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1 Laplace approximation

The coxme function fits the following mixed effects Cox model

λ(t) = λ0(t)eXβ+Zb

b ∼ G(0,Σ(θ))

where λ0 is an unspecified baseline hazard function, X and Z are the design matrices for the
fixed and random effects, respectively, β is the vector of fixed-effects coefficients and b is the
vector of random effects coefficients. The random effects distribution G is modeled as Gaussian
with mean zero and a variance matrix Σ, which in turn depends a vector of parameters θ.

The MLE for the variance of the random effects is based on an integrated partial likelihood

IPL(β, θ) =
1

(2π)q/2|Σ(θ)|1/2

∫
PL(β, b)e−b

′Σ−1(θ)b/2 db (1)

where q is the dimension of the Gaussian density, i.e., the number of random effects. When the
variance of the random effect is zero this collapses to the ordinary Cox partial likelihood.

The result of a coxme fit prints out three log-likelihood terms: the fit for a null model where
β=0 and the variance of the random effect is zero (and therefore b = 0), the log of the integrated

value IPL(β̂, θ̂) and the log partial likelihood PL(β̂, b̂). (For brevity “log” is not printed in their
labels.)

However, the IPL (1) above is not a tractable integral. The key step in its computation
is replacement of the log penalized partial likelihood LPPL with a second order Taylor series
about its value at the maximum of the function

PL(β, b) = elog(PL(β,b)) ≡ eLPL(β,b)

LPPL(β, b, θ) = LPL(β, b)− (1/2)b′A−1(θ)b

≈ LPPL(β̂(θ), b̂(θ))− (1/2)(β − β̂(θ), b− b̂(θ))′H(β − β̂(θ), b− b̂(θ))

where the Hessian H is -1 times the matrix of second derivatives of the LPPL, evaluated at
(β̂(θ), b̂(θ)). When θ and hence A(θ) are fixed, the relevant values of β and b that maximize the
LPPL are easily computed using essentially the same methods as an ordinary Cox model.
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For the ML estimate we are only interested in the values at β̂ so the last term collapses to
(0, b− b̂)′H(0, b− b̂) = (b− b̂)′Hbb(b− b̂), where Hbb is the portion of the Hessian corresponding
to the random effects. When we replace the body of the integral in (1) with this approximation,
then result is an integral that we can solve in closed form. The result is what is printed as the
IPL in coxme.

A key question, of course, is whether the result is a good approximation to the IPL. The
answer appears to be that it is, if there are a sufficient number of observations that contribute to
each random effect. The definition of the word “sufficient” is not completely clear, and the coxme
routine includes a option refine.n which does a monte carlo refinement of the final solution,
allowing for diagnosis of whether we are in a excellent (often), bad, or intermediate case with
respect to the approximation. The remainder of this note gives further details.

2 Computation

The central computational strategy for coxme is an outer and an inner loop. The outer loop
searches over the parameters θ of the variance matrix for a maximum of the IPL. For each trial
value of θ in this search

1. Calculate A(θ) and A−1(θ)

2. Solve the penalized Cox model LPL(β, b) − (1/2)b′A−1b to get the solution vector (β̂, b̂),
where PL is the usual Cox partial log-likelihood. The iterative Newton-Raphson solution
to this problem is the inner loop.

3. Use the Laplace approximation to compute the log IPL, using the results of step 2.

A necessary component of the solution in step 2 is calculation of H and its generalized
Cholesky decomposition H = LDL′, where D is diagonal and L is lower triangular with Lii = 1.
The determinant |H| is the product of the diagonal elements D. The Laplace approximation in
step 3 is particularly convenient for this problem since all the components are already in hand.

3 Refining the approximation

3.1 Random treatment effects

As an example case, we first look at a simple simulated data set with random institution and
treatment within institution effects.

> library(coxme)

> set.seed(1953) # an auspicious birth year :-)

> mkdata <- function(n, beta=c(.4, .1), sitehaz=c(.5,1.5, 2,1)) {

nsite <- length(sitehaz)

site <- rep(1:nsite, each=n)

trt1 <- rep(0:1, length=n*nsite)

hazard <- sitehaz[site] + beta[1]*trt1 + beta[2]*trt1 * (site-mean(site))

stime <- rexp(n*nsite, exp(hazard))

q80 <- quantile(stime, .8)
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data.frame(site=site,

trt = trt1,

futime= pmin(stime, q80),

status= ifelse(stime>q80, 0, 1),

hazard=hazard

)

}

> trdata <- mkdata(150) #150 enrolled per site

> fit1 <- coxme(Surv(futime, status) ~ trt + (1| site/trt), trdata)

> print(fit1)

Cox mixed-effects model fit by maximum likelihood

Data: trdata

events, n = 480, 600

Iterations= 5 24

NULL Integrated Fitted

Log-likelihood -2784.463 -2709.388 -2701.717

Chisq df p AIC BIC

Integrated loglik 150.15 3.00 0 144.15 131.63

Penalized loglik 165.49 4.01 0 157.47 140.72

Model: Surv(futime, status) ~ trt + (1 | site/trt)

Fixed coefficients

coef exp(coef) se(coef) z p

trt 0.2621486 1.29972 0.09288244 2.82 0.0048

Random effects

Group Variable Std Dev Variance

site/trt (Intercept) 0.0192550177 0.0003707557

site (Intercept) 0.7235930742 0.5235869370

> # Show the true and estimated per-site intercepts

> true <- c(.5, 1.5, 2, 1) - mean(c(.5, 1.5, 2, 1))

> bcoef <- ranef(fit1)[[2]]

> temp <- rbind(true, bcoef)

> dimnames(temp) <- list(c("True", "Estimated"), paste("Site",1:4))

> round(temp,2)

Site 1 Site 2 Site 3 Site 4

True -0.75 0.25 0.75 -0.25

Estimated -0.86 0.16 0.87 -0.17

The true site hazards have standard deviation sqrt(var(c(.5, 1.5, 2, 1))) = .65, the esti-
mate from the fit is 0.72. In this case the fit has reconstructed the per site intercepts reasonably
well.

Figure 1 is a plot of profiles of the likelihood for the four institution effects. We vary b for
each institution while holding all of the other coefficients and the variance fixed. This shows four
“slices” through the 12 dimensional LPPL as a function of b. The approximation is not perfect
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Figure 1: The solid lines are profiles of PPL(β̂, b), dashed lines are the Taylor series approxima-
tion.

— each LPPL slice is rotated just a little from its quadratic approximation as we move away
from the maximum. But remember that we are computing an average of exp(LPPL), so any
part of the curves more than 20 units below the max will hardly matter, at least for this small
number of dimensions.

Code to draw the figure is below. A coxph model with only an offset term is a convenient
way to compute the partial likelihood for a fixed model. Also note that random effects are coded
using a full contrast matrix. The institution by treatment effects generate 8 random terms b1
to b8 and the four per-institution intercepts b9 to b12. Unlike fixed effects where one of the 4
intercepts would be eliminated due to redundancy (exactly how this is done depends on the

contrasts option), the random effects induce two sum constraints
∑8

1 bi = 0 and
∑12

9 bi = 0.

> xx <- seq(-1, 1, length=101) #vary b from -1 to 1

> profile <- matrix(0, nrow=101, ncol=8) #to store curves
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> bcoef <- unlist(ranef(fit1))

> indx <- -1 + trdata$trt + 2*trdata$site #random treatment effect index

> Ainv <- diag(1/rep(unlist(VarCorr(fit1)), c(8,4)))

> for (i in 1:4) {

tcoef <- bcoef

for (j in 1:101) {

tcoef[i+8] <- xx[j] #reset single coef

eta <- fixef(fit1)*trdata$trt + tcoef[trdata$site+8] +

tcoef[indx]

tfit <- coxph(Surv(futime, status) ~ offset(eta), data= trdata)

profile[j,i] <- tfit$loglik - .5*tcoef%*% Ainv %*% tcoef

profile[j, i+4] <- fit1$loglik[3] -

.5*sum(((tcoef-bcoef) %*% fit1$hmat[1:12, 1:12])^2)

}

}

> matplot(xx, profile-fit1$loglik[3], type='l', lty=c(1,1,1,1,2,2,2,2), col=1:4,

ylim=c(-40,0),

xlab="b", ylab="LPPL - max")

One returned component of coxme is hmat, which contains the generalized Cholesky decom-
position LDL′ of H, based on the bdsmatrix library. To take advantage of sparse matrices, the
coxme code orders the coefficients as (b, β), so we want the upper left portion of H in our code.
A product x %*% fit$hmat returns y = xLD1/2, then yy′ = xHx′ = sum(y^2).

3.2 Control sampling

To evaluate the integral numerically we use variance reduction methods. Control sampling is
based on the simple equation

C = B + (C −B)

In this case C is the desired integral, the right hand side of equation (1), B is the Laplace
approximation to the integral, and we simulate C −B.

C −B = n(A)

∫
eLPL(β̂,b)−b′A−1b/2 − eLPPL(β̂,b̂)−(b−b̂)′Hbb(b−b̂)/2db (2)

= n(A)ek
∫
eLPPL(β̂,b)−k − eLPPL(β̂,b̂)−(b−b̂)′Hbb(b−b̂)/2−k

g(b)
g(b)db (3)

In equation (2) we expect the integrand to be close to zero for all values of b. Since the
variance of our Monte Carlo result is the variance of this integrand divided by the number of
simulations, the Monte Carlo result will also be precise. A Monte Carlo evaluation with respect to
the vague prior db is not possible, however, and equation (3) rewrites this so that we sample from
a distribution g(b). The divisor exp(k) is chosen to keep the arguments of the two exponentials
in bounds and avoid underflow/overflow errors.
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The choice of g is important. We want to make sure that g is never tiny when the numerator
is near it’s largest values, as that would generate large values and erase much of the good done by
the control function. Both exponentials reach their maximum at b̂ so it seems sensible to center g
there. The difference in the numerator can be no bigger than the smaller of the two exponentials,
so a distribution that falls away a little more slowly than the right hand quadratic term would add
the desired margin of safety. A natural choice satisfying these two is a multivariate t-distribution
with variance matrix H−1

22 and a modest degrees of freedom.
Control sampling has been incorporated into coxme and is invoked by the refine.n option.

The result for our sample data set is shown below.

> fit1b <- coxme(Surv(futime, status) ~ trt + (1 | site/trt),

data=trdata, refine.n=500)

> fit1b$refine

correction std

-0.0004463318 0.0024278714

This verifies what the figure implied: the Laplace approximation is excellent for this data set.
The eventual test for significance of the random effects will be based on a chisquare distribution
with 2 degrees of freedom, comparing the IPL for the fitted coxme model to the PL from a fixed
effects coxph model with treatment alone. This suggests that any error in the IPL that is less
than 0.1 will be of little import.

4 Further examples

4.1 EORTC

As a larger example consider the eortc data set. This is a simulated data set, but based on
a large breast cancer clinical trial. There are 37 enrollment centers, enrolling from 21 to 247
patients each.

> efit2 <- coxme(Surv(y, uncens) ~ trt + (1|center), eortc,

refine.n=100)

> efit2$refine

correction std

-0.04333163 0.04608217

> efit3 <- coxme(Surv(y, uncens) ~ trt + (1|center/trt), eortc,

refine.n=100)

> efit3$refine

correction std

-0.04206053 0.10112370

> efit3

Cox mixed-effects model fit by maximum likelihood

Data: eortc

events, n = 1463, 2323

Iterations= 10 54
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NULL Integrated Fitted

Log-likelihood -10638.71 -10517.57 -10464.38

Chisq df p AIC BIC

Integrated loglik 242.28 3.00 0 236.28 220.42

Penalized loglik 348.67 39.26 0 270.16 62.56

Model: Surv(y, uncens) ~ trt + (1 | center/trt)

Fixed coefficients

coef exp(coef) se(coef) z p

trt 0.7420388 2.100213 0.08270483 8.97 0

Random effects

Group Variable Std Dev Variance

center/trt (Intercept) 0.20451052 0.04182455

center (Intercept) 0.26273062 0.06902738

This behavior has been the norm for the author’s experience with coxme. However, note that the
total number of events 2323 is much larger than the effective degrees of freedom for the model
of 39.3. We will return to this point.

4.2 Ridge regression

A classical method in linear models is ridge regression, which solves the penalized regression
problem

min
β
||y −Xβ||2 + λ

p∑
j=1

β2
j

This penalizes large values of the coefficients and can stabilize problems with near collinear
X matrices. As λ goes to zero we approach the ordinary least squares result, as λ increases
coefficients are shrunken towards zero. The intercept term β0 is normally left out of the penalty.

The penalty can also be viewed as imposing a Gaussian prior on the coefficients. Thus, we
can use coxme to perform ridge regression Cox models. We will use an advanced lung cancer
data set as our example, it is part of the surival package.

> lfit1 <- coxph(Surv(time, status) ~ age + ph.ecog + wt.loss, lung)

> lfit2 <- coxme(Surv(time, status) ~ age + (ph.ecog |1) +

(wt.loss |1), data=lung, refine.n=100)

> lfit2$refine

correction std

0.0004929546 0.0002753108

Again, the Laplace transform works very well. By default the random coefficients b are not
included in the printout, but they can be requested with the rcoef option.

> print(lfit2, rcoef=TRUE)
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Cox mixed-effects model fit by maximum likelihood

Data: lung

events, n = 151, 213 (15 observations deleted due to missingness)

Iterations= 15 63

NULL Integrated Fitted

Log-likelihood -675.0244 -667.9031 -666.0607

Chisq df p AIC BIC

Integrated loglik 14.24 3.00 0.0025928 8.24 -0.81

Penalized loglik 17.93 2.01 0.0001291 13.92 7.86

Model: Surv(time, status) ~ age + (ph.ecog | 1) + (wt.loss | 1)

Fixed and penalized coefficients

coef exp(coef) se(coef) z p

age 0.014499269 1.0146049 0.009777229 1.48 0.14

1.ph.ecog 0.397337119 1.4878574 0.116876916

1.wt.loss -0.000542036 0.9994581 0.001868676

Random effects

Group Variable Std Dev Variance

1 (Shrinkage) 4.138505e-01 1.712723e-01

1 (Shrinkage) 1.954502e-03 3.820078e-06

> signif(rbind(coef(lfit1),

c(fixef(lfit2), unlist(ranef(lfit2)))),2)

age ph.ecog wt.loss

[1,] 0.013 0.47 -0.00720

[2,] 0.014 0.40 -0.00054

Contrasting the coefficients between the shrunken and the regular Cox models, the coeffienct
for weight loss has been reduced over 10 fold while that for ECOG performace score has changed
only a little. Weight loss is a weak predictor in this data set and shrinking it has only a small
effect on the fit, whereas performance score has a much stronger relationship to survival.

4.3 Chronic Granulotomous Disease

Children with chronic granulotomous disease are subject to repeated infections due to an immune
defect. The CGD data set is based on a placeob controlled randomized trial of gamma interferon
for reduction of the infection frequency, during the course of the study enrolled subjects expe-
rienced 0–7 infections each. For further discussion of the data see Therneau and Grambsch [1].

This data set is a much stiffer challenge for the Laplace approximation since there are both
a much larger number of random effects (128 subjects) and we do not have “a large number of
events” per random effect. Over half of subjects, and hence their corresponding coefficients bi,
have no events at all.
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Figure 2: The two terms in the control function Monte Carlo exp(e1)− exp(e2).

> cfit <- coxme(Surv(tstart, tstop, status) ~ treat + age +

(1 | id), data=cgd, refine.n=500, refine.detail=TRUE)

> cfit$refine

correction std

0.39534744 0.08288391

> 2*(diff(cfit$loglik[1:2]))

Integrated

34.53227

> temp <- cfit$refine.detail

> e1 <- (temp$loglik - temp$penalty1) - cfit$loglik[2]

> e2 <- (cfit$loglik[3] - temp$penalty2) - cfit$loglik[2]

> ssqrt <- function(x) sign(x)*sqrt(abs(x)) #signed square root

9



> plot(ssqrt(e1), ssqrt(e2), xlab="sqrt(e1)", ylab="sqrt(e2)")

> abline(0,1)

The Laplace approximation to the IPL is off by 1-2% of the difference between the null and
fitted model. In this particular case it is not a severe issue, the test statistic for significance is > 9
on 1 df, and even if it were not “significant” a correction for within-subject correlation is called
for. Figure 2 shows the two terms of equation (3), plotted on a square root scale to spread the
data out. In spite of pushing the approximation to it’s limit, the the quadratic approximation
is still working remarkably well. (The refine.detail option was intendend for debugging the
code, but the returned information can sometimes be useful for digging deeper.)

A more interesting question is what impact this error might have on the estimate of θ. We can
investigate this by looking at a set of fixed variances. The result is shown in figure 3. What we
see is that the error increases with the variance of the random effect and the the overall impact
is to underestimate the variance: the red (true IPL) maximizes to the right of the maximized
Laplace value. The increase in bias is not surprising: as the variance increases the distance from
the origin over which we are expecting the approximation to hold also increases. The second is a
subject of further investigation. The horizontal line is 3.84/2 units below the Laplace maximum,
its intersection with the curve describes a 95% confidence interval for the standard deviation of
the random effect. The code to create the figure is shown below.

> ss <- seq(.3, 1.3, length=25)

> tmat <- matrix(0, nrow=25, ncol=3)

> for (i in 1:25) {

tfit <- coxme(Surv(tstart, tstop, status) ~ treat + age + (1|id),

cgd, vfixed=ss[i]^2, refine.n=1000)

tmat[i,] <- c(diff(tfit$loglik[1:2]), tfit$refine)

}

> temp1 <- tmat[,1] + tmat[,2] #corrected IPL

> temp2 <- tmat[,1] + tmat[,2] + cbind(-2*tmat[,3], 2*tmat[,3]) # .955 CI

> matplot(ss, cbind(tmat[,1], temp1), pch='o', col=1:2,

ylim=range(tmat[,1], temp2),

xlab="Std of random effect",

ylab="IPL - Null")

> segments(ss, temp2[,1], ss, temp2[,2], lty=2, col=2)

> lines(smooth.spline(ss, temp1, df=5), col=2)

> abline(h= diff(cfit$loglik[1:2]) - qchisq(.95, 1)/2, lty=2)

4.4 Colon cancer data

The colon cancer data set (from the survival package) gives progression and death times of 929
subjects enrolled in a 3 arm clinical trial. A joint analysis of the two outcomes should adjust
for fact that subject observations are correlated: in fact they are extremely correlated given the
nature of the disease. An estimating equation model is our first choice.

> cfit1 <- coxph(Surv(time, status) ~ rx + nodes + extent +

strata(etype) + cluster(id), colon)

> cfit1
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Call:

coxph(formula = Surv(time, status) ~ rx + nodes + extent + strata(etype),

data = colon, cluster = id)

coef exp(coef) se(coef) robust se z

rxLev -0.084988 0.918523 0.077957 0.106251 -0.800

rxLev+5FU -0.468602 0.625877 0.085198 0.115432 -4.060

nodes 0.083671 1.087271 0.006339 0.012666 6.606

extent 0.547496 1.728918 0.079922 0.105571 5.186

p

rxLev 0.424

rxLev+5FU 4.92e-05

nodes 3.95e-11

extent 2.15e-07

Likelihood ratio test=222.8 on 4 df, p=< 2.2e-16

n= 1822, number of events= 897

(36 observations deleted due to missingness)

The fitted model shows no difference between the levamisole and observation arms, an important
decrease in risk for the combination therapy levamisole + 5FU, and, as expected, large effects
for the number of lymph nodes and the extent of tumor invasion. The reduction in standard
error between the model based and robust variance is almost

√
2, which is what we would get if

the two outcomes were perfectly redundant. A per subject random effect is not sensible when
there is only 1 event per subject, which is what we effectively have. Nevertheless, we will fit and
examine the result.

> cfit2 <- coxme(Surv(time, status) ~ rx + nodes + extent +

strata(etype) + (1|id), colon,

refine.n=500)

> cfit2$refine

correction std

-1.3848985 0.4820886

> print(cfit2)

Cox mixed-effects model fit by maximum likelihood

Data: colon

events, n = 897, 1822 (36 observations deleted due to missingness)

Iterations= 33 252

NULL Integrated Fitted

Log-likelihood -5804.469 -5261.436 -4056.941

Chisq df p AIC BIC

Integrated loglik 1086.07 5.00 0 1076.07 1052.07

Penalized loglik 3495.06 725.78 0 2043.49 -1439.60

Model: Surv(time, status) ~ rx + nodes + extent + strata(etype) + (1 | id)
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Fixed coefficients

coef exp(coef) se(coef) z p

rxLev 0.01022041 1.0102728 0.2514787 0.04 9.7e-01

rxLev+5FU -0.79153227 0.4531499 0.2534127 -3.12 1.8e-03

nodes 0.24037038 1.2717201 0.0274218 8.77 0.0e+00

extent 1.20162039 3.3255012 0.2298298 5.23 1.7e-07

Random effects

Group Variable Std Dev Variance

id Intercept 2.755646 7.593586

> round(quantile(ranef(cfit2)[[1]], 0:8/8), 2)

0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

-6.14 -2.34 -2.01 -1.60 -0.73 0.63 1.75 3.09 8.84

The variance of the random effects is very large at 7.6. Subjects have estimated random effects of
exp(−6.1) = .002 (nearly immortal) to exp(8.8) > 6600 (dies before getting out of the building)
which are biologically implausible. The control based refinement was not able to reliably estimate
the bias – for many values of the random number seed it actually returns NA due to computations
that go out of range. A mixed effects model has not been successful for this data set.

4.5 Genetic studies

Data sets that contain genetic correlations was actually the genesis of the coxme function, there-
fore the performace of the Laplace in this case is of particular interest to us.

The story here is still being worked out and we expect to have a more detailed description
in future versions of this vignette. In broad strokes, when the correlation is based on a kinship
matrix the Laplace appears to work adequately when: family sizes are modest to large and the
standard deviation of the random effect is no greater than .8-.9. Even though there is a random
effect per subject in such models, the correlation structure is such that each random effect is
“linked” to a sufficiently number of events. More work with a range of data sets needs to be
undertaken, however.

5 Conclusions

On many data sets the Lapalce works very well, on others it is adequate, and there are a few
where fails. An example of the last is the colon cancer data set. However, this is a data set for
which I have grave doubts about the applicability of a a mixed effects model at all, a reservation
that extends to any data set where the effective degrees of freedom approaches the total number
of events.

For the case of generalized linear models, Shun and McCullaugh [2] suggest that the ordinary
Laplace approximation will be sufficient when the degrees of freedom for the random effect is
o( 3
√
n). For survival models experience with other cases such as AIC suggests that the appropriate

n for such calculations is the number of deaths. Hall et al [3] point out one of the reasons for
difficulty when there are a large number of random effects. The average distance from the
center for a multivariate Gaussian in d dimensions is

√
d. For large d the law of large numbers
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guarrantees that essentially all the mass in the distribution is in a narrow annulus
√
d units

from the center. Consequently, this is the distance at which we are demanding accuracy from
the quadratic approximation when we use the Laplace method. For the colon data we have 911
random effects and a variance of 7.6. The distance from the origin is over 83 units which is too
much to ask of a second order Taylor series.

For our examples we had the following for number of events and effective degrees of freedom:

Events EDF
Simulation 480 4.1

eortc 2323 39.3
Ridge regression 151 2

CGD 76 29.3
colon cancer 897 725.8

The success with the CGD data suggest that for a mixed effects Cox model at least, the Shun
and McCullaugh bounds may be overly conservative. Checking the reliabilty of the Laplace
through use of the refine.n option is encouraged.
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Figure 3: The Laplace approximation to the IPL for the CGD data is in black for a range of
trial variances

”
along with a Monte Carlo correction to this in red. The vertical red lines are ±2

times the estimated Monte Carlostandard standard error.
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