
Package ‘ctDNAtools’
March 4, 2020

Title Analyze Circulating Tumor DNA Sequencing Data

Version 0.4.0

Description Contains tools to analyze minimal residual disease and cell-
free DNA fragmentation from aligned sequencing data.
More details on the methods can be found in:
Amjad Alkodsi, Leo Meriranta, Annika Pasa-
nen, Sirpa Leppä (2020) <doi:10.1101/2020.01.27.912790>.

License MIT + file LICENSE

Depends R (>= 3.6.0),

Imports magrittr, dplyr (>= 0.8.3), tidyr (>= 1.0.0), purrr (>=
0.3.2), Rsamtools (>= 2.0.0), assertthat (>= 0.2.1),
GenomicRanges, IRanges, GenomeInfoDb, BiocGenerics, BSgenome,
GenomicAlignments, rlang (>= 0.4.0), Biostrings, methods, furrr
(>= 0.1.0), ellipsis (>= 0.3.0), VariantAnnotation (>= 1.30.1)

Suggests BSgenome.Hsapiens.UCSC.hg19, testthat (>= 2.1.0), ggplot2,
knitr, rmarkdown, covr, pkgdown

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

VignetteBuilder knitr

URL https://github.com/alkodsi/ctDNAtools

BugReports https://github.com/alkodsi/ctDNAtools/issues

NeedsCompilation no

Author Amjad Alkodsi [aut, cre] (<https://orcid.org/0000-0003-3528-4683>)

Maintainer Amjad Alkodsi <amjad.alkodsi@gmail.com>

Repository CRAN

Date/Publication 2020-03-04 18:10:02 UTC

1

https://github.com/alkodsi/ctDNAtools
https://github.com/alkodsi/ctDNAtools/issues

2 analyze_fragmentation

R topics documented:
analyze_fragmentation . 2
bin_fragment_size . 3
create_background_panel . 5
create_black_list . 7
extract_trinucleotide_context . 9
filter_mutations . 10
get_background_rate . 11
get_fragment_size . 13
get_mutations_fragment_size . 15
get_mutations_read_counts . 16
get_mutations_read_names . 17
merge_mutations_in_phase . 18
mutations . 19
summarize_fragment_size . 20
targets . 21
test_ctDNA . 22
vcf_to_mutations_df . 26

Index 27

analyze_fragmentation Provides fragment ends analysis

Description

Calculates the number of fragment ends and the Windowed Protection Score (WPS) in genomic
tiles within targets

Usage

analyze_fragmentation(bam, targets, tag = "", window_size = 120,
step_size = 5, min_size = 120, max_size = 180, ...)

Arguments

bam the input bam file

targets The targets to restrict the windows within. Must have the columns chr, start and
end. In case of whole-genome, specify full chromosomes targets.

tag the RG tag if the bam has more than one sample.

window_size The window (bin) size to use within the targets

step_size The step size to use in case of overlapping bins.

min_size Restrict fragments to this minimum size.

max_size Restrict fragments to this maximum size.

... Other parameters passed to get_fragment_size

bin_fragment_size 3

Details

Fragment length will extracted from the bam file according to the parameters passed to get_fragment_size,
and the number of fragment ends, and the Windowed Protection Score (WPS) will be computed in
the binned input targets. Binning is done according to the window_size and step_size parameters.

WPS is defined as the number of fragments completely spanning a window (bin) minus the number
of fragments with an endpoint within the same window as reported by Snyder et al., Cell 2016.

The output include both the fragment end counts and the WPS in their raw format as well as after
adjustment by coverage in the bin.

Minimum and maximum bounds of the fragment size are applied before computing WPS and frag-
ment ends counts.

Value

a data frame with the first three columns having the bins coordinates and other columns having the
WPS (raw and adjusted by coverage) and number of fragment ends (raw and adjusted by coverage).

See Also

get_fragment_size bin_fragment_size summarize_fragment_size

Examples

data("targets", package = "ctDNAtools")
bamN1 <- system.file("extdata", "N1.bam", package = "ctDNAtools")

basic usage
analyze_fragmentation(bam = bamN1, targets = targets)

more options
analyze_fragmentation(

bam = bamN1, targets = targets,
step_size = 10, window_size = 50

)

bin_fragment_size Gets histogram of fragment lengths from a bam file

Description

The function first extracts fragment length from a bam file then computes the histogram over de-
fined bins. If normalized is TRUE, the counts per bin will be normalized to the total read counts.
Optionally, it can computes the histogram of fragment lengths only for mutated reads (confirmed
ctDNA molecules).

4 bin_fragment_size

Usage

bin_fragment_size(bam, mutations = NULL, targets = NULL, tag = "",
bin_size = 2, custom_bins = NULL, normalized = FALSE,
min_size = 1, max_size = 400, ...)

Arguments

bam path to bam file.

mutations An optional data frame with mutations. Must have the columns CHROM, POS,
REF, ALT.

targets a data frame with the target regions to restrict the reads in the bam. Must have
three columns: chr, start and end

tag the RG tag if the bam has more than one sample.

bin_size the width of the bin (breaks) of the histogram.

custom_bins A numeric vector for custom breaks to bin the histogram of fragment length.
Over-rides bin_size.

normalized A logical, whether to normalize the counts to the total number of reads.

min_size Integer with the lowest fragment length.

max_size Integer with the highest fragment length.

... Other parameters passed to get_fragment_size.

Details

Fragment length will extracted from the bam file according to the parameters passed to get_fragment_size,
and histogram counts (optionally normalized to total counts) are computed. Both equal histogram
bins via bin_size and manually customized bins via custom_bins are supported.

By using an input mutations, the function will bin separately the reads that support variant alleles,
reference alleles and other reads.

Value

A data frame with one column for the used breaks and one having the histogram (normalized)
counts. If mutations is supplied, the output will have one breaks column and three columns corre-
sponding to variant allele reads, reference allele reads, and other reads. Each row has the count of
fragment lengths within the bin and optionally normalized by the total number of reads.

See Also

get_fragment_size analyze_fragmentation summarize_fragment_size

Examples

data("targets", package = "ctDNAtools")
data("mutations", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")

create_background_panel 5

basic usage
bin_fragment_size(bam = bamT1)

with normalization
bin_fragment_size(bam = bamT1, normalized = TRUE)

binning reads categorized based on mutations ref and alt
bin_fragment_size(bam = bamT1, mutations = mutations)

Restrict to reads into targets
bin_fragment_size(bam = bamT1, targets = targets)

create_background_panel

Creates a background panel from a list of bam files

Description

This function scans the targets regions in the list of bam files, and reports the number of reference,
non-reference reads for each loci in addition to the non-reference (VAF) allele frequency. Loci with
VAF higher than vaf_threshold are masked with NA.

Usage

create_background_panel(bam_list, targets, reference,
vaf_threshold = 0.05, bam_list_tags = rep("", length(bam_list)),
min_base_quality = 10, max_depth = 1e+05, min_mapq = 20,
substitution_specific = TRUE)

Arguments

bam_list A character vector of paths to bam files.

targets The targets data frame must have the columns chr, start and end.

reference The reference genome as BSgenome object.

vaf_threshold Loci with the fraction of non-reference reads above this value are masked with
NA.

bam_list_tags RG tags for the list of bam files. By default, the whole bam file will be used.
min_base_quality

The minimum base quality to count a read for a loci.

max_depth Maximum depth for the pileup

min_mapq The minimum mapping quality to count a read for a loci
substitution_specific

logical, whether to have the loci by substitutions.

6 create_background_panel

Details

Extracts the depth, variant allele counts and variant allele frequency (VAF) for each genomic po-
sition in the input targets across a panel of bam files (e.g. from healthy samples to represent only
technical noise). The extracted information can be fed to create_black_list in order to extract a
black listed loci according to defined criteria

The function support two modes, either loci-specific regardless of the basepair substitution, or
substitution-specific where each substitution class (e.g. C>T, C>G) are quantified separately. This
behavior is controlled by the substitution_specific parameter.

VAF above vaf_threshold parameters are masked with NA, to exclude real SNPs/mutations.

Since this function can take a long time when the bam_list comprises a large number of bam files,
the function supports multi-threading using the furrr and future R packages. All you need to do is
call ’plan(multiprocess)’ or other multi-threading strategies before calling this function.

Value

A named list having depth, alt and vaf data frames. Each has the same order of loci in rows and the
input samples in columns.

See Also

create_black_list test_ctDNA

Examples

Load example data
data("targets", package = "ctDNAtools")
bamN1 <- system.file("extdata", "N1.bam", package = "ctDNAtools")
bamN2 <- system.file("extdata", "N2.bam", package = "ctDNAtools")
bamN3 <- system.file("extdata", "N3.bam", package = "ctDNAtools")

Use human reference genome from BSgenome.Hsapiens.UCSC.hg19 library
suppressMessages(library(BSgenome.Hsapiens.UCSC.hg19))

Use a black list based on loci
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
substitution_specific = FALSE

)

bl1 <- create_black_list(bg_panel,
mean_vaf_quantile = 0.99,
min_samples_one_read = 2, min_samples_two_reads = 1

)

Use a substitution-specific black list
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,

create_black_list 7

substitution_specific = TRUE
)

bl2 <- create_black_list(bg_panel,
mean_vaf_quantile = 0.99,
min_samples_one_read = 2, min_samples_two_reads = 1

)

Multi-threading (commented)
library(furrr)
plan(multiprocess)
plan(multiprocess, workers = 3)
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
substitution_specific = TRUE

)

create_black_list Creates a black list of genomic loci based on a background panel cre-
ated from a list of bam files (e.g. healthy samples)

Description

The function applies criteria on the background panel to extract the noisy genomic loci. Criteria
include minimum number of samples having at least one, at least two, or at least n (n_reads pa-
rameter) non-reference allele. Additionally the quantile of mean VAF above which the loci are
considered noisy

Usage

create_black_list(background_panel, mean_vaf_quantile = 0.95,
min_samples_one_read = max(2, ceiling(ncol(background_panel$vaf) *
0.75)), min_samples_two_reads = max(2,
ceiling(ncol(background_panel$vaf) * 0.2)), min_samples_n_reads = NA,
n_reads = NA)

Arguments

background_panel

A list produced by create_background panel function
mean_vaf_quantile

The quantile of mean VAF above which the loci are considered noisy. Use NA
to skip this criterion.

min_samples_one_read

Loci that at least this number of samples exhibit at least one non-reference reads
are considered noisy. Use NA to skip this criterion.

8 create_black_list

min_samples_two_reads

Loci that at least this number of samples exhibit at least two non-reference reads
are considered noisy. Use NA to skip this criterion.

min_samples_n_reads

Loci that at least this number of samples exhibit at least n non-reference reads
(n_reads parameter) are considered noisy. Use NA to skip this criterion.

n_reads the number of reads to use in the min_samples_n_reads parameter

Value

a character vector of the loci in the black list

See Also

create_background_panel test_ctDNA

Examples

Load example data
data("targets", package = "ctDNAtools")
bamN1 <- system.file("extdata", "N1.bam", package = "ctDNAtools")
bamN2 <- system.file("extdata", "N2.bam", package = "ctDNAtools")
bamN3 <- system.file("extdata", "N3.bam", package = "ctDNAtools")

Use human reference genome from BSgenome.Hsapiens.UCSC.hg19 library
suppressMessages(library(BSgenome.Hsapiens.UCSC.hg19))

Use a black list based on loci
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
substitution_specific = FALSE

)

bl1 <- create_black_list(bg_panel,
mean_vaf_quantile = 0.99,
min_samples_one_read = 2, min_samples_two_reads = 1,
min_samples_n_reads = 1, n_reads = 3

)

Use a substitution-specific black list
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
substitution_specific = TRUE

)

bl2 <- create_black_list(bg_panel,
mean_vaf_quantile = 0.99,
min_samples_one_read = 2, min_samples_two_reads = 1,
min_samples_n_read = NA

extract_trinucleotide_context 9

)

extract_trinucleotide_context

Extracts the trinucleotide context for a set of mutations

Description

Extracts the trinucleotide context for a set of mutations

Usage

extract_trinucleotide_context(mutations, reference, destrand = TRUE)

Arguments

mutations A data frame having the mutations. Should have the columns CHROM, POS,
REF, ALT.

reference the reference genome in BSgenome format

destrand logical, whether to destrand mutations

Value

A data frame with two columns having the substitutions and the trinucleotide context

Examples

data("mutations", package = "ctDNAtools")
Use human reference genome from BSgenome.Hsapiens.UCSC.hg19 library
suppressMessages(library(BSgenome.Hsapiens.UCSC.hg19))

with destranding
extract_trinucleotide_context(mutations, BSgenome.Hsapiens.UCSC.hg19)

without destranding
extract_trinucleotide_context(mutations, BSgenome.Hsapiens.UCSC.hg19,

destrand = FALSE
)

10 filter_mutations

filter_mutations Filters a set of mutations

Description

This function Filters a set of mutations given the input black list or the prevalence of their mis-
matches in a set of bam files. Mutations that have more than min_alt_reads in more than min_samples
will be removed when no black list is given.

Usage

filter_mutations(mutations, bams = NULL, black_list = NULL,
tags = rep("", length(bams)), min_alt_reads = 2, min_samples = 2,
min_base_quality = 20, max_depth = 1e+05, min_mapq = 30,
substitution_specific = TRUE)

Arguments

mutations A data frame with the reporter mutations. Should have the columns CHROM,
POS, REF, ALT.

bams a vector of paths to bam files

black_list a character vector of genomic loci of format chr_pos to filter. If not given, the
bams will be scanned for mismatches in the mutations loci and the specified
thresholds will be applied for filtering.

tags a vector of the RG tags if the bam has more than one sample

min_alt_reads the threshold of read counts showing alternative allele for a sample to be counted

min_samples the threshold of number of samples above which the mutations is filtered
min_base_quality

minimum base quality for a read to be counted

max_depth maximum depth above which sampling will happen

min_mapq the minimum mapping quality for a read to be counted
substitution_specific

logical, whether to have the loci of black_list by substitutions.

Details

Filter a set of mutations using one of two options:

1. By providing a black list (recommended), which includes a vector of genomic loci chr_pos
when substitution_specific is false, or chr_pos_ref_alt when substitutions_specific is true. In
this mode, all mutations reported in the black list are simply removed.

2. By providing a set of bam files. The function will run a similar functionality to create_background_panel
and filter mutations based on the min_alt_reads and min_samples criteria.

This function is called internally in test_ctDNA so you likely won’t need to use it yourself.

get_background_rate 11

Value

a named list contains:

• ref: vector of read counts of the reference alleles

• alt: vector of read counts of the alternative allele

See Also

create_black_list test_ctDNA create_background_panel

Examples

data("mutations", package = "ctDNAtools")
filter_mutations(mutations, black_list = "chr14_106327474_C_G")

get_background_rate Computes the background mismatch rate from a bam file

Description

Runs through the target regions base by base counting the mismatches. Then it divides sum(mismatches)/sum(depths)
for all bases in the targets

Usage

get_background_rate(bam, targets, reference, vaf_threshold = 0.1,
tag = "", black_list = NULL, substitution_specific = TRUE,
min_base_quality = 20, max_depth = 1e+05, min_mapq = 30)

Arguments

bam path to bam file

targets a data frame with the target regions. Must have three columns: chr, start and end

reference the reference genome in BSgenome format

vaf_threshold the bases with higher than this VAF threshold will be ignored in the calculation
(real mutations)

tag the RG tag if the bam has more than one sample

black_list a character vector of genomic loci of format chr_pos if substitution_specific is
false, or chr_pos_ref_alt if substitution_specific is true. The background will be
computed on the target regions after excluding black_list loci.

substitution_specific

logical, whether to have the loci of black_list by substitutions.
min_base_quality

minimum base quality for a read to be counted

max_depth maximum depth above which sampling will happen

min_mapq the minimum mapping quality for a read to be counted

12 get_background_rate

Details

Computes the background rate of the input bam file for all bases in the specified targets. Substitutions-
specific rates are also calculated.

Genomic positions having non-reference allele frequency higher than vaf_threshold will be ex-
cluded (to exclude SNPs and real mutations).

If a black_list is specified, the positions in the black_list (whether substitution_specific or not) will
be excluded before computing the background rate.

Value

a list containing the general mismatch rate and substitution-specific rates

See Also

create_black_list test_ctDNA create_background_panel

Examples

Load example data
data("targets", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")
bamN1 <- system.file("extdata", "N1.bam", package = "ctDNAtools")
bamN2 <- system.file("extdata", "N2.bam", package = "ctDNAtools")
bamN3 <- system.file("extdata", "N3.bam", package = "ctDNAtools")

Use human reference genome from BSgenome.Hsapiens.UCSC.hg19 library
suppressMessages(library(BSgenome.Hsapiens.UCSC.hg19))

basic usage
get_background_rate(bamT1, targets, BSgenome.Hsapiens.UCSC.hg19)

more options
get_background_rate(bamT1, targets, BSgenome.Hsapiens.UCSC.hg19,

min_base_quality = 30, min_mapq = 40, vaf_threshold = 0.05
)

with blacklist
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
substitution_specific = TRUE

)

bl2 <- create_black_list(bg_panel,
mean_vaf_quantile = 0.99,
min_samples_one_read = 2, min_samples_two_reads = 1

)

get_background_rate(bamT1, targets, BSgenome.Hsapiens.UCSC.hg19,
black_list = bl2

get_fragment_size 13

)

get_fragment_size Gets fragment lengths from a bam file

Description

A function to extract fragment lengths from a bam file. Optionally, given a mutation data frame, it
can categorize read lengths in mutated vs non-mutated reads.

Usage

get_fragment_size(bam, mutations = NULL, targets = NULL, tag = "",
isProperPair = NA, mapqFilter = 30, min_size = 1, max_size = 400,
ignore_trimmed = TRUE, different_strands = TRUE,
simple_cigar = FALSE)

Arguments

bam path to bam file.

mutations An optional data frame with mutations. Must have the columns CHROM, POS,
REF, ALT.

targets a data frame with the target regions to restrict the reads in the bam. Must have
three columns: chr, start and end

tag the RG tag if the bam has more than one sample.

isProperPair a logical whether to return only proper pairs (true), only improper pairs (false),
or it does not matter (NA).

mapqFilter mapping quality threshold for considering reads.

min_size Integer with the lowest fragment length.

max_size Integer with the highest fragment length.

ignore_trimmed logical, whether to remove reads that have been hard trimmed.
different_strands

logical, whether to keep only reads whose mates map to different strand.

simple_cigar logical, whether to include only reads with simple cigar.

Details

Extracts the fragment size of reads in the input bam that satisfy the following conditions:

• Paired, and optionally properly paired depending on the isProperPair parameter.

• Both the reads and mate are mapped.

• Not secondary or supplementary alignment

14 get_fragment_size

• Not duplicate

• Passing quality control

• Read and mate on different strands (optional depending on the different_strands parameter)

• Not trimmed (optional depending on the ignore_trimmed parameter), i.e. will keep only reads
with the max length.

• Having a simple cigar (optional depending on the simple_cigar parameter).

• Satisfy the mapping quality threshold specified in the mapqFilter parameter.

• Reads and mates on the same chromosome when min_size > 0.

When the input mutations is given, the output will label the reads that support the variant alleles of
the mutation in a separate column.

Value

A data frame with the columns:

• Sample: The SM tag in bam or file name

• ID: the read ID

• chr: chromosome

• start: the left most end of either the read or mate

• end: the right most end of either the read or mate.

• size: the fragment size

• category (only if mutations is provided): either ref, alt, or other

See Also

summarize_fragment_size bin_fragment_size analyze_fragmentation get_mutations_fragment_size

Examples

data("mutations", package = "ctDNAtools")
data("targets", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")

basic usage
fs <- get_fragment_size(bam = bamT1)

More options
fs1 <- get_fragment_size(

bam = bamT1, isProperPair = TRUE, min_size = 70,
max_size = 200, ignore_trimmed = FALSE, different_strands = FALSE,
simple_cigar = TRUE

)

with mutations input
fs2 <- get_fragment_size(bam = bamT1, mutations = mutations)

get_mutations_fragment_size 15

using targets
fs3 <- get_fragment_size(bam = bamT1, targets = targets)

get_mutations_fragment_size

Gets reads fragment lengths for a list of mutations

Description

The function extracts the fragment lengths for the reads holding alternative allele for each mutation
in the mutations data frame.

Usage

get_mutations_fragment_size(bam, mutations, tag = "",
min_base_quality = 20, min_mapq = 30, ...)

Arguments

bam path to bam file.

mutations Data frame with mutations. Must have the columns CHROM, POS, REF, ALT.

tag the RG tag if the bam has more than one sample.
min_base_quality

minimum base quality when extracting reads covering mutations.

min_mapq minimum mapping quality when extracting reads covering mutations.

... Other parameters passed to get_fragment_size.

Details

Fragment length will extracted from the bam file according to the parameters passed to get_fragment_size,
and the fragment size of the reads that map to the ref and alt alleles of each mutation in the input
will be returned.

Value

A list with length equal to the number of mutations. Each element contains a list with two elements
ref and alt each having an integer vector of fragment lengths

See Also

get_fragment_size

16 get_mutations_read_counts

Examples

data("mutations", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")

mfs <- get_mutations_fragment_size(bam = bamT1, mutations = mutations[1:2,])

get_mutations_read_counts

Counts ref and alt reads for a set of mutations

Description

Counts ref and alt reads for a set of mutations in a bam file

Usage

get_mutations_read_counts(mutations, bam, tag = "",
min_base_quality = 20, max_depth = 1e+05, min_mapq = 30)

Arguments

mutations A data frame with the reporter mutations. Should have the columns CHROM,
POS, REF, ALT.

bam path to bam file

tag the RG tag if the bam has more than one sample
min_base_quality

minimum base quality for a read to be counted

max_depth maximum depth above which sampling will happen

min_mapq the minimum mapping quality for a read to be counted

Details

Quantifies the reference and variant alleles for the input mutations in the input bam file. Useful for
forced calling mutations.

Value

a named list contains: ref, vector of read counts of the reference alleles, and alt, vector of read
counts of the alternative allele

See Also

get_mutations_read_names test_ctDNA get_mutations_fragment_size

get_mutations_read_names 17

Examples

data("mutations", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")
get_mutations_read_counts(mutations = mutations[1:3,], bam = bamT1)

get_mutations_read_names

Gets names of the reads showing reference and alternative allele of a
list of mutations

Description

This function extracts the names of the reads in a bam file that support the variant and reference
alleles of the input mutations

Usage

get_mutations_read_names(bam, mutations, min_base_quality = 20,
tag = "", min_mapq = 30)

Arguments

bam path to bam file
mutations A data frame containing the mutations. Must have the columns CHROM, POS,

REF, ALT.
min_base_quality

integer specifying the minimum base quality for reads to be included.
tag the RG tag if the bam has more than one sample
min_mapq integer specifying the minimum mapping quality for reads to be included

Details

Returns the IDs of the read that cover the input mutations (ref and alt alleles).

Value

A list with length equal to the number of mutations. Each element is a character vector with the
read names.

See Also

get_mutations_read_counts get_mutations_fragment_size test_ctDNA

Examples

data("mutations", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")
get_mutations_read_names(bam = bamT1, mutations = mutations[1:3,])

18 merge_mutations_in_phase

merge_mutations_in_phase

Collapses mutations in phase into one event

Description

Given a mutations data frame and a bam file, this function collapses mutations in phase identified by
the ID_column into one event. While doing that, it ignores the reads that support both the reference
and alternative alleles for different mutations in phase.

Usage

merge_mutations_in_phase(mutations, bam, tag = "",
ID_column = "phasingID", min_base_quality = 20, min_mapq = 30)

Arguments

mutations A data frame with the reporter mutations. Should have the columns CHROM,
POS, REF, ALT.

bam path to bam file

tag the RG tag if the bam has more than one sample

ID_column The name of the column in mutations data.frame that has the IDs for mutations
in phase. NA values will be filled automatically by unique mutation identifiers.

min_base_quality

minimum base quality for a read to be counted

min_mapq integer specifying the minimum mapping quality for reads to be included.

Details

Mutations in phase are those that are supported by the same reads (same allele). The function
doesn’t identify mutations in phase, but rather use an ID column in the input whose name is specified
by ID_column to tell which mutations are in phase.

Since two or more mutations can be supported by the same evidence, this function merges these
mutations into one event. The function will also remove the mismatches that are not exhibited in
all the covered phased mutations (since this function is developed for the intent of minimal residual
disease testing).

The output will include the merged mutations, the probability of purification, which is defined as
the number of reads covering at least two mutations in phase divided by the number of informative
reads. Informative reads count is the total number of unique reads mapping to the mutations input
(including both mutations in phase and other mutations).

mutations 19

Value

A list with the following slots:

out: A data frame that has the columns:
• Phasing_id: the ID of the mutations/event.
• ref: number of reference reads.
• alt: number of alternative reads.
• n_reads_multi_mutation: Number of reads that span more than one mutation in phase.
• all_reads: total number of reads.
• multi_support: number of reads that support the alt allele of multiple mutations in phase.

purification_prob: Probability of purification: sum(n_reads_multi_mutation)/sum(all_reads)
multi_support: Number of multi-support reads in all mutations/events
informative_reads: Number of unique reads covering the mutations/events

See Also

test_ctDNA get_mutations_read_names

Examples

data("mutations", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")
merge_mutations_in_phase(mutations = mutations[5:10,], bam = bamT1, ID_column = "PHASING")

mutations Example mutations data to use with ctDNAtools package

Description

Includes 10 mutations in chr14 immunoglobulin region.

Usage

mutations

Format

A data frame with 10 rows and 5 columns:

CHROM chromosome
POS genomic position
REF Reference allele
ALT Alternative allele
PHASING Common ID for mutations in phase

Source

In-house

20 summarize_fragment_size

summarize_fragment_size

Summarizes fragment size in defined genomic regions

Description

Summarizes fragment size in defined genomic regions

Usage

summarize_fragment_size(bam, regions, tag = "",
summary_functions = list(Mean = mean, Median = median), ...)

Arguments

bam the input bam file

regions data frame containing the genomic regions. Must have the columns chr, start
and end.

tag the RG tag if the bam has more than one sample.

summary_functions

a named list containing the R functions used for summarization, e.g. mean, sd.

... Other parameters passed to get_fragment_size

Details

Fragment size for reads that are paired (optionally properly paired), whose both mates are mapped,
not secondary or supplementary alignment, not duplicates, passed quality control, and satisfy mapq
threshold will be used for summarization. The reads that overlap the specified regions will be
summarized by the specified summary_functions. Overlaps consider fragments to span the left
most to the right most coordinate from either the read or the mate. Minimum and maximum bounds
of the fragment size will be applied before summarization.

Value

a data frame with the first column having the regions in the format of chr:start-end, and other
columns correspond to summary_functions.

See Also

get_fragment_size bin_fragment_size analyze_fragmentation

targets 21

Examples

data("targets", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")

binning the target in arbitrary way
Note that regions don't need to be bins,
they can be any regions in the genome
regions <- data.frame(

chr = targets$chr,
start = seq(from = targets$start - 200, to = targets$end + 200, by = 30),
stringsAsFactors = FALSE

)
regions$end <- regions$start + 50

basic usage
sfs <- summarize_fragment_size(bam = bamT1, regions = regions)

different summary functions
sfs <- summarize_fragment_size(

bam = bamT1, regions = regions,
summary_functions = list(
Var = var, SD = sd,
meanSD = function(x) mean(x) / sd(x)

)
)

targets Example Genomic targets to use with ctDNAtools package

Description

Includes 1 target region in chr14.

Usage

targets

Format

A data frame with 1 row and 3 columns:

chr chromosome

start start genomic position

end end genomic position

Source

In-house

22 test_ctDNA

test_ctDNA Tests the ctDNA positivity of a sample

Description

Given a set of reporter mutation, this functions counts the reads matching the reporter mutations
in the sample to be tested, estimates the mismatch rate for the sample to be tested, and then runs a
Monte Carlo simulation test to determine whether the tested sample is positive or negative.

Usage

test_ctDNA(mutations, bam, targets, reference, tag = "",
ID_column = NULL, black_list = NULL, substitution_specific = TRUE,
vaf_threshold = 0.1, min_base_quality = 30, max_depth = 1e+05,
min_mapq = 40, bam_list = NULL, bam_list_tags = rep("",
length(bam_list)), min_alt_reads = 1,
min_samples = ceiling(length(bam_list)/10), n_simulations = 10000,
pvalue_threshold = 0.05, seed = 123,
informative_reads_threshold = 10000)

Arguments

mutations A data frame with the reporter mutations. Should have the columns CHROM,
POS, REF, ALT.

bam path to bam file

targets a data frame with the target regions. Must have three columns: chr, start and end

reference the reference genome in BSgenome format

tag the RG tag if the bam has more than one sample

ID_column The name of the column that contains the ID of mutations in phase. All muta-
tions in Phase should have the same ID in that column.

black_list a character vector of genomic loci to filter. The format is chr_pos if substitu-
tion_specific is false or chr_pos_ref_alt if substitution_specific is true. If given,
will override bam_list.

substitution_specific

logical, whether to have the loci of black_list by substitutions.

vaf_threshold When calculating the background rate, the bases with higher than this VAF
threshold will be ignored (real mutations/SNPs).

min_base_quality

minimum base quality for a read to be counted

max_depth maximum depth above which sampling will happen

min_mapq the minimum mapping quality for a read to be counted

bam_list A vector containing the paths to bam files used to filter mutations. Mutations
that have more than min_alt_reads in more than min_samples will be filtered.
Using black_list is more recommended.

test_ctDNA 23

bam_list_tags the RG tags for the bams included in bams list.

min_alt_reads When bam_list is provided, this sets the minimum number of alternative allele
reads for a sample to be counted.

min_samples When number of samples having more than min_alt_reads exceeds this num-
ber, the mutation will be filtered.

n_simulations the number of Monte Carlo simulations.
pvalue_threshold

the p-value threshold used to decide positivity or negativity.

seed the random seed to make the Monte Carlo simulations reproducible.
informative_reads_threshold

the number of informative reads (unique reads mapping to specified mutations)
under which the test will be undetermined.

Details

This is the main function to test minimal residual disease by ctDNA positivity in a follow-up sample
(e.g. after treatment). The inputs include a bam file for the follow-up sample to be tested, a list of
reporter mutations (detected for example before treatment in a ctDNA positive sample), and an
optional black_list (recommended to use) computed from a list of bam files of healthy-like samples
or bam_list of the bam_files to use instead of black_list.

The workflow includes the following steps:

1. Filtering mutations (optional but recommended): The mutations in the input will be filtered
removing the ones reported in the black list. If bam_list is provided, the mutations will be
filtered according to the min_samples and min_alt_reads parameters. See filter_mutations.

2. The background rate will be computed for the input bam. The black list will be plugged in to
exclude the black-listed loci when computing the background rate. The black list can be sub-
stitution_specific or not, but in both cases, the background rate will be adjusted accordingly.
See get_background_rate.

3. Counting reference and alternative alleles of the reporter mutations in the bam file.

4. Merging mutations in phase (optional but recommended): If the ID_column is specified in the
mutations input, mutations with the same ID (in phase) will be merged. While doing so, it is
expected that real traces of mutations will be exhibited jointly in the reads spanning phased
mutations, whereas artifacts will not show in all the covered mutations in phase. Therefore, the
mismatches that map only to a subset of the mutations in phase but not the others (which are
covered and show reference allele) will be removed. This will lead to reduction of the observed
mismatches, and therefore, the computed background rate will be adjusted accordingly: new
rate = old rate * (1 - purification_probability). See merge_mutations_in_phase.

5. Monte Carlo test: this approach was used by Newman et al., Nature Biotechnology 2016.

• Given N reporter mutations each with depth Di, randomly sample variant allele reads Xi

under the background rate p using binomial distribution Xi ~ Binom(Di, p).
• Repeat n_simuations times.
• Count the number of simulations, where simulated data equal or exceed observed data in

jointly two measurements: (1) the average VAF for the N mutations, and (2) the number
of mutations with non-zero VAF.

24 test_ctDNA

• Compute an empirical p-value as (#successes + 1)/(#simulations + 1)

6. Make a decision: If number of informative reads is lower than informative_reads_threshold
parameter, the decision will be undetermined. Otherwise, the pvalue_threshold parameters
will be used to determine positivity or negativity.

Value

a data frame with the following columns:

• sample: The sample name taken from SM field in the bam file or file base name

• n_mutations: The number of mutations used in the test.

• n_nonzero_alt: Number of mutations that have at least one read supporting alternative allele.

• total_alt_reads: Total number of reads supporting alternative alleles of all mutations in input.

• mutations_filtered: The number of filtered mutations.

• background_rate: The background rate of the tested sample (after all adjustments)

• informative_reads: The number of unique reads covering the mutations used.

• multi_support_reads: The number of reads that support more than one mutations in phase.
Non-zero values is a sign of positivity not used in the p-value calculation.

• pvalue: The empirical p-value from the Monte Carlo test.

• decision: The decision can be positive, negative or undetermined.

See Also

get_background_rate merge_mutations_in_phase create_black_list create_background_panel
filter_mutations

Examples

Load example data
data("mutations", package = "ctDNAtools")
data("targets", package = "ctDNAtools")
bamT1 <- system.file("extdata", "T1.bam", package = "ctDNAtools")
bamT2 <- system.file("extdata", "T2.bam", package = "ctDNAtools")
bamN1 <- system.file("extdata", "N1.bam", package = "ctDNAtools")
bamN2 <- system.file("extdata", "N2.bam", package = "ctDNAtools")
bamN3 <- system.file("extdata", "N3.bam", package = "ctDNAtools")

Use human reference genome from BSgenome.Hsapiens.UCSC.hg19 library
suppressMessages(library(BSgenome.Hsapiens.UCSC.hg19))

basic usage
test_ctDNA(

mutations = mutations, bam = bamT1,
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
n_simulation = 100

)

More options

test_ctDNA 25

test_ctDNA(
mutations = mutations, bam = bamT1,
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
n_simulation = 100, min_base_quality = 20, min_mapq = 30,
vaf_threshold = 0.05

)

Use phasing information
test_ctDNA(

mutations = mutations, bam = bamT2,
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
n_simulation = 100, ID_column = "PHASING"

)

Use a black list based on loci
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
substitution_specific = FALSE

)

bl1 <- create_black_list(bg_panel,
mean_vaf_quantile = 0.99,
min_samples_one_read = 2, min_samples_two_reads = 1

)

test_ctDNA(
mutations = mutations, bam = bamT1,
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
n_simulation = 100, ID_column = "PHASING", black_list = bl1,
substitution_specific = FALSE

)

Use a substitution-specific black list
bg_panel <- create_background_panel(

bam_list = c(bamN1, bamN2, bamN3),
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
substitution_specific = TRUE

)

bl2 <- create_black_list(bg_panel,
mean_vaf_quantile = 0.99,
min_samples_one_read = 2, min_samples_two_reads = 1

)

test_ctDNA(
mutations = mutations, bam = bamT1,
targets = targets, reference = BSgenome.Hsapiens.UCSC.hg19,
n_simulation = 100, ID_column = "PHASING", black_list = bl2,
substitution_specific = TRUE

)

26 vcf_to_mutations_df

vcf_to_mutations_df Helper function to read a vcf into the required format of mutations
data frame

Description

Uses VariantAnnotation::readVcfAsVRanges to read the vcf file, which return variants in a format
that each row is one variant. If the vcf has multiple samples, the samples will be appended by rows.
Provide a sample_name to return only the variants belonging to the sample of interest. Once you
use this function, make sure that all the variants are relevant. The function will only return SNVs.

Usage

vcf_to_mutations_df(vcf, sample_name = NULL, ...)

Arguments

vcf the path to vcf file

sample_name a character(1) when provided, return only variants from this sample

... other options passed to VariantAnnotation::readVcfAsVRanges

Examples

vcf <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf_to_mutations_df(vcf, sample_name = "HG00096")

Index

∗Topic datasets
mutations, 19
targets, 21

analyze_fragmentation, 2, 4, 14, 20

bin_fragment_size, 3, 3, 14, 20

create_background_panel, 5, 8, 10–12, 24
create_black_list, 6, 7, 11, 12, 24

extract_trinucleotide_context, 9

filter_mutations, 10, 23, 24

get_background_rate, 11, 23, 24
get_fragment_size, 3, 4, 13, 15, 20
get_mutations_fragment_size, 14, 15, 16,

17
get_mutations_read_counts, 16, 17
get_mutations_read_names, 16, 17, 19

merge_mutations_in_phase, 18, 23, 24
mutations, 19

summarize_fragment_size, 3, 4, 14, 20

targets, 21
test_ctDNA, 6, 8, 10–12, 16, 17, 19, 22

vcf_to_mutations_df, 26

27

	analyze_fragmentation
	bin_fragment_size
	create_background_panel
	create_black_list
	extract_trinucleotide_context
	filter_mutations
	get_background_rate
	get_fragment_size
	get_mutations_fragment_size
	get_mutations_read_counts
	get_mutations_read_names
	merge_mutations_in_phase
	mutations
	summarize_fragment_size
	targets
	test_ctDNA
	vcf_to_mutations_df
	Index

