dapr

Build status CRAN status Coverage Status DOI Downloads Downloads lifecycle

Dependency-free purrr-like apply/map/iterate functions

Installation

Install the development version from Github with:

## install remotes pkg if not already
if (!requireNamespace("remotes", quietly = TRUE)) {
  install.packages("remotes")
}

## install from github
remotes::install_github("mkearney/dapr")

{dapr} vs. {base} & {purrr}?

{dapr} provides the ease and consistency of {purrr}, (see also: simple benchmark results plot below) including use of ~ and .x, without all the dependencies. In other words, use {dapr} when you want a purrr-like experience but you need a lightweight solution.

Use

Function names use the convention *ap() where * is the first letter of output data type.

Common inputs:

Vectors

Functions that apply expressions to input data objects and return atomic vectors e.g., numeric (double), character, logical.

## create data
set.seed(2018)
d <- replicate(5, rnorm(10), simplify = FALSE)
e <- replicate(5, sample(letters, 10), simplify = FALSE)

## numeric
vap_dbl(d, ~ mean(.x))
#> [1]  0.26934527 -0.55232322  0.05559290 -0.06253258 -0.11183760

## integer
vap_int(d, length)
#> [1] 10 10 10 10 10

## logical
vap_lgl(d, ~ max(.x) > 3)
#> [1] FALSE FALSE FALSE FALSE FALSE

## character
vap_chr(e, paste, collapse = "")
#> [1] "hizjpgcexk" "rbeovimtxh" "ujrimwgvzs" "euwrlytgbj" "qkrhylgmnx"

Lists

Function(s) that apply expressions to input data objects and return lists.

## list of strings
lap(e[1:2], ~ paste0(.x, "."))
#> [[1]]
#>  [1] "h." "i." "z." "j." "p." "g." "c." "e." "x." "k."
#> 
#> [[2]]
#>  [1] "r." "b." "e." "o." "v." "i." "m." "t." "x." "h."
## list of strings
ilap(1:4, ~ paste0(letters[.i], rev(LETTERS)[.i]))
#> [[1]]
#> [1] "aZ"
#> 
#> [[2]]
#> [1] "bY"
#> 
#> [[3]]
#> [1] "cX"
#> 
#> [[4]]
#> [1] "dW"

Data frames

Functions that apply expressions to input data objects and return data frames.

## some data
d <- data.frame(
  a = letters[1:3],
  b = rnorm(3),
  c = rnorm(3),
  stringsAsFactors = FALSE
)

## column explicit (same as dap)
dapc(d[-1], ~ round(.x, 2))
#>       b     c
#> 1 -0.50 -0.09
#> 2 -1.87  1.08
#> 3  0.74 -1.36

## rows
dapr(d[-1], round, 3)
#>        b      c
#> 1 -0.499 -0.089
#> 2 -1.869  1.081
#> 3  0.743 -1.365

## conditional COLUMNS
dapc_if(d, is.numeric, ~ round(.x, 4))
#>   a       b       c
#> 1 a -0.4994 -0.0892
#> 2 b -1.8686  1.0812
#> 3 c  0.7434 -1.3646

## conditional ROWS
dapr_if(d[-1], ~ sum(.x) >= -.7, ~ round(.x, 0))
#>           b         c
#> 1  0.000000  0.000000
#> 2 -1.868615  1.081164
#> 3  1.000000 -1.000000