
Package ‘dashCoreComponents’
May 7, 2020

Title Core Interactive UI Components for 'Dash'

Version 1.10.0

Description
'Dash' ships with supercharged components for interactive user interfaces. A core set of compo-
nents, written and maintained by the 'Dash' team, is available in the 'dashCoreComponents' pack-
age. The source for this package is on GitHub: plotly/dash-core-components.

Depends R (>= 3.0.2)

Imports

Suggests dash, dashHtmlComponents, jsonlite, plotly, knitr, rmarkdown

License MIT + file LICENSE

Copyright Plotly Technologies, Inc.

URL https://github.com/plotly/dash-core-components

BugReports https://github.com/plotly/dash-core-components/issues

Encoding UTF-8

LazyData true

VignetteBuilder knitr

KeepSource true

NeedsCompilation no

Author Chris Parmer [aut],
Ryan Patrick Kyle [cre] (<https://orcid.org/0000-0002-4958-2844>),
Plotly Technologies, Inc. [cph]

Maintainer Ryan Patrick Kyle <ryan@plotly.com>

Repository CRAN

Date/Publication 2020-05-06 22:00:11 UTC

1

https://github.com/plotly/dash-core-components
https://github.com/plotly/dash-core-components/issues

2 dashCoreComponents-package

R topics documented:

dashCoreComponents-package . 2
dccChecklist . 3
dccConfirmDialog . 4
dccConfirmDialogProvider . 6
dccDatePickerRange . 8
dccDatePickerSingle . 11
dccDropdown . 13
dccGraph . 15
dccInput . 20
dccInterval . 24
dccLink . 26
dccLoading . 27
dccLocation . 29
dccLogoutButton . 30
dccMarkdown . 31
dccRadioItems . 33
dccRangeSlider . 35
dccSlider . 37
dccStore . 40
dccTab . 42
dccTabs . 44
dccTextarea . 46
dccUpload . 49

Index 52

dashCoreComponents-package

Core Interactive UI Components for ’Dash’

Description

’Dash’ ships with supercharged components for interactive user interfaces. A core set of com-
ponents, written and maintained by the ’Dash’ team, is available in the ’dashCoreComponents’
package. The source for this package is on GitHub: plotly/dash-core-components.

Author(s)

Maintainer: Ryan Patrick Kyle <ryan@plotly.com>

dccChecklist 3

dccChecklist Checklist component

Description

Checklist is a component that encapsulates several checkboxes. The values and labels of the check-
list are specified in the ‘options‘ property and the checked items are specified with the ‘value‘
property. Each checkbox is rendered as an input with a surrounding label.

Usage

dccChecklist(id=NULL, options=NULL, value=NULL, className=NULL,
style=NULL, inputStyle=NULL, inputClassName=NULL,
labelStyle=NULL, labelClassName=NULL, loading_state=NULL,
persistence=NULL, persisted_props=NULL,
persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

options List of lists containing elements ’label’, ’value’, ’disabled’. those elements have
the following types: - label (character | numeric; required): the checkbox’s label
- value (character | numeric; required): the value of the checkbox. this value
corresponds to the items specified in the ‘value‘ property. - disabled (logical;
optional): if true, this checkbox is disabled and can’t be clicked on.s. An array
of options

value List of character | numerics. The currently selected value

className Character. The class of the container (div)

style Named list. The style of the container (div)

inputStyle Named list. The style of the <input> checkbox element

inputClassName Character. The class of the <input> checkbox element

labelStyle Named list. The style of the <label> that wraps the checkbox input and the
option’s label

labelClassName Character. The class of the <label> that wraps the checkbox input and the op-
tion’s label

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

4 dccConfirmDialog

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the
user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashHtmlComponents)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
dccChecklist(

id = "checklist-input",
options=list(

list("label" = "New York City", "value" = "NYC"),
list("label" = "Montreal", "value" = "MTL"),
list("label" = "San Francisco", "value" = "SF")
),
value=list("MTL", "SF")

)
)

app$run_server()
}

dccConfirmDialog ConfirmDialog component

dccConfirmDialog 5

Description

ConfirmDialog is used to display the browser’s native "confirm" modal, with an optional message
and two buttons ("OK" and "Cancel"). This ConfirmDialog can be used in conjunction with buttons
when the user is performing an action that should require an extra step of verification.

Usage

dccConfirmDialog(id=NULL, message=NULL, submit_n_clicks=NULL,
submit_n_clicks_timestamp=NULL, cancel_n_clicks=NULL,
cancel_n_clicks_timestamp=NULL, displayed=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

message Character. Message to show in the popup.
submit_n_clicks

Numeric. Number of times the submit button was clicked
submit_n_clicks_timestamp

Numeric. Last time the submit button was clicked.
cancel_n_clicks

Numeric. Number of times the popup was canceled.
cancel_n_clicks_timestamp

Numeric. Last time the cancel button was clicked.

displayed Logical. Set to true to send the ConfirmDialog.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()

app$layout(
htmlDiv(

list(
dccConfirmDialog(

id='confirm',
message='Danger danger! Are you sure you want to continue?'),

dccDropdown(
options=lapply(list('Safe', 'Danger!!'),function(x){list('label'= x, 'value'= x)}),

id='dropdown'
),

6 dccConfirmDialogProvider

htmlDiv(id='output-confirm1')
)

)
)

app$callback(
output = list(id = 'confirm', property = 'displayed'),
params=list(input(id = 'dropdown', property = 'value')),
function(value){

if(value == 'Danger!!'){
return(TRUE)}

else{
return(FALSE)}

})

app$run_server()
}

dccConfirmDialogProvider

ConfirmDialogProvider component

Description

A wrapper component that will display a confirmation dialog when its child component has been
clicked on. For example: “‘ dcc.ConfirmDialogProvider(html.Button(’click me’, id=’btn’), mes-
sage=’Danger - Are you sure you want to continue.’ id=’confirm’) “‘

Usage

dccConfirmDialogProvider(children=NULL, id=NULL, message=NULL, submit_n_clicks=NULL,
submit_n_clicks_timestamp=NULL, cancel_n_clicks=NULL,
cancel_n_clicks_timestamp=NULL, displayed=NULL,
loading_state=NULL)

Arguments

children Logical | numeric | character | named list | unnamed list. The children to hijack
clicks from and display the popup.

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

message Character. Message to show in the popup.
submit_n_clicks

Numeric. Number of times the submit was clicked
submit_n_clicks_timestamp

Numeric. Last time the submit button was clicked.
cancel_n_clicks

Numeric. Number of times the popup was canceled.

dccConfirmDialogProvider 7

cancel_n_clicks_timestamp

Numeric. Last time the cancel button was clicked.

displayed Logical. Is the modal currently displayed.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()

app$layout(htmlDiv(list(
dccConfirmDialogProvider(

children=htmlButton(
'Click Me',
n_clicks = 0

),
id='danger-danger-provider',
message='Danger danger! Are you sure you want to continue?',
submit_n_clicks=NULL

),
htmlDiv(id='output-provider',

children='Click the button to submit')
)))

app$callback(
output = list(id = 'output-provider', property = 'children'),
params=list(input(id = 'danger-danger-provider', property = 'submit_n_clicks')),
function(submit_n_clicks) {

if (is.null(unlist(submit_n_clicks))) {
return('')

} else {
paste0('That was a dangerous choice! Submitted ', submit_n_clicks, ' times.')

}
}

)

app$run_server()
}

8 dccDatePickerRange

dccDatePickerRange DatePickerRange component

Description

DatePickerRange is a tailor made component designed for selecting timespan across multiple days
off of a calendar. The DatePicker integrates well with the Python datetime module with the startDate
and endDate being returned in a string format suitable for creating datetime objects. This component
is based off of Airbnb’s react-dates react component which can be found here: https://github.com/airbnb/react-
dates

Usage

dccDatePickerRange(id=NULL, start_date=NULL, start_date_id=NULL,
end_date_id=NULL, end_date=NULL, min_date_allowed=NULL,
max_date_allowed=NULL, initial_visible_month=NULL,
start_date_placeholder_text=NULL,
end_date_placeholder_text=NULL, day_size=NULL,
calendar_orientation=NULL, is_RTL=NULL,
reopen_calendar_on_clear=NULL, number_of_months_shown=NULL,
with_portal=NULL, with_full_screen_portal=NULL,
first_day_of_week=NULL, minimum_nights=NULL,
stay_open_on_select=NULL, show_outside_days=NULL,
month_format=NULL, display_format=NULL, disabled=NULL,
clearable=NULL, style=NULL, className=NULL, updatemode=NULL,
loading_state=NULL, persistence=NULL, persisted_props=NULL,
persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

start_date Character. Specifies the starting date for the component. Accepts datetime.datetime
objects or strings in the format ’YYYY-MM-DD’

start_date_id Character. The HTML element ID of the start date input field. Not used by
Dash, only by CSS.

end_date_id Character. The HTML element ID of the end date input field. Not used by Dash,
only by CSS.

end_date Character. Specifies the ending date for the component. Accepts datetime.datetime
objects or strings in the format ’YYYY-MM-DD’

min_date_allowed

Character. Specifies the lowest selectable date for the component. Accepts date-
time.datetime objects or strings in the format ’YYYY-MM-DD’

max_date_allowed

Character. Specifies the highest selectable date for the component. Accepts
datetime.datetime objects or strings in the format ’YYYY-MM-DD’

dccDatePickerRange 9

initial_visible_month

Character. Specifies the month that is initially presented when the user opens
the calendar. Accepts datetime.datetime objects or strings in the format ’YYYY-
MM-DD’

start_date_placeholder_text

Character. Text that will be displayed in the first input box of the date picker
when no date is selected. Default value is ’Start Date’

end_date_placeholder_text

Character. Text that will be displayed in the second input box of the date picker
when no date is selected. Default value is ’End Date’

day_size Numeric. Size of rendered calendar days, higher number means bigger day size
and larger calendar overall

calendar_orientation

A value equal to: ’vertical’, ’horizontal’. Orientation of calendar, either vertical
or horizontal. Valid options are ’vertical’ or ’horizontal’.

is_RTL Logical. Determines whether the calendar and days operate from left to right or
from right to left

reopen_calendar_on_clear

Logical. If True, the calendar will automatically open when cleared
number_of_months_shown

Numeric. Number of calendar months that are shown when calendar is opened

with_portal Logical. If True, calendar will open in a screen overlay portal, not supported on
vertical calendar

with_full_screen_portal

Logical. If True, calendar will open in a full screen overlay portal, will take
precedent over ’withPortal’ if both are set to true, not supported on vertical
calendar

first_day_of_week

A value equal to: 0, 1, 2, 3, 4, 5, 6. Specifies what day is the first day of the
week, values must be from [0, ..., 6] with 0 denoting Sunday and 6 denoting
Saturday

minimum_nights Numeric. Specifies a minimum number of nights that must be selected between
the startDate and the endDate

stay_open_on_select

Logical. If True the calendar will not close when the user has selected a value
and will wait until the user clicks off the calendar

show_outside_days

Logical. If True the calendar will display days that rollover into the next month

month_format Character. Specifies the format that the month will be displayed in the calendar,
valid formats are variations of "MM YY". For example: "MM YY" renders as
’05 97’ for May 1997 "MMMM, YYYY" renders as ’May, 1997’ for May 1997
"MMM, YY" renders as ’Sep, 97’ for September 1997

display_format Character. Specifies the format that the selected dates will be displayed valid
formats are variations of "MM YY DD". For example: "MM YY DD" renders
as ’05 10 97’ for May 10th 1997 "MMMM, YY" renders as ’May, 1997’ for
May 10th 1997 "M, D, YYYY" renders as ’07, 10, 1997’ for September 10th
1997 "MMMM" renders as ’May’ for May 10 1997

10 dccDatePickerRange

disabled Logical. If True, no dates can be selected.

clearable Logical. Whether or not the dropdown is "clearable", that is, whether or not a
small "x" appears on the right of the dropdown that removes the selected value.

style Named list. CSS styles appended to wrapper div

className Character. Appends a CSS class to the wrapper div component.

updatemode A value equal to: ’singledate’, ’bothdates’. Determines when the component
should update its value. If ‘bothdates‘, then the DatePicker will only trigger its
value when the user has finished picking both dates. If ‘singledate‘, then the
DatePicker will update its value as one date is picked.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this component
to be persisted when the component - or the page - is refreshed. If ‘persisted‘
is truthy and hasn’t changed from its previous value, any ‘persisted_props‘ that
the user has changed while using the app will keep those changes, as long as
the new prop value also matches what was given originally. Used in conjunction
with ‘persistence_type‘ and ‘persisted_props‘.

persisted_props

List of a value equal to: ’start_date’, ’end_date’s. Properties whose user inter-
actions will persist after refreshing the component or the page.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
dccDatePickerRange(

id = "date-picker-range",
start_date = as.Date("1997/5/10"),
end_date_placeholder_text="Select a date!"

)

dccDatePickerSingle 11

)

app$run_server()
}

dccDatePickerSingle DatePickerSingle component

Description

DatePickerSingle is a tailor made component designed for selecting a single day off of a calendar.
The DatePicker integrates well with the Python datetime module with the startDate and endDate
being returned in a string format suitable for creating datetime objects. This component is based off
of Airbnb’s react-dates react component which can be found here: https://github.com/airbnb/react-
dates

Usage

dccDatePickerSingle(id=NULL, date=NULL, min_date_allowed=NULL,
max_date_allowed=NULL, initial_visible_month=NULL,
day_size=NULL, calendar_orientation=NULL, is_RTL=NULL,
placeholder=NULL, reopen_calendar_on_clear=NULL,
number_of_months_shown=NULL, with_portal=NULL,
with_full_screen_portal=NULL, first_day_of_week=NULL,
stay_open_on_select=NULL, show_outside_days=NULL,
month_format=NULL, display_format=NULL, disabled=NULL,
clearable=NULL, style=NULL, className=NULL,
loading_state=NULL, persistence=NULL, persisted_props=NULL,
persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

date Character. Specifies the starting date for the component, best practice is to pass
value via datetime object

min_date_allowed

Character. Specifies the lowest selectable date for the component. Accepts date-
time.datetime objects or strings in the format ’YYYY-MM-DD’

max_date_allowed

Character. Specifies the highest selectable date for the component. Accepts
datetime.datetime objects or strings in the format ’YYYY-MM-DD’

initial_visible_month

Character. Specifies the month that is initially presented when the user opens
the calendar. Accepts datetime.datetime objects or strings in the format ’YYYY-
MM-DD’

12 dccDatePickerSingle

day_size Numeric. Size of rendered calendar days, higher number means bigger day size
and larger calendar overall

calendar_orientation

A value equal to: ’vertical’, ’horizontal’. Orientation of calendar, either vertical
or horizontal. Valid options are ’vertical’ or ’horizontal’.

is_RTL Logical. Determines whether the calendar and days operate from left to right or
from right to left

placeholder Character. Text that will be displayed in the input box of the date picker when
no date is selected. Default value is ’Start Date’

reopen_calendar_on_clear

Logical. If True, the calendar will automatically open when cleared
number_of_months_shown

Numeric. Number of calendar months that are shown when calendar is opened

with_portal Logical. If True, calendar will open in a screen overlay portal, not supported on
vertical calendar

with_full_screen_portal

Logical. If True, calendar will open in a full screen overlay portal, will take
precedent over ’withPortal’ if both are set to True, not supported on vertical
calendar

first_day_of_week

A value equal to: 0, 1, 2, 3, 4, 5, 6. Specifies what day is the first day of the
week, values must be from [0, ..., 6] with 0 denoting Sunday and 6 denoting
Saturday

stay_open_on_select

Logical. If True the calendar will not close when the user has selected a value
and will wait until the user clicks off the calendar

show_outside_days

Logical. If True the calendar will display days that rollover into the next month

month_format Character. Specifies the format that the month will be displayed in the calendar,
valid formats are variations of "MM YY". For example: "MM YY" renders as
’05 97’ for May 1997 "MMMM, YYYY" renders as ’May, 1997’ for May 1997
"MMM, YY" renders as ’Sep, 97’ for September 1997

display_format Character. Specifies the format that the selected dates will be displayed valid
formats are variations of "MM YY DD". For example: "MM YY DD" renders
as ’05 10 97’ for May 10th 1997 "MMMM, YY" renders as ’May, 1997’ for
May 10th 1997 "M, D, YYYY" renders as ’07, 10, 1997’ for September 10th
1997 "MMMM" renders as ’May’ for May 10 1997

disabled Logical. If True, no dates can be selected.

clearable Logical. Whether or not the dropdown is "clearable", that is, whether or not a
small "x" appears on the right of the dropdown that removes the selected value.

style Named list. CSS styles appended to wrapper div

className Character. Appends a CSS class to the wrapper div component.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which

dccDropdown 13

property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this component
to be persisted when the component - or the page - is refreshed. If ‘persisted‘
is truthy and hasn’t changed from its previous value, a ‘date‘ that the user has
changed while using the app will keep that change, as long as the new ‘date‘ also
matches what was given originally. Used in conjunction with ‘persistence_type‘.

persisted_props

List of a value equal to: ’date’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘date‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
dccDatePickerSingle(

id = "date-picker-single",
date = as.Date("1997/5/10")

)
)

app$run_server()
}

dccDropdown Dropdown component

Description

Dropdown is an interactive dropdown element for selecting one or more items. The values and
labels of the dropdown items are specified in the ‘options‘ property and the selected item(s) are
specified with the ‘value‘ property. Use a dropdown when you have many options (more than 5) or

14 dccDropdown

when you are constrained for space. Otherwise, you can use RadioItems or a Checklist, which have
the benefit of showing the users all of the items at once.

Usage

dccDropdown(id=NULL, options=NULL, value=NULL, optionHeight=NULL,
className=NULL, clearable=NULL, disabled=NULL, multi=NULL,
placeholder=NULL, searchable=NULL, search_value=NULL,
style=NULL, loading_state=NULL, persistence=NULL,
persisted_props=NULL, persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

options List of lists containing elements ’label’, ’value’, ’disabled’, ’title’. those el-
ements have the following types: - label (character | numeric; required): the
dropdown’s label - value (character | numeric; required): the value of the drop-
down. this value corresponds to the items specified in the ‘value‘ property. -
disabled (logical; optional): if true, this option is disabled and cannot be se-
lected. - title (character; optional): the html ’title’ attribute for the option.
allows for information on hover. for more information on this attribute, see
https://developer.mozilla.org/en-us/docs/web/html/global_attributes/titles. An ar-
ray of options label: [string|number], value: [string|number], an optional dis-
abled field can be used for each option

value Character | numeric | list of character | numerics. The value of the input. If
‘multi‘ is false (the default) then value is just a string that corresponds to the
values provided in the ‘options‘ property. If ‘multi‘ is true, then multiple values
can be selected at once, and ‘value‘ is an array of items with values correspond-
ing to those in the ‘options‘ prop.

optionHeight Numeric. height of each option. Can be increased when label lengths would
wrap around

className Character. className of the dropdown element
clearable Logical. Whether or not the dropdown is "clearable", that is, whether or not a

small "x" appears on the right of the dropdown that removes the selected value.
disabled Logical. If true, this dropdown is disabled and the selection cannot be changed.
multi Logical. If true, the user can select multiple values
placeholder Character. The grey, default text shown when no option is selected
searchable Logical. Whether to enable the searching feature or not
search_value Character. The value typed in the DropDown for searching.
style Named list. Defines CSS styles which will override styles previously set.
loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those

elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

dccGraph 15

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the
user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
htmlDiv(

dccDropdown(
options=list(

list(label = "New York City", value = "NYC"),
list(label = "Montreal", value = "MTL"),
list(label = "San Francisco", value = "SF")

),
value="MTL"

)
)

)

app$run_server()
}

dccGraph Graph component

16 dccGraph

Description

Graph can be used to render any plotly.js-powered data visualization. You can define callbacks
based on user interaction with Graphs such as hovering, clicking or selecting

Usage

dccGraph(id=NULL, responsive=NULL, clickData=NULL,
clickAnnotationData=NULL, hoverData=NULL,
clear_on_unhover=NULL, selectedData=NULL, relayoutData=NULL,
extendData=NULL, restyleData=NULL, figure=NULL, style=NULL,
className=NULL, animate=NULL, animation_options=NULL,
config=NULL, loading_state=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

responsive A value equal to: true, false, ’auto’. If True, the Plotly.js plot will be fully re-
sponsive to window resize and parent element resize event. This is achieved
by overriding ‘config.responsive‘ to True, ‘figure.layout.autosize‘ to True and
unsetting ‘figure.layout.height‘ and ‘figure.layout.width‘. If False, the Plotly.js
plot not be responsive to window resize and parent element resize event. This is
achieved by overriding ‘config.responsive‘ to False and ‘figure.layout.autosize‘
to False. If ’auto’ (default), the Graph will determine if the Plotly.js plot can
be made fully responsive (True) or not (False) based on the values in ‘con-
fig.responsive‘, ‘figure.layout.autosize‘, ‘figure.layout.height‘, ‘figure.layout.width‘.
This is the legacy behavior of the Graph component.
Needs to be combined with appropriate dimension / styling through the ‘style‘
prop to fully take effect.

clickData Named list. Data from latest click event. Read-only.
clickAnnotationData

Named list. Data from latest click annotation event. Read-only.

hoverData Named list. Data from latest hover event. Read-only.
clear_on_unhover

Logical. If True, ‘clear_on_unhover‘ will clear the ‘hoverData‘ property when
the user "unhovers" from a point. If False, then the ‘hoverData‘ property will be
equal to the data from the last point that was hovered over.

selectedData Named list. Data from latest select event. Read-only.

relayoutData Named list. Data from latest relayout event which occurs when the user zooms
or pans on the plot or other layout-level edits. Has the form ‘<attr string>:
<value>‘ describing the changes made. Read-only.

extendData Unnamed list | named list. Data that should be appended to existing traces. Has
the form ‘[updateData, traceIndices, maxPoints]‘, where ‘updateData‘ is an ob-
ject containing the data to extend, ‘traceIndices‘ (optional) is an array of trace
indices that should be extended, and ‘maxPoints‘ (optional) is either an integer
defining the maximum number of points allowed or an object with key:value

dccGraph 17

pairs matching ‘updateData‘ Reference the Plotly.extendTraces API for full us-
age: https://plotly.com/javascript/plotlyjs-function-reference/#plotlyextendtraces

restyleData Unnamed list. Data from latest restyle event which occurs when the user tog-
gles a legend item, changes parcoords selections, or other trace-level edits. Has
the form ‘[edits, indices]‘, where ‘edits‘ is an object ‘<attr string>: <value>‘
describing the changes made, and ‘indices‘ is an array of trace indices that were
edited. Read-only.

figure Lists containing elements ’data’, ’layout’, ’frames’. those elements have the fol-
lowing types: - data (list of named lists; optional) - layout (named list; optional)
- frames (list of named lists; optional). Plotly ‘figure‘ object. See schema:
https://plotly.com/javascript/reference
‘config‘ is set separately by the ‘config‘ property

style Named list. Generic style overrides on the plot div

className Character. className of the parent div

animate Logical. Beta: If true, animate between updates using plotly.js’s ‘animate‘ func-
tion

animation_options

Named list. Beta: Object containing animation settings. Only applies if ‘ani-
mate‘ is ‘true‘

config Lists containing elements ’staticplot’, ’plotlyserverurl’, ’editable’, ’edits’, ’auto-
sizable’, ’responsive’, ’queuelength’, ’fillframe’, ’framemargins’, ’scrollzoom’,
’doubleclick’, ’doubleclickdelay’, ’showtips’, ’showaxisdraghandles’, ’showax-
israngeentryboxes’, ’showlink’, ’senddata’, ’linktext’, ’displaymodebar’, ’showsend-
tocloud’, ’showeditinchartstudio’, ’modebarbuttonstoremove’, ’modebarbutton-
stoadd’, ’modebarbuttons’, ’toimagebuttonoptions’, ’displaylogo’, ’watermark’,
’plotglpixelratio’, ’topojsonurl’, ’mapboxaccesstoken’, ’locale’, ’locales’. those
elements have the following types: - staticplot (logical; optional): no interactiv-
ity, for export or image generation - plotlyserverurl (character; optional): base
url for a plotly cloud instance, if ‘showsendtocloud‘ is enabled - editable (log-
ical; optional): we can edit titles, move annotations, etc - sets all pieces of
‘edits‘ unless a separate ‘edits‘ config item overrides individual parts - edits (op-
tional): a set of editable properties. edits has the following type: lists containing
elements ’annotationposition’, ’annotationtail’, ’annotationtext’, ’axistitletext’,
’colorbarposition’, ’colorbartitletext’, ’legendposition’, ’legendtext’, ’shapepo-
sition’, ’titletext’. those elements have the following types: - annotationposition
(logical; optional): the main anchor of the annotation, which is the text (if no
arrow) or the arrow (which drags the whole thing leaving the arrow length & di-
rection unchanged) - annotationtail (logical; optional): just for annotations with
arrows, change the length and direction of the arrow - annotationtext (logical;
optional) - axistitletext (logical; optional) - colorbarposition (logical; optional)
- colorbartitletext (logical; optional) - legendposition (logical; optional) - leg-
endtext (logical; optional): edit the trace name fields from the legend - shape-
position (logical; optional) - titletext (logical; optional): the global ‘layout.title‘
- autosizable (logical; optional): do autosize once regardless of layout.autosize
(use default width or height values otherwise) - responsive (logical; optional):
whether to change layout size when the window size changes - queuelength
(numeric; optional): set the length of the undo/redo queue - fillframe (logical;

18 dccGraph

optional): if we do autosize, do we fill the container or the screen? - framemar-
gins (numeric; optional): if we do autosize, set the frame margins in percents
of plot size - scrollzoom (logical; optional): mousewheel or two-finger scroll
zooms the plot - doubleclick (a value equal to: false, ’reset’, ’autosize’, ’re-
set+autosize’; optional): double click interaction (false, ’reset’, ’autosize’ or
’reset+autosize’) - doubleclickdelay (numeric; optional): delay for registering a
double-click event in ms. the minimum value is 100 and the maximum value is
1000. by default this is 300. - showtips (logical; optional): new users see some
hints about interactivity - showaxisdraghandles (logical; optional): enable axis
pan/zoom drag handles - showaxisrangeentryboxes (logical; optional): enable
direct range entry at the pan/zoom drag points (drag handles must be enabled
above) - showlink (logical; optional): link to open this plot in plotly - senddata
(logical; optional): if we show a link, does it contain data or just link to a plotly
file? - linktext (character; optional): text appearing in the senddata link - display-
modebar (a value equal to: true, false, ’hover’; optional): display the mode bar
(true, false, or ’hover’) - showsendtocloud (logical; optional): should we include
a modebar button to send this data to a plotly cloud instance, linked by ‘plotl-
yserverurl‘. by default this is false. - showeditinchartstudio (logical; optional):
should we show a modebar button to send this data to a plotly chart studio
plot. if both this and showsendtocloud are selected, only showeditinchartstudio
will be honored. by default this is false. - modebarbuttonstoremove (unnamed
list; optional): remove mode bar button by name. all modebar button names at
https://github.com/plotly/plotly.js/blob/master/src/components/modebar/buttons.js
common names include: senddatatocloud; (2d) zoom2d, pan2d, select2d, lasso2d,
zoomin2d, zoomout2d, autoscale2d, resetscale2d; (cartesian) hoverclosestcarte-
sian, hovercomparecartesian; (3d) zoom3d, pan3d, orbitrotation, tablerotation,
handledrag3d, resetcameradefault3d, resetcameralastsave3d, hoverclosest3d; (geo)
zoomingeo, zoomoutgeo, resetgeo, hoverclosestgeo; hoverclosestgl2d, hover-
closestpie, togglehover, resetviews. - modebarbuttonstoadd (unnamed list; op-
tional): add mode bar button using config objects - modebarbuttons (logical |
numeric | character | named list | unnamed list; optional): fully custom mode
bar buttons as nested array, where the outer arrays represents button groups,
and the inner arrays have buttons config objects or names of default buttons
- toimagebuttonoptions (optional): modifications to how the toimage modebar
button works. toimagebuttonoptions has the following type: lists containing
elements ’format’, ’filename’, ’width’, ’height’, ’scale’. those elements have
the following types: - format (a value equal to: ’jpeg’, ’png’, ’webp’, ’svg’;
optional): the file format to create - filename (character; optional): the name
given to the downloaded file - width (numeric; optional): width of the down-
loaded file, in px - height (numeric; optional): height of the downloaded file,
in px - scale (numeric; optional): extra resolution to give the file after render-
ing it with the given width and height - displaylogo (logical; optional): add the
plotly logo on the end of the mode bar - watermark (logical; optional): add
the plotly logo even with no modebar - plotglpixelratio (numeric; optional):
increase the pixel ratio for gl plot images - topojsonurl (character; optional):
url to topojson files used in geo charts - mapboxaccesstoken (logical | numeric
| character | named list | unnamed list; optional): mapbox access token (re-
quired to plot mapbox trace types) if using an mapbox atlas server, set this

dccGraph 19

option to ”, so that plotly.js won’t attempt to authenticate to the public map-
box server. - locale (character; optional): the locale to use. locales may be
provided with the plot (‘locales‘ below) or by loading them on the page, see:
https://github.com/plotly/plotly.js/blob/master/dist/readme.md#to-include-localization
- locales (named list; optional): localization definitions, if you choose to provide
them with the plot rather than registering them globally.. Plotly.js config options.
See https://plotly.com/javascript/configuration-options/ for more info.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(plotly)
app <- Dash$new()

year <- c(1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012)

worldwide <- c(219, 146, 112, 127, 124, 180, 236, 207, 236, 263,
350, 430, 474, 526, 488, 537, 500, 439)

china <- c(16, 13, 10, 11, 28, 37, 43, 55, 56, 88, 105, 156, 270,
299, 340, 403, 549, 499)

data <- data.frame(year, worldwide, china)

app$layout(
htmlDiv(

dccGraph(
figure = layout(

add_trace(
plot_ly(data,

x = ~year,
y = ~worldwide,
type = "bar",
name = "Worldwide",
marker = list(color = "rgb(55, 83, 109)")
),
y = ~china,
name = "China",

20 dccInput

marker = list(color = "rgb(26, 118, 255)")
),
yaxis = list(title = "Count"),
xaxis = list(title = "Year"),
barmode = "group",
title="US Export of Plastic Scrap"),
style = list("height" = 300),
id = "my_graph"

)
)

)

app$run_server()
}

dccInput Input component

Description

A basic HTML input control for entering text, numbers, or passwords. Note that checkbox and
radio types are supported through the Checklist and RadioItems component. Dates, times, and file
uploads are also supported through separate components.

Usage

dccInput(id=NULL, value=NULL, style=NULL, className=NULL,
debounce=NULL, type=NULL, autoComplete=NULL, autoFocus=NULL,
disabled=NULL, inputMode=NULL, list=NULL, max=NULL,
maxLength=NULL, min=NULL, minLength=NULL, multiple=NULL,
name=NULL, pattern=NULL, placeholder=NULL, readOnly=NULL,
required=NULL, selectionDirection=NULL, selectionEnd=NULL,
selectionStart=NULL, size=NULL, spellCheck=NULL, step=NULL,
n_submit=NULL, n_submit_timestamp=NULL, n_blur=NULL,
n_blur_timestamp=NULL, loading_state=NULL, persistence=NULL,
persisted_props=NULL, persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

value Character | numeric. The value of the input

style Named list. The input’s inline styles

className Character. The class of the input element

debounce Logical. If true, changes to input will be sent back to the Dash server only on
enter or when losing focus. If it’s false, it will sent the value back on every
change.

dccInput 21

type A value equal to: "text", ’number’, ’password’, ’email’, ’range’, ’search’, ’tel’,
’url’, ’hidden’. The type of control to render.

autoComplete Character. This attribute indicates whether the value of the control can be auto-
matically completed by the browser.

autoFocus A value equal to: ’autofocus’, ’autofocus’, ’autofocus’ | logical. The element
should be automatically focused after the page loaded. autoFocus is an HTML
boolean attribute - it is enabled by a boolean or ’autoFocus’. Alternative capi-
talizations ‘autofocus‘ & ‘AUTOFOCUS‘ are also acccepted.

disabled A value equal to: ’disabled’, ’disabled’ | logical. If true, the input is disabled
and can’t be clicked on. disabled is an HTML boolean attribute - it is enabled
by a boolean or ’disabled’. Alternative capitalizations ‘DISABLED‘

inputMode A value equal to: "verbatim", "latin", "latin-name", "latin-prose", "full-width-
latin", "kana", "katakana", "numeric", "tel", "email", "url". Provides a hint to
the browser as to the type of data that might be entered by the user while editing
the element or its contents.

list Character. Identifies a list of pre-defined options to suggest to the user. The
value must be the id of a <datalist> element in the same document. The browser
displays only options that are valid values for this input element. This attribute
is ignored when the type attribute’s value is hidden, checkbox, radio, file, or a
button type.

max Character | numeric. The maximum (numeric or date-time) value for this item,
which must not be less than its minimum (min attribute) value.

maxLength Character | numeric. If the value of the type attribute is text, email, search,
password, tel, or url, this attribute specifies the maximum number of characters
(in UTF-16 code units) that the user can enter. For other control types, it is
ignored. It can exceed the value of the size attribute. If it is not specified, the
user can enter an unlimited number of characters. Specifying a negative number
results in the default behavior (i.e. the user can enter an unlimited number of
characters). The constraint is evaluated only when the value of the attribute has
been changed.

min Character | numeric. The minimum (numeric or date-time) value for this item,
which must not be greater than its maximum (max attribute) value.

minLength Character | numeric. If the value of the type attribute is text, email, search,
password, tel, or url, this attribute specifies the minimum number of characters
(in Unicode code points) that the user can enter. For other control types, it is
ignored.

multiple Logical. This Boolean attribute indicates whether the user can enter more than
one value. This attribute applies when the type attribute is set to email or file,
otherwise it is ignored.

name Character. The name of the control, which is submitted with the form data.

pattern Character. A regular expression that the control’s value is checked against. The
pattern must match the entire value, not just some subset. Use the title attribute
to describe the pattern to help the user. This attribute applies when the value
of the type attribute is text, search, tel, url, email, or password, otherwise it
is ignored. The regular expression language is the same as JavaScript RegExp

22 dccInput

algorithm, with the ’u’ parameter that makes it treat the pattern as a sequence of
unicode code points. The pattern is not surrounded by forward slashes.

placeholder Character | numeric. A hint to the user of what can be entered in the control .
The placeholder text must not contain carriage returns or line-feeds. Note: Do
not use the placeholder attribute instead of a <label> element, their purposes are
different. The <label> attribute describes the role of the form element (i.e. it
indicates what kind of information is expected), and the placeholder attribute is
a hint about the format that the content should take. There are cases in which
the placeholder attribute is never displayed to the user, so the form must be
understandable without it.

readOnly Logical | a value equal to: ’readonly’, ’readonly’, ’readonly’. This attribute
indicates that the user cannot modify the value of the control. The value of the
attribute is irrelevant. If you need read-write access to the input value, do not
add the "readonly" attribute. It is ignored if the value of the type attribute is
hidden, range, color, checkbox, radio, file, or a button type (such as button or
submit). readOnly is an HTML boolean attribute - it is enabled by a boolean
or ’readOnly’. Alternative capitalizations ‘readonly‘ & ‘READONLY‘ are also
acccepted.

required A value equal to: ’required’, ’required’ | logical. This attribute specifies that
the user must fill in a value before submitting a form. It cannot be used when
the type attribute is hidden, image, or a button type (submit, reset, or button).
The :optional and :required CSS pseudo-classes will be applied to the field as
appropriate. required is an HTML boolean attribute - it is enabled by a boolean
or ’required’. Alternative capitalizations ‘REQUIRED‘ are also acccepted.

selectionDirection

Character. The direction in which selection occurred. This is "forward" if the
selection was made from left-to-right in an LTR locale or right-to-left in an RTL
locale, or "backward" if the selection was made in the opposite direction. On
platforms on which it’s possible this value isn’t known, the value can be "none";
for example, on macOS, the default direction is "none", then as the user begins to
modify the selection using the keyboard, this will change to reflect the direction
in which the selection is expanding.

selectionEnd Character. The offset into the element’s text content of the last selected charac-
ter. If there’s no selection, this value indicates the offset to the character follow-
ing the current text input cursor position (that is, the position the next character
typed would occupy).

selectionStart Character. The offset into the element’s text content of the first selected charac-
ter. If there’s no selection, this value indicates the offset to the character follow-
ing the current text input cursor position (that is, the position the next character
typed would occupy).

size Character. The initial size of the control. This value is in pixels unless the value
of the type attribute is text or password, in which case it is an integer number of
characters. Starting in, this attribute applies only when the type attribute is set
to text, search, tel, url, email, or password, otherwise it is ignored. In addition,
the size must be greater than zero. If you do not specify a size, a default value
of 20 is used.’ simply states "the user agent should ensure that at least that
many characters are visible", but different characters can have different widths

dccInput 23

in certain fonts. In some browsers, a certain string with x characters will not be
entirely visible even if size is defined to at least x.

spellCheck A value equal to: ’true’, ’false’ | logical. Setting the value of this attribute to true
indicates that the element needs to have its spelling and grammar checked. The
value default indicates that the element is to act according to a default behavior,
possibly based on the parent element’s own spellcheck value. The value false
indicates that the element should not be checked.

step Character | numeric. Works with the min and max attributes to limit the incre-
ments at which a numeric or date-time value can be set. It can be the string any
or a positive floating point number. If this attribute is not set to any, the control
accepts only values at multiples of the step value greater than the minimum.

n_submit Numeric. Number of times the ‘Enter‘ key was pressed while the input had
focus.

n_submit_timestamp

Numeric. Last time that ‘Enter‘ was pressed.

n_blur Numeric. Number of times the input lost focus.
n_blur_timestamp

Numeric. Last time the input lost focus.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the
user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {

24 dccInterval

library(dash)
library(dashHtmlComponents)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
htmlDiv(

dccInput(
placeholder = "Enter a value...",
type = "text",
value = ""

)
)

)

app$run_server()
}

dccInterval Interval component

Description

A component that repeatedly increments a counter ‘n_intervals‘ with a fixed time delay between
each increment. Interval is good for triggering a component on a recurring basis. The time delay is
set with the property "interval" in milliseconds.

Usage

dccInterval(id=NULL, interval=NULL, disabled=NULL, n_intervals=NULL,
max_intervals=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

interval Numeric. This component will increment the counter ‘n_intervals‘ every ‘inter-
val‘ milliseconds

disabled Logical. If True, the counter will no longer update

n_intervals Numeric. Number of times the interval has passed

max_intervals Numeric. Number of times the interval will be fired. If -1, then the interval has
no limit (the default) and if 0 then the interval stops running.

Value

named list of JSON elements corresponding to React.js properties and their values

dccInterval 25

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashHtmlComponents)
library(dashCoreComponents)
library(plotly)

app <- Dash$new()

app$layout(
htmlDiv(list(

htmlH2('3 Second Updates'),
dccInterval(id = '3s-interval',

interval= 3*1000,
n_intervals = 0),

htmlDiv(list(
dccGraph(id = 'live-graph')

)
)
)

)
)

app$callback(
output = list(

output('live-graph', 'figure')
),
params = list(

input('3s-interval', 'n_intervals')
),

update_graph <- function(n_intervals) {
df <- data.frame(

'time' = c(1:8),
'value' = sample(1:8, 8),
'value-2' = sample(1:8, 8)

)

bar <- animation_opts(plot_ly(
data = df, x=~time, y=~value, type = "bar"),
1000, easing = "cubic-in-out"

)

return(list(bar))
}

)

app$run_server()
}

26 dccLink

dccLink Link component

Description

Link allows you to create a clickable link within a multi-page app. For links with destinations
outside the current app, ‘html.A‘ is a better component to use.

Usage

dccLink(children=NULL, id=NULL, href=NULL, refresh=NULL,
className=NULL, style=NULL, title=NULL, target=NULL,
loading_state=NULL)

Arguments

children A list of or a singular dash component, string or number. The children of this
component

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

href Character. The URL of a linked resource.

refresh Logical. Controls whether or not the page will refresh when the link is clicked

className Character. Often used with CSS to style elements with common properties.

style Named list. Defines CSS styles which will override styles previously set.

title Character. Adds the title attribute to your link, which can contain supplementary
information.

target Character. Specifies where to open the link reference.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

dccLoading 27

app <- Dash$new()

app$layout(htmlDiv(list(
represents the URL bar, doesn't render anything
dccLocation(id = 'url', refresh=FALSE),
dccLink('Navigate to "/"', href='/'),
htmlBr(),
dccLink('Navigate to "/page-2"', href='/page-2'),
content will be rendered in this element
htmlDiv(id='page-content')

)
)

)

app$callback(output=list(id='page-content', property='children'),
params=list(

input(id='url', property='pathname')),
function(pathname) {
paste0('You are on page ', pathname)
}

)

app$run_server()
}

dccLoading Loading component

Description

A Loading component that wraps any other component and displays a spinner until the wrapped
component has rendered.

Usage

dccLoading(children=NULL, id=NULL, type=NULL, fullscreen=NULL,
debug=NULL, className=NULL, style=NULL, color=NULL,
loading_state=NULL)

Arguments

children List of a list of or a singular dash component, string or numbers | a list of or
a singular dash component, string or number. Array that holds components to
render

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

type A value equal to: ’graph’, ’cube’, ’circle’, ’dot’, ’default’. Property that deter-
mines which spinner to show one of ’graph’, ’cube’, ’circle’, ’dot’, or ’default’.

28 dccLoading

fullscreen Logical. Boolean that makes the spinner display full-screen

debug Logical. If true, the spinner will display the component_name and prop_name
while loading

className Character. Additional CSS class for the spinner root DOM node

style Named list. Additional CSS styling for the spinner root DOM node

color Character. Primary colour used for the loading spinners

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()

app$layout(htmlDiv(
children=list(

htmlH3("Edit text input to see loading state"),
dccInput(id="input-1", value='Input triggers local spinner'),

dccLoading(id="loading-1", children=list(htmlDiv(id="loading-output-1")), type="default"),
htmlDiv(

list(
dccInput(id="input-2", value='Input triggers nested spinner'),
dccLoading(

id="loading-2",
children=list(htmlDiv(list(htmlDiv(id="loading-output-2")))),
type="circle"

)
)

)
)

))

app$callback(
output = list(id='loading-output-1', property = 'children'),
params = list(input(id = 'input-1', property = 'value')),
function(value){

Sys.sleep(1)
return(value)

dccLocation 29

}
)

app$callback(
output = list(id='loading-output-2', property = 'children'),
params = list(input(id = 'input-2', property = 'value')),
function(value){

Sys.sleep(1)
return(value)

}
)

app$run_server()
}

dccLocation Location component

Description

Update and track the current window.location object through the window.history state. Use in con-
junction with the ‘dash_core_components.Link‘ component to make apps with multiple pages.

Usage

dccLocation(id=NULL, pathname=NULL, search=NULL, hash=NULL, href=NULL,
refresh=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

pathname Character. pathname in window.location - e.g., "/my/full/pathname"

search Character. search in window.location - e.g., "?myargument=1"

hash Character. hash in window.location - e.g., "#myhash"

href Character. href in window.location - e.g., "/my/full/pathname?myargument=1#myhash"

refresh Logical. Refresh the page when the location is updated?

Value

named list of JSON elements corresponding to React.js properties and their values

30 dccLogoutButton

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()

app$layout(htmlDiv(list(
represents the URL bar, doesn't render anything
dccLocation(id = 'url', refresh=FALSE),
dccLink('Navigate to "/"', href='/'),
htmlBr(),
dccLink('Navigate to "/page-2"', href='/page-2'),

content will be rendered in this element
htmlDiv(id='page-content')

)
)

)

app$callback(output=list(id='page-content', property='children'),
params=list(

input(id='url', property='pathname')),
function(pathname)
{
paste0('You are on page ', pathname)
}

)

app$run_server()
}

dccLogoutButton LogoutButton component

Description

Logout button to submit a form post request to the ‘logout_url‘ prop. Usage is intended for dash-
deployment-server authentication. DDS usage: ‘dcc.LogoutButton(logout_url=os.getenv(’DASH_LOGOUT_URL’))‘
Custom usage: - Implement a login mechanism. - Create a flask route with a post method han-
dler. ‘@app.server.route(’/logout’, methods=[’POST’])‘ - The logout route should perform what’s
necessary for the user to logout. - If you store the session in a cookie, clear the cookie: ‘rep =
flask.Response(); rep.set_cookie(’session’, ”, expires=0)‘ - Create a logout button component and
assign it the logout_url ‘dcc.LogoutButton(logout_url=’/logout’)‘ See https://dash.plotly.com/dash-
core-components/logout_button for more documentation and examples.

dccMarkdown 31

Usage

dccLogoutButton(id=NULL, label=NULL, logout_url=NULL, style=NULL,
method=NULL, className=NULL, loading_state=NULL)

Arguments

id Character. Id of the button.

label Character. Text of the button

logout_url Character. Url to submit a post logout request.

style Named list. Style of the button

method Character. Http method to submit the logout form.

className Character. CSS class for the button.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
dccLogoutButton(logout_url='/custom-auth/logout')

)

app$run_server()
}

dccMarkdown Markdown component

Description

A component that renders Markdown text as specified by the GitHub Markdown spec. These com-
ponent uses [react-markdown](https://rexxars.github.io/react-markdown/) under the hood.

32 dccMarkdown

Usage

dccMarkdown(children=NULL, id=NULL, className=NULL,
dangerously_allow_html=NULL, dedent=NULL,
highlight_config=NULL, loading_state=NULL, style=NULL)

Arguments

children Character | list of characters. A markdown string (or array of strings) that
adhreres to the CommonMark spec

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

className Character. Class name of the container element
dangerously_allow_html

Logical. A boolean to control raw HTML escaping. Setting HTML from code is
risky because it’s easy to inadvertently expose your users to a cross-site scripting
(XSS) (https://en.wikipedia.org/wiki/Cross-site_scripting) attack.

dedent Logical. Remove matching leading whitespace from all lines. Lines that are
empty, or contain *only* whitespace, are ignored. Both spaces and tab charac-
ters are removed, but only if they match; we will not convert tabs to spaces or
vice versa.

highlight_config

Lists containing elements ’theme’. those elements have the following types: -
theme (a value equal to: ’dark’, ’light’; optional): color scheme; default ’light’.
Config options for syntax highlighting.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

style Named list. User-defined inline styles for the rendered Markdown

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashHtmlComponents)
library(dashCoreComponents)

app <- Dash$new()

app$title("dccMarkdown Syntax Highlighting Demo")

dccMarkdown leverages Highlight.js, which allows

dccRadioItems 33

app developers to specify the language inline
and highlight its syntax properly:
app$layout(

htmlDiv(
list(

htmlDiv(htmlH2("Syntax markdown demo:")),
dccMarkdown(children = "
```r
library(dash)
library(dashHtmlComponents)

app <- Dash$new()
app$layout(htmlDiv('Dash app code wrapped within an app'))
app$run_server()
```")

)
)

)

app$run_server()
}

dccRadioItems RadioItems component

Description

RadioItems is a component that encapsulates several radio item inputs. The values and labels of the
RadioItems is specified in the ‘options‘ property and the seleced item is specified with the ‘value‘
property. Each radio item is rendered as an input with a surrounding label.

Usage

dccRadioItems(id=NULL, options=NULL, value=NULL, style=NULL,
className=NULL, inputStyle=NULL, inputClassName=NULL,
labelStyle=NULL, labelClassName=NULL, loading_state=NULL,
persistence=NULL, persisted_props=NULL,
persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

options List of lists containing elements ’label’, ’value’, ’disabled’. those elements have
the following types: - label (character | numeric; required): the radio item’s label
- value (character | numeric; required): the value of the radio item. this value
corresponds to the items specified in the ‘value‘ property. - disabled (logical;
optional): if true, this radio item is disabled and can’t be clicked on.s. An array
of options

34 dccRadioItems

value Character | numeric. The currently selected value

style Named list. The style of the container (div)

className Character. The class of the container (div)

inputStyle Named list. The style of the <input> radio element

inputClassName Character. The class of the <input> radio element

labelStyle Named list. The style of the <label> that wraps the radio input and the option’s
label

labelClassName Character. The class of the <label> that wraps the radio input and the option’s
label

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the
user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashHtmlComponents)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
htmlDiv(

dccRadioItems(

dccRangeSlider 35

options=list(
list("label" = "New York City", "value" = "NYC"),
list("label" = "Montreal", "value" = "MTL"),
list("label" = "San Francisco", "value" = "SF")

),
value = "MTL"

)
)

)

app$run_server()
}

dccRangeSlider RangeSlider component

Description

A double slider with two handles. Used for specifying a range of numerical values.

Usage

dccRangeSlider(id=NULL, marks=NULL, value=NULL, allowCross=NULL,
className=NULL, count=NULL, disabled=NULL, dots=NULL,
included=NULL, min=NULL, max=NULL, pushable=NULL,
tooltip=NULL, step=NULL, vertical=NULL, verticalHeight=NULL,
updatemode=NULL, loading_state=NULL, persistence=NULL,
persisted_props=NULL, persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

marks List with named elements and values of type character | lists containing elements
’label’, ’style’. those elements have the following types: - label (character; op-
tional) - style (named list; optional). Marks on the slider. The key determines
the position (a number), and the value determines what will show. If you want
to set the style of a specific mark point, the value should be an object which
contains style and label properties.

value List of numerics. The value of the input

allowCross Logical. allowCross could be set as true to allow those handles to cross.

className Character. Additional CSS class for the root DOM node

count Numeric. Determine how many ranges to render, and multiple handles will be
rendered (number + 1).

disabled Logical. If true, the handles can’t be moved.

36 dccRangeSlider

dots Logical. When the step value is greater than 1, you can set the dots to true if you
want to render the slider with dots.

included Logical. If the value is true, it means a continuous value is included. Otherwise,
it is an independent value.

min Numeric. Minimum allowed value of the slider
max Numeric. Maximum allowed value of the slider
pushable Logical | numeric. pushable could be set as true to allow pushing of surrounding

handles when moving an handle. When set to a number, the number will be the
minimum ensured distance between handles.

tooltip Lists containing elements ’always_visible’, ’placement’. those elements have
the following types: - always_visible (logical; optional): determines whether
tooltips should always be visible (as opposed to the default, visible on hover) -
placement (a value equal to: ’left’, ’right’, ’top’, ’bottom’, ’topleft’, ’topright’,
’bottomleft’, ’bottomright’; optional): determines the placement of tooltips see
https://github.com/react-component/tooltip#api top/bottom* sets the _origin_ of
the tooltip, so e.g. ‘topleft‘ will in reality appear to be on the top right of the
handle. Configuration for tooltips describing the current slider values

step Numeric. Value by which increments or decrements are made
vertical Logical. If true, the slider will be vertical
verticalHeight Numeric. The height, in px, of the slider if it is vertical.
updatemode A value equal to: ’mouseup’, ’drag’. Determines when the component should

update its value. If ‘mouseup‘, then the slider will only trigger its value when
the user has finished dragging the slider. If ‘drag‘, then the slider will update its
value continuously as it is being dragged. Only use ‘drag‘ if your updates are
fast.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the
user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

dccSlider 37

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashHtmlComponents)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
htmlDiv(

dccRangeSlider(
count = 1,
min = -5,
max = 10,
step = 0.5,
value = list(-3, 7),
marks = as.list(

setNames(-5:10, as.character(-5:10))
)

)
)

)

app$run_server()
}

dccSlider Slider component

Description

A slider component with a single handle.

Usage

dccSlider(id=NULL, marks=NULL, value=NULL, className=NULL,
disabled=NULL, dots=NULL, included=NULL, min=NULL, max=NULL,
tooltip=NULL, step=NULL, vertical=NULL, verticalHeight=NULL,
updatemode=NULL, loading_state=NULL, persistence=NULL,
persisted_props=NULL, persistence_type=NULL)

38 dccSlider

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

marks List with named elements and values of type character | lists containing elements
’label’, ’style’. those elements have the following types: - label (character; op-
tional) - style (named list; optional). Marks on the slider. The key determines
the position (a number), and the value determines what will show. If you want
to set the style of a specific mark point, the value should be an object which
contains style and label properties.

value Numeric. The value of the input

className Character. Additional CSS class for the root DOM node

disabled Logical. If true, the handles can’t be moved.

dots Logical. When the step value is greater than 1, you can set the dots to true if you
want to render the slider with dots.

included Logical. If the value is true, it means a continuous value is included. Otherwise,
it is an independent value.

min Numeric. Minimum allowed value of the slider

max Numeric. Maximum allowed value of the slider

tooltip Lists containing elements ’always_visible’, ’placement’. those elements have
the following types: - always_visible (logical; optional): determines whether
tooltips should always be visible (as opposed to the default, visible on hover) -
placement (a value equal to: ’left’, ’right’, ’top’, ’bottom’, ’topleft’, ’topright’,
’bottomleft’, ’bottomright’; optional): determines the placement of tooltips see
https://github.com/react-component/tooltip#api top/bottom* sets the _origin_ of
the tooltip, so e.g. ‘topleft‘ will in reality appear to be on the top right of the
handle. Configuration for tooltips describing the current slider value

step Numeric. Value by which increments or decrements are made

vertical Logical. If true, the slider will be vertical

verticalHeight Numeric. The height, in px, of the slider if it is vertical.

updatemode A value equal to: ’mouseup’, ’drag’. Determines when the component should
update its value. If ‘mouseup‘, then the slider will only trigger its value when
the user has finished dragging the slider. If ‘drag‘, then the slider will update its
value continuously as it is being dragged. Only use ‘drag‘ if your updates are
fast.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the

dccSlider 39

user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()

app$layout(
htmlDiv(

list(
dccSlider(

id = "slider-input",
min = -5,
max = 10,
step = 0.5,
value = -3

),
htmlDiv(

id = "slider-output",
children = "Make a selection on the slider to see the value appear here."

)
)

)
)

app$callback(
output("slider-output", "children"),
list(input("slider-input", "value")),
function(value) {

return(paste0("You have chosen ", value, " on the slider above."))
}

)

40 dccStore

app$run_server()
}

dccStore Store component

Description

Easily keep data on the client side with this component. The data is not inserted in the DOM. Data
can be in memory, localStorage or sessionStorage. The data will be kept with the id as key.

Usage

dccStore(id=NULL, storage_type=NULL, data=NULL, clear_data=NULL,
modified_timestamp=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

storage_type A value equal to: ’local’, ’session’, ’memory’. The type of the web storage.
memory: only kept in memory, reset on page refresh. local: window.localStorage,
data is kept after the browser quit. session: window.sessionStorage, data is
cleared once the browser quit.

data Named list | unnamed list | numeric | character | logical. The stored data for the
id.

clear_data Logical. Set to true to remove the data contained in ‘data_key‘.
modified_timestamp

Numeric. The last time the storage was modified.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dashCoreComponents)
library(dashHtmlComponents)
library(dash)

app <- Dash$new()

app$layout(htmlDiv(list(
The memory store reverts to the default on every page refresh
dccStore(id='memory'),

dccStore 41

The local store will take the initial data
only the first time the page is loaded
and keep it until it is cleared.
dccStore(id='local', storage_type='local'),
Same as the local store but will lose the data
when the browser/tab closes.
dccStore(id='session', storage_type='session'),
htmlTable(list(

htmlThead(list(
htmlTr(htmlTh('Click to store in:', colSpan='3')),
htmlTr(list(

htmlTh(htmlButton('memory', id='memory-button')),
htmlTh(htmlButton('localStorage', id='local-button')),
htmlTh(htmlButton('sessionStorage', id='session-button'))

)),
htmlTr(list(

htmlTh('Memory clicks'),
htmlTh('Local clicks'),
htmlTh('Session clicks')

))
)),
htmlTbody(list(

htmlTr(list(
htmlTd(0, id='memory-clicks'),
htmlTd(0, id='local-clicks'),
htmlTd(0, id='session-clicks')

))
))

))
)))

for (i in c('memory', 'local', 'session')) {
app$callback(

output(id = i, property = 'data'),
params = list(

input(id = paste0(i, '-button'), property = 'n_clicks'),
state(id = i, property = 'data')

),
function(n_clicks, data){

if(is.null(n_clicks)){
return()

}
if(is.null(data[[1]])){

data = list('clicks' = 0)
} else{

data = data
}
data['clicks'] = data$clicks + 1
return(data)

}
)

}

42 dccTab

for (i in c('memory', 'local', 'session')) {
app$callback(

output(id = paste0(i, '-clicks'), property = 'children'),
params = list(

input(id = i, property = 'modified_timestamp'),
state(id = i, property = 'data')

),
function(ts, data){

if(is.null(ts)){
return()

}
if(is.null(data[[1]])){

data = list()
} else {

data = data
}
return(data$clicks[[1]])

}
)

}

app$run_server()
}

dccTab Tab component

Description

Part of dcc.Tabs - this is the child Tab component used to render a tabbed page. Its children will be
set as the content of that tab, which if clicked will become visible.

Usage

dccTab(children=NULL, id=NULL, label=NULL, value=NULL,
disabled=NULL, disabled_style=NULL, disabled_className=NULL,
className=NULL, selected_className=NULL, style=NULL,
selected_style=NULL, loading_state=NULL)

Arguments

children A list of or a singular dash component, string or number. The content of the tab
- will only be displayed if this tab is selected

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

label Character. The tab’s label

value Character. Value for determining which Tab is currently selected

disabled Logical. Determines if tab is disabled or not - defaults to false

dccTab 43

disabled_style Named list. Overrides the default (inline) styles when disabled
disabled_className

Character. Appends a class to the Tab component when it is disabled.

className Character. Appends a class to the Tab component.
selected_className

Character. Appends a class to the Tab component when it is selected.

style Named list. Overrides the default (inline) styles for the Tab component.

selected_style Named list. Overrides the default (inline) styles for the Tab component when it
is selected.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()

app$layout(htmlDiv(list(
dccTabs(id="tabs", value='tab-1', children=list(

dccTab(label='Tab one', value='tab-1'),
dccTab(label='Tab two', value='tab-2')
)

),
htmlDiv(id='tabs-content')
)
)

)

app$callback(output('tabs-content', 'children'),
params = list(input('tabs', 'value')),

function(tab){
if(tab == 'tab-1'){
return(htmlDiv(list(

htmlH3('Tab content 1')
)))}

else if(tab == 'tab-2'){
return(htmlDiv(list(

htmlH3('Tab content 2')

44 dccTabs

)))}
}

)

app$run_server()
}

dccTabs Tabs component

Description

A Dash component that lets you render pages with tabs - the Tabs component’s children can be
dcc.Tab components, which can hold a label that will be displayed as a tab, and can in turn hold
children components that will be that tab’s content.

Usage

dccTabs(children=NULL, id=NULL, value=NULL, className=NULL,
content_className=NULL, parent_className=NULL, style=NULL,
parent_style=NULL, content_style=NULL, vertical=NULL,
mobile_breakpoint=NULL, colors=NULL, loading_state=NULL,
persistence=NULL, persisted_props=NULL,
persistence_type=NULL)

Arguments

children List of a list of or a singular dash component, string or numbers | a list of or a
singular dash component, string or number. Array that holds Tab components

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

value Character. The value of the currently selected Tab

className Character. Appends a class to the Tabs container holding the individual Tab
components.

content_className

Character. Appends a class to the Tab content container holding the children of
the Tab that is selected.

parent_className

Character. Appends a class to the top-level parent container holding both the
Tabs container and the content container.

style Named list. Appends (inline) styles to the Tabs container holding the individual
Tab components.

parent_style Named list. Appends (inline) styles to the top-level parent container holding
both the Tabs container and the content container.

content_style Named list. Appends (inline) styles to the tab content container holding the
children of the Tab that is selected.

dccTabs 45

vertical Logical. Renders the tabs vertically (on the side)
mobile_breakpoint

Numeric. Breakpoint at which tabs are rendered full width (can be 0 if you don’t
want full width tabs on mobile)

colors Lists containing elements ’border’, ’primary’, ’background’. those elements
have the following types: - border (character; optional) - primary (character; op-
tional) - background (character; optional). Holds the colors used by the Tabs and
Tab components. If you set these, you should specify colors for all properties,
so: colors: border: ’#d6d6d6’, primary: ’#1975FA’, background: ’#f9f9f9’

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the
user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()

app$layout(htmlDiv(list(
dccTabs(id="tabs", value='tab-1', children=list(

dccTab(label='Tab one', value='tab-1'),
dccTab(label='Tab two', value='tab-2')

46 dccTextarea

)
),
htmlDiv(id='tabs-content')
)
)

)

app$callback(output('tabs-content', 'children'),
params = list(input('tabs', 'value')),

function(tab){
if(tab == 'tab-1'){
return(htmlDiv(list(

htmlH3('Tab content 1')
)))}

else if(tab == 'tab-2'){
return(htmlDiv(list(

htmlH3('Tab content 2')
)))}

}
)

app$run_server()
}

dccTextarea Textarea component

Description

A basic HTML textarea for entering multiline text.

Usage

dccTextarea(id=NULL, value=NULL, autoFocus=NULL, cols=NULL,
disabled=NULL, form=NULL, maxLength=NULL, minLength=NULL,
name=NULL, placeholder=NULL, readOnly=NULL, required=NULL,
rows=NULL, wrap=NULL, accessKey=NULL, className=NULL,
contentEditable=NULL, contextMenu=NULL, dir=NULL,
draggable=NULL, hidden=NULL, lang=NULL, spellCheck=NULL,
style=NULL, tabIndex=NULL, title=NULL, n_blur=NULL,
n_blur_timestamp=NULL, n_clicks=NULL,
n_clicks_timestamp=NULL, loading_state=NULL,
persistence=NULL, persisted_props=NULL,
persistence_type=NULL)

Arguments

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

dccTextarea 47

value Character. The value of the textarea

autoFocus Character. The element should be automatically focused after the page loaded.

cols Character | numeric. Defines the number of columns in a textarea.

disabled Character | logical. Indicates whether the user can interact with the element.

form Character. Indicates the form that is the owner of the element.

maxLength Character | numeric. Defines the maximum number of characters allowed in the
element.

minLength Character | numeric. Defines the minimum number of characters allowed in the
element.

name Character. Name of the element. For example used by the server to identify the
fields in form submits.

placeholder Character. Provides a hint to the user of what can be entered in the field.

readOnly Logical | a value equal to: ’readonly’, ’readonly’, ’readonly’. Indicates whether
the element can be edited. readOnly is an HTML boolean attribute - it is enabled
by a boolean or ’readOnly’. Alternative capitalizations ‘readonly‘ & ‘READ-
ONLY‘ are also acccepted.

required A value equal to: ’required’, ’required’ | logical. Indicates whether this element
is required to fill out or not. required is an HTML boolean attribute - it is enabled
by a boolean or ’required’. Alternative capitalizations ‘REQUIRED‘ are also
acccepted.

rows Character | numeric. Defines the number of rows in a text area.

wrap Character. Indicates whether the text should be wrapped.

accessKey Character. Defines a keyboard shortcut to activate or add focus to the element.

className Character. Often used with CSS to style elements with common properties.
contentEditable

Character | logical. Indicates whether the element’s content is editable.

contextMenu Character. Defines the ID of a <menu> element which will serve as the element’s
context menu.

dir Character. Defines the text direction. Allowed values are ltr (Left-To-Right) or
rtl (Right-To-Left)

draggable A value equal to: ’true’, ’false’ | logical. Defines whether the element can be
dragged.

hidden Character. Prevents rendering of given element, while keeping child elements,
e.g. script elements, active.

lang Character. Defines the language used in the element.

spellCheck A value equal to: ’true’, ’false’ | logical. Indicates whether spell checking is
allowed for the element.

style Named list. Defines CSS styles which will override styles previously set.

tabIndex Character | numeric. Overrides the browser’s default tab order and follows the
one specified instead.

title Character. Text to be displayed in a tooltip when hovering over the element.

48 dccTextarea

n_blur Numeric. Number of times the textarea lost focus.
n_blur_timestamp

Numeric. Last time the textarea lost focus.

n_clicks Numeric. Number of times the textarea has been clicked.
n_clicks_timestamp

Numeric. Last time the textarea was clicked.

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

persistence Logical | character | numeric. Used to allow user interactions in this compo-
nent to be persisted when the component - or the page - is refreshed. If ‘per-
sisted‘ is truthy and hasn’t changed from its previous value, a ‘value‘ that the
user has changed while using the app will keep that change, as long as the new
‘value‘ also matches what was given originally. Used in conjunction with ‘per-
sistence_type‘.

persisted_props

List of a value equal to: ’value’s. Properties whose user interactions will persist
after refreshing the component or the page. Since only ‘value‘ is allowed this
prop can normally be ignored.

persistence_type

A value equal to: ’local’, ’session’, ’memory’. Where persisted user changes
will be stored: memory: only kept in memory, reset on page refresh. local: win-
dow.localStorage, data is kept after the browser quit. session: window.sessionStorage,
data is cleared once the browser quit.

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)

app <- Dash$new()

app$layout(
htmlDiv(

dccTextarea(
placeholder = 'Enter a value...',
value = 'This is a TextArea component'

)
)

)

dccUpload 49

app$run_server()
}

dccUpload Upload component

Description

Upload components allow your app to accept user-uploaded files via drag’n’drop

Usage

dccUpload(children=NULL, id=NULL, contents=NULL, filename=NULL,
last_modified=NULL, accept=NULL, disabled=NULL,
disable_click=NULL, max_size=NULL, min_size=NULL,
multiple=NULL, className=NULL, className_active=NULL,
className_reject=NULL, className_disabled=NULL, style=NULL,
style_active=NULL, style_reject=NULL, style_disabled=NULL,
loading_state=NULL)

Arguments

children A list of or a singular dash component, string or number | character. Contents of
the upload component

id Character. The ID of this component, used to identify dash components in call-
backs. The ID needs to be unique across all of the components in an app.

contents Character | list of characters. The contents of the uploaded file as a binary string

filename Character | list of characters. The name of the file(s) that was(were) uploaded.
Note that this does not include the path of the file (for security reasons).

last_modified Numeric | list of numerics. The last modified date of the file that was uploaded
in unix time (seconds since 1970).

accept Character. Allow specific types of files. See https://github.com/okonet/attr-
accept for more information. Keep in mind that mime type determination is not
reliable across platforms. CSV files, for example, are reported as text/plain un-
der macOS but as application/vnd.ms-excel under Windows. In some cases there
might not be a mime type set at all. See: https://github.com/react-dropzone/react-
dropzone/issues/276

disabled Logical. Enable/disable the upload component entirely

disable_click Logical. Disallow clicking on the component to open the file dialog

max_size Numeric. Maximum file size. If ‘-1‘, then infinite

min_size Numeric. Minimum file size

multiple Logical. Allow dropping multiple files

className Character. HTML class name of the component

50 dccUpload

className_active

Character. HTML class name of the component while active
className_reject

Character. HTML class name of the component if rejected
className_disabled

Character. HTML class name of the component if disabled

style Named list. CSS styles to apply

style_active Named list. CSS styles to apply while active

style_reject Named list. CSS styles if rejected

style_disabled Named list. CSS styles if disabled

loading_state Lists containing elements ’is_loading’, ’prop_name’, ’component_name’. those
elements have the following types: - is_loading (logical; optional): determines if
the component is loading or not - prop_name (character; optional): holds which
property is loading - component_name (character; optional): holds the name of
the component that is loading. Object that holds the loading state object coming
from dash-renderer

Value

named list of JSON elements corresponding to React.js properties and their values

Examples

if (interactive() && require(dash)) {
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
library(jsonlite)

app <- Dash$new()

app$layout(htmlDiv(list(
dccUpload(

id='upload-image',
children=htmlDiv(list(

'Drag and Drop or ',
htmlA('Select Files')

)),
style=list(

'height'= '60px',
'lineHeight'= '60px',
'borderWidth'= '1px',
'borderStyle'= 'dashed',
'borderRadius'= '5px',
'textAlign'= 'center',
'margin'= '10px'

),
Allow multiple files to be uploaded
multiple=TRUE

dccUpload 51

),
htmlDiv(id='output-image-upload')

)))

parse_content = function(contents, filename, date) {
return(htmlDiv(list(

htmlH5(filename),
htmlH6(as.POSIXct(date, origin="1970-01-01")),
htmlImg(src=contents),
htmlHr(),
htmlDiv('Raw Content'),
htmlPre(paste(substr(toJSON(contents), 1, 100), "..."), style=list(

'whiteSpace'= 'pre-wrap',
'wordBreak'= 'break-all'

))
)))

}

app$callback(
output = list(id='output-image-upload', property = 'children'),
params = list(input(id = 'upload-image', property = 'contents'),

state(id = 'upload-image', property = 'filename'),
state(id = 'upload-image', property = 'last_modified')),

function(list_of_contents, list_of_names, list_of_dates) {
if (!is.null(list_of_contents) && !is.null(list_of_names) && !is.null(list_of_dates[[1]])) {

children = lapply(1:length(list_of_contents), function(x){
parse_content(list_of_contents[[x]], list_of_names[[x]], list_of_dates[[x]])

})
}
else {

children = "Upload a file to see the raw data."
}
return(children)

}
)

app$run_server()
}

Index

dashCoreComponents
(dashCoreComponents-package), 2

dashCoreComponents-package, 2
dccChecklist, 3
dccConfirmDialog, 4
dccConfirmDialogProvider, 6
dccDatePickerRange, 8
dccDatePickerSingle, 11
dccDropdown, 13
dccGraph, 15
dccInput, 20
dccInterval, 24
dccLink, 26
dccLoading, 27
dccLocation, 29
dccLogoutButton, 30
dccMarkdown, 31
dccRadioItems, 33
dccRangeSlider, 35
dccSlider, 37
dccStore, 40
dccTab, 42
dccTabs, 44
dccTextarea, 46
dccUpload, 49

52

	dashCoreComponents-package
	dccChecklist
	dccConfirmDialog
	dccConfirmDialogProvider
	dccDatePickerRange
	dccDatePickerSingle
	dccDropdown
	dccGraph
	dccInput
	dccInterval
	dccLink
	dccLoading
	dccLocation
	dccLogoutButton
	dccMarkdown
	dccRadioItems
	dccRangeSlider
	dccSlider
	dccStore
	dccTab
	dccTabs
	dccTextarea
	dccUpload
	Index

