
Package ‘dash’
June 4, 2020

Title An Interface to the 'dash' Ecosystem for Authoring Reactive Web
Applications

Version 0.5.0

Description A framework for building analytical web applications, 'dash' offers a pleasant and produc-
tive development experience. No JavaScript required.

Depends R (>= 3.0.2)

Imports dashHtmlComponents (== 1.0.3), dashCoreComponents (== 1.10.0),
dashTable (== 4.7.0), R6, fiery (> 1.0.0), routr (> 0.2.0),
plotly, reqres (>= 0.2.3), jsonlite, htmltools, assertthat,
digest, base64enc, mime, crayon, brotli

Suggests testthat

Collate 'utils.R' 'dependencies.R' 'dash-package.R' 'dash.R'
'imports.R' 'print.R' 'internal.R'

License MIT + file LICENSE

Encoding UTF-8

LazyData true

KeepSource true

RoxygenNote 7.1.0

URL https://github.com/plotly/dashR

BugReports https://github.com/plotly/dashR/issues

NeedsCompilation no

Author Chris Parmer [aut],
Ryan Patrick Kyle [aut, cre] (<https://orcid.org/0000-0001-5829-9867>),
Carson Sievert [aut] (<https://orcid.org/0000-0002-4958-2844>),
Hammad Khan [aut],
Plotly Technologies [cph]

Maintainer Ryan Patrick Kyle <ryan@plotly.com>

Repository CRAN

Date/Publication 2020-06-04 09:40:06 UTC

1

https://github.com/plotly/dashR
https://github.com/plotly/dashR/issues

2 dash-package

R topics documented:
dash-package . 2
clientsideFunction . 3
Dash . 4
dependencies . 14
print.dash_component . 15

Index 16

dash-package An Interface to the Dash Ecosystem for Authoring Reactive Web Ap-
plications

Description

Dash is a productive framework for building web applications in R, Python, and Julia.

Written on top of Fiery, Plotly.js, and React.js, Dash for R is ideal for building data visualization
apps with highly custom user interfaces in pure R. It’s particularly suited for anyone who works
with data in R.

Through a couple of simple patterns, Dash abstracts away all of the technologies and protocols that
are required to build an interactive web-based application. Dash is simple enough that you can bind
a user interface around your R code in an afternoon.

Dash apps are rendered in the web browser. You can deploy your apps to servers and then share them
through URLs. Since Dash apps are viewed in the web browser, Dash is inherently cross-platform
and mobile ready.

There is a lot behind the framework. To learn more about how it is built and what motivated Dash,
watch our talk from Plotcon or read our announcement letter.

Dash is an open source package, released under the permissive MIT license. Plotly develops Dash
and offers a platform for easily deploying Dash apps in an enterprise environment. If you’re inter-
ested, please get in touch.

Author(s)

Maintainer: Ryan Patrick Kyle <ryan@plotly.com>

Authors:

• Chris Parmer <chris@plotly.com>

• Ryan Patrick Kyle <ryan@plotly.com>

• Carson Sievert

• Hammad Khan <hammadkhan@plotly.com>

Other contributors:

• Plotly Technologies [copyright holder]

https://youtu.be/5BAthiN0htc
https://medium.com/@plotlygraphs/introducing-dash-5ecf7191b503
https://plotly.com/dash/pricing/
https://plotly.typeform.com/to/rkO85m?_ga=2.223907347.9240264.1560484539-2037997284.1554944507

clientsideFunction 3

See Also

Useful links:

• http://dashr.plotly.com

• https://github.com/plotly/dashR

• Report bugs at https://github.com/plotly/dashR/issues

clientsideFunction Define a clientside callback

Description

Create a callback that updates the output by calling a clientside (JavaScript) function instead of an
R function. Note that it is also possible to specify JavaScript as a character string instead of passing
clientsideFunction. In this case Dash will inline your JavaScript automatically, without needing
to save a script inside assets.

Usage

clientsideFunction(namespace, function_name)

Arguments

namespace Character. Describes where the JavaScript function resides (Dash will look for
the function at window[namespace][function_name].)

function_name Character. Provides the name of the JavaScript function to call.

Details

With this signature, Dash’s front-end will call window.my_clientside_library.my_function
with the current values of the value properties of the components my-input and another-input
whenever those values change. Include a JavaScript file by including it your assets/ folder. The
file can be named anything but you’ll need to assign the function’s namespace to the window. For
example, this file might look like:

window.my_clientside_library = {
my_function: function(input_value_1, input_value_2) {

return (
parseFloat(input_value_1, 10) +
parseFloat(input_value_2, 10)

);
}
}

http://dashr.plotly.com
https://github.com/plotly/dashR
https://github.com/plotly/dashR/issues

4 Dash

Examples

Not run:
app$callback(

output('output-clientside', 'children'),
params=list(input('input', 'value')),
clientsideFunction(
namespace = 'my_clientside_library',
function_name = 'my_function'
)

)

Passing JavaScript as a character string
app$callback(
output('output-clientside', 'children'),
params=list(input('input', 'value')),
"function (value) {

return 'Client says \"' + value + '\"';
}"

)
End(Not run)

Dash R6 class representing a Dash application

Description

A framework for building analytical web applications, Dash offers a pleasant and productive devel-
opment experience. No JavaScript required.

Format

An R6::R6Class generator object

Public fields

server A cloned (and modified) version of the fiery::Fire object provided to the server argument
(various routes will be added which enable Dash functionality).

config A list of configuration options passed along to dash-renderer. Users shouldn’t need to
alter any of these options unless they are constructing their own authorization front-end or
otherwise need to know where the application is making API calls.

Methods

Public methods:
• Dash$new()

• Dash$layout_get()

• Dash$layout()

Dash 5

• Dash$react_version_set()

• Dash$callback()

• Dash$callback_context()

• Dash$get_asset_url()

• Dash$get_relative_path()

• Dash$strip_relative_path()

• Dash$index_string()

• Dash$interpolate_index()

• Dash$title()

• Dash$run_server()

• Dash$clone()

Method new(): Create and configure a Dash application.

Usage:
Dash$new(
server = fiery::Fire$new(),
assets_folder = "assets",
assets_url_path = "/assets",
eager_loading = FALSE,
assets_ignore = "",
serve_locally = TRUE,
meta_tags = NULL,
url_base_pathname = "/",
routes_pathname_prefix = NULL,
requests_pathname_prefix = NULL,
external_scripts = NULL,
external_stylesheets = NULL,
compress = TRUE,
suppress_callback_exceptions = FALSE,
show_undo_redo = FALSE

)

Arguments:

server fiery::Fire object. The web server used to power the application.
assets_folder Character. A path, relative to the current working directory, for extra files to

be used in the browser. All .js and .css files will be loaded immediately unless excluded
by assets_ignore, and other files such as images will be served if requested. Default is
assets.

assets_url_path Character. Specify the URL path for asset serving. Default is assets.
eager_loading Logical. Controls whether asynchronous resources are prefetched (if TRUE) or

loaded on-demand (if FALSE).
assets_ignore Character. A regular expression, to match assets to omit from immediate load-

ing. Ignored files will still be served if specifically requested. You cannot use this to prevent
access to sensitive files.

serve_locally Logical. Whether to serve HTML dependencies locally or remotely (via URL).

6 Dash

meta_tags List of lists. HTML <meta> tags to be added to the index page. Each list element
should have the attributes and values for one tag, eg: list(name = 'description',content
= 'My App').

url_base_pathname Character. A local URL prefix to use app-wide. Default is /. Both
requests_pathname_prefix and routes_pathname_prefix default to url_base_pathname.
Environment variable is DASH_URL_BASE_PATHNAME.

routes_pathname_prefix Character. A prefix applied to the backend routes. Environment
variable is DASH_ROUTES_PATHNAME_PREFIX.

requests_pathname_prefix Character. A prefix applied to request endpoints made by Dash’s
front-end. Environment variable is DASH_REQUESTS_PATHNAME_PREFIX.

external_scripts List. An optional list of valid URLs from which to serve JavaScript source
for rendered pages.

external_stylesheets List. An optional list of valid URLs from which to serve CSS for
rendered pages.

compress Logical. Whether to try to compress files and data served by Fiery. By default,
brotli is attempted first, then gzip, then the deflate algorithm, before falling back to
identity.

suppress_callback_exceptions Logical. Whether to relay warnings about possible layout
mis-specifications when registering a callback.

show_undo_redo Logical. Set to TRUE to enable undo and redo buttons for stepping through
the history of the app state.

Method layout_get(): Retrieves the Dash application layout.
Usage:
Dash$layout_get(render = TRUE)

Arguments:
render Logical. If the layout is a function, should the function be executed to return the layout?

If FALSE, the function is returned as-is.

Details: If render is TRUE, and the layout is a function, the result of the function (rather than
the function itself) is returned.

Returns: List or function, depending on the value of render (see above). When returning
an object of class dash_component, the default print method for this class will display the
corresponding pretty-printed JSON representation of the object to the console.

Method layout(): Set the Dash application layout (i.e., specify its user interface).
Usage:
Dash$layout(value)

Arguments:
value An object of the dash_component class, which provides a component or collection of

components, specified either as a Dash component or a function that returns a Dash compo-
nent.

Details: value should be either a collection of Dash components (e.g., dccSlider, html-
Div, etc) or a function which returns a collection of components. The collection of compo-
nents must be nested, such that any additional components contained within value are passed
solely as children of the top-level component. In all cases, value must be a member of the
dash_component class.

Dash 7

Method react_version_set(): Update the version of React in the list of dependencies served
by dash-renderer to the client.

Usage:
Dash$react_version_set(version)

Arguments:

version Character. The version number of React to use.

Method callback(): Define a Dash callback.

Usage:
Dash$callback(output, params, func)

Arguments:

output Named list. The output argument provides the component id and property which
will be updated by the callback; a callback can target one or more outputs (i.e. multiple
outputs).

params Unnamed list; provides input and state statements, each with its own defined id and
property.

func Function; must return output provided input or state arguments. func may be any valid
R function, or a character string containing valid JavaScript, or a call to clientsideFunc-
tion, including namespace and function_name arguments for a locally served JavaScript
function.

Details: Describes a server or clientside callback relating the values of one or more output
items to one or more input items which will trigger the callback when they change, and option-
ally state items which provide additional information but do not trigger the callback directly.
The output argument defines which layout component property should receive the results (via
the output object). The events that trigger the callback are then described by the input (and/or
state) object(s) (which should reference layout components), which become argument values
for R callback handlers defined in func.
Here func may either be an anonymous R function, a JavaScript function provided as a character
string, or a call to clientsideFunction(), which describes a locally served JavaScript func-
tion instead. The latter two methods define a "clientside callback", which updates components
without passing data to and from the Dash backend. The latter may offer improved performance
relative to callbacks written purely in R.

Method callback_context(): Request and return the calling context of a Dash callback.

Usage:
Dash$callback_context()

Details: The callback_context method permits retrieving the inputs which triggered the
firing of a given callback, and allows introspection of the input/state values given their names.
It is only available from within a callback; attempting to use this method outside of a callback
will result in a warning.
The callback_context method returns a list containing three elements: states, triggered,
inputs. The first and last of these correspond to the values of states and inputs for the current
invocation of the callback, and triggered provides a list of changed properties.

Returns: List comprising elements states, triggered, inputs.

8 Dash

Method get_asset_url(): Return a URL for a Dash asset.

Usage:
Dash$get_asset_url(asset_path, prefix = self$config$requests_pathname_prefix)

Arguments:

asset_path Character. Specifies asset filename whose URL should be returned.
prefix Character. Specifies pathname prefix; default is to use requests_pathname_prefix.

Details: The get_asset_url method permits retrieval of an asset’s URL given its filename.
For example, app$get_asset_url('style.css') should return /assets/style.css when assets_folder
= 'assets'. By default, the prefix is the value of requests_pathname_prefix, but this is con-
figurable via the prefix parameter. Note: this method will present a warning and return NULL
if the Dash app was not loaded via source() if the DASH_APP_PATH environment variable is
undefined.

Returns: Character. A string representing the URL to the asset.

Method get_relative_path(): Return relative asset paths for Dash assets.

Usage:
Dash$get_relative_path(
path,
requests_pathname_prefix = self$config$requests_pathname_prefix

)

Arguments:

path Character. A path string prefixed with a leading / which directs at a path or asset directory.
requests_pathname_prefix Character. The pathname prefix for the application when de-

ployed. Defaults to the environment variable set by the server, or "" if run locally.

Details: The get_relative_path method simplifies the handling of URLs and pathnames for
apps running locally and on a deployment server such as Dash Enterprise. It handles the prefix
for requesting assets similar to the get_asset_url method, but can also be used for URL han-
dling in components such as dccLink or dccLocation. For example, app$get_relative_url("/page/")
would return /app/page/ for an app running on a deployment server. The path must be prefixed
with a /.

Returns: Character. A string describing a relative path to a Dash app’s asset given a path and
requests_pathname_prefix.

Method strip_relative_path(): Return a Dash asset path without its prefix.

Usage:
Dash$strip_relative_path(
path,
requests_pathname_prefix = self$config$requests_pathname_prefix

)

Arguments:

path Character. A path string prefixed with a leading / which directs at a path or asset directory.
requests_pathname_prefix Character. The pathname prefix for the app on a deployed appli-

cation. Defaults to the environment variable set by the server, or "" if run locally.

Dash 9

Details: The strip_relative_path method simplifies the handling of URLs and pathnames
for apps running locally and on a deployment server such as Dash Enterprise. It acts almost
opposite to the get_relative_path method, by taking a relative path as an input, and returning
the path stripped of the requests_pathname_prefix, and any leading or trailing /. For exam-
ple, a path string /app/homepage/, would be returned as homepage. This is particularly useful
for dccLocation URL routing.

Method index_string(): Specify a custom index string for a Dash application.

Usage:
Dash$index_string(string)

Arguments:

string Character; the index string template, with interpolation keys included.

Details: The index_string method allows the specification of a custom index by changing
the default HTML template that is generated by the Dash UI. #’ Meta tags, CSS, and JavaScript
are some examples of features that can be modified. This method will present a warning if your
HTML template is missing any necessary elements and return an error if a valid index is not
defined. The following interpolation keys are currently supported:
{%metas%} Optional - The registered meta tags.
{%favicon%} Optional - A favicon link tag if found in assets.
{%css%} Optional - Link tags to CSS resources.
{%config%} Required - Configuration details generated by Dash for the renderer.
{%app_entry%} Required - The container where Dash React components are rendered.
{%scripts%} Required - Script tags for collected dependencies.

Example of a basic HTML index string: "<!DOCTYPE html>
<html>
<head>
{%meta_tags%}

<title>{{
{%favicon%}
{%css_tags%}

</head>
<body>
{%app_entry%}
<footer>
{%config%}
{%scripts%}
</footer>

</body>
</html>"

Method interpolate_index(): Modify index template variables for a Dash application.

Usage:
Dash$interpolate_index(template_index = private$template_index[[1]], ...)

Arguments:

10 Dash

template_index Character. A formatted string with the HTML index string. Defaults to the
initial template.

... Named list. The unnamed arguments can be passed as individual named lists corresponding
to the components of the Dash HTML index. These include the same argument as those
found in the index_string() template.

Details: With the interpolate_index method, one can pass a custom index with template
string variables that are already evaluated. Directly passing arguments to the template_index
has the effect of assigning them to variables present in the template. This is similar to the
index_string method but offers the ability to change the default components of the Dash index
as seen in the example below.

Examples:
library(dash)
app <- Dash$new()

sample_template <- "<!DOCTYPE html>
<html>
<head>
{%meta_tags%}
<title>Index Template Test</title>
{%favicon%}
{%css_tags%}
</head>
<body>
{%app_entry%}
<footer>
{%config%}
{%scripts%}
</footer>
</body>
</html>"

this is the default configuration, but custom configurations
are possible -- the structure of the "config" argument is
a list, in which each element is a JSON key/value pair, when
reformatted as JSON from the list:
e.g. {"routes_pathname_prefix":"/", "ui":false}
config <- sprintf("<script id='_dash-config' type='application/json'> %s </script>",

jsonlite::toJSON(app$config, auto_unbox=TRUE))

app$interpolate_index(
sample_template,
metas = "<meta_charset='UTF-8'/>",
app_entry = "<div id='react-entry-point'><div class='_dash-loading'>Loading...</div></div>",
config = config,
scripts = "")

Method title(): Set the title of the Dash app
Usage:

Dash 11

Dash$title(string = "Dash")

Arguments:
string Character. A string representation of the name of the Dash application.

Details: If no title is supplied, Dash for R will use ’Dash’.

Method run_server(): Start the Fiery HTTP server and run a Dash application.

Usage:
Dash$run_server(
host = Sys.getenv("HOST", "127.0.0.1"),
port = Sys.getenv("PORT", 8050),
block = TRUE,
showcase = FALSE,
use_viewer = FALSE,
dev_tools_prune_errors = TRUE,
debug = Sys.getenv("DASH_DEBUG"),
dev_tools_ui = Sys.getenv("DASH_UI"),
dev_tools_props_check = Sys.getenv("DASH_PROPS_CHECK"),
dev_tools_hot_reload = Sys.getenv("DASH_HOT_RELOAD"),
dev_tools_hot_reload_interval = Sys.getenv("DASH_HOT_RELOAD_INTERVAL"),
dev_tools_hot_reload_watch_interval = Sys.getenv("DASH_HOT_RELOAD_WATCH_INTERVAL)"),
dev_tools_hot_reload_max_retry = Sys.getenv("DASH_HOT_RELOAD_MAX_RETRY"),
dev_tools_silence_routes_logging = NULL,
...

)

Arguments:
host Character. A string specifying a valid IPv4 address for the Fiery server, or 0.0.0.0 to listen

on all addresses. Default is 127.0.0.1 Environment variable: HOST.
port Integer. Specifies the port number on which the server should listen (default is 8050).

Environment variable: PORT.
block Logical. Start the server while blocking console input? Default is TRUE.
showcase Logical. Load the Dash application into the default web browser when server starts?

Default is FALSE.
use_viewer Logical. Load the Dash application into RStudio’s viewer pane? Requires that

host is either 127.0.0.1 or localhost, and that Dash application is started within RStudio;
if use_viewer = TRUE and these conditions are not satisfied, the user is warned and the app
opens in the default browser instead. Default is FALSE.

dev_tools_prune_errors Logical. Reduce tracebacks such that only lines relevant to user
code remain, stripping out Fiery and Dash references? Only available with debugging. TRUE
by default, set to FALSE to see the complete traceback. Environment variable: DASH_PRUNE_ERRORS.

debug Logical. Enable/disable all the Dash developer tools (and the within-browser user in-
terface for the callback graph visualizer and stack traces) unless overridden by the argu-
ments or environment variables. Default is FALSE when called via run_server. For more
information, please visit https://dashr.plotly.com/devtools. Environment variable:
DASH_DEBUG.

dev_tools_ui Logical. Show Dash’s developer tools UI? Default is TRUE if debug == TRUE,
FALSE otherwise. Environment variable: DASH_UI.

https://dashr.plotly.com/devtools

12 Dash

dev_tools_props_check Logical. Validate the types and values of Dash component proper-
ties? Default is TRUE if debug == TRUE, FALSE otherwise. Environment variable: DASH_PROPS_CHECK.

dev_tools_hot_reload Logical. Activate hot reloading when app, assets, and component
files change? Default is TRUE if debug == TRUE, FALSE otherwise. Requires that the Dash
application is loaded using source(), so that srcref attributes are available for executed
code. Environment variable: DASH_HOT_RELOAD.

dev_tools_hot_reload_interval Numeric. Interval in seconds for the client to request the
reload hash. Default is 3. Environment variable: DASH_HOT_RELOAD_INTERVAL.

dev_tools_hot_reload_watch_interval Numeric. Interval in seconds for the server to check
asset and component folders for changes. Default 0.5. Environment variable: DASH_HOT_RELOAD_WATCH_INTERVAL.

dev_tools_hot_reload_max_retry Integer. Maximum number of failed reload hash requests
before failing and displaying a pop up. Default 0.5. Environment variable: DASH_HOT_RELOAD_MAX_RETRY.

dev_tools_silence_routes_logging Logical. Replace Fiery’s default logger with dashLogger
instead (will remove all routes logging)? Enabled with debugging by default because hot
reload hash checks generate a lot of requests.

... Additional arguments to pass to the start handler; see the fiery documentation for relevant
examples.

Details: Starts the Fiery server in local mode and launches the Dash application. If a parameter
can be set by an environment variable, that is listed too. Values provided here take precedence
over environment variables. . If provided, host/port set the host/port fields of the underlying
fiery::Fire web server. The block/showcase/... arguments are passed along to the ignite()
method of the fiery::Fire server.
Examples:
if (interactive() && require(dash)) {
library(dashCoreComponents)
library(dashHtmlComponents)
library(dash)

app <- Dash$new()
app$layout(htmlDiv(
list(
dccInput(id = "inputID", value = "initial value", type = "text"),
htmlDiv(id = "outputID")

)
)
)

app$callback(output = list(id="outputID", property="children"),
params = list(input(id="inputID", property="value"),

state(id="inputID", property="type")),
function(x, y)
sprintf("You've entered: '%s' into a '%s' input control", x, y)

)

app$run_server(showcase = TRUE)
}

Method clone(): The objects of this class are cloneable with this method.

Dash 13

Usage:
Dash$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Dash$interpolate_index`
--

library(dash)
app <- Dash$new()

sample_template <- "<!DOCTYPE html>
<html>
<head>
{%meta_tags%}
<title>Index Template Test</title>
{%favicon%}
{%css_tags%}
</head>
<body>
{%app_entry%}
<footer>
{%config%}
{%scripts%}
</footer>
</body>
</html>"

this is the default configuration, but custom configurations
are possible -- the structure of the "config" argument is
a list, in which each element is a JSON key/value pair, when
reformatted as JSON from the list:
e.g. {"routes_pathname_prefix":"/", "ui":false}
config <- sprintf("<script id='_dash-config' type='application/json'> %s </script>",

jsonlite::toJSON(app$config, auto_unbox=TRUE))

app$interpolate_index(
sample_template,
metas = "<meta_charset='UTF-8'/>",
app_entry = "<div id='react-entry-point'><div class='_dash-loading'>Loading...</div></div>",
config = config,
scripts = "")

--
Method `Dash$run_server`
--

if (interactive() && require(dash)) {

14 dependencies

library(dashCoreComponents)
library(dashHtmlComponents)
library(dash)

app <- Dash$new()
app$layout(htmlDiv(

list(
dccInput(id = "inputID", value = "initial value", type = "text"),
htmlDiv(id = "outputID")

)
)
)

app$callback(output = list(id="outputID", property="children"),
params = list(input(id="inputID", property="value"),

state(id="inputID", property="type")),
function(x, y)

sprintf("You've entered: '%s' into a '%s' input control", x, y)
)

app$run_server(showcase = TRUE)
}

dependencies Input/Output/State definitions

Description

Use in conjunction with the callback() method from the dash::Dash class to define the update
logic in your application.

Usage

output(id, property)

input(id, property)

state(id, property)

dashNoUpdate()

Arguments

id a component id
property the component property to use

Details

The dashNoUpdate() function permits application developers to prevent a single output from up-
dating the layout. It has no formal arguments.

print.dash_component 15

print.dash_component Output a dash component object as JSON

Description

Objects of the dash_component class support a print method, which first processes the nested list
object, and then returns its JSON representation.

Usage

S3 method for class 'dash_component'
print(x, ...)

Arguments

x an object of class dash_component

... not currently used

Index

clientsideFunction, 3, 7

Dash, 4
dash (dash-package), 2
dash-package, 2
dash::Dash, 14
dashNoUpdate (dependencies), 14
dccSlider, 6
dependencies, 14

fiery, 12
fiery::Fire, 4, 5, 12

htmlDiv, 6

input, 7
input (dependencies), 14

output, 7
output (dependencies), 14

print.dash_component, 15

R6::R6Class, 4

state, 7
state (dependencies), 14

16

	dash-package
	clientsideFunction
	Dash
	dependencies
	print.dash_component
	Index

