Package ‘dashTable’

May 14, 2020
Title Core Interactive Table Component for 'dash’
Version 4.7.0

Description An interactive table component designed for editing and exploring large datasets, 'dash-
DataTable' is rendered with standard, semantic HTML <table/> markup, which makes it accessi-
ble, responsive, and easy to style. This component was written from scratch in 'React.js' specifi-
cally for the 'dash' community. Its API was designed to be ergonomic and its behaviour is com-
pletely customizable through its properties.

Depends R (>=3.0.2)

Imports

Suggests dash, dashHtmlComponents
License MIT + file LICENSE
Copyright Plotly Technologies, Inc.

URL https://github.com/plotly/dash-table

BugReports https://github.com/plotly/dash-table/issues
Encoding UTF-8

LazyData true

KeepSource true

NeedsCompilation no

Author Chris Parmer [aut],
Ryan Patrick Kyle [cre] (<https://orcid.org/0000-0001-5829-9867>),
Plotly Technologies, Inc. [cph]

Maintainer Ryan Patrick Kyle <ryan@plotly.com>
Repository CRAN
Date/Publication 2020-05-14 17:20:03 UTC

R topics documented:

dashTable-package 2
dashDataTable e 2
df to LISt e 16

https://github.com/plotly/dash-table
https://github.com/plotly/dash-table/issues

2 dashDataTable

Index 18

dashTable-package Core Interactive Table Component for 'dash’

Description

An interactive table component designed for editing and exploring large datasets, ’dashDataTable’
is rendered with standard, semantic HTML <table/> markup, which makes it accessible, responsive,
and easy to style. This component was written from scratch in *React.js’ specifically for the *dash’
community. Its API was designed to be ergonomic and its behaviour is completely customizable
through its properties.

Author(s)

Maintainer: Ryan Patrick Kyle <ryan @plotly.com>

dashDataTable DataTable component

Description

Dash DataTable is an interactive table component designed for designed for viewing, editing, and
exploring large datasets. DataTable is rendered with standard, semantic HTML <table/> markup,
which makes it accessible, responsive, and easy to style. This component was written from scratch
in React.js specifically for the Dash community. Its API was designed to be ergonomic and its
behavior is completely customizable through its properties.

Usage

dashDataTable(active_cell=NULL, columns=NULL,
include_headers_on_copy_paste=NULL, locale_format=NULL,
css=NULL, data=NULL, data_previous=NULL,
data_timestamp=NULL, editable=NULL, end_cell=NULL,
export_columns=NULL, export_format=NULL,
export_headers=NULL, fill_width=NULL, hidden_columns=NULL,
id=NULL, is_focused=NULL, merge_duplicate_headers=NULL,
fixed_columns=NULL, fixed_rows=NULL, column_selectable=NULL,
row_deletable=NULL, row_selectable=NULL,
selected_cells=NULL, selected_rows=NULL,
selected_columns=NULL, selected_row_ids=NULL,
start_cell=NULL, style_as_list_view=NULL, page_action=NULL,
page_current=NULL, page_count=NULL, page_size=NULL,
dropdown=NULL, dropdown_conditional=NULL,
dropdown_data=NULL, tooltip=NULL, tooltip_conditional=NULL,
tooltip_data=NULL, tooltip_delay=NULL,

dashDataTable

tooltip_duration=NULL, filter_query=NULL,
filter_action=NULL, sort_action=NULL, sort_mode=NULL,
sort_by=NULL, sort_as_null=NULL, style_table=NULL,
style_cell=NULL, style_data=NULL, style_filter=NULL,
style_header=NULL, style_cell_conditional=NULL,
style_data_conditional=NULL, style_filter_conditional=NULL,
style_header_conditional=NULL, virtualization=NULL,
derived_filter_query_structure=NULL,
derived_viewport_data=NULL, derived_viewport_indices=NULL,
derived_viewport_row_ids=NULL,
derived_viewport_selected_columns=NULL,
derived_viewport_selected_rows=NULL,
derived_viewport_selected_row_ids=NULL,
derived_virtual_data=NULL, derived_virtual_indices=NULL,
derived_virtual_row_ids=NULL,
derived_virtual_selected_rows=NULL,
derived_virtual_selected_row_ids=NULL, loading_state=NULL,
persistence=NULL, persisted_props=NULL,
persistence_type=NULL)

Arguments

active_cell

columns

Lists containing elements ‘row’, ’column’, 'row_id’, ’column_id’. those ele-
ments have the following types: - row (numeric; optional) - column (numeric;
optional) - row_id (character | numeric; optional) - column_id (character; op-
tional). The row and column indices and IDs of the currently active cell. ‘row_id*
is only returned if the data rows have an ‘id‘ key.

List of lists containing elements ’clearable’, ’deletable’, ’editable’, *hideable’,
‘renamable’, ’selectable’, format’, ’id’, 'name’, ’presentation’, ’on_change’,
’sort_as_null’, ’validation’, type’. those elements have the following types: -
clearable (a value equal to: ’first’, ’last’ | logical | list of logicals; optional):
if true, the user can clear the column by clicking on the ‘clear® action button
on the column. if there are multiple header rows, true will display the action
button on each row. if ‘last‘, the ‘clear® action button will only appear on the
last header row. if “first® it will only appear on the first header row. these are
respectively shortcut equivalents to ‘[false, ..., false, true]‘ and ‘[true, false, ...,
false]‘. if there are merged, multi-header columns then you can choose which
column header row to display the ‘clear® action button in by supplying an array
of booleans. for example, ‘[true, false]* will display the ‘clear® action button
on the first row, but not the second row. if the ‘clear® action button appears on
a merged column, then clicking on that button will clear *all* of the merged
columns associated with it. unlike ‘column.deletable‘, this action does not re-
move the column(s) from the table. it only removed the associated entries from
‘data‘. - deletable (a value equal to: ’first’, ’last’ | logical | list of logicals; op-
tional): if true, the user can remove the column by clicking on the ‘delete® action
button on the column. if there are multiple header rows, true will display the ac-
tion button on each row. if ‘last‘, the ‘delete* action button will only appear on
the last header row. if “first® it will only appear on the first header row. these are

dashDataTable

respectively shortcut equivalents to ‘[false, ..., false, true]‘ and ‘[true, false, ...,
false]‘. if there are merged, multi-header columns then you can choose which
column header row to display the ‘delete* action button in by supplying an array
of booleans. for example, ‘[true, false]® will display the ‘delete* action button
on the first row, but not the second row. if the ‘delete‘ action button appears on
a merged column, then clicking on that button will remove *all* of the merged
columns associated with it. - editable (logical; optional): there are two ‘ed-
itable* flags in the table. this is the column-level editable flag and there is also
the table-level ‘editable‘ flag. these flags determine whether the contents of the
table are editable or not. if the column-level ‘editable‘ flag is set it overrides the
table-level ‘editable‘ flag for that column. - hideable (a value equal to: ’first’,
’last’ | logical | list of logicals; optional): if true, the user can hide the column by
clicking on the ‘hide‘ action button on the column. if there are multiple header
rows, true will display the action button on each row. if ‘last‘, the ‘hide‘ ac-
tion button will only appear on the last header row. if ‘first* it will only appear
on the first header row. these are respectively shortcut equivalents to ‘[false,
..., false, true]* and ‘[true, false, ..., false]‘. if there are merged, multi-header
columns then you can choose which column header row to display the ‘hide‘ ac-
tion button in by supplying an array of booleans. for example, ‘[true, false]‘ will
display the ‘hide‘ action button on the first row, but not the second row. if the
‘hide* action button appears on a merged column, then clicking on that button
will hide *all* of the merged columns associated with it. - renamable (a value
equal to: “first’, ’last’ | logical | list of logicals; optional): if true, the user can
rename the column by clicking on the ‘rename* action button on the column. if
there are multiple header rows, true will display the action button on each row.
if ‘last®, the ‘rename‘ action button will only appear on the last header row. if
“first® it will only appear on the first header row. these are respectively short-
cut equivalents to ‘[false, ..., false, true]‘ and ‘[true, false, ..., false]‘. if there
are merged, multi-header columns then you can choose which column header
row to display the ‘rename‘ action button in by supplying an array of booleans.
for example, ‘[true, false]‘ will display the ‘rename‘ action button on the first
row, but not the second row. if the ‘rename‘ action button appears on a merged
column, then clicking on that button will rename *all* of the merged columns
associated with it. - selectable (a value equal to: “first’, ’last’ | logical | list of
logicals; optional): if true, the user can select the column by clicking on the
checkbox or radio button in the column. if there are multiple header rows, true
will display the input on each row. if ‘last®, the input will only appear on the last
header row. if ‘first* it will only appear on the first header row. these are respec-
tively shortcut equivalents to ‘[false, ..., false, true]‘ and ‘[true, false, ..., false]*.
if there are merged, multi-header columns then you can choose which column
header row to display the input in by supplying an array of booleans. for ex-
ample, ‘[true, false]‘ will display the ‘selectable‘ input on the first row, but now
on the second row. if the ‘selectable’ input appears on a merged columns, then
clicking on that input will select *all* of the merged columns associated with
it. the table-level prop ‘column_selectable‘ is used to determine the type of col-
umn selection to use. - format (optional): the formatting applied to the column’s
data. this prop is derived from the [d3-format](https://github.com/d3/d3-format)
library specification. apart from being structured slightly differently (under a

dashDataTable

single prop), the usage is the same. ’locale’: represents localization specific for-
matting information. when left unspecified, will use the default value provided
by d3-format. the keys are as follows: ’symbol’: (default: [’$’, ”’]) a list of two
strings representing the prefix and suffix symbols. typically used for currency,
and implemented using d3’s currency format, but you can use this for other sym-
bols such as measurement units; ’decimal’: (default: ’.”) the string used for the
decimal separator; ’group’: (default: ’,’) the string used for the groups separa-
tor; *grouping’: (default: [3]) a list of integers representing the grouping pattern.
‘numerals’: a list of ten strings used as replacements for numbers 0-9; "percent’:
(default: *%?’) the string used for the percentage symbol; *separate_4digits’: (de-
fault: true) separate integers with 4-digits or less. ’nully’: a value that will be
used in place of the nully value during formatting. if the value type matches
the column type, it will be formatted normally. ’prefix’: a number representing
the si unit to use during formatting. see ‘dash_table.format.prefix‘ enumeration
for the list of valid values ’specifier’: (default:) represents the rules to apply
when formatting the number. dash_table.formattemplate contains helper func-
tions to rapidly use certain typical number formats.. format has the following
type: lists containing elements ’locale’, ’nully’, ’prefix’, ’specifier’. those ele-
ments have the following types: - locale (optional): . locale has the following
type: lists containing elements ’symbol’, *decimal’, ’group’, ’grouping’, 'nu-
merals’, “percent’, ’separate_4digits’. those elements have the following types:
- symbol (list of characters; optional) - decimal (character; optional) - group
(character; optional) - grouping (list of numerics; optional) - numerals (list of
characters; optional) - percent (character; optional) - separate_4digits (logical;
optional) - nully (logical | numeric | character | named list | unnamed list; op-
tional) - prefix (numeric; optional) - specifier (character; optional) - id (charac-
ter; required): the ‘id* of the column. the column ‘id‘ is used to match cells in
data with particular columns. the ‘id* is not visible in the table. - name (charac-
ter | list of characters; required): the ‘name* of the column, as it appears in the
column header. if ‘name‘ is a list of strings, then the columns will render with
multiple headers rows. - presentation (a value equal to: ’input’, ’dropdown’,
’markdown’; optional): the ‘presentation‘ to use to display the value. defaults
to ’input’ for [’datetime’, ‘numeric’, ’text’, ’any’]. - on_change (optional): the
‘on_change* behavior of the column for user-initiated modifications. ’action’
(default ’coerce’): none: do not validate data; coerce: check if the data cor-
responds to the destination type and attempts to coerce it into the destination
type if not; validate: check if the data corresponds to the destination type (no
coercion). ’failure’ (default ’reject’): what to do with the value if the action
fails: accept: use the invalid value; default: replace the provided value with
‘validation.default; reject: do not modify the existing value.. on_change has
the following type: lists containing elements ’action’, *failure’. those elements
have the following types: - action (a value equal to: ’coerce’, none’, ’vali-
date’; optional) - failure (a value equal to: "accept’, ’default’, 'reject’; optional)
- sort_as_null (list of character | numeric | logicals; optional): an array of string,
number and boolean values that are treated as ‘null® (i.e. ignored and always
displayed last) when sorting. this value overrides the table-level ‘sort_as_null‘.
- validation (optional): the ‘validation‘ options. ’allow_null’: allow the use of
nully values. (undefined, null, nan) (default: false) ’default’: the default value

dashDataTable

to apply with on_change.failure = ’default’. (default: null) ’allow_yy’: ‘date-
time‘ columns only, allow 2-digit years (default: false). if true, we interpret
years as ranging from now-70 to now+29 - in 2019 this is 1949 to 2048 but
in 2020 it will be different. if used with ‘action: ’coerce’*, will convert user
input to a 4-digit year.. validation has the following type: lists containing el-
ements ’allow_null’, *default’, ’allow_yy’. those elements have the following
types: - allow_null (logical; optional) - default (logical | numeric | character |
named list | unnamed list; optional) - allow_yy (logical; optional) - type (a value
equal to: ’any’, 'numeric’, 'text’, ’datetime’; optional): the data-type of the
column’s data. ‘numeric’: represents both floats and ints. ’text’: represents a
string. ’datetime’: a string representing a date or date-time, in the form: ’yyyy-
mm-dd hh:mm:ss.ssssss’ or some truncation thereof. years must have 4 digits,
unless you use ‘validation.allow_yy: true‘. also accepts ’t’ or ’t’ between date
and time, and allows timezone info at the end. to convert these strings to python
‘datetime* objects, use ‘dateutil.parser.isoparse‘. in r use ‘parse_iso_8601° from
the ‘parsedate’ library. warning: these parsers do not work with 2-digit years,
if you use ‘validation.allow_yy: true‘ and do not coerce to 4-digit years. and
parsers that do work with 2-digit years may make a different guess about the
century than we make on the front end. ’any’: represents any type of data. de-
faults to "any’ if undefined. note: this feature has not been fully implemented.
in the future, it’s data types will impact things like text formatting options in
the cell (e.g. display 2 decimals for a number), filtering options and behavior,
and editing behavior. stay tuned by following [https://github.com/plotly/dash-
table/issues/166](https://github.com/plotly/dash-table/issues/166)s. Columns de-
scribes various aspects about each individual column. ‘name‘ and ‘id* are the
only required parameters.

include_headers_on_copy_paste

locale_format

Logical. If true, headers are included when copying from the table to different
tabs and elsewhere. Note that headers are ignored when copying from the table
onto itself and between two tables within the same tab.

Lists containing elements ’symbol’, ’decimal’, ’group’, ’grouping’, ‘numerals’,
"percent’, *separate_4digits’. those elements have the following types: - symbol
(list of characters; optional) - decimal (character; optional) - group (character;
optional) - grouping (list of numerics; optional) - numerals (list of characters;
optional) - percent (character; optional) - separate_4digits (logical; optional).
The localization specific formatting information applied to all columns in the ta-
ble. This prop is derived from the [d3.formatLocale](https://github.com/d3/d3-
format#formatLocale) data structure specification. When left unspecified, each
individual nested prop will default to a pre-determined value. ’symbol’: (de-
fault: [’$’, ”]) a list of two strings representing the prefix and suffix symbols.
Typically used for currency, and implemented using d3’s currency format, but
you can use this for other symbols such as measurement units. ’decimal’: (de-
fault: *.") the string used for the decimal separator. ’group’: (default: ’,") the
string used for the groups separator. ’grouping’: (default: [3]) a list of integers
representing the grouping pattern. 'numerals’: a list of ten strings used as re-
placements for numbers 0-9. ’percent’: (default: *%’) the string used for the
percentage symbol. ’separate_4digits’: (default: True) separate integers with
4-digits or less.

dashDataTable 7

css List of lists containing elements ’selector’, 'rule’. those elements have the fol-
lowing types: - selector (character; required) - rule (character; required)s. The
‘css‘ property is a way to embed CSS selectors and rules onto the page. We rec-
ommend starting with the ‘style_** properties before using this ‘css‘ property.

Example: ["selector": ".dash-spreadsheet”, "rule": ’font-family: "monospace

]

data List of named lists. The contents of the table. The keys of each item in data
should match the column IDs. Each item can also have an ’id’ key, whose
value is its row ID. If there is a column with ID="id’ this will display the row
ID, otherwise it is just used to reference the row for selections, filtering, etc.
Example: [’column-1’: 4.5, ’column-2’: ’montreal’, ’column-3’: ’canada’,
’column-1’: 8, column-2’: *boston’, ’column-3’: america’]

"s

data_previous List of named lists. The previous state of ‘data‘. ‘data_previous‘ has the same
structure as ‘data‘ and it will be updated whenever ‘data‘ changes, either through
a callback or by editing the table. This is a read-only property: setting this
property will not have any impact on the table.

data_timestamp Numeric. The unix timestamp when the data was last edited. Use this property
with other timestamp properties (such as ‘n_clicks_timestamp* in ‘dash_html_components®)
to determine which property has changed within a callback.

editable Logical. If True, then the data in all of the cells is editable. When ‘editable‘ is
True, particular columns can be made uneditable by setting ‘editable‘ to ‘False*
inside the ‘columns‘ property. If False, then the data in all of the cells is uned-
itable. When ‘editable‘ is False, particular columns can be made editable by
setting ‘editable‘ to ‘True‘ inside the ‘columns® property.

end_cell Lists containing elements 'row’, ’column’, 'row_id’, ’column_id’. those ele-
ments have the following types: - row (numeric; optional) - column (numeric;
optional) - row_id (character | numeric; optional) - column_id (character; op-
tional). When selecting multiple cells (via clicking on a cell and then shift-
clicking on another cell), ‘end_cell* represents the row / column coordinates
and IDs of the cell in one of the corners of the region. ‘start_cell‘ represents the
coordinates of the other corner.

export_columns A value equal to: ’all’, ’visible’. Denotes the columns that will be used in the
export data file. If ‘all, all columns will be used (visible + hidden). If ‘visible‘,
only the visible columns will be used. Defaults to ‘visible®.

export_format A value equal to: ’csv’, "xIsx’, 'none’. Denotes the type of the export data file,
Defaults to “’none’*

LI

export_headers A value equal to: ’none’, ’ids’, 'names’, ’display’. Denotes the format of the
headers in the export data file. If “’none’‘, there will be no header. If “’display’",
then the header of the data file will be be how it is currently displayed. Note
that “’display’‘ is only supported for “’xIsx’‘ export_format and will behave like
“names’ for “csv’‘ export format. If “’ids’‘ or ““names’, then the headers of
data file will be the column id or the column names, respectively

fill_width Logical. ‘fill_width* toggles between a set of CSS for two common behaviors:
True: The table container’s width will grow to fill the available space; False:
The table container’s width will equal the width of its content.

hidden_columns

id

is_focused

dashDataTable

List of characters. List of columns ids of the columns that are currently hidden.
See the associated nested prop ‘columns.hideable‘.

Character. The ID of the table.

Logical. If True, then the ‘active_cell* is in a focused state.

merge_duplicate_headers

fixed_columns

fixed_rows

Logical. If True, then column headers that have neighbors with duplicate names
will be merged into a single cell. This will be applied for single column headers
and multi-column headers.

Lists containing elements "headers’, ’data’. those elements have the following
types: - headers (a value equal to: false; optional) - data (a value equal to: 0;
optional) | lists containing elements "headers’, ’data’. those elements have the
following types: - headers (a value equal to: true; required) - data (numeric; op-
tional). ‘fixed_columns‘ will "fix" the set of columns so that they remain visible
when scrolling horizontally across the unfixed columns. ‘fixed_columns® fixes
columns from left-to-right. If ‘headers* is False, no columns are fixed. If ‘head-
ers‘ is True, all operation columns (see ‘row_deletable‘ and ‘row_selectable*)
are fixed. Additional data columns can be fixed by assigning a number to ‘data‘.
Defaults to ‘ headers: False ‘. Note that fixing columns introduces some changes
to the underlying markup of the table and may impact the way that your columns
are rendered or sized. View the documentation examples to learn more.

Lists containing elements "headers’, ’data’. those elements have the following
types: - headers (a value equal to: false; optional) - data (a value equal to:
0; optional) | lists containing elements "headers’, ’data’. those elements have
the following types: - headers (a value equal to: true; required) - data (numeric;
optional). ‘fixed_rows* will "fix" the set of rows so that they remain visible when
scrolling vertically down the table. ‘fixed_rows* fixes rows from top-to-bottom,
starting from the headers. If ‘headers is False, no rows are fixed. If ‘headers*
is True, all header and filter rows (see ‘filter_action®) are fixed. Additional data
rows can be fixed by assigning a number to ‘data‘. Defaults to ‘ headers: False
‘. Note that fixing rows introduces some changes to the underlying markup of
the table and may impact the way that your columns are rendered or sized. View
the documentation examples to learn more.

column_selectable

row_deletable

row_selectable

A value equal to: ’single’, *multi’, false. If ‘single‘, then the uer can select a
single column or group of merged columns via the radio button that will ap-
pear in the header rows. If ‘multi‘, then the user can select multiple columns
or groups of merged columns via the checkbox that will appear in the header
rows. If false, then the user will not be able to select columns and no input will
appear in the header rows. When a column is selected, its id will be contained
in ‘selected_columns‘ and ‘derived_viewport_selected_columns®.

Logical. If True, then a ‘x* will appear next to each ‘row* and the user can delete
the row.

A value equal to: ’single’, 'multi’, false. If ‘single‘, then the user can select a
single row via a radio button that will appear next to each row. If ‘multi‘, then
the user can select multiple rows via a checkbox that will appear next to each
row. If false, then the user will not be able to select rows and no additional Ul

dashDataTable

selected_cells

selected_rows

elements will appear. When a row is selected, its index will be contained in
‘selected_rows*.

List of lists containing elements 'row’, *column’, ‘row_id’, ’column_id’. those
elements have the following types: - row (numeric; optional) - column (nu-
meric; optional) - row_id (character | numeric; optional) - column_id (character;
optional)s. ‘selected_cells® represents the set of cells that are selected, as an ar-
ray of objects, each item similar to ‘active_cell‘. Multiple cells can be selected
by holding down shift and clicking on a different cell or holding down shift and
navigating with the arrow keys.

List of numerics. ‘selected_rows‘ contains the indices of rows that are selected
via the UI elements that appear when ‘row_selectable‘ is “’single’ or “multi’‘.

selected_columns

List of characters. ‘selected_columns‘ contains the ids of columns that are se-
lected via the Ul elements that appear when ‘column_selectable® is “’single’ or
‘multi’‘.

selected_row_ids

start_cell

List of character | numerics. ‘selected_row_ids‘ contains the ids of rows that are
selected via the UI elements that appear when ‘row_selectable is “’single’* or
“multi’ ‘.

Lists containing elements ‘row’, ’column’, 'row_id’, ’column_id’. those ele-
ments have the following types: - row (numeric; optional) - column (numeric;
optional) - row_id (character | numeric; optional) - column_id (character; op-
tional). When selecting multiple cells (via clicking on a cell and then shift-
clicking on another cell), ‘start_cell‘ represents the [row, column] coordinates
of the cell in one of the corners of the region. ‘end_cell* represents the coordi-
nates of the other corner.

style_as_list_view

page_action

page_current

page_count

Logical. If True, then the table will be styled like a list view and not have borders
between the columns.

A value equal to: ’custom’, ’native’, ‘none’. ‘page_action® refers to a mode
of the table where not all of the rows are displayed at once: only a subset are
displayed (a "page") and the next subset of rows can viewed by clicking "Next"
or "Previous" buttons at the bottom of the page. Pagination is used to improve
performance: instead of rendering all of the rows at once (which can be expen-
sive), we only display a subset of them. With pagination, we can either page
through data that exists in the table (e.g. page through ‘10,000 rows in ‘data‘
‘100° rows at a time) or we can update the data on-the-fly with callbacks when
the user clicks on the "Previous” or "Next" buttons. These modes can be tog-
gled with this ‘page_action‘ parameter: “’native’‘: all data is passed to the table
up-front, paging logic is handled by the table; ’custom’‘: data is passed to the
table one page at a time, paging logic is handled via callbacks; ‘none‘: disables
paging, render all of the data at once.

Numeric. ‘page_current’ represents which page the user is on. Use this property
to index through data in your callbacks with backend paging.

Numeric. ‘page_count® represents the number of the pages in the paginated
table. This is really only useful when performing backend pagination, since the
front end is able to use the full size of the table to calculate the number of pages.

10

page_size

dropdown

dashDataTable

Numeric. ‘page_size* represents the number of rows that will be displayed on a
particular page when ‘page_action® is “’custom’‘ or ‘’native’*

List with named elements and values of type lists containing elements ’clear-
able’, “options’. those elements have the following types: - clearable (logical;
optional) - options (required): . options has the following type: list of lists
containing elements ’label’, ’value’. those elements have the following types:
- label (character; required) - value (numeric | character | logical; required)s.
‘dropdown* specifies dropdown options for different columns. Each entry refers
to the column ID. The ‘clearable‘ property defines whether the value can be
deleted. The ‘options* property refers to the ‘options‘ of the dropdown.

dropdown_conditional

dropdown_data

tooltip

List of lists containing elements ’clearable’, ’if’, options’. those elements have
the following types: - clearable (logical; optional) - if (optional): . if has the
following type: lists containing elements ’column_id’, filter_query’. those ele-
ments have the following types: - column_id (character; optional) - filter_query
(character; optional) - options (required): . options has the following type:
list of lists containing elements ’label’, ’value’. those elements have the fol-
lowing types: - label (character; required) - value (numeric | character | logi-
cal; required)ss. ‘dropdown_conditional specifies dropdown options in various
columns and cells. This property allows you to specify different dropdowns de-
pending on certain conditions. For example, you may render different "city"
dropdowns in a row depending on the current value in the "state" column.

List of list with named elements and values of type lists containing elements
"clearable’, ’options’. those elements have the following types: - clearable
(logical; optional) - options (required): . options has the following type: list
of lists containing elements ’label’, ’value’. those elements have the follow-
ing types: - label (character; required) - value (numeric | character | logical;
required)ss. ‘dropdown_data‘ specifies dropdown options on a row-by-row,
column-by-column basis. Each item in the array corresponds to the correspond-
ing dropdowns for the ‘data‘ item at the same index. Each entry in the item
refers to the Column ID.

List with named elements and values of type lists containing elements ’delay’,
"duration’, "type’, ’value’. those elements have the following types: - delay (nu-
meric; optional) - duration (numeric; optional) - type (a value equal to: ’text’,
’markdown’; optional) - value (character; required) | character. ‘tooltip* repre-
sents the tooltip shown for different columns. The ‘property‘ name refers to the
column ID. The ‘type‘ refers to the type of tooltip syntax used for the tooltip
generation. Can either be ‘markdown® or ‘text‘. Defaults to ‘text‘. The ‘value‘
refers to the syntax-based content of the tooltip. This value is required. The
‘delay‘ represents the delay in milliseconds before the tooltip is shown when
hovering a cell. This overrides the table’s ‘tooltip_delay* property. If set to
‘null’, the tooltip will be shown immediately. The ‘duration‘ represents the du-
ration in milliseconds during which the tooltip is shown when hovering a cell.
This overrides the table’s ‘tooltip_duration® property. If set to ‘null‘, the tooltip
will not disappear. Alternatively, the value of the property can also be a plain
string. The ‘text‘ syntax will be used in that case.

tooltip_conditional

List of lists containing elements ’delay’, ’duration’, *if’, ’type’, ’value’. those

dashDataTable

tooltip_data

tooltip_delay

11

elements have the following types: - delay (numeric; optional) - duration (nu-
meric; optional) - if (required): . if has the following type: lists containing
elements ’column_id’, *filter_query’, 'row_index’. those elements have the fol-
lowing types: - column_id (character; optional) - filter_query (character; op-
tional) - row_index (numeric | a value equal to: *odd’, ’even’; optional) - type
(a value equal to: ’text’, 'markdown’; optional) - value (character; required)s.
‘tooltip_conditional ‘ represents the tooltip shown for different columns and cells.
This property allows you to specify different tooltips for depending on certain
conditions. For example, you may have different tooltips in the same column
based on the value of a certain data property. Priority is from first to last defined
conditional tooltip in the list. Higher priority (more specific) conditional tooltips
should be put at the beginning of the list. The ‘if* refers to the condition that
needs to be fulfilled in order for the associated tooltip configuration to be used.
If multiple conditions are defined, all conditions must be met for the tooltip to
be used by a cell. The ‘if* nested property ‘column_id* refers to the column ID
that must be matched. The ‘if* nested property ‘row_index ‘ refers to the index of
the row in the source ‘data‘. The ‘if* nested property ‘filter_query‘ refers to the
query that must evaluate to True. The ‘type‘ refers to the type of tooltip syntax
used for the tooltip generation. Can either be ‘markdown‘ or ‘text‘. Defaults to
‘text‘. The ‘value‘ refers to the syntax-based content of the tooltip. This value
is required. The ‘delay‘ represents the delay in milliseconds before the tooltip is
shown when hovering a cell. This overrides the table’s ‘tooltip_delay* property.
If set to ‘null’, the tooltip will be shown immediately. The ‘duration‘ represents
the duration in milliseconds during which the tooltip is shown when hovering a
cell. This overrides the table’s ‘tooltip_duration‘ property. If set to ‘null‘, the
tooltip will not disappear.

List of list with named elements and values of type character | lists contain-
ing elements ’delay’, ’duration’, ’type’, ’value’. those elements have the fol-
lowing types: - delay (numeric; optional) - duration (numeric; optional) - type
(a value equal to: ’text’, “'markdown’; optional) - value (character; required)s.
‘tooltip_data‘ represents the tooltip shown for different columns and cells. The
‘property ‘ name refers to the column ID. Each property contains a list of tooltips
mapped to the source ‘data‘ row index. The ‘type‘ refers to the type of tooltip
syntax used for the tooltip generation. Can either be ‘markdown‘ or ‘text‘. De-
faults to ‘text‘. The ‘value‘ refers to the syntax-based content of the tooltip. This
value is required. The ‘delay‘ represents the delay in milliseconds before the
tooltip is shown when hovering a cell. This overrides the table’s ‘tooltip_delay*
property. If set to ‘null’, the tooltip will be shown immediately. The ‘duration*
represents the duration in milliseconds during which the tooltip is shown when
hovering a cell. This overrides the table’s ‘tooltip_duration® property. If set to
‘null’, the tooltip will not disappear. Alternatively, the value of the property can
also be a plain string. The ‘text* syntax will be used in that case.

Numeric. ‘tooltip_delay‘ represents the table-wide delay in milliseconds before
the tooltip is shown when hovering a cell. If set to ‘null‘, the tooltip will be
shown immediately. Defaults to 350.

tooltip_duration

Numeric. ‘tooltip_duration® represents the table-wide duration in milliseconds
during which the tooltip will be displayed when hovering a cell. If set to ‘null’,

12

filter_query

filter_action

sort_action

sort_mode

sort_by

sort_as_null

style_table

style_cell

style_data

style_filter

dashDataTable

the tooltip will not disappear. Defaults to 2000.

Character. If “filter_action® is enabled, then the current filtering string is repre-
sented in this “filter_query‘ property.

A value equal to: ’custom’, 'native’, ‘none’ | lists containing elements ’type’,
“operator’. those elements have the following types: - type (a value equal
to: ’custom’, ’native’; required) - operator (a value equal to: ’and’, ’or’; op-
tional). The ‘filter_action‘ property controls the behavior of the ‘filtering* UL If
“none’‘, then the filtering Ul is not displayed. If “’native’, then the filtering UI
is displayed and the filtering logic is handled by the table. That is, it is performed
on the data that exists in the ‘data‘ property. If “’custom’‘, then the filtering UI
is displayed but it is the responsibility of the developer to program the filter-
ing through a callback (where ‘filter_query* or ‘derived_filter_query_structure’
would be the input and ‘data‘ would be the output).

A value equal to: ’custom’, *native’, 'none’. The ‘sort_action® property enables
data to be sorted on a per-column basis. If “none’‘, then the sorting UI is not
displayed. If “’native’‘, then the sorting Ul is displayed and the sorting logic is
hanled by the table. That is, it is performed on the data that exists in the ‘data‘
property. If “’custom’‘, the the sorting Ul is displayed but it is the responsibility
of the developer to program the sorting through a callback (where ‘sort_by*
would be the input and ‘data‘ would be the output). Clicking on the sort arrows
will update the ‘sort_by* property.

A value equal to: ’single’, 'multi’. Sorting can be performed across multiple
columns (e.g. sort by country, sort within each country, sort by year) or by
a single column. NOTE - With multi-column sort, it’s currently not possible
to determine the order in which the columns were sorted through the Ul See
[https://github.com/plotly/dash-table/issues/170](https://github.com/plotly/dash-
table/issues/170)

List of lists containing elements ’column_id’, ’direction’. those elements have
the following types: - column_id (character; required) - direction (a value equal
to: “asc’, ’desc’; required)s. ‘sort_by‘ describes the current state of the sorting
UL That is, if the user clicked on the sort arrow of a column, then this property
will be updated with the column ID and the direction (‘asc* or ‘desc‘) of the sort.
For multi-column sorting, this will be a list of sorting parameters, in the order in
which they were clicked.

List of character | numeric | logicals. An array of string, number and boolean
values that are treated as ‘null® (i.e. ignored and always displayed last) when
sorting. This value will be used by columns without ‘sort_as_null‘. Defaults to
.

Named list. CSS styles to be applied to the outer ‘table‘ container. This is
commonly used for setting properties like the width or the height of the table.

Named list. CSS styles to be applied to each individual cell of the table. This
includes the header cells, the ‘data‘ cells, and the filter cells.

Named list. CSS styles to be applied to each individual data cell. That is, unlike
‘style_cell’, it excludes the header and filter cells.

Named list. CSS styles to be applied to the filter cells. Note that this may change
in the future as we build out a more complex filtering UL

dashDataTable 13

style_header Named list. CSS styles to be applied to each individual header cell. That is,
unlike ‘style_cell’, it excludes the ‘data‘ and filter cells.

style_cell_conditional
List of lists containing elements ’if’. those elements have the following types: -
if (optional): . if has the following type: lists containing elements ’column_id’,
’column_type’. those elements have the following types: - column_id (character
| list of characters; optional) - column_type (a value equal to: any’, 'numeric’,
"text’, “datetime’; optional)s. Conditional CSS styles for the cells. This can be
used to apply styles to cells on a per-column basis.

style_data_conditional
List of lists containing elements ’if’. those elements have the following types: -
if (optional): . if has the following type: lists containing elements ’column_id’,
“column_type’, ’filter_query’, ’state’, 'row_index’, column_editable’. those el-
ements have the following types: - column_id (character | list of characters;
optional) - column_type (a value equal to: ’any’, ’numeric’, ’text’, ’datetime’;
optional) - filter_query (character; optional) - state (a value equal to: ’active’,
’selected’; optional) - row_index (numeric | a value equal to: ’odd’, ’even’ |
list of numerics; optional) - column_editable (logical; optional)s. Conditional
CSS styles for the data cells. This can be used to apply styles to data cells on a
per-column basis.

style_filter_conditional
List of lists containing elements ’if’. those elements have the following types: -
if (optional): . if has the following type: lists containing elements ’column_id’,
"column_type’, "column_editable’. those elements have the following types: -
column_id (character | list of characters; optional) - column_type (a value equal
to: ’any’, ‘numeric’, ’text’, ’datetime’; optional) - column_editable (logical;
optional)s. Conditional CSS styles for the filter cells. This can be used to apply
styles to filter cells on a per-column basis.

style_header_conditional
List of lists containing elements ’if’. those elements have the following types: -
if (optional): . if has the following type: lists containing elements ’column_id’,
"column_type’, header_index’, ’column_editable’. those elements have the fol-
lowing types: - column_id (character | list of characters; optional) - column_type
(a value equal to: ’any’, 'numeric’, ’text’, ’datetime’; optional) - header_index
(numeric | list of numerics | a value equal to: ’odd’, ’even’; optional) - col-
umn_editable (logical; optional)s. Conditional CSS styles for the header cells.
This can be used to apply styles to header cells on a per-column basis.

virtualization Logical. This property tells the table to use virtualization when rendering. As-
sumptions are that: the width of the columns is fixed; the height of the rows is
always the same; and runtime styling changes will not affect width and height
vs. first rendering

derived_filter_query_structure
Named list. This property represents the current structure of ‘filter_query* as
a tree structure. Each node of the query structure has: type (string; required):
“open-block’, ’logical-operator’, 'relational-operator’, *unary-operator’, or ’ex-
pression’; subType (string; optional): ’open-block’: ’()’, ’logical-operator’:
*&&’,’II’, ‘relational-operator’: ’=", ’>=",’>’,’<=",’<’, ’1=’", "contains’, 'unary-
operator’: ’!’, ’is bool’, ’is even’, ’is nil’, ’is num’, ’is object’, ’is odd’, ’is

dashDataTable

prime’, ’is str’, ’expression’: ’value’, ’field’; value (any): ’expression, value’:
passed value, ’expression, field’: the field/prop name. block (nested query struc-
ture; optional). left (nested query structure; optional). right (nested query struc-
ture; optional). If the query is invalid or empty, the ‘derived_filter_query_structure’
will be null.
derived_viewport_data
List of named lists. This property represents the current state of ‘data‘ on the
current page. This property will be updated on paging, sorting, and filtering.
derived_viewport_indices
List of numerics. ‘derived_viewport_indices‘ indicates the order in which the
original rows appear after being filtered, sorted, and/or paged. ‘derived_viewport_indices*
contains indices for the current page, while ‘derived_virtual_indices‘ contains
indices across all pages.
derived_viewport_row_ids
List of character | numerics. ‘derived_viewport_row_ids* lists row IDs in the or-
der they appear after being filtered, sorted, and/or paged. ‘derived_viewport_row_ids*
contains IDs for the current page, while ‘derived_virtual_row_ids* contains IDs
across all pages.
derived_viewport_selected_columns
List of characters. ‘derived_viewport_selected_columns* contains the ids of the
‘selected_columns* that are not currently hidden.
derived_viewport_selected_rows
List of numerics. ‘derived_viewport_selected_rows‘ represents the indices of
the ‘selected_rows* from the perspective of the ‘derived_viewport_indices*.
derived_viewport_selected_row_ids
List of character | numerics. ‘derived_viewport_selected_row_ids‘ represents
the IDs of the ‘selected_rows* on the currently visible page.
derived_virtual_data
List of named lists. This property represents the visible state of ‘data‘ across all
pages after the front-end sorting and filtering as been applied.
derived_virtual_indices
List of numerics. ‘derived_virtual_indices‘ indicates the order in which the orig-
inal rows appear after being filtered and sorted. ‘derived_viewport_indices*
contains indices for the current page, while ‘derived_virtual_indices* contains
indices across all pages.
derived_virtual_row_ids
List of character | numerics. ‘derived_virtual_row_ids‘ indicates the row IDs in
the order in which they appear after being filtered and sorted. ‘derived_viewport_row_ids*
contains IDs for the current page, while ‘derived_virtual_row_ids* contains IDs
across all pages.
derived_virtual_selected_rows
List of numerics. ‘derived_virtual_selected_rows* represents the indices of the
‘selected_rows* from the perspective of the ‘derived_virtual_indices®.
derived_virtual_selected_row_ids
List of character | numerics. ‘derived_virtual_selected_row_ids‘ represents the
IDs of the ‘selected_rows‘ as they appear after filtering and sorting, across all

pages.

dashDataTable 15

loading_state Lists containing elements ’is_loading’, *prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this component
to be persisted when the component - or the page - is refreshed. If ‘persisted’
is truthy and hasn’t changed from its previous value, any ‘persisted_props‘ that
the user has changed while using the app will keep those changes, as long as
the new prop value also matches what was given originally. Used in conjunction
with ‘persistence_type‘ and ‘persisted_props°.

persisted_props
List of a value equal to: columns.name’, ’data’, ’filter_query’, "hidden_columns’,
’selected_columns’, ’selected_rows’, ’sort_by’s. Properties whose user interac-
tions will persist after refreshing the component or the page.

persistence_type
A value equal to: ’local’, ’session’, 'memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples
For comprehensive documentation of this package's features,
please consult https://dashr.plot.ly/datatable
#
A package vignette is currently in development and will
provide many of the same examples currently available online
in an offline-friendly format.

The following if statement is not required to run this
example locally, but was added at the request of CRAN
maintainers.
if (interactive() && require(dash)) {

library(dash)

library(dashHtmlComponents)

library(dashTable)

app <- Dash$new()

We can easily restrict the number of rows to display at
once by using style_table:
app$layout(
dashDataTable(
id = "table”,

df to_list

columns = lapply(colnames(iris),
function(colName){
list(
id = colName,
name = colName
)
B,
style_table = list(
maxHeight = "250px”,
overflowY = "scroll”

)!
data = df_to_list(iris)

app$run_server()
app <- Dash$new()

We can also make rows and columns selectable/deletable
by setting a few additional attributes:

app$layout(
dashDataTable(
id = "table”,
columns = lapply(colnames(iris),
function(colName){
list(

id = colName,
name = colName,
deletable = TRUE
)
D,
style_table = list(
maxHeight = "250px",
overflowY = "scroll”
),
data = df_to_list(iris),
editable = TRUE,
filter_action = "native”,
sort_action = "native”,
sort_mode = "multi”,
column_selectable = "single”,
row_selectable = "multi”,
row_deletable = TRUE

app$run_server()

}

df to_list 17

df_to_list Convert data.frame objects to list-of-lists format

Description

Convert a data. frame to a list of lists for compatibility with dashDataTable. The function will
return a nested list object in which the sublists contain named elements of varying type; the names
correspond to the column names in the original data. frame.

Usage
df_to_list(df)

Arguments
df A data.frame object, which will be transformed into a list of lists. Each row
will become a single named list, in which the elements are named as the columns
from which they were extracted.
Value

a list object, in which the sublists are named elements of varying type; the names correspond to
the column names in the data. frame specified by df.

Examples

first, create data frame

df <- read.csv(url(
"https://raw.githubusercontent.com/plotly/datasets/master/solar.csv'
)Y
check.names=FALSE,
stringsAsFactors=FALSE

)

then convert to list-of-lists format for use in dashTable
the following snippet below will print as JSON
see the help for dashDataTable to see an actual app example
dashDataTable(

id = 'table',

columns = lapply(colnames(df), function(x) {

list(name = x, id = x)
b,
data = df_to_list(df)

Index

dashDataTable, 2, 17

dashTable (dashTable-package), 2
dashTable-package, 2
data.frame, 17

df_to_list, 16

18

	dashTable-package
	dashDataTable
	df_to_list
	Index

