Package 'csSAM'

February 19, 2015

Type Package
Title csSAM - cell-specific Significance Analysis of Microarrays
Version 1.2.4
Date 2011-10-08
Author Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang
Maintainer Shai Shen-Orr < shenorr@technion.ac.il>
Description Cell-type specific differential expression of a microarray experiment of heterogeneous tissue samples, using SAM.
License LGPL
LazyLoad yes
Depends R (\geq 2.15), compiler
Collate 'csfit.R' 'csSAM-package.R' 'csSAM.R' 'csSamWrapper.R' 'fdrCsSAM.R' 'fdrSAM.R' 'findSigGene.R' 'make.monotone.R' 'plotCsSAM.R' 'runSAM.R' 'ttest.func.R' 'varr.R'
NeedsCompilation no
Repository CRAN

Date/Publication 2013-05-13 17:39:59

R topics documented:

csSAM-package	2
csfit	4
csSAM	5
csSamWrapper	6
fdrCsSAM	7
fdrSAM	9
findSigGene	10
plotCsSAM	11
runSAM	11
	13

Index

csSAM-package

Description

SAM for Cell-specific Differential Expression SAM.

Details

Package: Type: Version: Date: License:

LazyLoad:

Tissues are often made up of multiple cell-types. Each with its own functional attributes and molecular signature. Yet, the prop Key functions for this package:

csSamWrapper - Single wrapper function performs all functionality. csfit: For deconvolving the average cell-type specific expressAM: For calculating the constrast between every pair of cells being compared between the two groups.

fdrCsSAM: Estimate the false discovery rate for each cell-type specific comparison.

findSigGenes:Identifies the list of differentially expressed genes in a given cell-type at a given FDR cutoff. plotCsSAM:Plots a fdr plot of ther results.

Additional functions exists (runSAM and fdrSAM to contrast csSAM with the tissue heterogeneity ignorant SAM).

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

Maintainer: Shai Shen-Orr <shenorr@stanford.edu>

References

Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM and Butte AJ (2010). "Cell type-specific gene expression differences in complex tissues." _Nature methods_, *7*(4), pp. 287-9. ISSN 1548-7105, <URL: http://dx.doi.org/10.1038/nmeth.1439>, <URL: http://www.ncbi.nlm.nih.gov/pubmed/20208531>.

Examples

```
library("csSAM")
##
## Generate random dataset
##
set.seed(143)
```

```
k <- 5 # number of cell types
ng <- 500 # number of genes
p <- 20 # number of samples</pre>
ndiff <- 100 # number of genes differentially expressed
# true cell-specific signatures
H1 <- matrix(rnorm(5*ng), ncol=ng)</pre>
H2 <- H1
# create differential expression for 3rd cell type
H2[3,1:ndiff] <- H2[3,1:ndiff] + 5
# cell frequency matrix per sample
cc <- matrix(runif(p*k), ncol=k)</pre>
cc <- t(scale(t(cc), center=FALSE, scale=rowSums(cc)))</pre>
colnames(cc) <- paste('cellType', 1:ncol(cc), sep="")</pre>
# global expression matrix
G <- rbind(cc[1:10, ] %*% H1, cc[11:p, ] %*%H2 ) + matrix(rnorm(p*ng), ncol=ng)</pre>
# sample classes (2 groups)
y <- gl(2, p/2)
fileName = "Example File.pdf";
# Now run, either using the wrapper
# NB: more permutations would be needed for real data
deconvResults = csSamWrapper(G, cc, y, nperms = 50, alternative = "two.sided"
, standardize = TRUE
, medianCenter = TRUE
, fileName = fileName)
# Or by calling each function independently:
# this is useful if you want to perform only cell-specific expression
# without differential expression.
## Not run:
numset = nlevels(y)
n <- summary(y, maxsum=Inf) # number of samples in each class</pre>
numgene = ncol(G)
numcell = ncol(cc)
geneID = colnames(G)
cellID = colnames(cc)
deconv <- list()</pre>
# run analysis
for (curset in levels(y))
deconv[[curset]]= csfit(cc[y==curset,], G[y==curset,])
rhat <- array(dim = c(numcell,numgene))</pre>
rhat[, ] <- csSAM(deconv[[1]]$ghat, deconv[[1]]$se,</pre>
                   n[1], deconv[[2]]$ghat, deconv[[2]]$se, n[2],
                   standardize=TRUE, medianCenter=TRUE, nonNeg=TRUE)
tt.sam <- runSAM(G, y)</pre>
```

End(Not run)

csfit

csfit: Deconvolution from Known Cell Proportions

Description

Deconvolves cell-specific expression using least-squares fit. Input is the heterogeneous sample gene expression of a group of samples and the matching cell-frequencies of the sample. The lower limit for the number of samples needed to deconvolving the cell-specific expression of N cell-types is N+1. For a single color array - the result could be interpreted as the average expression level of a given gene in a cell-type of that group. Multiplied by the frequency of a given cell-type in an individual in the group, it is the amount contributed by that cell type to the overall measured expression on the array.

Usage

csfit(cc, G, logRm = FALSE, logBase = 2)

Arguments

G	Matrix of gene expression, columns ordered in the same order at the cell-frequency matrix (n by g, n samples, g genes)
сс	Matrix of cell-frequency. (n by k, n samples, k cell-types)
logRm	Exponentiate data for deconvolution stage. Default is FALSE
logBase	Base of logarithm used to determine exponentiation factor. Default is 2

Value

A list with three attributes:

ghat	A matrix of cell-specific expression for each gene as derived from the coeffi-
	cients of the fit. (Size: k by g, k cell types, gp genes)
se	Standard error of the fit coefficients
residuals	The individual sample residuals.

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

csSAM

References

Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM and Butte AJ (2010). "Cell type-specific gene expression differences in complex tissues." _Nature methods_, *7*(4), pp. 287-9. ISSN 1548-7105, <URL: http://dx.doi.org/10.1038/nmeth.1439>, <URL: http://www.ncbi.nlm.nih.gov/pubmed/20208531>.

|--|--|

Description

Computes the constrast between groups for the deconvolved cell-specific expression for each cell-type

Usage

```
csSAM(ghat1, se1, n1, ghat2, se2, n2, standardize,
medianCenter = TRUE, nonNeg = FALSE)
```

Arguments

ghat1	Expression matrix of deconvolved cell-specific gene expression estimates for group 1.
se1	Standard error group 1
n1	Group 1 size
ghat2	Expression matrix of deconvolved cell-specific gene expression estimates for group 2.
se2	Standard error group 2
n2	Group 2 size
standardize	Standardize contrast values
medianCenter	Median center rhat distributions for each cell-type
nonNeg	Negative values not allowed such as in a single channel microarray. Zero them if negative (a conervative option)

Value

A matrix object with the result of contrasting the average cell-specific expression profile of the two groups, per cell-type (Size k by g where k is the number of cells and g is the number of genes).

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

References

Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM and Butte AJ (2010). "Cell type-specific gene expression differences in complex tissues." _Nature methods_, *7*(4), pp. 287-9. ISSN 1548-7105, <URL: http://dx.doi.org/10.1038/nmeth.1439>, <URL: http://www.ncbi.nlm.nih.gov/pubmed/20208531>.

csSamWrapper

csSamWrapper function - performs entire functionality

Description

csSamWrapper function - performs entire functionality

Usage

```
csSamWrapper(G, cc, y, nperms = 200,
  alternative = "two.sided", standardize = TRUE,
  medianCenter = TRUE, logRm = FALSE, logBase = 2,
  nonNeg = TRUE, fileName = "csSAMout.pdf")
```

Arguments

G	Matrix of gene expression, columns ordered in the same order at the cell-frequency matrix (n by g, n samples, g genes)
сс	Matrix of cell-frequency. (n by k, n samples, k cell-types)
У	A numeric vector of group association of each sample. Either 1 or 2.
nperms	The number of permutations to perform.
alternative	two.sided less greater
standardize	Standardize sample or not. Default is TRUE.
medianCenter	Median center rhat distributions. Default is TRUE.
logRm	Exponentiate data for deconvolution stage. Default is FALSE
logBase	Base of logaritm used to determine exponentiation factor. Default is 2
nonNeg	For single channel arrays. Set any cell-specific expression estimated as negative, to a ceiling of 0. It is conservative in its study of differential expression. Default is FALSE.
fileName	PDF file containing plots of FDR vs. number of genes called for whole tissue comparison (via SAM) as well as each cell-type (by csSAM)

fdrCsSAM

Value

Returns a list containing:

deconv	A list object containing a fit (cell-type specfic expression) for each group. Each element in the list is an object returned by csFit.
fdr.csSAM	A list output of the fdrCsSAM function.
fdr.SAM	A list output of the fdrSAM function.
sigGene.csSAM	A list of significant genes.
fileName	The filename into wheih the FDR plots are dumped.

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

References

Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM and Butte AJ (2010). "Cell type-specific gene expression differences in complex tissues." _Nature methods_, *7*(4), pp. 287-9. ISSN 1548-7105, <URL: http://dx.doi.org/10.1038/nmeth.1439>, <URL: http://www.ncbi.nlm.nih.gov/pubmed/20208531>.

See Also

csfit,csSAM,fdrCsSAM,plotCsSAM

fdrCsSAM

fdrCsSAM

Description

Estimates the false discovery rate for the identified cell-specific differences in gene expression.

Usage

```
fdrCsSAM(G, cc, y, n, numcell, numgene, rhat, nperms,
    alternative = "two.sided", standardize = TRUE,
    medianCenter = TRUE, logRm = FALSE, logBase = 2,
    nonNeg = FALSE)
```

Arguments

G	Matrix of gene expression, columns ordered in the same order at the cell-frequency matrix (n by p, n samples, p genes)
сс	Matrix of cell-frequency. (n by k, n samples, k cell-types)
У	A numeric vector of group association of each sample. Either 1 or 2.

n	A nuermic vector describing the number of samples in a group
numcell	The number of cell-types to consider
numgene	The number of genes being considered
rhat	The contrast in cell-type expression for each cell-type as observed between the two groups being compared.
nperms	The number of permutations to perform.
alternative	Type of test to conduct - choose between 'two.sided', 'greater', or 'less'
standardize	Standardize sample or not. Default is TRUE
medianCenter	Median center rhat distributions. Default is TRUE.
logRm	Exponentiate data for deconvolution stage. Default is FALSE
logBase	Base of logaritm used to determine exponentiation factor. Default is 2
nonNeg	For single channel arrays. Set any cell-specific expression estimated as negative, to a ceiling of 0. It is conservative in its study of differential expression. Default is FALSE.

Value

A list.	
fdr.g	A matirx false dicovery rates for csSAM comparison for each cell-type at dif- ferent thresholds. A set of 100 theresholds is determined automatically from the data (k by 100, where k is number of cells).
avrhatperm	
rhatperm	A matrix sized pXkXg which stores the contrast of a given gene g in cell type k in permutation p of the data.
cutp.g	A matrix k by 100, where k is the number of cell tpes. Lists the 100 cutoff thresholds for each cell-type as determined automatically from the computed contrast.
rhat	A matrix object with the result of contrasting the average cell-specific expression profile of the two groups, per cell-type (Size k by g where k is the number of cells and g is the number of genes).
ncall.g	Number of genes called significant at the given cutoff threshold with a FDR matching that indicated in fdr.g

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

References

fdrSAM

Description

Calculate the false discovery rate (FDR) by permutation for the group differences as calculated by SAM.

Usage

fdrSAM(G, y, nperms, tt.sam, alternative = "two.sided")

Arguments

G	Matrix of gene expression, columns ordered in the same order at the cell-frequency matrix (n by g, n samples, g genes)
У	A numeric vector of group association of each sample. Either 1 or 2.
nperms	Number of permutations to run. User responsability to the number appropriately fitting the sample size.
tt.sam	Real group comparison t-test statistic value
alternative	Type of test. Choices are 'two.sided', 'greater' or 'less'

Value

A list

fdr.sam	A vector false dicovery rates for SAM comparison at different thresholds. A set of 100 theresholds is determined automatically from the data.
ncall.sam	Number of genes called significant at the given cutoff threshold with a FDR matching that indicated in fdr.sam
ttstar.sam	A matrix listing the t statistic for each gene in each permutation. (p by g, p permutations, g genes)
sigGene.sam	A vector of length equal to the number of genes being considered. For each gene the estimated FDR is listed.

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

References

findSigGene

Description

Find the false discovery rate for each gene in each cell-type.

Usage

findSigGene(G, cc, y, rhat, csSAMData)

Arguments

G	Gene expression matrix of heterogenous tissue measurements
сс	Matrix of cell-frequency measures per person
У	Numeric group association of each sample. Either 1 or 2.
rhat	Matrix of cell-specific contrasts for each gene in each cell-type as computed for the original group classification.
csSAMData	List object returned from fdrCsSAM.

Value

A matrix size k by g where k is the number of cell-types and g is the number of genes. For each cell in the matirx, listed is the FDR of the gene for a difference in a given cell-type.

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

References

plotCsSAM

Description

Plots the # of genes called significnat at a given false disocvery rate for the SAM (heterogenous tissue) comparison, and for each of the contrasted cell-types using csSAM

Usage

```
plotCsSAM(csSAMdata, SAMdata, alternative, cellID,
    numcell, fileName)
```

Arguments

csSAMdata	List object output of the fdrCsSAM function
SAMdata	List object output of the fdrSAM function
alternative	Type of test conducted. Will appear in plot title.
cellID	Label for each cell-type
numcell	Number of different cell-types being considered.
fileName	Name of output pdf file.

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

References

Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM and Butte AJ (2010). "Cell type-specific gene expression differences in complex tissues." _Nature methods_, *7*(4), pp. 287-9. ISSN 1548-7105, <URL: http://dx.doi.org/10.1038/nmeth.1439>, <URL: http://www.ncbi.nlm.nih.gov/pubmed/20208531>.

runSAM

runSAM

Description

A lightweight version of the SAM algorithm, only performs two group comparison with equal deltas on each tail

Usage

runSAM(G, y, s0.sam = NULL, stand.r = TRUE)

Arguments

G	Matrix of gene expression, columns ordered in the same order at the cell-frequency matrix (n by p, n samples, p genes)
У	Numeric group association of each sample. Either 1 or 2.
s0.sam	Input or computed value of SAM exchangeability factor. Default is determined automatically
stand.r	Median center and standardize arrays. Default is TRUE.

Author(s)

Shai Shen-Orr, Rob Tibshirani, Narasimhan Balasubramanian, David Wang

References

Index

csfit, 4, 7 csSAM, 5, 7 csSAM-package, 2 csSamWrapper, 6

fdrCsSAM, 7, 7 fdrSAM, 9 findSigGene, 10

plotCsSAM, 7, 11

runSAM, 11