Package 'cosa'

August 24, 2019
Type PackageTitle Bound Constrained Optimal Sample Allocation
Version 2.0.0
Date 2019-08-24
Description Implements bound constrained optimal sample allocation (BCOSA) framework de-scribed in Bulus \& Dong (2019) doi:10.1080/00220973.2019.1636197 for power analy-sis of multilevel regression discontinuity designs (MRDDs) and multilevel randomized tri-als (MRTs) with continuous outcomes. Separate tools for statistical power and minimum de-tectable effect size computations are provided.
Imports nloptr(>=1.0.4), $\mathrm{msm}(>=1.6 .7)$
Suggests knitr, rmarkdown
VignetteBuilder knitr
License GPL (>= 3)
NeedsCompilation no
Author Metin Bulus [aut, cre],Nianbo Dong [aut]
Maintainer Metin Bulus bulusmetin@gmail.com
Repository CRAN
Date/Publication 2019-08-24 16:00:02 UTC
R topics documented:
cosa-package 2
bcrd3r2 3
bcrd4r2 5
bcrd4r3 8
bird2 11
bird3 13
bird4 16
cosa-deprecated 19
crd2 20
crd3 23
crd4 26
inspect.score 28
ird 30
moments 32
plot 33
Vectorize BCOSA 34
Index 36
cosa-package Bound Constrained Optimal Design of MRDDs and MRTs

Description

Bound Constrained Optimal Sample Allocation (BCOSA) functions are designed to optimize sample sizes at one or more levels subject to budget, statistical power, or effect size constraints. BCOSA can be found in the following forms; (i) under budgetary constraints given marginal costs per unit while minimizing sampling variance of the treatment effect (or, alternatively, while maximizing power rate), (ii) under statistical power or effect size (ES) constraints while minimizing the total cost, and (iii) under sample size constraints for one or more levels along with (i) or (ii). Specifying rhots $=0$ or order $=0$ produces results equivalent to corresponding random assignment designs, which means there is no relationship between the treatment [random] and the score variable. Therefore, BCOSA functions also allow optimization of proportion of treatment allocation (p) under unequal marginal costs when primary constraint is placed on the total cost. Different starting values and algorithms may produce different results when marginal cost information is not provided and sample sizes at two or more levels and p are optimized. In such cases, experimenting different starting values and/or comparing several algorithms may faciliate decisions regarding sample sizes and p.
Designs available in cosa package:

Design	Total Levels	Treatment Level	Top Level
ird1r1	1	1	random
bird2r1	2	1	random
bird2f1	2	1	fixed
bird3r1	3	1	random
bird4r1	4	1	random
crd2r2	2	2	random
bcrd3f2	3	2	fixed
bcrd3r2	3	2	random
bcrd4r2	4	2	random
crd3r3	3	3	random
bcrd4f3	4	3	fixed
bcrd4r3	4	3	random
crd4r4	4	4	random

ird: individual-level regression discontinuity. bird: blocked individual-level regression disconti-
nuity. crd: cluster-level regression discontinuity. bcrd: blocked cluster-level regression discontinuity.
Design parameters follow a sequential order. Numbers at the end of a sequential parameter refers to the corresponding level. For example rho 2 is the proportion of variance in the outcome between level 2 units, rho3 is the proportion of variance in the outcome between level 3 units. Similiarly, $r 21$ is the proportion of the variance in the outcome explained by level 1 covariates, $r 22$ is the proportion of the variance in the outcome explained by level 2 covariates and so on. Similiar naming conventions applies to other design parameters.

bcrd3r2 Blocked Cluster-level Regression Discontinuity (Three-level Design, Discontinuity at Level 2)

Description

Use mdes.bcrd3r2() to calculate minimum detectable effect size, power.bcrd3r2() to calculate statistical power, and cosa.bcrd3r2() for constrained optimal sample allocation.

Usage

mdes.bcrd3r2 (score $=$ NULL, order $=2$, rhots $=$ NULL, $k 1=-6, k 2=6$, dists $=$ "normal", power $=.80$, alpha $=.05$, two.tailed $=$ TRUE, $d f=n 3-\mathrm{g} 3-1$, rho2, rho3, omega3, r21 $=0, r 22=0, r 2 t 3=0, \mathrm{~g} 3=0$, rate.tp $=1$, rate.cc $=0, p=.50, n 1, n 2, n 3)$
power. bcrd3r2 (score $=$ NULL, order $=2$, rhots $=$ NULL, k1 $=-6$, $k 2=6$, dists $=$ "normal",
es $=.25$, alpha $=.05$, two.tailed $=$ TRUE, df $=$ n3 - g3 - 1,
rho2, rho3, omega3, r21 $=0, r 22=0, r 2 t 3=0, \mathrm{~g} 3=0$,
rate.tp $=1$, rate. cc $=0, p=.50, n 1, n 2, n 3)$
cosa.bcrd3r2(score $=$ NULL, order $=2$, rhots $=$ NULL,
$\mathrm{k} 1=-6$, k2 $=6$, dists $=$ "normal",
$\mathrm{cn} 1=0, \mathrm{cn} 2=0, \mathrm{cn} 3=0$, cost $=$ NULL,
$\mathrm{n} 1=$ NULL, $\mathrm{n} 2=$ NULL, $\mathrm{n} 3=$ NULL, $\mathrm{p}=$ NULL,
$\mathrm{n} 0=\mathrm{c}(10,3,100+\mathrm{g} 3), \mathrm{p} 0=.499$,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power $=.80$, es $=.25$, alpha $=.05$, two.tailed $=$ TRUE,
rho2, rho3, omega3, g3 $=0, r 21=0, r 22=0, r 2 t 3=0$)

Arguments

score list; an object with class 'score' returned from inspect. score() function.
order integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable

rhots	correlation between the treatment and the scoring variable. Specify rhots $=0$ or order $=0$ to obtain results equivalent to random assignment designs.
k1	numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots $=0$ or order $=0$.
k2	numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots $=0$ or order $=0$.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
g3	number of covariates at level 3.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 1 variance in the outcome explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
p	proportion of level 2 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	number of level 3 units.
cn1	marginal cost per level 1 unit in treatment and control conditions, e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit in treatment and control conditions, e.g. c (50,20).
cn3	marginal cost per level 3 unit.
cost	total cost or budget.
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
n0	vector of starting values for $n 1, n 2, n 3$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain	character; "cost", "power", or "mdes".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance.
local.solver	subset of c ("LBFGS", "SLSQP")

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	constrained optimal sample allocation.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
    score.obj <- inspect.score(rnorm(10000), cutoff = 0)
    power.bcrd3r2(score.obj, order = 2,
        es = 0.25, rho2 = . 20, rho3 = . 10, omega3 = . 30,
        g3 = 0, r2t3 = 0, n1 = 20, n2 = 3, n3 = 50)
    # with 5 blocks df = n3- 2*(n blocks) - g3
    # n3: number of level 3 units across five blocks
    # increase in power rate due to r2t3 is made up for by reduction in df
    power.bcrd3r2(score.obj, order = 2, df = 50 - 2*5 - 0,
    es = 0.25, rho2 = . 20, rho3 = . 10, omega3 = . 30,
    g3 = 0, r2t3 = . 30, n1 = 20, n2 = 3, n3 = 50)
    # optimal combination of sample sizes for level 1, level 2, and level 3
    # that produce power = . 80 (given range restrictions for level }1\mathrm{ and level 2)
    cosa.bcrd3r2(score.obj, order = 2,
        constrain = "power", power = . 80,
        es = 0.25, rho2 = . 20, rho3 = . 10, omega3 = . 30,
        g3 = 0, r2t3 = 0,
        n1 = c(10, 30), n2 = c(2, 5), n3 = NULL)
```

bcrd4r2	Blocked Cluster-level Regression Discontinuity (Four-level Design,
Discontinuity at Level 2)	

Description

Use mdes.bcrd4r2() to calculate minimum detectable effect size, power.bcrd4r2() to calculate statistical power, and use cosa.bcrd4r2() for constrained optimal sample allocation.

Usage

```
mdes.bcrd4r2(score \(=\) NULL, order \(=2\), rhots \(=\) NULL, \(k 1=-6\), \(k 2=6\), dists \(=\) "normal",
    power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE, \(d f=n 4-\mathrm{g} 4-1\),
    rho2, rho3, rho4, omega3, omega4,
    \(r 21=0, r 22=0, r 2 t 3=0, r 2 t 4=0, g 4=0\),
```

```
    rate.tp = 1, rate.cc = 0, p = .50, n1, n2, n3, n4)
power.bcrd4r2(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
    es = . 25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
    rho2, rho3, rho4, omega3, omega4,
    r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
    rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3, n4)
cosa.bcrd4r2(score = NULL, order = 2, rhots = NULL,
    k1 = -6, k2 = 6, dists = "normal",
    cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL, p = NULL,
    n0 = c(10, 3, 100, 5 + g4), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = .80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, rho4, omega3, omega4,
    g4 = 0, r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0)
```


Arguments

score order	list; an object with class 'score' returned from inspect. score() function. integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable
rhots	correlation between the treatment and the scoring variable. Specify rhots $=0$ or order $=0$ to obtain results equivalent to random assignment designs.
k1	numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots $=0$ or order $=0$.
k2	numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots $=0$ or order $=0$.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
power	statistical power (1- β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.

omega4	ratio of the treatment effect variance between level 4 units to the variance in the outcome between level 4 units.
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 1 variance in the outcome explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
r2t4	proportion of treatment effect variance between level 4 units explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
p	proportion of level 2 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units.
cn1	marginal cost per level 1 unit in treatment and control conditions, e.g. c 10,5$)$.
cn2	marginal cost per level 2 unit in treatment and control conditions, e.g. c (50,20).
cn3	marginal cost per level 3 unit.
cn4	marginal cost per level 4 unit.
cost	total cost or budget.
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain	character; "cost", "power", or "mdes".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance.
local.solver	subset of c("LBFGS", "SLSQP").

Value

parms
df degrees of freedom.
sse standardized standard error.
cosa
mdes minimum detectable effect size and (1- α) \% confidence limits.
power statistical power (1- β)

Examples

```
score.obj <- inspect.score(rnorm(10000), cutoff = 0)
mdes.bcrd4r2(score.obj, order = 2,
    power = . 80, rho2 = . 20, rho3 = . 10, rho4 = .05,
    omega3 = .30, omega4 = .30,
    g4 = 0, r2t4 = 0,
    n1 = 20, n2 = 3, n3 = 20, n4 = 10)
power.bcrd4r2(score.obj, order = 2,
    es = 0.242, rho2 = . 20, rho3 = . 10, rho4 = .05,
    omega3 = .30, omega4 = .30,
    g4 = 0, r2t4 = 0,
    n1 = 20, n2 = 3, n3 = 20, n4 = 10)
```

\# optimal combination of sample sizes for level 1, level 2, level 3, and level 4
\# that produce power $=.80$ (given range restrictions for level 1 and level 2)
cosa.bcrd4r2(score.obj, order $=2$,
constrain = "power", power = .80,
es $=0.25$, rho2 $=.20$, rho3 $=.10$, rho4 $=.05$,
omega3 $=.30$, omega4 $=.30$,
$\mathrm{g} 4=0, \mathrm{r} 2 \mathrm{t} 4=0$,
$\mathrm{n} 1=\mathrm{c}(10,30), \mathrm{n} 2=\mathrm{c}(2,5), \mathrm{n} 3=$ NULL, $\mathrm{n} 4=\mathrm{NULL})$
bcrd4r3 Blocked Cluster-level Regression Discontinuity (Four-level Design, Discontinuity at Level 3)

Description

Use mdes.bcrd4r3() to calculate minimum detectable effect size, power.bcrd4r3() to calculate statistical power, and cosa.bcrd4r3() for constrained optimal sample allocation.

Usage

```
mdes.bcrd4r3(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
    power = . 80, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
    rho2, rho3, rho4, omega4,
    r21 = 0, r22 = 0, r23 = 0, r2t4 = 0, g4 = 0,
    rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3, n4)
power.bcrd4r3(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
    es = . 25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
    rho2, rho3, rho4, omega4,
    r21 = 0, r22 = 0, r23 = 0, r2t4 = 0, g4 = 0,
    rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3, n4)
cosa.bcrd4r3(score = NULL, order = 2, rhots = NULL,
```

```
k1 = -6, k2 = 6, dists = "normal",
cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL, p = NULL,
n0 = c(10, 3, 100, 5 + g4), p0 = .499,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
rho2, rho3, rho4, omega4,
g4 = 0, r21 = 0, r22 = 0, r23 = 0, r2t4 = 0)
```


Arguments

rate.cc	control group crossover rate.
p	proportion of level 3 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units.
cn1	marginal cost per level 1 unit in treatment and control conditions, e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit in treatment and control conditions, e.g. $c(50,20)$.
cn3	marginal cost per level 3 unit in treatment and control conditions, e.g. $c(80,50)$.
cn4	marginal cost per level 4 unit.
cost	total cost or budget.
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain	character; "cost", "power", or "mdes".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance.
local.solver	subset of c("LBFGS", "SLSQP").

Value

parms list of parameters used in the function.
df degrees of freedom.
sse standardized standard error.
cosa constrained optimal sample allocation.
mdes minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power \quad statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(10000), cutoff = 0)
mdes.bcrd4r3(score.obj, order = 2,
    power \(=.80\), rho2 \(=.20\), rho3 \(=.10\), rho4 \(=.05\),
    omega4 = . 30, g4 = 0, r2t4 = 0,
    \(\mathrm{n} 1=20, \mathrm{n} 2=3, \mathrm{n} 3=20, \mathrm{n} 4=10\) )
power.bcrd4r3(score.obj, order \(=2\),
    es \(=0.334\), rho2 \(=.20\), rho3 \(=.10\), rho4 \(=.05\),
    omega4 \(=.30, \mathrm{~g} 4=0, \mathrm{r} 2 \mathrm{t} 4=0\),
    \(\mathrm{n} 1=20, \mathrm{n} 2=3, \mathrm{n} 3=20, \mathrm{n} 4=10\) )
```

```
# optimal combination of sample sizes for level 1, level 2, level 3, and level 4
# that produce power = . 80 (given range restrictions for level 1, level 2, and level 4)
cosa.bcrd4r3(score.obj, order = 2,
    constrain = "power", power = . 80,
    es = 0.25, rho2 = . 20, rho3 = . 10, rho4 = .05,
    omega4 = .30, g4 = 0, r2t4 = 0,
    n1 = c(10, 30), n2 = c(2, 5),
    n3 = NULL, n4 =c(3, 10))
```

bird2 Blocked Individual-level Regression Discontinuity (Two-level Design, Discontinuity at Level 1)

Description

Use mdes.bird2() to calculate minimum detectable effect size, power.bird2() to calculate statistical power, and cosa.bird2() for constrained optimal sample allocation. To consider fixed block effects, modify degrees of freedom in <output>. bird2() functions as $n 2-2 \star n b-g 2$ where $n 2$ is total number of level 2 units across blocks, and $n b$ is number of blocks. Keep in mind that $r 2 t 2$ now includes information about blocks, but this fact will not be reflected in g2. See examples below.

Usage

```
    mdes.bird2 (score \(=\) NULL, order \(=2\), rhots \(=\) NULL, \(\mathrm{k} 1=-6\), \(\mathrm{k} 2=6\), dists \(=\) "normal",
    power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE, \(d f=n 2-\mathrm{g} 2-1\),
    rho2, omega2, r21 \(=0, r 2 t 2=0, \mathrm{~g} 2=0\),
    rate.tp \(=1\), rate.cc \(=0, p=.50, n 1, n 2\) )
    power.bird2 (score \(=\) NULL, order \(=2\), rhots \(=\) NULL, k1 = -6, k2 = 6, dists = "normal",
    es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE, \(d f=n 2-\mathrm{g} 2-1\),
    rho2, omega2, r21 = 0, r2t2 = 0, g2 = 0,
    rate. \(\mathrm{tp}=1\), rate. \(\mathrm{cc}=0, \mathrm{p}=.50, \mathrm{n} 1, \mathrm{n} 2\) )
    cosa.bird2(score \(=\) NULL, order \(=2\), rhots \(=\) NULL,
    \(\mathrm{k} 1=-6, \mathrm{k} 2=6\), dists \(=\) "normal",
    \(\mathrm{cn} 1=0, \mathrm{cn} 2=0\), cost \(=\) NULL,
    \(\mathrm{n} 1=\) NULL, \(\mathrm{n} 2=\) NULL, \(\mathrm{p}=\) NULL,
    \(\mathrm{n} 0=\mathrm{c}(10,100+\mathrm{g} 2), \mathrm{p} 0=.499\),
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power \(=.80\), es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE,
    rho2, omega2, g2 = 0, r21 = 0, r2t2 = 0)
```


Arguments

order	integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable
rhots	correlation between the treatment and the scoring variable. Specify rhots $=0$ or order $=0$ to obtain results equivalent to random assignment designs.
k1	numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots $=0$ or order $=0$.
k2	numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots $=0$ or order $=0$.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists $=$ "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2)
omega2	ratio of the treatment effect variance between level 2 units to the variance in the outcome between level 2 units.
g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
p	proportion of level 1 units in treatment condition.
n1	average number of level 1 units per level 2 units.
n2	number of level 2 units.
cn1	marginal cost per level 1 unit in treatment and control conditions, e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit.
cost	total cost or budget.
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain	character; "cost", "power", or "mdes".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance.
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	constrained optimal sample allocation.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
    score.obj <- inspect.score(rnorm(10000), cutoff = 0)
    power.bird2(score.obj, order = 2,
    es = 0.25, rho2 = . 20, omega2 = . 30,
    g2 = 0, r2t2 = 0, n1 = 50, n2 = 30)
# with 5 blocks df = n2- 2*(n blocks) - g2
# n2: number of level 2 units across five blocks
power.bird2(score.obj, order = 2, df = 100-2*5 - 0,
    es = 0.25, rho2 = . 20, omega2 = . 30,
    g2 = 0, r2t2 = . 30, n1 = 50, n2 = 30)
# optimal combination of sample sizes for level }1\mathrm{ and level 2
# around 20 and 50 respectively, that produce power = . 80
cosa.bird2(score.obj, order = 2,
    constrain = "power", power = . 80,
    es = 0.25, rho2 = . 20, omega2 = . 30,
    g2 = 0, r2t2 = 0,
    n0 = c(20, 50), n1 = NULL, n2 = NULL)
```

bird3 Blocked Individual-level Regression Discontinuity (Three-level Design, Discontinuity at Level 1)

Description

Use mdes.bird3() to calculate minimum detectable effect size, power. bird3() to calculate statistical power, and cosa.bird3() for constrained optimal sample allocation. To consider fixed block effects, modify degrees of freedom in <output>. bird3() functions as n3 $-2 * \mathrm{nb}-\mathrm{g} 3$ where n 3 is total number of level 3 units across blocks, and nb is number of blocks. Keep in mind that r2t3 now includes information about blocks, but this fact will not be reflected in g3. See examples below.

Usage

```
mdes.bird3(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
            power = . 80, alpha = .05, two.tailed = TRUE, df = n3 - g3 - 1,
            rho2, rho3, omega2, omega3, r21 = 0, r2t2 = 0, r2t3 = 0, g3 = 0,
            rate.tp = 1, rate.cc = 0, p = .50, n1, n2, n3)
    power.bird3(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
            es = . 25, alpha = .05, two.tailed = TRUE, df = n3 - g3 - 1,
            rho2, rho3, omega2, omega3, r21 = 0, r2t2 = 0, r2t3 = 0, g3 = 0,
            rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3)
cosa.bird3(score = NULL, order = 2, rhots = NULL,
    k1 = -6, k2 = 6, dists = "normal",
    cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL, p = NULL,
    n0 = c(10, 3, 100 + g3), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, omega2, omega3,
    g3 = 0, r21 = 0, r2t2 = 0, r2t3 = 0)
```


Arguments

score	list; an object with class 'score' returned from inspect. score() function.
order	integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable
rhots	correlation between the treatment and the scoring variable. Specify rhots $=0$ or order $=0$ to obtain results equivalent to random assignment designs.
k1	numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots $=0$ or order $=0$.
k2	numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots $=0$ or order $=0$.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
power	statistical power (1- β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).

omega2	ratio of the treatment effect variance between level 2 units to the variance in the outcome between level 2 units.
omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
g3	number of covariates at level 3.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
p	proportion of level 1 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	number of level 3 units.
cn1	marginal cost per level 1 unit in treatment and control conditions, e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit.
cn3	marginal cost per level 3 unit.
cost	total cost or budget.
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain	character; "cost", "power", or "mdes".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance.
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms	list of parameters used in the function.
$d f$	degrees of freedom.
sse	standardized standard error.
cosa	constrained optimal sample allocation.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(10000), cutoff = 0)
power.bird3(score.obj, order = 2,
    es = 0.25, rho2 = . 20, rho3 = . 10,
    omega2 = . 30, omega3 = . 30,
    g3 = 0, r2t3 = 0, n1 = 50, n2 = 3, n3 = 15)
# with 5 blocks df = n3- 2*(n blocks) - g3
# n3: number of level 3 units across five blocks
# increase in r2t3 does not make up for reduction in df
power.bird3(score.obj, order = 2, df = 15-2*5 - 0,
    es = 0.25, rho2 = . 20, rho3 = . 10,
    omega2 = . 30, omega3 = . 30,
    g3 = 0, r2t3 = . 30, n1 = 50, n2 = 3, n3 = 15)
# optimal combination of sample sizes for level 1, level 2 and level 3
# that produce power = . 80 (given range restrictions)
cosa.bird3(score.obj, order = 2,
    constrain = "power", power = . 80,
    es = 0.25, rho2 = . 20, rho3 = . 10,
    omega2 = . 30, omega3 = . 30,
    g3 = 0, r2t3 = 0,
    n1 = c(15,30), n2 = c(3, 5), n3 = c(10,30))
```

 bird4
 Blocked Individual-level Regression Discontinuity (Four-level Design, Discontinuity at Level 1)

Description

Use mdes.bird4() to calculate minimum detectable effect size, power. bird4() to calculate statistical power, and cosa.bird4() for constrained optimal sample allocation.

Usage

```
mdes.bird4 (score \(=\) NULL, order \(=2\), rhots \(=\) NULL, k1 \(=-6, \mathrm{k} 2=6\), dists \(=\) "normal",
    power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE, \(d f=\mathrm{n} 4-\mathrm{g} 4-1\),
    rho2, rho3, rho4, omega2, omega3, omega4,
    \(r 21=0, r 2 t 2=0, r 2 t 3=0, r 2 t 4=0, g 4=0\),
    rate.tp \(=1\), rate. cc \(=0, p=.50, n 1, n 2, n 3, n 4)\)
power.bird4 (score \(=\) NULL, order \(=2\), rhots \(=\) NULL, k1 \(=-6\), k2 \(=6\), dists \(=\) "normal",
    es \(=.25\), alpha = .05, two.tailed \(=\) TRUE, \(d f=n 4-\mathrm{g} 4-1\),
    rho2, rho3, rho4, omega2, omega3, omega4,
    \(r 21=0, r 2 t 2=0, r 2 t 3=0, r 2 t 4=0, g 4=0\),
    rate.tp \(=1\), rate.cc \(=0, p=.50, n 1, n 2, n 3, n 4)\)
```

```
cosa.bird4(score \(=\) NULL, order \(=2\), rhots \(=\) NULL,
    k1 = -6, k2 = 6, dists = "normal",
    cn1 \(=0, \mathrm{cn} 2=0, \mathrm{cn} 3=0, \mathrm{cn} 4=0\), cost \(=\) NULL,
    \(\mathrm{n} 1=\) NULL, \(\mathrm{n} 2=\) NULL, \(\mathrm{n} 3=\) NULL, \(\mathrm{n} 4=\) NULL, \(\mathrm{p}=\) NULL,
    \(\mathrm{n} 0=\mathrm{c}(10,3,100,5+\mathrm{g} 4), \mathrm{p} 0=.499\),
    constrain = "power", round = TRUE, max. power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power \(=.80\), es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE,
    rho2, rho3, rho4, omega2, omega3, omega4,
    \(\mathrm{g} 4=0, \mathrm{r} 21=0, \mathrm{r} 2 \mathrm{t} 2=0, r 2 \mathrm{t} 3=0, r 2 \mathrm{t} 4=0)\)
```


Arguments

r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
r2t4	proportion of treatment effect variance between level 4 units explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
p	proportion of level 1 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units.
cn1	marginal cost per level 1 unit in treatment and control conditions.
cn2	marginal cost per level 2 unit.
cn3	marginal cost per level 3 unit.
cn4	marginal cost per level 4 unit.
cost	total cost or budget.
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
n0	vector of starting values for $n 1, n 2, n 3, n 4$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain	character; "cost", "power", or "mdes".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance.
local.solver	subset of c("LBFGS", "SLSQP").

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	constrained optimal sample allocation.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
    score.obj <- inspect.score(rnorm(10000), cutoff = 0)
    mdes.bird4(score.obj, order = 2,
    power = . 80, rho2 = . 20, rho3 = .10, rho4 = .05,
    omega2 = . 30, omega3 = . 30, omega4 = . 30,
    g4 = 0, r2t4 = 0, n1 = 20, n2 = 3, n3 = 20, n4 = 10)
power.bird4(score.obj, order = 2,
    es = . 152, rho2 = . 20, rho3 = . 10, rho4 = .05,
    omega2 = . 30, omega3 = .30, omega4 = . 30,
    g4 = 0, r2t4 = 0, n1 = 20, n2 = 3, n3 = 20, n4 = 10)
# optimal combination of sample sizes for level 1, level 2, level 3 and level 4
# that produce power = . 80 (given range restrictions)
cosa.bird4(score.obj, order = 2,
    constrain = "power", power = . 80,
    es = . 25, rho2 = . 20, rho3 = . 10, rho4 = . 05,
    omega2 = . 30, omega3 = . 30, omega4 = .30,
    g4 = 0, r2t4 = 0,
    n1 = c(15, 30), n2 = c(2, 5),
    n3 = c(10, 30), n4 = c(5, 20))
```

cosa-deprecated Deprecated and Defunct functions in cosa

Description

Some function are renamed and depreciated. They may be removed in the future.

Details

Depreciated function names:

- power.crd2r2 is depreciated, use power.crd2 instead.
- mdes.crd2r2 is depreciated, use mdes.crd2 instead.
- cosa. crd2r2 is depreciated, use cosa.crd2 instead.
- power.crd3r3 is depreciated, use power.crd3 instead.
- mdes.crd3r3 is depreciated, use mdes.crd3 instead.
- cosa. crd3r3 is depreciated, use cosa.crd3 instead.
- power.crd4r4 is depreciated, use power.crd4 instead.
- mdes.crd4r4 is depreciated, use mdes.crd4 instead.
- cosa.crd4r4 is depreciated, use cosa.crd4 instead.
- power.ira1r1 is depreciated, use power.ira instead.
- mdes.ira1r1 is depreciated, use mdes.ira instead.
- power.bira2r1 is depreciated, use power.bira2 instead.
- mdes.bira2r1 is depreciated, use mdes.bira2 instead.
- cosa.bira2r1 is depreciated, use cosa.bira2 instead.
- power.bira3r1 is depreciated, use power.bira3 instead.
- mdes.bira3r1 is depreciated, use mdes.bira3 instead.
- cosa.bira3r1 is depreciated, use cosa.bira3 instead.
- power.bira4r1 is depreciated, use power.bira4 instead.
- mdes.bira4r1 is depreciated, use mdes.bira4 instead.
- cosa.bira4r1 is depreciated, use cosa.bira4 instead.
crd2 2
Cluster-level Regression Discontinuity (Two-level Design, Discontinu-
ity at Level 2, w/ or w/o Strata or Fixed Blocks)

Description

Use mdes.crd2() to calculate minimum detectable effect size, power.crd2() to calculate statistical power, and cosa.crd2() for constrained optimal sample allocation. If higher level strata or fixed blocks exist, use mdes.bcrd3f2() to calculate minimum detectable effect size, power.bcrd3f2() to calculate statistical power, and cosa.bcrd3f2() for constrained optimal sample allocation. Alternatively modify degrees of freedom in <output>.crd2() functions as n2 $-2 * \mathrm{nb}-\mathrm{g} 2$-order where $n 2$ is total number of level 2 units across blocks, and $n b$ is number of blocks. Keep in mind that r22 now includes information about blocks, but this fact will not be reflected in g2. See examples below.

Usage

```
mdes.crd2(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
            power = . 80, alpha = .05, two.tailed = TRUE, df = n2 - g2 - order - 2,
            rho2, r21 = 0, r22 = 0, g2 = 0, rate.tp = 1, rate.cc = 0, p = . 50, n1, n2)
power.crd2(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
            es = . 25, alpha = .05, two.tailed = TRUE, df = n2 - g2 - order - 2,
            rho2, r21 = 0, r22 = 0, g2 = 0, rate.tp = 1, rate.cc = 0, p = . 50, n1, n2)
cosa.crd2(score = NULL, order = 2, rhots = NULL,
    k1 = -6, k2 = 6, dists = "normal",
    cn1 = 0, cn2 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, p = NULL,
    n0 = c(10, 100 + g2 + order), p0 = .499,
    constrain = "power", round = TRUE,
    max.power = FALSE, local.solver = c("LBFGS", "SLSQP"),
    power = .80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, g2 = 0, r21 = 0, r22 = 0)
mdes.bcrd3f2(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
```

```
        power = . 80, alpha = .05, two.tailed = TRUE, df = n3 * (n2 - 2) - g2 - order,
        rho2, r21 = 0, r22 = 0, g2 = 0,
        rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3)
power.bcrd3f2(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
    es = . 25, alpha = . 05, two.tailed = TRUE, df = n3 * (n2 - 2) - g2 - order,
        rho2, r21 = 0, r22 = 0, g2 = 0,
        rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3)
cosa.bcrd3f2(score = NULL, order = 2, rhots = NULL,
    k1 = -6, k2 = 6, dists = "normal",
    cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL, p = NULL,
    n0 = c(10, 100 + g2, 5), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, g2 = 0, r21 = 0, r22 = 0)
```


Arguments

score order	list; an object with class 'score' returned from inspect. score() function. integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable
rhots	correlation between the treatment and the scoring variable. Specify rhots $=0$ or order $=0$ to obtain results equivalent to random assignment designs.
k1	numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots $=0$ or order $=0$.
k2	numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots $=0$ or order $=0$.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists $=$ "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
rate.tp	treatment group participation rate.

rate.cc	control group crossover rate.
p	proportion of level 2 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	number of level 2 units (per stratum or block, if exists).
n3	number of stratum or fixed blocks.
cn1	marginal costs per level 1 unit in treatment and control conditions, e.g. $c(10,5)$.
cn2	marginal costs per level 2 unit in treatment and control conditions, e.g. c (50,30).
cn3	marginal costs per stratum or fixed block.
cost	total cost or budget.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2$ or $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
p0	starting value for p when rhots $=0$ or order $=0$, and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
constrain	character; "cost", "power", or "es".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance, applies when constrain = "cost"
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	constrained optimal sample allocation.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(10000), cutoff = 0)
power.crd2(score.obj, order = 2,
    es = . 25, rho2 = . 20, g2 = 0, r22 = 0,
    n1 = 50, n2 = 100)
# with 5 blocks df = n2 - 2*(n blocks) - order - g2
# n2: number of level 2 units across five blocks
power.crd2(score.obj, order = 2, df = 100-2*5 - 2 - 0,
    es = . 25, rho2 = . 20, g2 = 0, r22 = . 30,
    n1 = 50, n2 = 100)
# compare
# n2: number of level 2 units per block, n3: number of blocks
power.bcrd3f2(score.obj, order = 2,
```

```
es =. 25, rho2 = . 20, g2 = 0, r22 = . 30,
n1 = 50, n2 = 20, n3 = 5)
```

\# optimal combination of sample sizes for level 1 and level 2
\# that produce power $=.80$ (given range restriction for level 1 sample size)
cosa.bcrd3f2(score.obj, order $=2$,
constrain $=$ "power", power $=.80$,
es $=.25$, rho2 $=.20, \mathrm{~g} 2=0, \mathrm{r} 22=.30$,
$\mathrm{n} 1=\mathrm{c}(20,60), \mathrm{n} 2=\mathrm{NULL}, \mathrm{n} 3=5)$

Description

Use mdes.crd3() to calculate minimum detectable effect size, power.crd3() to calculate statistical power, and cosa.crd3() for constrained optimal sample allocation. If higher level strata or fixed blocks exist, use mdes.bcrd4f3() to calculate minimum detectable effect size, power.bcrd4f3() to calculate statistical power, and cosa.bcrd4f3() for constrained optimal sample allocation. Alternatively modify degrees of freedom in <output>.crd3() functions as n3 $-2 * n b-g 3$-order where n3 is total number of level 3 units across blocks, and nb is number of blocks. Keep in mind that r 23 now includes information about blocks, but this fact will not be reflected in g3. See examples below.

Usage

mdes.crd3 (score $=$ NULL, order $=2$, rhots $=$ NULL, $k 1=-6$, $k 2=6$, dists $=$ "normal", power $=.80$, alpha $=.05$, two.tailed $=$ TRUE, $d f=\mathrm{n} 3-\mathrm{g} 3-$ order -2 , rho2, rho3, r21 = 0, r22 = 0, r23 = 0, g3 = 0, rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3)
power.crd3(score $=$ NULL, order $=2$, rhots $=$ NULL, k1 $=-6$, $k 2=6$, dists $=$ "normal",
es $=.25$, alpha $=.05$, two.tailed $=$ TRUE, $d f=$ n3 - g3 - order - 2, rho2, rho3, r21 = 0, r22 = 0, r23 = 0,
$\mathrm{g} 3=0$, rate. $\mathrm{tp}=1$, rate. $\mathrm{cc}=0, \mathrm{p}=.50, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3)$
cosa.crd3r3(score $=$ NULL, order $=2$, rhots $=$ NULL,
$\mathrm{k} 1=-6$, $\mathrm{k} 2=6$, dists $=$ "normal",
$\mathrm{cn} 1=0, \mathrm{cn} 2=0, \mathrm{cn} 3=0$, cost $=\mathrm{NULL}$,
$\mathrm{n} 1=$ NULL, $\mathrm{n} 2=$ NULL, $\mathrm{n} 3=$ NULL, $\mathrm{p}=$ NULL,
$\mathrm{n} 0=\mathrm{c}(10,3,100+\mathrm{g} 3+$ order $), \mathrm{p} 0=.499$,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power $=.80$, es $=.25$, alpha $=.05$, two.tailed $=$ TRUE, rho2, rho3, g3 = 0, r21 = 0, r22 = 0, r23 = 0)
mdes.bcrd4f3(score $=$ NULL, order $=2$, rhots $=$ NULL, $k 1=-6$, $k 2=6$, dists $=$ "normal",

```
    power = . 80, alpha = .05, two.tailed = TRUE, df = n4 * (n3 - 2) - g3 - order,
    rho2, rho3, r21 = 0, r22 = 0, r23 = 0, g3 = 0,
    rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3, n4)
power.bcrd4f3(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
    es = . 25, alpha = .05, two.tailed = TRUE, df = n4 * (n3 - 2) - g3 - order,
            rho2, rho3, r21 = 0, r22 = 0, r23 = 0, g3 = 0,
            rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3, n4)
cosa.bcrd4f3(score = NULL, order = 2, rhots = NULL,
    k1 = -6, k2 = 6, dists = "normal",
    cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
    p = NULL, n0 = c(10, 3, 100 + g3, 5), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, g3 = 0, r21 = 0, r22 = 0, r23 = 0)
```


Arguments

score order	list; an object with class 'score' returned from inspect. score() function. integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable
rhots	correlation between the treatment and the scoring variable. Specify rhots $=0$ or order $=0$ to obtain results equivalent to random assignment designs.
k1	numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots $=0$ or order $=0$.
k2	numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots $=0$ or order $=0$.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists $=$ "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
g3	number of covariates at level 3 .
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.

r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
p	proportion of level 3 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	number of level 3 units(per stratum or block, if exists).
n4	number of stratum or fixed blocks.
cn1	marginal cost per level 1 unit in treatment and control conditions, e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit in treatment and control conditions, e.g. $c(50,30)$.
cn3	marginal cost per level 3 unit in treatment and control conditions, e.g. $c(80,50)$.
cn4	marginal cost per stratum or fixed block.
cost	total cost or budget.
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$ or $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain	character; "cost", "power", or "mdes".
round	logical; TRUE for rounded COSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance.
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms list of parameters used in the function.
df degrees of freedom.
sse standardized standard error.
cosa constrained optimal sample allocation.
mdes minimum detectable effect size and (1- α) \% confidence limits.
power \quad statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(10000), cutoff = 0)
power.crd3(score.obj, order = 2,
    es = . 25, rho2 = .20, rho3 = .10,
    g3 = 0, r23 = 0, n1 = 20, n2 = 3, n3 = 100)
# with 5 blocks df = n3 - 2*(n blocks) - order - g3
# n3: number of level 3 units across five blocks
power.crd3(score.obj, order = 2, df = 100 - 2*5 - 2 - 0,
    es = . 25, rho2 = .20, rho3 = .10,
    g3 = 0, r23 = .30, n1 = 20, n2 = 3, n3 = 100)
```

```
# compare
# n3: number of level 3 units per block, n4: number of blocks
power.bcrd4f3(score.obj, order = 2,
    es = . 25, rho2 = . 20, rho3 = . 10,
    g3 = 0, r23 = . 30,
    n1 = 20, n2 = 3, n3 = 20, n4 = 5)
# optimal combination of sample sizes for level }1\mathrm{ and level 3
# that produce power = . 80 (given range restriction for level 1 sample size)
cosa.bcrd4f3(score.obj, order = 2,
    constrain = "power", power = . 80,
    es = . 25, rho2 = . 20, rho3 = . 10, g3 = 0, r23 = . 30,
    n1 = c(20, 60), n2 = 2, n3 = NULL, n4 = 5)
```

crd4 Cluster-level Regression Discontinuity (Four-level Design, Disconti-
nuity at Level 4)

Description

Use mdes.crd4() to calculate minimum detectable effect size, power.crd4() to calculate statistical power, and cosa.crd4() for constrained optimal sample allocation.

Usage

```
mdes.crd4(power = . 80, alpha = . 05, two.tailed = TRUE, df = n4 - g4 - order - 2,
    score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
        rho2, rho3, rho4, r21 = 0, r22 = 0, r23 = 0, r24 = 0,
        g4 = 0, rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3, n4)
power.crd4(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
    es = . 25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - order - 2,
        rho2, rho3, rho4, r21 = 0, r22 = 0, r23 = 0, r24 = 0,
        g4 = 0, rate.tp = 1, rate.cc = 0, p = . 50, n1, n2, n3, n4)
cosa.crd4(score = NULL, order = 2, rhots = NULL,
    k1 = -6, k2 = 6, dists = "normal",
    cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL, p = NULL,
    n0 = c(10, 3, 100, 5 + g4 + order), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = .80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, rho4, g4 = 0, r21 = 0, r22 = 0, r23 = 0, r24 = 0)
```


Arguments

score order	list; an object with class 'score' returned from inspect. score() function. integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable
rhots	correlation between the treatment and the scoring variable. Specify rhots $=0$ or order $=0$ to obtain results equivalent to random assignment designs.
k1	numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots $=0$ or order $=0$.
k2	numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots $=0$ or order $=0$.
dists	character; distribution of the score variable, "normal" or "uniform". By default, dists $=$ "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r24	proportion of level 4 variance in the outcome explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
p	proportion of level 4 units in treatment condition.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units.
cn1	marginal cost per level 1 unit in treatment and control conditions, e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit in treatment and control conditions, e.g. $c(50,30)$.
cn3	marginal cost per level 3 unit in treatment and control conditions, e.g. $c(80,50)$.
cn4	marginal cost per level 4 unit in treatment and control conditions, e.g. $c(100,40)$.
cost	total cost or budget.

```
p0 starting value for p when rhots = 0 and p = NULL. Starting value is replaced with average when \(p\) is constrained by bounds.
\(\mathrm{n} 0 \quad\) vector of starting values for \(\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4\) (positional). Starting values are replaced with averages when sample sizes are constrained by bounds.
constrain character; "cost", "power", or "mdes".
round logical; TRUE for rounded COSA solution.
max. power logical; TRUE for maximizing power instead of minimizing variance.
local.solver subset of c("LBFGS", "SLSQP").
```


Value

parms list of parameters used in the function.
df degrees of freedom.
sse standardized standard error.
cosa constrained optimal sample allocation.
mdes minimum detectable effect size and (1- α)\% confidence limits.
power \quad statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(10000), cutoff = 0)
power.crd4(score.obj, order = 2,
    es = . 25, rho2 = .20, rho3 = .10, rho4 = .05,
    g4 = 0, r24 = 0, n1 = 20, n2 = 3, n3 = 20, n4 = 20)
# optimal combination of sample sizes for level 1, level 3 and level 4
# that produce power = . 80 (given range restriction for level 1 sample size)
cosa.crd4(score.obj, order = 2,
    constrain = "power", power = . 80,
    es = . 25, rho2 = . 20, rho3 = . 10, rho4 = .05,
    g4 = 0, r24 = 0,
    n1 = c(20, 60), n2 = 2, n3 = NULL, n4 = NULL)
```

inspect.score Inspects Relations between Treatment, Score and Score^2 Triad

Description

Inpects relations between Treatment, Score and Score^2 triad, outputs correlations and design effects for linear and linear + quadratic functional forms for the score variable.

Usage

inspect.score (score = NULL, sim = FALSE, $p=$ NULL, cutoff $=$ NULL, treat.lower $=$ FALSE, mu $=0$, sigma $=1, k 1=-1 \mathrm{e}+10, \mathrm{k} 2=1 \mathrm{e}+10$, dists = "normal", ndraw = 1000, nsim = 1000)

Arguments

sim logical; if TRUE results are based on simulation.
score
p
cutoff
treat.lower
mu
sigma
k1
k2
dists
ndraw
nsim

Value

parms list; list of parameters used in the computation.
cutoff cutoff score (computed if p is provided).
treat.lower
p
rhots
rhots2 correlation between Treatment and Score^2.
rhoss2 correlation between Score and Score^2.
d1
d2 design effect for linear + quadratic functional form.

Examples

```
    inspect.score(score = rnorm(10000), p = .50)
    # default based on ~ N(0,1)
    inspect.score(p = .50)
    inspect.score(sim = TRUE, p = .50)
``` Fixed Blocks)

\section*{Description}

Use mdes.ird() to calculate minimum detectable effect size and power.ird() to calculate statistical power. If higher level strata or fixed blocks exist, use mdes. bird2f1 () to calculate minimum detectable effect size, power.bird2f1() to calculate statistical power, and cosa.bird2f1() for constrained optimal sample allocation. Alternatively modify degrees of freedom in <output>.ird() functions as \(\mathrm{n} 1-2 * \mathrm{nb}-\mathrm{g} 1\)-order where n 1 is total number of subjects across blocks, and nb is number of blocks. Keep in mind that r21 now includes information about blocks, but this fact will not be reflected in g 1 . See examples below.

\section*{Usage}
```

mdes.ird(score $=$ NULL, $\operatorname{order}=2$, rhots $=$ NULL, k1 $=-6$, k2 $=6$, dists = "normal",
power $=.80$, alpha $=.05$, two.tailed $=$ TRUE, $d f=n 1-\mathrm{g} 1-$ order -2 ,
r21 = 0, g1 = 0, rate. tp = 1, rate. cc = 0, p = . 50, n1)
power.ird(score $=$ NULL, order $=2$, rhots $=$ NULL, k1 $=-6$, k2 = 6, dists = "normal",
es $=.25$, alpha = .05, two.tailed = TRUE, df = n1 - g1 - order - 2,
r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, p = .50, n1)
mdes.bird2f1(score = NULL, order = 2, rhots = NULL, k1 = -6, k2 = 6, dists = "normal",
power $=.80$, alpha $=.05$, two.tailed $=$ TRUE, $d f=n 2 *(n 1-2)-\mathrm{g} 1-$ order,
$r 21=0, g 1=0$, rate.tp $=1$, rate. $c c=0, p=.50, n 1, n 2=1$ )
power. bird2f1 (score $=$ NULL, order $=2$, rhots $=$ NULL, k1 $=-6$, $k 2=6$, dists $=$ "normal",
es $=.25$, alpha $=.05$, two.tailed $=$ TRUE, $d f=n 2 *(n 1-2)-\mathrm{g} 1-$ order,
$r 21=0, \mathrm{~g} 1=0$, rate.tp $=1$, rate. $\mathrm{cc}=0, \mathrm{p}=.50, \mathrm{n} 1, \mathrm{n} 2=1$ )
cosa.bird2f1(score = NULL, order = 2, rhots $=$ NULL,
k1 = -6, k2 = 6, dists = "normal",
cn1 = 0, cn2 = 0, cost = NULL,
$\mathrm{n} 1=\mathrm{NULL}, \mathrm{n} 2=\mathrm{NULL}, \mathrm{p}=\mathrm{NULL}$,
$\mathrm{n} 0=\mathrm{c}(400+\mathrm{g} 1,5), \mathrm{p} 0=.499$,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power $=.80$, es $=.25$, alpha $=.05$, two.tailed $=$ TRUE,
$\mathrm{g} 1=0, \mathrm{r} 21=0)$

```

\section*{Arguments}
score
list; an object with class 'score' returned from inspect. score() function.
\begin{tabular}{|c|c|}
\hline order & integer; order of functional form for the score variable, 0 for corresponding random assignment designs, 1 for RD design with linear score variable, 2 for RD design with linear + quadratic score variable \\
\hline rhots & correlation between the treatment and the scoring variable. Specify rhots \(=0\) or order \(=0\) to obtain results equivalent to random assignment designs. \\
\hline k1 & numeric; left truncation point for truncated normal dist., or lower bound for uniform dist., ignored when rhots \(=0\) or order \(=0\). \\
\hline k2 & numeric; right truncation point for truncated normal dist., or upper bound for uniform dist., ignored when rhots \(=0\) or order \(=0\). \\
\hline dists & character; distribution of the score variable, "normal" or "uniform". By default, dists \(=\) "normal" specification implies a truncated normal distribution with \(\mathrm{k} 1=-6\) and \(\mathrm{k} 2=6\). \\
\hline power & statistical power (1- \(\beta\)). \\
\hline es & numeric \(>0\); effect size (Cohen's d). \\
\hline alpha & probability of type I error (\(\alpha\)). \\
\hline two.tailed & logical; TRUE for two-tailed hypothesis testing. \\
\hline df & degrees of freedom. \\
\hline g1 & number of covariates. \\
\hline r21 & proportion of variance in the outcome explained by covariates. \\
\hline p & proportion of units in treatment condition. \\
\hline rate.tp & treatment group participation rate. \\
\hline rate.cc & control group crossover rate. \\
\hline n1 & sample size (per stratum or block, if exists). \\
\hline n2 & number of stratum or fixed blocks. \\
\hline cn1 & marginal cost per unit in treatment and control conditions, e.g. c \((10,5)\). \\
\hline cn2 & marginal cost per stratum or fixed block. \\
\hline cost & total cost or budget. \\
\hline constrain & character; "cost", "power", or "es". \\
\hline n0 & starting value for \(n 1\) or \(n 1, n 2\). Starting value is replaced with average when sample size is constrained by bounds. \\
\hline p0 & starting value for \(p\) when rhots \(=0\) and \(p=\) NULL. Starting value is replaced with average when \(p\) is constrained by bounds. \\
\hline round & logical; TRUE for rounded COSA solution. \\
\hline max. power & logical; TRUE for maximizing power instead of minimizing variance, applies when constrain \(=\) "cost" \\
\hline local.solver & subset of c("LBFGS", "SLSQP") \\
\hline
\end{tabular}

\section*{Value}
\begin{tabular}{ll}
parms & list of parameters used in the function. \\
\(d f\) & degrees of freedom. \\
sse & standardized standard error. \\
cosa & constrained optimal sample allocation. \\
mdes & minimum detectable effect size and \((1-\alpha) \%\) confidence limits. \\
power & statistical power \((1-\beta)\)
\end{tabular}

\section*{Examples}
```

score.obj <- inspect.score(rnorm(10000), cutoff = 0)
power.ird(score.obj, order = 2,
es = 0.25, g1 = 0, r21 = 0, n = 400)

# with 5 blocks df = n1 - 2*(n blocks) - order - g1

# n1: number of subjects across five blocks

power.ird(score.obj, order = 2, df = 400-2*5 - 2 - 0,
es = 0.25,g1 = 0, r21 = .30, n = 400)

# compare

# n1: number of subjects per block, n2: number of blocks

power.bird2f1(score.obj, order = 2,
es = 0.25, g1 = 0, r21 = .30,
n1 = 80, n2 = 5)

# optimal combination of sample sizes for subjects and blocks

# that produce power = . 80 (given range restrictions)

cosa.bird2f1(score.obj, order = 2,
constrain = "power", power = .80,
es = 0.25, g1 = 0, r21 = .30,
n1 = c(100, 200), n2 = c(5, 10))

```
moments

\section*{Description}

If data (vector) is provided use emp.moment () function, otherwise for truncated normal distribution use tnorm. moment (), and for uniform distribution use unif.moment ().

\section*{Usage}
tnorm.moment (mu = 0, sigma \(=1, \mathrm{k} 1=-10, \mathrm{k} 2=10\), order \(=1\), central \(=\) FALSE)
unif.moment (k1 = 0, k2 = 1, order = 1, central = FALSE)
emp.moment (x , order \(=1\), central \(=\) FALSE, absolute \(=\) FALSE, na.rm \(=\) FALSE)

\section*{Arguments}
mu
sigma
k1
k2
order \(\quad+\) int; order of moment
X
central
absolute
na. rm form distribution. form distribution.
mean of truncated normal - applies to tnorm.moment ().
standard deviation of truncated normal - applies to tnorm. moment ().
left truncation point for truncated normal distribution or lower bound for uni-
right truncation point for truncated normal distribution or upper bound for uni-
a vector of values - applies to emp.moment ().
logical; if TRUE produces central moments.
logical; if TRUE produces absolute moments - applies to emp.moment().
logical; if TRUE removes missing values - applies to emp. moment ().

\section*{Examples}
```

tnorm.moment(k1 = -20, k2 = 20, order = 4, central = FALSE)
emp.moment(rnorm(10000), order = 4, central = FALSE)
unif.moment(k1 = 0, k2 = 1, order = 4, central = FALSE)
emp.moment(runif(10000), order = 4, central = FALSE)

```
plot

\section*{Description}

Plots statistical power or minimum detectable effect size curves with (1- \(\alpha\))x100 \% confidence interval for the design of interest.

\section*{Usage}
```


## S3 method for class 'power'

plot(x, ypar = "mdes", xpar = NULL,
xlim = NULL, ylim = NULL,
xlab = NULL, ylab = NULL,
main = NULL, sub = NULL,
locate = FALSE, benchmark = NULL, ...)
\#\# S3 method for class 'mdes'
plot(x, ypar = "mdes", xpar = NULL,
xlim = NULL, ylim = NULL,
xlab = NULL, ylab = NULL,
main = NULL, sub = NULL,
locate = FALSE, benchmark = NULL, ...)

```
```


## S3 method for class 'cosa'

plot(x, ypar = "mdes", xpar = NULL,
xlim = NULL, ylim = NULL,
xlab = NULL, ylab = NULL,
main = NULL, sub = NULL,
locate = FALSE, benchmark = NULL, ...)

```

\section*{Arguments}
x
ypar character; "mdes" or "power" on y axis.
xpar character; one of the sample sizes on \(x\) axis.
xlim limits for xpar.
ylim limits for ypar.
\(x \mathrm{lab} \quad \mathrm{x}\) axis label.
ylab \(\quad y\) axis label.
main title for the plot.
sub subtitle for the plot.
locate logical; TRUE locates parameter values for design x on the plot.
benchmark benchmark line.
... other graphical parameters to pass to plot.new().

\section*{Examples}
d1 <- mdes.bcrd3r2(rho2 = . 10, rho3 = . 20, omega3 \(=.30\),
n1 = 20, n2 = 44, n3 = 50)
plot(d1, xpar = "n3", xlim = c(30, 100))

Vectorize BCOSA Vectorizes BCOSA Solutions

\section*{Description}

Vectorizes BCOSA solutions based on multiple sets of parameter values. This is particularly useful when multiple designs are to be considered.

\section*{Usage}
vectorize.cosa(design, args.grid, args.names \(=\) NULL, ordered \(=\) TRUE, ncase \(=10 \mathrm{~L}\))

\section*{Arguments}
\begin{tabular}{ll}
design & an object returned from one of the cosa.<design>() functions. \\
args.grid & \begin{tabular}{l}
vector or matrix: arguments’ grid consisting of sets of parameter values. A \\
vector of values (for a single parameter) or a matrix (for multiple parameters).
\end{tabular} \\
args. names & \begin{tabular}{l}
character list; arguments' names. Default option args. names = NULL uses col- \\
umn names from args.grid
\end{tabular} \\
ordered & \begin{tabular}{l}
logical: whether results should be ordered (cases with worst power rate or high- \\
est total cost are on top).
\end{tabular} \\
ncase & \begin{tabular}{l}
integer: number of cases to be subsetted, ignored if ordered = FALSE.
\end{tabular}
\end{tabular}

\section*{Examples}
```

design <- cosa.crd2r2(rhots = 0, round = FALSE,
constrain = "es", power = .80,
cn1 = c(20, 10), cn2 = c(200, 50),
es = . 25, rho2 = .10,
g2 = 3, r22 = .30,
n1 = NULL, n2 = NULL, p = NULL)
args.grid <- expand.grid(
rho2 = seq(.15, .25, .05)
)
vectorize.cosa(design, args.grid = args.grid, ordered = FALSE)

```

\section*{Index}
bcrd3f2 (crd2), 20
bcrd3r2, 3
bcrd4f3 (crd3), 23
bcrd4r2, 5
bcrd4r3, 8
bird2, 11
bird2f1 (ird), 30
bird2r1 (bird2), 11
bird3, 13
bird3r1 (bird3), 13
bird4, 16
bird4r1 (bird4), 16
cosa-deprecated, 19
cosa-package, 2
cosa.bcrd3f2 (crd2), 20
cosa.bcrd3r2 (bcrd3r2), 3
cosa.bcrd4f3 (crd3), 23
cosa.bcrd4r2 (bcrd4r2), 5
cosa.bcrd4r3 (bcrd4r3), 8
cosa.bird2 (bird2), 11
cosa.bird2f1 (ird), 30
cosa.bird2r1 (bird2), 11
cosa.bird3 (bird3), 13
cosa.bird3r1 (bird3), 13
cosa.bird4 (bird4), 16
cosa.bird4r1 (bird4), 16
cosa.crd2 (crd2), 20
cosa.crd2r2 (crd2), 20
cosa.crd3 (crd3), 23
cosa.crd3r3 (crd3), 23
cosa.crd4 (crd4), 26
cosa.crd4r4 (crd4), 26
crd2, 20
crd2r2 (crd2), 20
crd3, 23
crd3r3 (crd3), 23
crd4, 26
crd4r4 (crd4), 26
emp.moment (moments), 32
inspect.score, 28
ird, 30
ird1r1 (ird), 30
mdes.bcrd3f2 (crd2), 20
mdes.bcrd3r2 (bcrd3r2), 3
mdes.bcrd4f3 (crd3), 23
mdes.bcrd4r2 (bcrd4r2), 5
mdes.bcrd4r3 (bcrd4r3), 8
mdes.bird2 (bird2), 11
mdes.bird2f1 (ird), 30
mdes.bird2r1 (bird2), 11
mdes.bird3 (bird3), 13
mdes.bird3r1 (bird3), 13
mdes.bird4 (bird4), 16
mdes.bird4r1 (bird4), 16
mdes.crd2 (crd2), 20
mdes.crd2r2(crd2), 20
mdes.crd3 (crd3), 23
mdes.crd3r3 (crd3), 23
mdes.crd4 (crd4), 26
mdes.crd4r4 (crd4), 26
mdes.ird (ird), 30
mdes.ird1r1 (ird), 30
moments, 32
plot, 33
power.bcrd3f2 (crd2), 20
power.bcrd3r2 (bcrd3r2), 3
power.bcrd4f3 (crd3), 23
power.bcrd4r2 (bcrd4r2), 5
power.bcrd4r3 (bcrd4r3), 8
power.bird2 (bird2), 11
power.bird2f1 (ird), 30
power.bird2r1 (bird2), 11
power.bird3 (bird3), 13
power.bird3r1 (bird3), 13
power.bird4 (bird4), 16
```

power.bird4r1 (bird4),16
power.crd2 (crd2), 20
power.crd2r2 (crd2), 20
power.crd3 (crd3), 23
power.crd3r3(crd3), 23
power.crd4 (crd4), 26
power.crd4r4 (crd4), 26
power.ird(ird), 30
power.ird1r1 (ird), 30
tnorm.moment (moments), 32
unif.moment (moments), 32
Vectorize BCOSA, 34
vectorize.cosa(Vectorize BCOSA), 34

```
```

