

Examples

data(messy_adult)

Compute encoding
encoding <- build_encoding(messy_adult, cols = c("marital”, "occupation”), verbose = TRUE)

Apply it
messy_adult <- one_hot_encoder(messy_adult, encoding = encoding, drop = TRUE)

Apply same encoding to adult
data(adult)
adult <- one_hot_encoder(adult, encoding = encoding, drop = TRUE)

To have encoding as logical (TRUE/FALSE), pass it in type argument
data(adult)
adult <- one_hot_encoder(adult, encoding = encoding, type = "logical”, drop = TRUE)

prepareSet Preparation pipeline

Description

Full pipeline for preparing your dataSet set.

prepareSet 27

Usage
prepareSet(dataSet, finalForm = "data.table"”, verbose = TRUE, ...)
Arguments
dataSet Matrix, data.frame or data.table
finalForm "data.table" or "numerical_matrix" (default to data.table)
verbose Should the algorithm talk? (logical, default to TRUE)
Additional parameters to tune pipeline (see details)
Details

Additional arguments are available to tune pipeline:

* key Name of a column of dataSet according to which dataSet should be aggregated (character)

* analysisDate A date at which the dataSet should be aggregated (differences between every
date and analysisDate will be computed) (Date)

* n_unfactor Number of max value in a facotr, set it to -1 to disable unFactor function. (nu-
meric, default to 53)

» digits The number of digits after comma (optional, numeric, if set will perform fastRound)
e dateFormats List of format of Dates in dataSet (list of characters)
* name_separator character to separate parts of new column names (character, default to ".")

» functions Aggregation functions for numeric columns, see aggregateByKey (list of func-
tions names (character))

» factor_date_type Aggregation level to factorize date (see generateFactorFromDate) (char-
acter, default to "yearmonth")

* target_col A target column to perform target encoding, see target_encode (character)

* target_encoding_functions Functions to perform target encoding, see build_target_encoding,
if target_col is not given will not do anything, (list, default to "mean”)

Value

A data.table or a numerical matrix (according to finalForm).
It will perform the following steps:
 Correct set: unfactor factor with many values, id dates and numeric that are hiden in character

* Transform set: compute differences between every date, transform dates into factors, generate
features from character..., if key is provided, will perform aggregate according to this key

* Filter set: filter constant, in double or bijection variables. If ‘digits‘ is provided, will round
numeric

* Handle NA: will perform fastHandleNa)

 Shape set: will put the result in asked shape (finalForm) with acceptable columns format.

28 remove_percentile_outlier

Examples

Load ugly set
Not run:
data(messy_adult)

Have a look to set
head(messy_adult)

Compute full pipeline
clean_adult <- prepareSet(messy_adult)

With a reference date
adult_agg <- prepareSet(messy_adult, analysisDate = as.Date(”2017-01-01"))

Add aggregation by country
adult_agg <- prepareSet(messy_adult, analysisDate = as.Date("2017-01-01"), key = "country")

With some new aggregation functions

power <- function(x){sum(x*2)}

adult_agg <- prepareSet(messy_adult, analysisDate = as.Date("2017-01-01"), key = "country”,
functions = c("min”, "max"”, "mean”, "power"))

End(Not run)

"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

remove_percentile_outlier
Percentile outlier filtering

Description

Remove outliers based on percentiles.
Only values within nth and 100 -nth percentiles are kept.

Usage

remove_percentile_outlier(
dataSet,
cols = "auto",
percentile = 1,
verbose = TRUE

)
Arguments
dataSet Matrix, data.frame or data.table
cols List of numeric column(s) name(s) of dataSet to transform. To transform all

numeric columns, set it to "auto". (character, default to "auto")

remove_rare_categorical 29

percentile percentiles to filter (numeric, default to 1)
verbose Should the algorithm talk? (logical, default to TRUE)
Details

Filtering is made column by column, meaning that extrem values from first element of cols are
removed, then extrem values from second element of cols are removed, ...
So if filtering is perfomed on too many column, there ia high risk that a lot of rows will be dropped.

Value

Same dataset with less rows, edited by reference.
If you don’t want to edit by reference please provide set dataSet = copy(dataSet).

Examples

Given
library(data.table)
dataSet <- data.table(num_col = 1:100)

When
dataSet <- remove_percentile_outlier(dataSet, cols = "auto”, percentile = 1, verbose = TRUE)

Then extrem value is no longer in set
1 %in% dataSet[["num_col"]] # Is false
2 %in% dataSet[["num_col”]] # Is true

remove_rare_categorical
Filter rare categoricals

Description

Filter rows that have a rare occurences

Usage

remove_rare_categorical(
dataSet,
cols = "auto”,
threshold = 0.01,
verbose = TRUE

30

Arguments

dataSet

cols

threshold

verbose

Details

remove_sd_outlier

Matrix, data.frame or data.table

List of column(s) name(s) of dataSet to transform. To transform all columns, set
it to "auto". (character, default to "auto")

share of occurencies under which row should be removed (numeric, default to
0.01)

Should the algorithm talk? (logical, default to TRUE)

Filtering is made column by column, meaning that extrem values from first element of cols are
removed, then extrem values from second element of cols are removed, ...
So if filtering is perfomed on too many column, there ia high risk that a lot of rows will be dropped.

Value

Same dataset with less rows, edited by reference.
If you don’t want to edit by reference please provide set dataSet = copy(dataSet).

Examples

Given a set with rare "C”
library(data.table)
dataSet <- data.table(cat_col = c(sample(c("A", "B"), 1000, replace=TRUE), "C"))

When calling function
dataSet <- remove_rare_categorical(dataSet, cols = "cat_col”,

threshold = 0.01, verbose = TRUE)

Then there are no "C"
unique(dataSet[["cat_col"1])

remove_sd_outlier

Standard deviation outlier filtering

Description

Remove outliers based on standard deviation thresholds.
Only values within mean -sd * n_sigmas and mean + sd x n_sigmas are kept.

Usage

remove_sd_outlier(dataSet, cols = "auto", n_sigmas = 3, verbose = TRUE)

sameShape 31

Arguments
dataSet Matrix, data.frame or data.table
cols List of numeric column(s) name(s) of dataSet to transform. To transform all
numeric columns, set it to "auto". (character, default to "auto")
n_sigmas number of times standard deviation is accepted (interger, default to 3)
verbose Should the algorithm talk? (logical, default to TRUE)
Details

Filtering is made column by column, meaning that extrem values from first element of cols are
removed, then extrem values from second element of cols are removed, ...
So if filtering is perfomed on too many column, there ia high risk that a lot of rows will be dropped.

Value

Same dataset with less rows, edited by reference.
If you don’t want to edit by reference please provide set dataSet = copy(dataSet).

Examples

Given

library(data.table)

col_vals <- runif(1000)

col_mean <- mean(col_vals)

col_sd <- sd(col_vals)

extrem_val <- col_mean + 6 * col_sd

dataSet <- data.table(num_col = c(col_vals, extrem_val))

When
dataSet <- remove_sd_outlier(dataSet, cols = "auto”, n_sigmas = 3, verbose = TRUE)

Then extrem value is no longer in set
extrem_val %in% dataSet[["num_col”]] # Is false

sameShape Give same shape

Description

Transform dataSet into the same shape as referenceSet. Espacially this function will be usefull
to make your test set have the same shape as your train set.

Usage

sameShape(dataSet, referenceSet, verbose = TRUE)

32 sameShape

Arguments

dataSet Matrix, data.frame or data.table to transform
referenceSet Matrix, data.frame or data.table

verbose Should the algorithm talk? (logical, default to TRUE)

Details

This function will make sure that dataSet and referenceSet

* have the same class
* have exactly the same columns
* have columns with exactly the same class

* have factor factor with exactly the same levels

You should always use this function before applying your model on a new data set to make sure
that everything will go smoothly. But if this function change a lot of stuff you should have a look
to your preparation process, there might be something wrong.

Value

Return dataSet transformed in order to make it have the same shape as referenceSet

Examples

Not run:

Build a train and a test

data("messy_adult")

data("adult”)

train <- messy_adult

test <- adult # So test will have missing columns

Prepare them
train <- prepareSet(train, verbose = FALSE, key = "country")
test <- prepareSet(test, verbose = FALSE, key = "country")

Give them the same shape

test <- sameShape(test, train)

As one can see in log, a lot of small change had to be done.
This is an extreme case but you get the idea.

End(Not run)
"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

setAsNumericMatrix 33

setAsNumericMatrix Numeric matrix preparation for Machine Learning.

Description

Prepare a numeric matrix from a data.table. This matrix is suitable for machine learning purposes,
since factors are binarized. It may be sparsed, include an intercept, and drop a reference column for
each factor if required (when using 1m(), for instance)

Usage

setAsNumericMatrix(dataSet, intercept = FALSE, allCols = FALSE, sparse = FALSE)

Arguments
dataSet data.table
intercept Should a constant column be added? (logical, default to FALSE)
allCols For each factor, should we create all possible dummies, or should we drop a
reference dummy? (logical, default to FALSE)
sparse Should the resulting matrix be of a (sparse) Matrix class? (logical, default to
FALSE)
setColAsCharacter Set columns as character
Description

Set as character a column (or a list of columns) from a data.table.

Usage

setColAsCharacter(dataSet, cols = "auto”, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
cols List of column(s) name(s) of dataSet to transform into characters. To transform
all columns, set it to "auto". (characters, default to "auto")
verbose Should the function log (logical, default to TRUE)
Value

dataSet (as a data. table), with specified columns set as character.

34 setColAsDate

Examples

Build a fake data.frame
dataSet <- data.frame(numCol = c(1, 2, 3), factorCol = as.factor(c("a", "b", "c")))

Set numCol and factorCol as character
dataSet <- setColAsCharacter(dataSet, cols = c("numCol"”, "factorCol"))

setColAsDate Set columns as POSIXct

Description

Set as POSIXct a character column (or a list of columns) from a data.table.

Usage

setColAsDate(dataSet, cols = NULL, format = NULL, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
cols List of column(s) name(s) of dataSet to transform into dates
format Date’s format (function will be faster if the format is provided) (character or list
of character, default to NULL).
For timestamps, format need to be provided ("s" or "ms" or second or millisec-
ond timestamps)
verbose Should the function log (logical, default to TRUE)
Details

setColAsDate is way faster when format is provided. If you want to identify dates and format
automatically, have a look to identifyDates.

If input column is a factor, it will be returned as a POSIXct column.

If cols is kept to default (NULL) setColAsDate won’t do anything.

Value

dataSet (as a data.table), with specified columns set as Date. If the transformation generated
only NA, the column is set back to its original value.

setColAsFactor 35

Examples

Lets build a dataSet set
dataSet <- data.frame(ID = 1:5,
datel = c("2015-01-01", "2016-01-01", "2015-09-01", "2015-03-01", "2015-01-31"),
date2 = c("2015_01_01", "2016_01_01", "2015_09_01", "2015_03_01", "2015_01_31")
)

Using setColAsDate for date2
data_transformed <- setColAsDate(dataSet, cols = "date2”, format = "%Y_%m_%d")

Control the results
lapply(data_transformed, class)

With multiple formats:
data_transformed <- setColAsDate(dataSet, format = list(datel = "%Y-%m-%d", date2 = "%Y_%m_%d"))
lapply(data_transformed, class)

It also works with timestamps
dataSet <- data.frame(time_stamp = c(1483225200, 1485990000, 1488495600))

setColAsDate(dataSet, cols = "time_stamp”, format = "s")
setColAsFactor Set columns as factor
Description

Set columns as factor and control number of unique element, to avoid having too large factors.

Usage

setColAsFactor(dataSet, cols = "auto", n_levels = 53, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
cols List of column(s) name(s) of dataSet to transform into factor. To transform all
columns set it to "auto", (characters, default to auto).
n_levels Max number of levels for factor (integer, default to 53) set it to -1 to disable
control.
verbose Should the function log (logical, default to TRUE)
Details

Control number of levels will help you to distinguish true categorical columns from just characters
that should be handled in another way.

36 setColAsNumeric

Value

dataSet(as a data.table), with specified columns set as factor or logical.

Examples

Load messy_adult
data("messy_adult")

we wil change education
messy_adult <- setColAsFactor(messy_adult, cols = "education”)

sapply(messy_adult[, .(education)], class)
education is now a factor

setColAsNumeric Set columns as numeric

Description

Set as numeric a character column (or a list of columns) from a data.table.

Usage

setColAsNumeric(dataSet, cols, stripString = FALSE, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
cols List of column(s) name(s) of dataSet to transform into numerics

stripString should I change "," to "." in the string? (logical, default to FALSE) If set to
TRUE, computation will be a bit longer

verbose Should the function log (logical, default to TRUE)

Value

dataSet (as a data. table), with specified columns set as numeric.

Examples

Build a fake data.table
dataSet <- data.frame(charColl = c("1", "2", "3"),
charCol2 = c("4", "5", "6"))

Set charColl and charCol2 as numeric
dataSet <- setColAsNumeric(dataSet, cols = c("charColl”, "charCol2"))

Using strip string when spaces or wrong decimal separator is used
dataSet <- data.frame(charColl = c("1", "2", "3"),

shapeSet 37

charCol2 = C(”4, 1”, 1:5’ 2:1’ "6, 311))

Set charColl and charCol2 as numeric

setColAsNumeric(dataSet, cols = c("charCol1”, "charCol2"))

generate mistakes

setColAsNumeric(dataSet, cols = c(”charCol1”, "charCol2"), stripString = TRUE)
Doesn't generate any mistake (but is a bit slower)

shapeSet Final preparation before ML algorithm

Description

Prepare a data.table by:
* transforming numeric variables into factors whenever they take less than thresh unique vari-
ables
* transforming characters using generateFromCharacter
* transforming logical into binary integers
* dropping constant columns

» Sending the data.table to setAsNumericMatrix (when finalForm == "numerical_matrix")
will then allow you to get a numerical matrix usable by most Machine Learning Algorithms.

Usage

shapeSet(dataSet, finalForm = "data.table"”, thresh = 10, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
finalForm "data.table" or "numerical_matrix" (default to data.table)
thresh Threshold such that a numerical column is transformed into a factor whenever
its number of unique modalities is smaller or equal to thresh (numeric, default
to 10)
verbose Should the algorithm talk? (logical, default to TRUE)
Warning

All these changes will happen by reference.

38 target_encode

target_encode Target encode

Description

Target encoding is the process of replacing a categorical value with the aggregation of the target
variable. the target variable. target_encode is used to apply this transformations on a data set.
Function build_target_encoding must be used first to compute aggregations.

Usage

target_encode(dataSet, target_encoding, drop = FALSE, verbose = TRUE)

Arguments

dataSet Matrix, data.frame or data.table

target_encoding
result of function build_target_encoding (list)

drop Should col_to_encode be dropped after generation (logical, default to FALSE)
verbose Should the algorithm talk? (Logical, default to TRUE)
Value

dataSet with new cols of target_encoding merged to dataSet using target_encoding names
as merging key. dataSet is edited by reference.

Examples

Build a data set

require(data.table)

dataSet <- data.table(student = c("Marie”, "Marie”, "Pierre"”, "Louis", "Louis"),
grades = c(1, 1, 2, 3, 4))

Construct encoding
target_encoding <- build_target_encoding(dataSet, cols_to_encode = "student”,
target_col = "grades”, functions = c("mean”, "sum"))

Apply them
target_encode(dataSet, target_encoding = target_encoding)

unFactor 39

unFactor Unfactor factor with too many values

Description

To unfactorize all columns that have more than a given amount of various values. This function will
be usefull after using some reading functions that put every string as factor.

Usage
unFactor(dataSet, cols = "auto”, n_unfactor = 53, verbose = TRUE)
Arguments
dataSet Matrix, data.frame or data.table
cols List of column(s) name(s) of dataSet to look into. To check all all columns, set
it to "auto". (characters, default to "auto")
n_unfactor Number of max element in a factor (numeric, default to 53)
verbose Should the algorithm talk? (logical, default to TRUE)
Details

If a factor has (strictly) more than n_unfactor values it is unfactored.

It is recommended to use findAndTransformNumerics and findAndTransformDates after this
function.

If n_unfactor is set to -1, nothing will be performed.

If there are a lot of column that have been transformed, you might want to look at the documentation
of your data reader in order to stop transforming everything into a factor.

Value

Same dataSet (as a data.table) with less factor columns.

Examples

Let's build a dataSet
dataSet <- data.frame(true_factor = factor(rep(c(1,2), 13)),
false_factor = factor(LETTERS))

Let's un factorize all factor that have more than 5 different values
dataSet <- unFactor(dataSet, n_unfactor = 5)

sapply(dataSet, class)

Let's un factorize all factor that have more than 5 different values
dataSet <- unFactor(dataSet, n_unfactor = @)

sapply(dataSet, class)

40 whichAreBijection

whichAreBijection Identify bijections

Description

Find all the columns that are bijections of another column.

Usage

whichAreBijection(dataSet, keep_cols = NULL, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
keep_cols List of columns not to drop (list of character, default to NULL)
verbose Should the algorithm talk (logical, default to TRUE)

Details

Bijection, meaning that there is another column containing the exact same information (but maybe
coded differently) for example coll: Men/Women, col2 M/W.

This function is performing search by looking to every couple of columns. It computes numbers of
unique elements in each column, and number of unique tuples of values.

Computation is made by exponential search, so that the function is faster.

If verbose is TRUE, the column logged will be the one returned.

Ex: if column i and column j (with j > i) are bijections it will return j, expect if j is a character then
1t return 1.

Value

A list of index of columns that have an exact bijection in the dataSet set.

Examples

First let's get a data set
data("adult™)

Now let's check which columns are equals
whichAreInDouble(adult)
It doesn't give any result.

Let's look of bijections

whichAreBijection(adult)

Return education_num index because education_num and education which
contain the same info

whichAreConstant 41

whichAreConstant Identify constant columns

Description

Find all the columns that are constant.

Usage

whichAreConstant(dataSet, keep_cols = NULL, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
keep_cols List of columns not to drop (list of character, default to NULL)
verbose Should the algorithm talk (logical, default to TRUE)

Details

Algorithm is performing exponential search: it check constancy on row 1 to 10, if it’s not constant

it stops, if it’s constant then on 11 to 100 ...

If you have a lot of columns than aren’t constant, this function is way faster than a simple length(unique())!
The larger the dataSet set is, the more interesting it is to use this function.

Value

List of column’s indexes that are constant in the dataSet set.

Examples

Let's load our dataSet
data("messy_adult”)

Let's try our function
whichAreConstant(messy_adult)
Indeed it return constant the name of the constant column.

42 whichArelncluded

whichAreIncluded Identify columns that are included in others

Description

Find all the columns that don’t contain more information than another column. For example if you
have a column with an amount and another with the same amount but rounded, the second column
is included in the first.

Usage
whichAreIncluded(dataSet, keep_cols = NULL, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
keep_cols List of columns not to drop (list of character, default to NULL)
verbose Should the algorithm talk (logical, default to TRUE)

Details

This function is performing exponential search and is looking to every couple of columns.
Be very careful while using this function:

- if there is an id column, it will say everything is included in the id column;

- the order of columns will influence the result.

For example if you have a column with an amount and another with the same amount but rounded,
the second column is included in the first.

And last but not least, with some machine learning algorithm it’s not always smart to drop columns
even if they don’t give more info: the extreme example is the id example.

Value

A list of index of columns that have an exact duplicate in the dataSet.

Examples

Load toy data set
require(data.table)
data(messy_adult)

Reduce set size to save time (you can run it on full set)
messy_adult = messy_adult[1:100,]

Check for included columns
whichAreIncluded(messy_adult)

whichArelnDouble 43

Return columns that are also constant, double and bijection
Let's add a truly just included column
messy_adult$are500rMore <- messy_adult$age > 50
whichAreIncluded(messy_adult[, .(age, are500rMore)])

As one can, see this column that doesn't have additional info than age is spotted.
But you should be careful, if there is a column id, every column will be dropped:

messy_adult$id = 1:nrow(messy_adult) # build id
whichAreIncluded(messy_adult)

whichAreInDouble Identify double columns

Description

Find all the columns that are in double.

Usage

whichAreInDouble(dataSet, keep_cols = NULL, verbose = TRUE)

Arguments
dataSet Matrix, data.frame or data.table
keep_cols List of columns not to drop (list of character, default to NULL)
verbose Should the algorithm talk (logical, default to TRUE)

Details

This function is performing search by looking to every couple of columns. First it compares the first
10 lines of both columns. If they are not equal then the columns aren’t identical, else it compares
lines 11 to 100; then 101 to 1000... So this function is fast with dataSet set with a large number of
lines and a lot of columns that aren’t equals.

If verbose is TRUE, the column logged will be the one returned.

Value
A list of index of columns that have an exact duplicate in the dataSet set. Ex: if column i and

column j (with j > i) are equal it will return j.

Examples

First let's build a matrix with 3 columns and a lot of lines, with 1's everywhere
M <- matrix(1, nrow = 1e6, ncol = 3)

Now let's check which columns are equals
whichAreInDouble (M)

44

It return 2 and 3: you should only keep column 1.

Let's change the column 2, line 1 to @. And check again
M[1, 2] <- ©

whichAreInDouble (M)

It only returns 3

What about NA? NA vs not NA => not equal
M[1, 2] <- NA

whichAreInDouble (M)

It only returns 3

What about NA? Na vs NA => yep it's the same
M[T, 11 <- NA

whichAreInDouble (M)

It only returns 2

whichArelnDouble

Index

*Topic data
adult, 2
messy_adult, 25

adult, 2
aggregateByKey, 3, 27
as.POSIXct, 4
as.POSIXct_fast, 4

build_bins, 5, 10
build_encoding, 6, 26
build_scales, 7, 15
build_target_encoding, 8, 27, 38

copy, 13

data.table, 4, 8, 13, 20, 33, 34, 36
dataPrepNews, 9
dateFormatUnifier, 9
description, 10

difftime, 19

fastDiscretization, 10
fastFilterVariables, 11
fastHandleNa, 12, 27
fastIsEqual, 13

fastRound, 14, 27

fastScale, 15
findAndTransformDates, 16, 39
findAndTransformNumerics, 18, 39

generateDateDiffs, 19
generateFactorFromDate, 20, 27
generateFromCharacter, 21, 37
generateFromFactor, 22

identifyDates, 17,23, 34
messy_adult, 25

one_hot_encoder, 25

45

prepareSet, 26

remove_percentile_outlier, 28
remove_rare_categorical, 29
remove_sd_outlier, 30

sameShape, 31

scale, 15
setAsNumericMatrix, 33, 37
setColAsCharacter, 33
setColAsDate, 17, 24, 34
setColAsFactor, 35
setColAsNumeric, 36
shapeSet, 37
strptime, 17, 24

target_encode, 27, 38
unFactor, 27, 39

whichAreBijection, 40
whichAreConstant, 41
whichAreIncluded, 42
whichAreInDouble, 43

	adult
	aggregateByKey
	as.POSIXct_fast
	build_bins
	build_encoding
	build_scales
	build_target_encoding
	dataPrepNews
	dateFormatUnifier
	description
	fastDiscretization
	fastFilterVariables
	fastHandleNa
	fastIsEqual
	fastRound
	fastScale
	findAndTransformDates
	findAndTransformNumerics
	generateDateDiffs
	generateFactorFromDate
	generateFromCharacter
	generateFromFactor
	identifyDates
	messy_adult
	one_hot_encoder
	prepareSet
	remove_percentile_outlier
	remove_rare_categorical
	remove_sd_outlier
	sameShape
	setAsNumericMatrix
	setColAsCharacter
	setColAsDate
	setColAsFactor
	setColAsNumeric
	shapeSet
	target_encode
	unFactor
	whichAreBijection
	whichAreConstant
	whichAreIncluded
	whichAreInDouble
	Index

