Package 'crossrun'

October 8, 2018
Version 0.1.0Title Joint Distribution of Number of Crossings and Longest RunDescription Joint distribution of number of crossings and thelongest run in a series of independent Bernoulli trials. Thecomputations uses an iterative procedure where computationsare based on results from shorter series. The procedureconditions on the start value and partitions by furtherconditioning on the position of the first crossing (or none).
Depends R (>=3.5)
License GPL-3
Encoding UTF-8
URL https://github.com/ToreWentzel-Larsen/crossrun
LazyData true
Imports Rmpfr (>=0.7-1)
RoxygenNote 6.1.0
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Tore Wentzel-Larsen [aut, cre],
Jacob Anhøj [aut]
Maintainer Tore Wentzel-Larsen tore.wentzellarsen@gmail.com
Repository CRAN
Date/Publication 2018-10-08 14:20:10 UTC
R topics documented:
boxprobt 2
clshift 3
crossrunbin 3
crossrunchange 4
crossrunshift 5
crossrunsymm 5
cumsumm 6
cumsummcol 7
exactbin 7
joint100.6 8
joint100symm 8
joint15.6 9
joint15symm 9
joint60.6 10
joint60symm 10
simclbin 11
Index 12
boxprobt Box Cumulative Sums

Description

A box cumulative sum is defined as the cumulative sum over a lower left rectangle. This function is primarily for use when the components are point probabilities for the number of crossings C and the longest run L , then component (c, l) in the result is the probability $P(C \geq c, L \leq l)$.

Usage

```
boxprobt(mtrx)
```


Arguments

> mtrx mpfr array

Value

mpfr array

Examples

```
nill <- Rmpfr::mpfr(0, 120)
one <- Rmpfr::mpfr(1, 120)
two <- Rmpfr::mpfr(2, 120)
contents <- c(one,nill,nill, one,one,one, two,two,two)
mtrx3 <- Rmpfr::mpfr2array(contents, dim = c(3, 3))
print(mtrx3)
print(boxprobt(mtrx3))
```

clshift Number of Crossings and Longest Run

Description

Auxiliary function for simclbin, computing the number of crossings (type=0) or longest run (type=2) in a sequence of independent normal observations. Crossings and runs are related to whether the observations are above a shift.

Usage

clshift(seri, shift $=0$, type $=0)$

Arguments

seri	numeric; seri a sequence of random draws
shift	numeric; shift for the observatoobs
type	numeric; 0 number of crossings, 1 longest run

Value

number of crossings or longest run, numeric

```
crossrunbin Joint Distribution for Crossings and Runs
```


Description

Joint probability distribution for the number of crossings C and the longest run L in a sequence of n independent Bernoulli observations with success probability p. To enhance precision, results are stored in mpfr arrays and the probabilities are multiplied by m^{n-1} for a multiplier m .

Usage

crossrunbin(nmax $=100$, prob $=0.5$, mult $=2$, prec $=120$, printn $=$ FALSE)

Arguments

$n \max \quad \max$ sequence length.
prob success probability.
mult multiplier for joint probabilities.
prec mpft precision.
printn logical for progress output.

Value

list of joint probabilities.

Examples

crb10.6 <- crossrunbin(nmax=10, prob=.6, printn=TRUE) print (crb10.6\$pt[[10]])
crossrunchange Joint Distribution for Crossings and Runs, Varying Success Probability.

Description

Joint probability distribution for the number of crossings C and the longest run L in a sequence of n independent Bernoulli observations with p ossibly varying success probability. To enhance precision, results are stored in mpfr arrays and the probabilities are multiplied by m^{n-1} for a multiplier m.

Usage

```
    crossrunchange(nmax = 100, prob = rep(0.5, 100), mult = 2,
```

 prec \(=120\), printn = FALSE)

Arguments

$$
\begin{array}{ll}
\text { nmax } & \text { max sequence length. } \\
\text { prob } & \text { success probabilities. } \\
\text { mult } & \text { multiplier for joint probabilities. } \\
\text { prec } & \text { mpft precision. } \\
\text { printn } & \text { logical for progress output. }
\end{array}
$$

Value

list pt of joint probabilities. Cumulative probabilities qt within each row are also included. Further, mostly for code checking, lists pat and qat conditional on starting with a success, and pbt and qbt conditional of starting with a failure, are included.

Examples

```
prob10 <- c(rep(.5,5),rep(.7,5))
crchange10 <- crossrunchange(nmax=10, prob=prob10,printn=TRUE)
print(crchange10$pt[[10]])
```


Description

wrapper for crossrunbin, succes probability=pnorm(shift).

Usage

crossrunshift(nmax $=100$, shift $=0$, mult $=2$, prec $=120$, printn $=$ FALSE)

Arguments

nmax max sequence length.
shift mean of normal distribution.
mult multiplier for joint probabilities.
prec mpft precision.
printn logical for progress output.

Value

list pt of joint probabilities. Cumulative probabilities qt within each row are also included. Further, mostly for code checking, lists pat and qat conditional on starting with a success, and pbt and qbt conditional of starting with a failure, are included.

Examples

```
crs20 <- crossrunshift(nmax=20,printn=TRUE)
print(crs20$pt[[20]])
```

crossrunsymm Joint Probabilities for Crossings and Runs, Symmetric Case

Description

Joint probability distribution for the number of crossings C and the longest run L in a sequence of n independent Bernoulli observations with success probability p . To enhance precision, results are stored in mpfr arrays and the probabilities are multiplied by m^{n-1} for a multiplier m . This is for the symmetric case with success probability 0.5 , in which the multiplied probabilities are integers for the default value 2 of the multiplier.

Usage

crossrunsymm(nmax $=100$, mult $=2$, prec $=120$, printn $=$ FALSE $)$

Arguments

nmax	; max sequence length.
mult	; multiplier for joint probabilities. Default 2.
prec	; mpft precision.
printn	$;$ logical for including progress output.

Value

pt , list of joint probabilities, multiplied with m^{n-1}. In addition cumulative probabilities qt within each row are also included.

Examples

```
crs10 <- crossrunsymm(nmax=10,printn=TRUE)
```

```
cumsumm Row-wise Cumulative Sums
```


Description

Row-wise Cumulative Sums in mpfr Array.

Usage

cumsumm (mtrx)

Arguments

mtrx mpfr two-dimensional array.

Value

mpfr array with row-wise cumulative sums, same dimension as the original array.

Examples

```
nill <- Rmpfr::mpfr(0, 120)
one <- Rmpfr::mpfr(1, 120)
two <- Rmpfr::mpfr(2, 120)
contents <- c(one,nill,nill, one,one,one, two,two,two)
mtrx3 <- Rmpfr::mpfr2array(contents, dim = c(3, 3))
print(mtrx3)
print(cumsumm(mtrx3))
```

cumsummcol

Description

Column-wise cumulative sums in mpfr array.

Usage

cumsummcol (mtrx)

Arguments

mtrx mpfr two-dimensional array.

Value

mpfr array with column-wise cumulative sums, same dimension as the original array.

Examples

```
    nill <- Rmpfr::mpfr(0, 120)
    one <- Rmpfr::mpfr(1, 120)
    two <- Rmpfr::mpfr(2, 120)
    contents <- c(one,nill,nill, one,one,one, two,two,two)
    mtrx3 <- Rmpfr::mpfr2array(contents, dim = c(3, 3))
    print(mtrx3)
    print(cumsummcol(mtrx3))
```

 exactbin Exact Joint Probabilities for Low \(n\)

Description

Exact joint probabilities, for low n, of the number of crossings C and the longest run L in n independent Bernoulli observations with success probability p. Probabilites are multiplied by 2^{n-1}.

Usage

exactbin(n, p = 0.5, prec = 120)

Arguments

n
number, length of seqience, at most 6.
p success probability.
prec precision in mpfr calculations. Default 120.

Value

mpfr array

Examples

exactbin($n=6$)
exactbin($n=5, p=0.6$)
joint100.6 Joint probabilities, $n=100$, success probability 0.6

Description

The joint probabilities of the number C og crossings $(0, \ldots 99)$ and the longest run $L(1, \ldots, 100)$ in a series of $n=100$ independent Bernoulli observations for success probability 0.6. The probabilities are stored in the "times" representations, multiplied by 2^{100-1}. Only the joint distributions for $\mathrm{n}=15$, 60,100 and success probabilities 0.5 and 0.6 are included in the package to avoid excessive storage, but many more cases are generated in the script crossrun1.R.

Usage

joint100. 6

Format

matrix, 100 rows and 100 columns

Source

generated by the function crossrunbin and transformed from an Rmpfr array to a matrix
joint100symm Joint probabilities, $n=100$, symmetric case

Description

The joint probabilities of the number C og crossings $(0, \ldots 9)$ and the longest run $\mathrm{L}(1, \ldots, 100)$ in a series of $\mathrm{n}=100$ independent Bernoulli observations for the symmetric case (success probability 0.5). The probabilities are stored in the "times" representations, multiplied by 2^{100-1} and are integers in the symmetric case. Only the joint distributions for $n=15,60,100$ and success probabilities 0.5 and 0.6 are included in the package to avoid excessive storage, but many more cases are generated in the script crossrun1.R.

Usage

joint100symm

Format

matrix, 100 rows and 100 columns

Source

generated by the function crossrunsymm and transformed from an Rmpfr array to a matrix
joint15.6 Joint probabilities, $n=15$, success probability 0.6

Description

The joint probabilities of the number C og crossings $(0, \ldots 14)$ and the longest run $L(1, \ldots, 15)$ in a series of $\mathrm{n}=15$ independent Bernoulli observations for success probability 0.6. The probabilities are stored in the "times" representations, multiplied by $2^{15-1}=16348$. Only the joint distributions for $\mathrm{n}=15,60,100$ and success probabilities 0.5 and 0.6 are included in the package to avoid excessive storage, but many more cases are generated in the script crossrun1.R.

Usage

joint15.6

Format

matrix, 15 rows and 15 columns

Source

generated by the function crossrunbin and transformed from an Rmpfr array to a matrix

Description

Joint probabilities of the number C of crossings $(0, \ldots 14)$ and the longest run $L(1, \ldots, 15)$ in a series of $\mathrm{n}=15$ independent Bernoulli observations for the symmetric case (success probability 0.5). The probabilities are stored in the "times" representations, multiplied by $2^{15-1}=16348$ and are integers in the symmetric case. Only the joint distributions for $n=15,60,100$ and success probabilities 0.5 and 0.6 are included in the package to avoid excessive storage, but many more cases are generated in the script crossrun1.R.

Usage

joint15symm

Format

matrix, 15 rows and 15 columns

Source

generated by the function crossrunsymm and transformed from an Rmpfr array to a matrix
joint60. $6 \quad$ Joint probabilities, 60 , success probability 0.6

Description

The joint probabilities of the number C og crossings $(0, \ldots 59)$ and the longest run $L(1, \ldots, 60)$ in a series of $n=60$ independent Bernoulli observations for success probability 0.6 . The probabilities are stored in the "times" representations, multiplied by 2^{60-1}. Only the joint distributions for $\mathrm{n}=15$, 60,100 and success probabilities 0.5 and 0.6 are included in the package to avoid excessive storage, but many more cases are generated in the script crossrun1.R.

Usage

joint60.6

Format

matrix, 60 rows and 60 columns

Source

generated by the function crossrunbin and transformed from an Rmpfr array to a matrix
joint60symm Joint probabilities, $n=60$, symmetric case

Description

The joint probabilities of the number C og crossings $(0, \ldots 5)$ and the longest run $L(1, \ldots, 60)$ in a series of $\mathrm{n}=60$ independent Bernoulli observations for the symmetric case (success probability 0.5). The probabilities are stored in the "times" representations, multiplied by 2^{60-1} and are integers in the symmetric case. Only the joint distributions for $\mathrm{n}=15,60,100$ and success probabilities 0.5 and 0.6 are included in the package to avoid excessive storage, but many more cases are generated in the script crossrun1.R.

Usage

joint60symm

Format

matrix, 60 rows and 60 columns

Source

generated by the function crossrunsymm and transformed from an Rmpfr array to a matrix

```
simclbin Simulation of Independent Bernoulli Observations
```


Description

Simulation of a sequence of independent Bernoulli Observations. To reduce the amount of random draws, each simulation is based on a sequence of standard normal variables, and whether each observation is above a shift defined by the binomial probabilities assumed.

Usage

simclbin(nser $=100$, nsim $=1 \mathrm{e}+05$, probs $=c(0.5,0.6,0.7,0.8$, 0.9))

Arguments

nser	length of sequence simulated
nsim	number of simulations
probs	binomial probabilites

Value

a data frame with the number of crossings and longest run for each probability. For instance the variables nc 0.5 and lr0.5 are the number of crossings and the longest run for success probability 0.5 . One row for each simulation.

Examples

```
cl30simbin <- simclbin(nser=30, nsim=100)
mean(cl30simbin$nc0.5) # mean number of crossings, p=0.5
mean(cl30simbin$lr0.9) # mean longest run, p=0.9
```


Index

*Topic datasets
joint100.6, 8
joint100symm, 8
joint15.6, 9
joint15symm, 9
joint60.6, 10
joint60symm, 10
boxprobt, 2
clshift, 3
crossrunbin, 3
crossrunchange, 4
crossrunshift, 5
crossrunsymm, 5
cumsumm, 6
cumsummcol, 7
exactbin, 7
joint100.6, 8
joint100symm, 8
joint15.6, 9
joint15symm, 9
joint60.6, 10
joint60symm, 10
simclbin, 11

