
Package ‘curl’
December 2, 2019

Type Package

Title A Modern and Flexible Web Client for R

Version 4.3

Description The curl() and curl_download() functions provide highly
configurable drop-in replacements for base url() and download.file() with
better performance, support for encryption (https, ftps), gzip compression,
authentication, and other 'libcurl' goodies. The core of the package implements a
framework for performing fully customized requests where data can be processed
either in memory, on disk, or streaming via the callback or connection
interfaces. Some knowledge of 'libcurl' is recommended; for a more-user-friendly
web client see the 'httr' package which builds on this package with http
specific tools and logic.

License MIT + file LICENSE

SystemRequirements libcurl: libcurl-devel (rpm) or
libcurl4-openssl-dev (deb).

URL https://jeroen.cran.dev/curl (docs)

https://github.com/jeroen/curl#readme (devel)

https://curl.haxx.se/libcurl/ (upstream)

BugReports https://github.com/jeroen/curl/issues

Suggests spelling, testthat (>= 1.0.0), knitr, jsonlite, rmarkdown,
magrittr, httpuv (>= 1.4.4), webutils

VignetteBuilder knitr

Depends R (>= 3.0.0)

LazyData true

RoxygenNote 7.0.1

Encoding UTF-8

Language en-US

NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>),
Hadley Wickham [ctb],
RStudio [cph]

1

https://jeroen.cran.dev/curl
https://github.com/jeroen/curl#readme
https://curl.haxx.se/libcurl/
https://github.com/jeroen/curl/issues

2 curl

Maintainer Jeroen Ooms <jeroen@berkeley.edu>

Repository CRAN

Date/Publication 2019-12-02 14:00:03 UTC

R topics documented:
curl . 2
curl_download . 4
curl_echo . 5
curl_escape . 5
curl_fetch_memory . 6
curl_options . 8
curl_upload . 9
file_writer . 9
handle . 10
handle_cookies . 12
ie_proxy . 12
multi . 13
multipart . 15
nslookup . 16
parse_date . 16
parse_headers . 17
send_mail . 18

Index 20

curl Curl connection interface

Description

Drop-in replacement for base url that supports https, ftps, gzip, deflate, etc. Default behavior is
identical to url, but request can be fully configured by passing a custom handle.

Usage

curl(url = "http://httpbin.org/get", open = "", handle = new_handle())

Arguments

url character string. See examples.

open character string. How to open the connection if it should be opened initially.
Currently only "r" and "rb" are supported.

handle a curl handle object

curl 3

Details

As of version 2.3 curl connections support open(con,blocking = FALSE). In this case readBin
and readLines will return immediately with data that is available without waiting. For such non-
blocking connections the caller needs to call isIncomplete to check if the download has completed
yet.

Examples

Not run:
con <- curl("https://httpbin.org/get")
readLines(con)

Auto-opened connections can be recycled
open(con, "rb")
bin <- readBin(con, raw(), 999)
close(con)
rawToChar(bin)

HTTP error
curl("https://httpbin.org/status/418", "r")

Follow redirects
readLines(curl("https://httpbin.org/redirect/3"))

Error after redirect
curl("https://httpbin.org/redirect-to?url=http://httpbin.org/status/418", "r")

Auto decompress Accept-Encoding: gzip / deflate (rfc2616 #14.3)
readLines(curl("http://httpbin.org/gzip"))
readLines(curl("http://httpbin.org/deflate"))

Binary support
buf <- readBin(curl("http://httpbin.org/bytes/98765", "rb"), raw(), 1e5)
length(buf)

Read file from disk
test <- paste0("file://", system.file("DESCRIPTION"))
readLines(curl(test))

Other protocols
read.csv(curl("ftp://cran.r-project.org/pub/R/CRAN_mirrors.csv"))
readLines(curl("ftps://test.rebex.net:990/readme.txt"))
readLines(curl("gopher://quux.org/1"))

Streaming data
con <- curl("http://jeroen.github.io/data/diamonds.json", "r")
while(length(x <- readLines(con, n = 5))){

print(x)
}

Stream large dataset over https with gzip
library(jsonlite)

4 curl_download

con <- gzcon(curl("https://jeroen.github.io/data/nycflights13.json.gz"))
nycflights <- stream_in(con)

End(Not run)

curl_download Download file to disk

Description

Libcurl implementation of C_download (the "internal" download method) with added support for
https, ftps, gzip, etc. Default behavior is identical to download.file, but request can be fully
configured by passing a custom handle.

Usage

curl_download(url, destfile, quiet = TRUE, mode = "wb", handle = new_handle())

Arguments

url A character string naming the URL of a resource to be downloaded.
destfile A character string with the name where the downloaded file is saved. Tilde-

expansion is performed.
quiet If TRUE, suppress status messages (if any), and the progress bar.
mode A character string specifying the mode with which to write the file. Useful

values are "w", "wb" (binary), "a" (append) and "ab".
handle a curl handle object

Details

The main difference between curl_download and curl_fetch_disk is that curl_download checks
the http status code before starting the download, and raises an error when status is non-successful.
The behavior of curl_fetch_disk on the other hand is to proceed as normal and write the error
page to disk in case of a non success response.

Value

Path of downloaded file (invisibly).

Examples

Download large file
Not run:
url <- "http://www2.census.gov/acs2011_5yr/pums/csv_pus.zip"
tmp <- tempfile()
curl_download(url, tmp)

End(Not run)

curl_echo 5

curl_echo Echo Service

Description

This function is only for testing purposes. It starts a local httpuv server to echo the request body
and content type in the response.

Usage

curl_echo(handle, port = 9359, progress = interactive(), file = NULL)

Arguments

handle a curl handle object

port the port number on which to run httpuv server

progress show progress meter during http transfer

file path or connection to write body. Default returns body as raw vector.

Examples

h <- new_handle(url = 'https://httpbin.org/post')
handle_setform(h, foo = "blabla", bar = charToRaw("test"),

myfile = form_file(system.file("DESCRIPTION"), "text/description"))

Echo the POST request data
formdata <- curl_echo(h)

Show the multipart body
cat(rawToChar(formdata$body))

Parse multipart
webutils::parse_http(formdata$body, formdata$content_type)

curl_escape URL encoding

Description

Escape all special characters (i.e. everything except for a-z, A-Z, 0-9, ’-’, ’.’, ’_’ or ’~’) for use in
URLs.

Usage

curl_escape(url)

curl_unescape(url)

6 curl_fetch_memory

Arguments

url A character vector (typically containing urls or parameters) to be encoded/decoded

Examples

Escape strings
out <- curl_escape("foo = bar + 5")
curl_unescape(out)

All non-ascii characters are encoded
mu <- "\u00b5"
curl_escape(mu)
curl_unescape(curl_escape(mu))

curl_fetch_memory Fetch the contents of a URL

Description

Low-level bindings to write data from a URL into memory, disk or a callback function. These are
mainly intended for httr, most users will be better off using the curl or curl_download function,
or the http specific wrappers in the httr package.

Usage

curl_fetch_memory(url, handle = new_handle())

curl_fetch_disk(url, path, handle = new_handle())

curl_fetch_stream(url, fun, handle = new_handle())

curl_fetch_multi(
url,
done = NULL,
fail = NULL,
pool = NULL,
data = NULL,
handle = new_handle()

)

curl_fetch_echo(url, handle = new_handle())

Arguments

url A character string naming the URL of a resource to be downloaded.

handle a curl handle object

path Path to save results

curl_fetch_memory 7

fun Callback function. Should have one argument, which will be a raw vector.

done callback function for completed request. Single argument with response data in
same structure as curl_fetch_memory.

fail callback function called on failed request. Argument contains error message.

pool a multi handle created by new_pool. Default uses a global pool.

data (advanced) callback function, file path, or connection object for writing incom-
ing data. This callback should only be used for streaming applications, where
small pieces of incoming data get written before the request has completed.
The signature for the callback function is write(data,final = FALSE). If set
to NULL the entire response gets buffered internally and returned by in the done
callback (which is usually what you want).

Details

The curl_fetch functions automatically raise an error upon protocol problems (network, disk, ssl)
but do not implement application logic. For example for you need to check the status code of http
requests yourself in the response, and deal with it accordingly.

Both curl_fetch_memory and curl_fetch_disk have a blocking and non-blocking C implemen-
tation. The latter is slightly slower but allows for interrupting the download prematurely (us-
ing e.g. CTRL+C or ESC). Interrupting is enabled when R runs in interactive mode or when
getOption("curl_interrupt") == TRUE.

The curl_fetch_multi function is the asynchronous equivalent of curl_fetch_memory. It wraps
multi_add to schedule requests which are executed concurrently when calling multi_run. For
each successful request the done callback is triggered with response data. For failed requests (when
curl_fetch_memory would raise an error), the fail function is triggered with the error message.

Examples

Load in memory
res <- curl_fetch_memory("http://httpbin.org/cookies/set?foo=123&bar=ftw")
res$content

Save to disk
res <- curl_fetch_disk("http://httpbin.org/stream/10", tempfile())
res$content
readLines(res$content)

Stream with callback
res <- curl_fetch_stream("http://www.httpbin.org/drip?duration=3&numbytes=15&code=200", function(x){

cat(rawToChar(x))
})

Async API
data <- list()
success <- function(res){

cat("Request done! Status:", res$status, "\n")
data <<- c(data, list(res))

}
failure <- function(msg){

8 curl_options

cat("Oh noes! Request failed!", msg, "\n")
}
curl_fetch_multi("http://httpbin.org/get", success, failure)
curl_fetch_multi("http://httpbin.org/status/418", success, failure)
curl_fetch_multi("https://urldoesnotexist.xyz", success, failure)
multi_run()
str(data)

curl_options List curl version and options.

Description

curl_version() shows the versions of libcurl, libssl and zlib and supported protocols. curl_options()
lists all options available in the current version of libcurl. The dataset curl_symbols lists all sym-
bols (including options) provides more information about the symbols, including when support was
added/removed from libcurl.

Usage

curl_options(filter = "")

curl_symbols(filter = "")

curl_version()

Arguments

filter string: only return options with string in name

Examples

Available options
curl_options()

List proxy options
curl_options("proxy")

Symbol table
curl_symbols("proxy")
Curl/ssl version info
curl_version()

curl_upload 9

curl_upload Upload a File

Description

Upload a file to an http://, ftp://, or sftp:// (ssh) server. Uploading to HTTP means per-
forming an HTTP PUT on that URL. Be aware that sftp is only available for libcurl clients built with
libssh2.

Usage

curl_upload(file, url, verbose = TRUE, reuse = TRUE, ...)

Arguments

file connection object or path to an existing file on disk

url where to upload, should start with e.g. ftp://

verbose emit some progress output

reuse try to keep alive and recycle connections when possible

... other arguments passed to handle_setopt, for example a username and password.

Examples

Upload package to winbuilder:
curl_upload('mypkg_1.3.tar.gz', 'ftp://win-builder.r-project.org/R-devel/')

file_writer File Writer

Description

Generates a closure that writes binary (raw) data to a file.

Usage

file_writer(path)

Arguments

path file name or path on disk

10 handle

Details

The writer function automatically opens the file on the first write and closes when it goes out of
scope, or explicitly by setting close = TRUE. This can be used for the data callback in multi_add()
or curl_fetch_multi().

Value

Function with signature writer(data = raw(),close = FALSE)

Examples

Doesn't open yet
tmp <- tempfile()
writer <- file_writer(tmp)

Now it opens
writer(charToRaw("Hello!\n"))
writer(charToRaw("How are you?\n"))

Close it!
writer(charToRaw("All done!\n"), close = TRUE)

Check it worked
readLines(tmp)

handle Create and configure a curl handle

Description

Handles are the work horses of libcurl. A handle is used to configure a request with custom options,
headers and payload. Once the handle has been set up, it can be passed to any of the download
functions such as curl ,curl_download or curl_fetch_memory. The handle will maintain state in
between requests, including keep-alive connections, cookies and settings.

Usage

new_handle(...)

handle_setopt(handle, ..., .list = list())

handle_setheaders(handle, ..., .list = list())

handle_getheaders(handle)

handle_getcustom(handle)

handle_setform(handle, ..., .list = list())

handle 11

handle_reset(handle)

handle_data(handle)

Arguments

... named options / headers to be set in the handle. To send a file, see form_file.
To list all allowed options, see curl_options

handle Handle to modify

.list A named list of options. This is useful if you’ve created a list of options else-
where, avoiding the use of do.call().

Details

Use new_handle() to create a new clean curl handle that can be configured with custom op-
tions and headers. Note that handle_setopt appends or overrides options in the handle, whereas
handle_setheaders replaces the entire set of headers with the new ones. The handle_reset func-
tion resets only options/headers/forms in the handle. It does not affect active connections, cookies
or response data from previous requests. The safest way to perform multiple independent requests
is by using a separate handle for each request. There is very little performance overhead in creating
handles.

Value

A handle object (external pointer to the underlying curl handle). All functions modify the handle in
place but also return the handle so you can create a pipeline of operations.

See Also

Other handles: handle_cookies()

Examples

h <- new_handle()
handle_setopt(h, customrequest = "PUT")
handle_setform(h, a = "1", b = "2")
r <- curl_fetch_memory("http://httpbin.org/put", h)
cat(rawToChar(r$content))

Or use the list form
h <- new_handle()
handle_setopt(h, .list = list(customrequest = "PUT"))
handle_setform(h, .list = list(a = "1", b = "2"))
r <- curl_fetch_memory("http://httpbin.org/put", h)
cat(rawToChar(r$content))

12 ie_proxy

handle_cookies Extract cookies from a handle

Description

The handle_cookies function returns a data frame with 7 columns as specified in the netscape
cookie file format.

Usage

handle_cookies(handle)

Arguments

handle a curl handle object

See Also

Other handles: handle

Examples

h <- new_handle()
handle_cookies(h)

Server sets cookies
req <- curl_fetch_memory("http://httpbin.org/cookies/set?foo=123&bar=ftw", handle = h)
handle_cookies(h)

Server deletes cookies
req <- curl_fetch_memory("http://httpbin.org/cookies/delete?foo", handle = h)
handle_cookies(h)

Cookies will survive a reset!
handle_reset(h)
handle_cookies(h)

ie_proxy Internet Explorer proxy settings

Description

Lookup and mimic the system proxy settings on Windows as set by Internet Explorer. This can be
used to configure curl to use the same proxy server.

http://www.cookiecentral.com/faq/#3.5
http://www.cookiecentral.com/faq/#3.5

multi 13

Usage

ie_proxy_info()

ie_get_proxy_for_url(target_url = "http://www.google.com")

Arguments

target_url url with host for which to lookup the proxy server

Details

The ie_proxy_info function looks up your current proxy settings as configured in IE under "Inter-
net Options" > "Tab: Connections" > "LAN Settings". The ie_get_proxy_for_url determines if
and which proxy should be used to connect to a particular URL. If your settings have an "automatic
configuration script" this involves downloading and executing a PAC file, which can take a while.

multi Async Multi Download

Description

AJAX style concurrent requests, possibly using HTTP/2 multiplexing. Results are only available
via callback functions. Advanced use only!

Usage

multi_add(handle, done = NULL, fail = NULL, data = NULL, pool = NULL)

multi_run(timeout = Inf, poll = FALSE, pool = NULL)

multi_set(total_con = 50, host_con = 6, multiplex = TRUE, pool = NULL)

multi_list(pool = NULL)

multi_cancel(handle)

new_pool(total_con = 100, host_con = 6, multiplex = TRUE)

multi_fdset(pool = NULL)

Arguments

handle a curl handle with preconfigured url option.

done callback function for completed request. Single argument with response data in
same structure as curl_fetch_memory.

fail callback function called on failed request. Argument contains error message.

14 multi

data (advanced) callback function, file path, or connection object for writing incom-
ing data. This callback should only be used for streaming applications, where
small pieces of incoming data get written before the request has completed.
The signature for the callback function is write(data,final = FALSE). If set
to NULL the entire response gets buffered internally and returned by in the done
callback (which is usually what you want).

pool a multi handle created by new_pool. Default uses a global pool.

timeout max time in seconds to wait for results. Use 0 to poll for results without waiting
at all.

poll If TRUE then return immediately after any of the requests has completed. May
also be an integer in which case it returns after n requests have completed.

total_con max total concurrent connections.

host_con max concurrent connections per host.

multiplex enable HTTP/2 multiplexing if supported by host and client.

Details

Requests are created in the usual way using a curl handle and added to the scheduler with multi_add.
This function returns immediately and does not perform the request yet. The user needs to call
multi_run which performs all scheduled requests concurrently. It returns when all requests have
completed, or case of a timeout or SIGINT (e.g. if the user presses ESC or CTRL+C in the console).
In case of the latter, simply call multi_run again to resume pending requests.

When the request succeeded, the done callback gets triggered with the response data. The struc-
ture if this data is identical to curl_fetch_memory. When the request fails, the fail callback
is triggered with an error message. Note that failure here means something went wrong in per-
forming the request such as a connection failure, it does not check the http status code. Just like
curl_fetch_memory, the user has to implement application logic.

Raising an error within a callback function stops execution of that function but does not affect other
requests.

A single handle cannot be used for multiple simultaneous requests. However it is possible to add
new requests to a pool while it is running, so you can re-use a handle within the callback of a request
from that same handle. It is up to the user to make sure the same handle is not used in concurrent
requests.

The multi_cancel function can be used to cancel a pending request. It has no effect if the request
was already completed or canceled.

The multi_fdset function returns the file descriptors curl is polling currently, and also a timeout
parameter, the number of milliseconds an application should wait (at most) before proceeding. It is
equivalent to the curl_multi_fdset and curl_multi_timeout calls. It is handy for applications
that is expecting input (or writing output) through both curl, and other file descriptors.

Examples

results <- list()
success <- function(x){

results <<- append(results, list(x))
}

multipart 15

failure <- function(str){
cat(paste("Failed request:", str), file = stderr())

}
This handle will take longest (3sec)
h1 <- new_handle(url = "https://eu.httpbin.org/delay/3")
multi_add(h1, done = success, fail = failure)

This handle writes data to a file
con <- file("output.txt")
h2 <- new_handle(url = "https://eu.httpbin.org/post", postfields = "bla bla")
multi_add(h2, done = success, fail = failure, data = con)

This handle raises an error
h3 <- new_handle(url = "https://urldoesnotexist.xyz")
multi_add(h3, done = success, fail = failure)

Actually perform the requests
multi_run(timeout = 2)
multi_run()

Check the file
readLines("output.txt")
unlink("output.txt")

multipart POST files or data

Description

Build multipart form data elements. The form_file function uploads a file. The form_data func-
tion allows for posting a string or raw vector with a custom content-type.

Usage

form_file(path, type = NULL)

form_data(value, type = NULL)

Arguments

path a string with a path to an existing file on disk

type MIME content-type of the file.

value a character or raw vector to post

16 parse_date

nslookup Lookup a hostname

Description

The nslookup function is similar to nsl but works on all platforms and can resolve ipv6 addresses
if supported by the OS. Default behavior raises an error if lookup fails.

Usage

nslookup(host, ipv4_only = FALSE, multiple = FALSE, error = TRUE)

has_internet()

Arguments

host a string with a hostname

ipv4_only always return ipv4 address. Set to ‘FALSE‘ to allow for ipv6 as well.

multiple returns multiple ip addresses if possible

error raise an error for failed DNS lookup. Otherwise returns NULL.

Details

The has_internet function tests for internet connectivity by performing a dns lookup. If a proxy
server is detected, it will also check for connectivity by connecting via the proxy.

Examples

Should always work if we are online
nslookup("www.r-project.org")

If your OS supports IPv6
nslookup("ipv6.test-ipv6.com", ipv4_only = FALSE, error = FALSE)

parse_date Parse date/time

Description

Can be used to parse dates appearing in http response headers such as Expires or Last-Modified.
Automatically recognizes most common formats. If the format is known, strptime might be easier.

Usage

parse_date(datestring)

parse_headers 17

Arguments

datestring a string consisting of a timestamp

Examples

Parse dates in many formats
parse_date("Sunday, 06-Nov-94 08:49:37 GMT")
parse_date("06 Nov 1994 08:49:37")
parse_date("20040911 +0200")

parse_headers Parse response headers

Description

Parse response header data as returned by curl_fetch, either as a set of strings or into a named list.

Usage

parse_headers(txt, multiple = FALSE)

parse_headers_list(txt)

Arguments

txt raw or character vector with the header data

multiple parse multiple sets of headers separated by a blank line. See details.

Details

The parse_headers_list function parses the headers into a normalized (lowercase field names, trimmed
whitespace) named list.

If a request has followed redirects, the data can contain multiple sets of headers. When multiple
= TRUE, the function returns a list with the response headers for each request. By default it only
returns the headers of the final request.

Examples

req <- curl_fetch_memory("https://httpbin.org/redirect/3")
parse_headers(req$headers)
parse_headers(req$headers, multiple = TRUE)

Parse into named list
parse_headers_list(req$headers)

18 send_mail

send_mail Send email

Description

Use the curl SMTP client to send an email. The message argument must be properly formatted
RFC2822 email message with From/To/Subject headers and CRLF line breaks.

Usage

send_mail(
mail_from,
mail_rcpt,
message,
smtp_server = "smtp://localhost",
use_ssl = c("try", "no", "force"),
verbose = TRUE,
...

)

Arguments

mail_from email address of the sender.
mail_rcpt one or more recipient email addresses. Do not include names, these go into the

message headers.
message either a string or connection with (properly formatted) email message, including

sender/recipient/subject headers. See example.
smtp_server hostname or address of the SMTP server, or, an smtp:// or smtps:// URL. See

"Specifying the server, port, and protocol" below.
use_ssl Request to upgrade the connection to SSL using the STARTTLS command, see

CURLOPT_USE_SSL for details. Default will try to SSL, proceed as normal
otherwise.

verbose print output
... other options passed to handle_setopt. In most cases you will need to set a

username and password to authenticate with the SMTP server.

Specifying the server, port, and protocol

The smtp_server argument takes a hostname, or an SMTP URL:

• mail.example.com - hostname only
• mail.example.com:587 - hostname and port
• smtp://mail.example.com - protocol and hostname
• smtp://mail.example.com:587 - full SMTP URL
• smtps://mail.example.com:465 - full SMTPS URL

By default, the port will be 25, unless smtps:// is specified–then the default will be 465 instead.

https://tools.ietf.org/html/rfc2822
https://curl.haxx.se/libcurl/c/CURLOPT_USE_SSL.html

send_mail 19

Encrypting connections via SMTPS or STARTTLS

There are two different ways in which SMTP can be encrypted: SMTPS servers run on a port
which only accepts encrypted connections, similar to HTTPS. Alternatively, a regular insecure smtp
connection can be "upgraded" to a secure TLS connection using the STARTTLS command. It is
important to know which method your server expects.

If your smtp server listens on port 465, then use a smtps://hostname:465 URL. The SMTPS
protocol guarantees that TLS will be used to protect all communications from the start.

If your email server listens on port 25 or 587, use an smtp:// URL in combination with the use_ssl
parameter to control if the connection should be upgraded with STARTTLS. The default value
"try" will opportunistically try to upgrade to a secure connection if the server supports it, and
proceed as normal otherwise.

Examples

Set sender and recipients (email addresses only)
recipients <- readline("Enter your email address to receive test: ")
sender <- 'test@noreply.com'

Full email message in RFC2822 format
message <- 'From: "R (curl package)" <test@noreply.com>
To: "Roger Recipient" <roger@noreply.com>
Subject: Hello R user!

Dear R user,

I am sending this email using curl.'

Send the email
send_mail(sender, recipients, message, smtp_server = 'smtps://smtp.gmail.com',

username = 'curlpackage', password = 'qyyjddvphjsrbnlm')

Index

curl, 2, 6, 10
curl_download, 4, 6, 10
curl_echo, 5
curl_escape, 5
curl_fetch_disk (curl_fetch_memory), 6
curl_fetch_echo (curl_fetch_memory), 6
curl_fetch_memory, 6, 7, 10, 13, 14
curl_fetch_multi (curl_fetch_memory), 6
curl_fetch_stream (curl_fetch_memory), 6
curl_options, 8, 11
curl_symbols (curl_options), 8
curl_unescape (curl_escape), 5
curl_upload, 9
curl_version (curl_options), 8

download.file, 4

file_writer, 9
form_data (multipart), 15
form_file, 11
form_file (multipart), 15

handle, 2, 4, 10, 12–14
handle_cookies, 11, 12
handle_data (handle), 10
handle_getcustom (handle), 10
handle_getheaders (handle), 10
handle_reset (handle), 10
handle_setform (handle), 10
handle_setheaders (handle), 10
handle_setopt, 9, 18
handle_setopt (handle), 10
has_internet (nslookup), 16

ie_get_proxy_for_url (ie_proxy), 12
ie_proxy, 12
ie_proxy_info (ie_proxy), 12
isIncomplete, 3

multi, 13
multi_add, 14

multi_add (multi), 13
multi_cancel, 14
multi_cancel (multi), 13
multi_fdset, 14
multi_fdset (multi), 13
multi_list (multi), 13
multi_run, 14
multi_run (multi), 13
multi_set (multi), 13
multipart, 15

new_handle (handle), 10
new_pool, 7, 14
new_pool (multi), 13
nslookup, 16

parse_date, 16
parse_headers, 17
parse_headers_list (parse_headers), 17

send_mail, 18
strptime, 16

url, 2

20

	curl
	curl_download
	curl_echo
	curl_escape
	curl_fetch_memory
	curl_options
	curl_upload
	file_writer
	handle
	handle_cookies
	ie_proxy
	multi
	multipart
	nslookup
	parse_date
	parse_headers
	send_mail
	Index

