Package ‘corpustools’

January 23, 2020
Version 0.4.2
Date 2020-01-22
Title Managing, Querying and Analyzing Tokenized Text

Description Provides text analysis in R, focusing on the use of a tokenized text format. In this for-
mat, the positions of tokens are maintained, and each token can be annotated (e.g., part-of-
speech tags, dependency relations).

Prominent features include advanced Lucene-

like querying for specific tokens or contexts (e.g., documents, sentences),

similarity statistics for words and documents, exporting to DTM for compatibil-

ity with many text analysis packages,

and the possibility to reconstruct original text from tokens to facilitate interpretation.

Author Kasper Welbers and Wouter van Atteveldt
Maintainer Kasper Welbers <kasperwelbers@gmail.com>
Depends R (>=3.5.0)

Imports methods, wordcloud (>= 2.5), SnowballC, stringi, Rcpp (>=
0.12.12), R6, udpipe (>= 0.8.3), digest, data.table (>=
1.10.4), quanteda (>= 1.5.1), igraph, tokenbrowser, RNewsflow
(>=1.2.1), Matrix (>=1.2)

Suggests testthat, tm (>= 0.6), topicmodels, knitr, rmarkdown
LinkingTo Rcpp, ReppProgress

LazyData true

Encoding UTF-8

SystemRequirements C++11

License GPL-3

URL http://github.com/kasperwelbers/corpustools
RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-01-23 13:00:02 UTC


http://github.com/kasperwelbers/corpustools

2 R topics documented:

R topics documented:

add_collocation_label . . . . . . . . . . ... e 4
AZZ LCOTPUS . v v v v v e i e e e e e e e e e e e e e e e e e e e 4
ASACOTPUS .« o v v v e e e et e e e e e e e e e 5
as.tcorpus.default . . . . . ..o 6
aS.tcorpuS.tCOTPUS . .« . v v o o e e e e e e e e e e e e e e e e 6
backbone_filter . . . . . . ... 7
browse_hits . . . . . . .. e 8
Drowse_textS . . . . . . . . e e e e e 9
calc_chi2 . . . . L s 11
COMPATE_COTPUS « . v v v v v e e e e e e e e e e e e e e e e e e e e e e 11
compare_dOCUMENTS . . . . . v v v v v e e e e e e e e e e e e e 12
compare_SubSet . . . . . . ... e e e e e e e 14
corenlp_tokens . . . . . .. 15
COUNE_ECOTPUS . « v v v v v e e e e e e e e e e e e e e e e e e e e 15
CrEAte_LCOTPUS . « « v v v v v e e e e e e e e e e e e e e e e e e e e e 16
docfreq_filter . . . . . . . . . L 19
dtm_compare . . . . . ... e e e e e e e e e 20
dtm_wordcloud . . . . . .. 21
ZO_SEMNEL . . . . . v vt it e e e e e e e e e e e e e e e e 22
emoticon_diCt . . . . . . . . e e e e 23
feature _assoCiations . . . . . . . . . . .. e 23
feature Stats . . . . . . . . e e 25
freq_filter . . . . . . . e e e 26
get_dtm . . .. e e 26
get_global_i . . . . . . . .. 28
get_KWIC . . . . e e 29
GEL_SIOPWOIdS . . . . . . L e e e 30
laplace . . . . . . . L e 31
melt_quanteda_dict . . . . . . ... 31
METZE_tCOTPOTA . . v v v v v v v e e e e e e e e e e e e e e e e e e 32
plot.contextHits . . . . . . . .. L 33
plotfeatureAssociations . . . . . . . . . .. L. 34
plotfeatureHits . . . . . . . . ... 35
plot.vocabularyComparison . . . . . . . . .. ... 35
plot_semnet . . . . . ..o e 36
plot_words . . . . . e e e e 38
Preprocess_tOKENS . . . . . . . . L e e e e e e e e e 39
print.contextHits . . . . .. ... oL 40
print.featureHits . . . . . . ... L. 41
printtCorpus . . . . ... e e e e 41
refresh_tcorpus . . . . . . .. 42
require_package . . . . .. L. e e e e e 42
search_contexts . . . . . . . . ... e e 43
search_dictionary . . . . . . . ... L e 45
search_features . . . . . . . . . . e, 47

SEIMNEL . . . v v v v e e e e e e e e e e e e e e e 51



R topics documented: 3

semnet_window . . . . . . .. L L e e e e e e e e e e 52
set_network_attributes . . . . ... ... oL 53
Sl o e e e e e 54
show_udpipe_models . . . . . . . ... 55
SOTU_LEXES . v v v o i e e e e e e e e e e e e 55
stopwords_list . . . . . ... e 56
SUbSEt.tCorpus . . . . . . .. 56
SUDSEL_QUETY . . o v v v o e e e e e e e e e e e e e e e e e e 57
summary.contextHits . . . . .. ..o oL 58
summary.featureHits . . . . . . . ... oL 58
summary.tCOrpus . . . . . . . oo e e e e e e e e e 59
tCOTPUS .« o v e e e e 59
tCorpus$code_dictionary . . . . . . . . . ... 60
tCorpus$code_features . . . . . . .. ... 61
tCorpus$Compare_Corpus . . . . . . . . i e e e 62
tCorpus$compare_documents . . . . . . . ... 63
tCorpus$compare_subset . . . . . . . ... 64
tCorpusPcontext . . . . . ... e 65
tCorpus$deduplicate . . . . . . . . ... 66
tCorpus$delete_columns . . . . . . . . . ... 67
tCorpus$dtm . . . ... 68
tCorpus$feats_to_columns . . . . . . . . . . . ... 70
tCorpus$feature_associations . . . . . . . . . . . ... 70
tCorpus$feature_stats . . . . . . . . . .. 72
tCorpus$feature_subset . . . . . . . . . .. ... 72
tCorpus$get . . . . . . e 73
tCorpusSkwic . . . . . . L 74
tCorpus$lda_fit . . . . . . . . . .. 76
tCOrpuUSPreproCess . . . . . . . e 77
tCorpus$replace_dictionary . . . . . . . . ... 78
tCorpus$search_contexts . . . . . . . . . . . .. 80
tCorpus$search_features . . . . . . . . ... ... ... 82
tCorpus$search_recode . . . . . . . . ... 86
tCorpus$semnet . . . . . ... e 87
tCorpus$semnet_window . . . . . . .. ... 88
tCOTPUSSSEL . . . . o o 89
tCorpus$set_levels . . . . . . . . . 90
tCOTPUSSSEL_NAME . . . .« v o v o e o e e e 91
tCorpus$set_special . . . . . . . .. 92
tCorpus$subset . . . . . .. 92
tCorpus$subset_query . . . . . . ... 94
tCorpus$top_features . . . . . . . . . ... 95
tCOTPUS_COMPATE . . . . v v o v v e e e e e e e e e e e e e e e e e 95
tCOTPUS_CIeAte . . . . . o v i it et e e e e e e e e e e 96
tCorpus_data . . . . . . .. 96
tCorpus_docSim . . . . . ..o e e e e 97
tCorpus_features . . . . . . ... e e 97

tCorpus_modify_by_reference . . . . . .. . ... ... o 98



4 agg_tcorpus

tCOTPUS_QUETYING . .« o v v o o e e e e e e e e e e e e e e e e e e 99
tCorpus_semnet . . . . . ... e e e e e e e 99
tCorpus_topmod . . . ... e e e e 100
tOKENS_tO_LCOTPUS . .« . v v v v e e e e e e e e e e e e e e e 100
tokenWindowOcCCUrence . . . . . . . . . . . . i e e e e e e e e 101
top_features . . . . ... 102
Index 104

add_collocation_label Choose and add collocation strings based on collocation categories

Description

Given a collocation category (e.g., named entity ids), this function finds the most frequently occur-
ing string in this category and adds it as a label for the category

Usage

add_collocation_label(tc, colloc_id, feature = "token",
new_feature = sprintf("%s_1", colloc_id), pref_subset = NULL)

Arguments
tc a tcorpus object
colloc_id the data column containing the unique id for collocation tokens
feature the name of the feature column
new_feature the name of the new feature column

pref_subset Optionally, a subset call, to specify a subset that has priority for finding the most
frequently occuring string

agg_tcorpus Aggregate the tokens data

Description

This is a wrapper for the data.table aggregate function, for easy aggregation of the tokens data
grouped by columns in the tokens or meta data. The .id argument is an important addition, because
token annotation often contain values that span multiple rows.

Usage

agg_tcorpus(tc, ..., by = NULL, .id = NULL, wide = T)



as.tcorpus 5

Arguments

tc A tCorpus
The name of the aggregated column and the function over an existing column
are given as a name value pair. For example, count = length(token) will count
the number of tokens in each group, and sentiment = mean(sentiment, na.rm=T)
will calculate the mean score for a column with sentiment scores.

by A character vector with column names from the tokens and/or meta data.

.id If an id column is given, only rows for which this id is not NA are used, and
only one row for each id is used. This prevents double counting of values in
annotations that span multiple rows. For example, a sentiment dictionary can
match the tokens "not good", in which case the sentiment score (-1) will be
assigned to both tokens. These annotations should have an _id column that
indicates the unique matches.

wide Should results be in wide or long format?

Value
A data table
Examples

tc = create_tcorpus(sotu_texts, doc_col="'id")

library(quanteda)

dict = data_dictionary_LSD2015

dict = melt_quanteda_dict(dict)

dict$sentiment = ifelse(dict$code %in% c('positive', 'neg_negative'), 1, -1)
tc$code_dictionary(dict)

agg_tcorpus(tc, N = length(sentiment), sent = mean(sentiment), .id='code_id")
agg_tcorpus(tc, sent = mean(sentiment), .id='code_id', by='president')

agg_tcorpus(tc, sent = mean(sentiment), .id='code_id', by=c('president', 'token'))
as.tcorpus Force an object to be a tCorpus class
Description

Force an object to be a tCorpus class

Usage

as.tcorpus(x, ...)



as.tcorpus.tCorpus

Arguments
X the object to be forced
not used
as.tcorpus.default Force an object to be a tCorpus class
Description

Force an object to be a tCorpus class

Usage
## Default S3 method:
as.tcorpus(x, ...)
Arguments
X the object to be forced
not used
Examples

x = c('First text', 'Second text')
as.tcorpus(x) ## x is not a tCorpus object

as.tcorpus.tCorpus Force an object to be a tCorpus class

Description

Force an object to be a tCorpus class

Usage
## S3 method for class 'tCorpus'
as.tcorpus(x, ...)

Arguments
X the object to be forced

not used



backbone_filter 7

Examples

tc = create_tcorpus(c('First text', 'Second text'))
as.tcorpus(tc)

backbone_filter Extract the backbone of a network.

Description

Based on the following paper: Serrano, M. A., Boguna, M., & Vespignani, A. (2009). Extracting
the multiscale backbone of complex weighted networks. Proceedings of the National Academy of
Sciences, 106(16), 6483-6488.

Usage

backbone_filter(g, alpha = 0.05, direction = "none",
delete_isolates = T, max_vertices = NULL, use_original_alpha =T,

k_is_n = F)
Arguments
g A graph in the ‘Igraph‘ format.
alpha The threshold for the alpha. Can be interpreted similar to a p value (see paper
for clarrification).
direction direction = 'none’ can be used for both directed and undirected networks, and

is (supposed to be) the disparity filter proposed in Serrano et al. (2009) is used.
By setting to ’in’ or “out’, the alpha is only calculated for out or in edges. This
is an experimental use of the backbone extraction (so beware!) but it seems a
logical application.

delete_isolates
If TRUE, vertices with degree O (i.e. no edges) are deleted.

max_vertices Optional. Set a maximum number of vertices for the network to be produced.

The alpha is then automatically lowered to the point that only the given number

of vertices remains connected (degree > 0). This can be usefull if the purpose is

to make an interpretation friendly network. See e.g., http://jcom.sissa.it/archive/14/01/JCOM_1401_2015
use_original_alpha

if max_vertices is not NULL, this determines whether the lower alpha for se-

lecting the top vertices is also used as a threshold for the edges, or whether the

original value given in the alpha parameter is used.

k_is_n the disparity filter method for backbone extraction uses the number of existing
edges (k) for each node, which can be arbitraty if there are many very weak ties,
which is often the case in a co-occurence network. By setting k_is_n to TRUE,
itis "assumed’ that all nodes are connected, which makes sense from a language
model perspective (i.e. probability for co-occurence is never zero)



8 browse_hits

Value

A graph in the Igraph format

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE, min_docfreq = 10)

g = semnet_window(tc, 'feature', window.size = 10)
igraph::vcount(g)

igraph::ecount(g)

gb = backbone_filter(g, max_vertices = 100)
igraph: :vcount(gb)

igraph::ecount(gb)

plot_semnet(gb)

browse_hits View hits in a browser

Description

Creates a static HTML file to view the query hits in the tcorpus in full text mode.

Usage

browse_hits(tc, hits, token_col = "token", n = 500,

select = c("first”, "random"), header = , subheader = NULL,
meta_cols = NULL, seed = NA, view = T, filename = NULL)

Arguments

tc a tCorpus

hits a featureHits object, as returned by search_features

token_col The name of the column in tc$tokens that contain the token text

n If doc_ids is NULL, Only n of the results are printed (to prevent accidentally
making huge browsers).

select If n is smaller than the number of documents in tc, select determines how the n
documents are selected

header Optionally, a title presented at the top of the browser

subheader Optionally, overwrite the subheader. By default the subheader reports the num-
ber of documents

meta_cols A character vector with names of columns in tc$meta, used to only show the

selected columns



browse_texts 9

seed If select is "random", seed can be used to set a random seed
view If TRUE (default), view the browser in the Viewer window (turn off if this is not
supported)
filename Optionally, save the browser at a specified location
Value

The url for the file location is returned (invisibly)

Examples

tc = create_tcorpus(sotu_texts, doc_column='id')
hits = search_features(tc, c("Terrorism# terrorisx", "War# warx"))
browse_hits(tc, hits)

browse_texts Create and view a full text browser

Description

Creates a static HTML file to view the texts in the tcorpus in full text mode.

Usage
browse_texts(tc, doc_ids = NULL, token_col = "token", n = 500,
select = c("first”, "random”), header = "", subheader = NULL,
highlight = NULL, scale = NULL, category = NULL,
meta_cols = NULL, seed = NA, nav = NULL, top_nav = NULL,
thres_nav = 1, view = T, highlight_col = "yellow",
scale_col = c("red”, "blue”, "green"), filename = NULL)
Arguments
tc a tCorpus
doc_ids A vector with document ids to view
token_col The name of the column in tc$tokens that contain the token text
n Only n of the results are printed (to prevent accidentally making huge browsers).
select If n is smaller than the number of documents in tc, select determines how the n
documents are selected
header Optionally, a title presented at the top of the browser
subheader Optionally, overwrite the subheader. By default the subheader reports the num-

ber of documents



10

highlight

scale

category

meta_cols

seed

nav

top_nav

thres_nav

view

highlight_col

scale_col

filename

Value

browse_texts

The name of a numeric column in tc$tokens with values between 0 and 1, used
to highlight tokens. Can also be a character vector, in which case al non-NA
values are highlighted

The name of a numeric column in tc$tokens with values between -1 and 1, used
to color tokens on a scale (set colors with scale_col)

The name of a character or factor column in tc$tokens. Each unique value will
have its own color, and navigation for categories will be added (nav cannot be
used with this option)

A character vector with names of columns in tc$meta, used to only show the
selected columns

If select is "random", seed can be used to set a random seed. After sampling the
seed is re-initialized with set.seed(NULL).

Optionally, a column in tc$meta to add navigation (only supports simple filtering
on unique values). This is not possible if annotate is used.

A number. If navigation based on token annotations is used, filters will only
apply to top x values with highest token occurence in a document

Like top_nav, but specifying a threshold for the minimum number of tokens.

If TRUE (default), view the browser in the Viewer window (turn off if this is not
supported)

If highlight is used, the color for highlighting

If scale is used, a vector with 2 or more colors used to create a color ramp. That
is, -1 is first color, +1 is last color, if three colors are given 0 matches the middle
color, and colors in between are interpolated.

Optionally, save the browser at a specified location

The url for the file location is returned (invisibly)

Examples

tc = create_tcorpus(sotu_texts, doc_column='id"')
url = browse_texts(tc)

## tokens can be highlighted, scaled or coloured for different categories

## to validate analyses such as dictionaries, scaling and topic modeling

tc = create_tcorpus(sotu_texts, doc_column = 'id', udpipe_model="english-ewt')
tc$preprocess('lemma’, 'feature', min_docfreq = 10)
tc$feature_subset('feature', POS %in% c('NOUN', 'PROPN','VERB'))

m = tc$lda_fit('feature', create_feature = 'topic', K = 5, alpha = 0.001)

browse_texts(tc, category='topic', view=T, top_nav=1)



calc_chi2 11

calc_chi2 Vectorized computation of chi*2 statistic for a 2x2 crosstab containing
the values [a, b] [c, d]

Description

Vectorized computation of chi2 statistic for a 2x2 crosstab containing the values [a, b] [c, d]

Usage

calc_chi2(a, b, ¢, d, correct = T, cochrans_criteria = F)

Arguments
a topleft value of the table
b topright value
C bottomleft value
d bottomright value
correct if TRUE, use yates correction. Can be a vector of length a (i.e. the number of

tables)

cochrans_criteria
if TRUE, check if cochrans_criteria indicate that a correction should be used.
This overrides the correct parameter

compare_corpus Compare tCorpus vocabulary to that of another (reference) tCorpus

Description

Compare tCorpus vocabulary to that of another (reference) tCorpus

Usage

compare_corpus(tc, tc_y, feature, smooth = 0.1, min_ratio = NULL,
min_chi2 = NULL, is_subset = F, yates_cor = c("auto”, "yes", "no"),
what = c("freq”, "docfreq", "cooccurrence"))



12

Arguments

tc
tc_y
feature

smooth

min_ratio

min_chi2

is_subset

yates_cor

what

Value

compare_documents

a tCorpus
the reference tCorpus
the column name of the feature that is to be compared

Laplace smoothing is used for the calculation of the probabilities. Here you can
set the added (pseuocount) value.

threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y

threshold for the chi”2 value

Specify whether tc is a subset of tc_y. In this case, the term frequencies of tc
will be subtracted from the term frequencies in tc_y

mode for using yates correctsion in the chi*2 calculation. Can be turned on
("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.

choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi*2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)

A vocabularyComparison object

Examples
tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)
obama = tc$subset_meta(president == 'Barack Obama', copy=TRUE)
bush = tc$subset_meta(president == 'George W. Bush', copy=TRUE)

comp = compare_corpus(tc, bush, 'feature')
comp = comp[order(-comp$chi),]

head(comp)

plot(comp)

compare_documents

Calculate the similarity of documents

Description

Calculate the similarity of documents



compare_documents 13
Usage
compare_documents(tc, feature = "token”, date_col = NULL,
meta_cols = NULL, hour_window = c(24), measure = c("cosine”,

"overlap_pct”), min_similarity = @, weight = c("norm_tfidf", "tfidf",

"termfreq”, "docfreq"”), ngrams

NA, from_subset = NULL,

to_subset = NULL, return_igraph = T, verbose = T)

Arguments

tc
feature

date_col

meta_cols

hour_window

measure

min_similarity

weight

ngrams

from_subset

to_subset

return_igraph

verbose

Value

A tCorpus
the column name of the feature that is to be used for the comparison.

a date with time in POSIXct. If given together with hour_window, only docu-
ments within the given hour_window will be compared.

a character vector with columns in the meta data / docvars. If given, only docu-
ments for which these values are identical are compared

A vector of length 1 or 2. If length is 1, the same value is used for the left and
right side of the window. If length is 2, the first and second value determine the
left and right side. For example, the value 12 will compare each document to all
documents between the previous and next 12 hours, and ¢(-10, 36) will compare
each document to all documents between the previous 10 and the next 36 hours.

the similarity measure. Currently supports cosine similarity (symmetric) and
overlap_pct (asymmetric)

A threshold for the similarity score

a weighting scheme for the document-term matrix. Default is term-frequency
inverse document frequency with normalized rows (document length).

an integer. If given, ngrams of this length are used

An expression to select a subset. If given, only this subset will be compared to
other documents

An expression to select a subset. If given, documents are only compared to this
subset

If TRUE, return as an igraph network. Otherwise, return as a list with the edge-
list and meta data.

If TRUE, report progress

An igraph graph in which nodes are documents and edges represent similarity scores

Examples

d = data.frame(text = c('ab c de',

'efghijk',
'abc"),

date = as.POSIXct(c('2010-01-01','2010-01-01",'2012-01-01")))
tc = create_tcorpus(d)



14

compare_subset

g = compare_documents(tc)
igraph::get.data.frame(g)

g = compare_documents(tc, measure = 'overlap_pct')
igraph::get.data.frame(g)

g = compare_documents(tc, date_col = 'date', hour_window = c(0,36))
igraph::get.data.frame(g)

compare_subset

Compare vocabulary of a subset of a tCorpus to the rest of the tCorpus

Description

Compare vocabulary of a subset of a tCorpus to the rest of the tCorpus

Usage

compare_subset(tc, feature, subset_x = NULL, subset_meta_x = NULL,
query_x = NULL, query_feature = "token", smooth = 0.1,

min_ratio =
"no"), what

Arguments

tc
feature

subset_x

subset_meta_x
query_x
query_feature

smooth
min_ratio
min_chi?2

yates_cor

what

NULL, min_chi2 = NULL, yates_cor = c("auto”, "yes"”,
= c("freq”, "docfreq"”, "cooccurrence"))

a tCorpus
the column name of the feature that is to be compared

an expression to subset the tCorpus. The vocabulary of the subset will be com-
pared to the rest of the tCorpus

like subset_x, but using using the meta data
like subset_x, but using a query search to select documents (see search_contexts)
if query_x is used, the column name of the feature used in the query search.

Laplace smoothing is used for the calculation of the probabilities. Here you can
set the added (pseuocount) value.

threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y

threshold for the chi®2 value

mode for using yates correctsion in the chi*2 calculation. Can be turned on
("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.

choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi*2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)



corenlp_tokens

Value

A vocabularyComparison object

Examples
tc = create_tcorpus(sotu_texts, doc_column = 'id'")

tc$preprocess('token', 'feature', remove_stopwords =

comp = compare_subset(tc, 'feature', subset_meta_x =
comp = complorder(-comp$chi), ]

head(comp)

plot(comp)

comp = compare_subset(tc, 'feature', query_x =

comp = comp[order(-comp$chi),]

head(comp, 10)

15

TRUE, use_stemming = TRUE)

president == 'Barack Obama')

"terroris*')

corenlp_tokens coreNLP example sentences

Description

coreNLP example sentences

Usage

data(corenlp_tokens)

Format

data.frame

count_tcorpus

Count results of search hits, or of a given feature in tokens

Description

Count results of search hits, or of a given feature in tokens

Usage

count_tcorpus(tc, meta_cols = NULL, hits = NULL, feature = NULL,

count = c("documents”, "tokens"”, "hits"), wide =

D)



create_tcorpus

Arguments
tc A tCorpus
meta_cols The columns in the meta data by which the results should be grouped
hits featureHits or contextHits (output of search_features, search_dictionary
or search_contexts)
feature Instead of hits, a specific feature column can be selected.
count How should the results be counted? Number of documents, tokens, or unique
hits. The difference between tokens and hits is that hits can encompass multiple
tokens (e.g., "Bob Smith" is 1 hit and 2 tokens).
wide Should results be in wide or long format?
Value
A data table
Examples

tc = create_tcorpus(sotu_texts, doc_col='id")

hits = search_features(tc, c("US# <united states>", "Economy# economx*"))
count_tcorpus(tc, hits=hits)

count_tcorpus(tc, hits=hits, meta_cols='president')

count_tcorpus(tc, hits=hits, meta_cols='president', wide=FALSE)

create_tcorpus Create a tCorpus

Description

Create a tCorpus from raw text input. Input can be a character (or factor) vector, data.frame or
quanteda corpus. If a data.frame is given, all columns other than the document id and text columns
are included as meta data. If a quanteda corpus is given, the ids and texts are already specified, and
the docvars will be included in the tCorpus as meta data.

Usage

create_tcorpus(x, ...)

## S3 method for class 'character'

create_tcorpus(x, doc_id = 1:1length(x),
meta = NULL, udpipe_model = NULL, split_sentences = F,
max_sentences = NULL, max_tokens = NULL,
udpipe_model_path = getwd(), udpipe_cache = 3, use_parser = F,
remember_spaces = FALSE, verbose =T, ...)



create_tcorpus 17

## S3 method for class 'data.frame'

create_tcorpus(x, text_columns = "text",
doc_column = "doc_id", udpipe_model = NULL, split_sentences = F,
max_sentences = NULL, max_tokens = NULL,
udpipe_model_path = getwd(), udpipe_cache = 3, use_parser = F,
remember_spaces = FALSE, verbose =T, ...)

## S3 method for class 'factor'
create_tcorpus(x, ...)

## S3 method for class 'corpus'

create_tcorpus(x, ...)
Arguments
X main input. can be a character (or factor) vector where each value is a full text,

or a data.frame that has a column that contains full texts.
Arguments passed to create_tcorpus.character

doc_id if x is a character/factor vector, doc_id can be used to specify document ids.
This has to be a vector of the same length as x

meta A data.frame with document meta information (e.g., date, source). The rows of
the data.frame need to match the values of x

udpipe_model  Optionally, the name of a Universal Dependencies language model (e.g., "english-
ewt", "dutch-alpino"), to use the udpipe package (udpipe_annotate) for natu-
ral language processing. You can use show_udpipe_models to get an overview
of the available models. For more information about udpipe and performance
benchmarks of the UD models, see the GitHub page of the udpipe package.

split_sentences
Logical. If TRUE, the sentence number of tokens is also computed. (only if
udpipe_model is not used)

max_sentences An integer. Limits the number of sentences per document to the specified num-
ber. If set when split_sentences == FALSE, split_sentences will be set to TRUE.

max_tokens An integer. Limits the number of tokens per document to the specified number
udpipe_model_path
If udpipe_model is used, this path wil be used to look for the model, and if
the model doesn’t yet exist it will be downloaded to this location. Defaults to
working directory

udpipe_cache  The number of persistent caches to keep for inputs of udpipe. The caches store
tokens per batch (100 documents). This way, if a lot of data has to be parsed, or
if R crashes, udpipe can continue from the latest batch instead of start over. The
caches are stored in the udpipe_models folder (in udpipe_model path). Only
the most recent [udpipe_caches] caches will be stored.

use_parser If TRUE, use dependency parser (only if udpipe_model is used)

remember_spaces
If TRUE, a column with spaces after each token is included. Enables correct
reconstruction of original text and keeps annotations at the level of character
positions (e.g., brat) intact.


https://github.com/bnosac/udpipe

18 create_tcorpus

verbose If TRUE, report progress

text_columns if x is a data.frame, this specifies the column(s) that contains text. The texts are
paste together in the order specified here.

doc_column If x is a data.frame, this specifies the column with the document ids.

Details

By default, texts will only be tokenized, and basic preprocessing techniques (lowercasing, stem-
ming) can be applied with the preprocess method. Alternatively, the udpipe package can be used
to apply more advanced NLP preprocessing, by using the udpipe_model argument.

Examples
#H o ..
tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'))
tc$tokens
tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),
split_sentences = TRUE)
tc$tokens

## with meta (easier to S3 method for data.frame)
meta = data.frame(doc_id = c(1,2), source = c('a','b"))
tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),
split_sentences = TRUE,
doc_id = c(1,2),
meta = meta)
tc
d = data.frame(text = c('Text one first sentence. Text one second sentence.',
'Text two', 'Text three'),
date = c('2010-01-01"','2010-01-01"','2012-01-01"),
source = c('A','B','B"))

tc = create_tcorpus(d, split_sentences = TRUE)
tc
tc$tokens

## use multiple text columns

d$headline = c('Head one', 'Head two', 'Head three')
## use custom doc_id

d$doc_id = c('#1', '#2', '#3')

tc = create_tcorpus(d, text_columns = c('headline', 'text'), doc_column = 'doc_id"',
split_sentences = TRUE)

tc

tc$tokens

## It makes little sense to have full texts as factors, but it tends to happen.
## The create_tcorpus S3 method for factors is essentially identical to the

## method for a character vector.

text = factor(c('Text one first sentence', 'Text one second sentence'))

tc = create_tcorpus(text)

tc$tokens



docfreq_filter 19

library(quanteda)
create_tcorpus(data_corpu_inaugural)

docfreq_filter Support function for subset method

Description

Support function to enable subsetting by document frequency stats of a given feature. Should only
be used within the tCorpus subset method, or any tCorpus method that supports a subset argument.

Usage

docfreq_filter(x, min = -Inf, max = Inf, top = NULL, bottom = NULL,
doc_id = parent.frame()$doc_id)

Arguments
X the name of the feature column. Can be given as a call or a string.
min A number, setting the minimum document frequency value
max A number, setting the maximum document frequency value
top A number. If given, only the top x features with the highest document frequency
are TRUE
bottom A number. If given, only the bottom x features with the highest document fre-
quency are TRUE
doc_id Added for reference, but should not be used. Automatically takes doc_id from
tCorpus if the docfreq_filter function is used within the subset method.
Examples
tc = create_tcorpus(c('a aabb', 'aacc'))
tc$tokens

tc$subset(subset = docfreq_filter(token, min=2))
tc$tokens



20

dtm_compare

dtm_compare

Compare two document term matrices

Description

Compare two document term matrices

Usage
dtm_compare(dtm.x, dtm.y = NULL, smooth = ©.1, min_ratio = NULL,
min_chi2 = NULL, select_rows = NULL, yates_cor = c("auto”, "yes"”,
"no"), x_is_subset = F, what = c("freq”, "docfreq”, "cooccurrence"))
Arguments
dtm.x the main document-term matrix
dtm.y the 'reference’ document-term matrix
smooth Laplace smoothing is used for the calculation of the probabilities. Here you can
set the added (pseuocount) value.
min_ratio threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y
min_chi2 threshold for the chi*2 value

select_rows

yates_cor

X_is_subset

what

Value

Alternative to using dtm.y. Has to be a vector with rownames, by which

mode for using yates correctsion in the chi*2 calculation. Can be turned on
("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.

Specify whether dtm.x is a subset of dtm.y. In this case, the term frequencies of
dtm.x will be subtracted from the term frequencies in dtm.y

choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi*2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)

A data frame with rows corresponding to the terms in dtm and the statistics in the columns



dtm_wordcloud

21

dtm_wordcloud

Plot a word cloud from a dtm

Description

Compute the term frequencies for the dtm and plot a word cloud with the top n topics You can either
supply a document-term matrix or provide terms and freqs directly (in which case this is an alias
for wordcloud::wordcloud with sensible defaults)

Usage

dtm_wordcloud(dtm = NULL, nterms = 100, freq.fun = NULL,

terms = NULL, fregs = NULL, scale = c(4, 0.5), min.freq = 1,
rot.per = 0.15, ...)
Arguments
dtm the document-term matrix
nterms the amount of words to plot (default 100)
freq.fun if given, will be applied to the frequenies (e.g. sqrt)
terms the terms to plot, ignored if dtm is given
freqgs the frequencies to plot, ignored if dtm is given
scale the scale to plot (see wordcloud::wordcloud)
min.freq the minimum frquency to include (see wordcloud::wordcloud)
rot.per the percentage of vertical words (see wordcloud::wordcloud)
other arguments passed to wordcloud::wordcloud
Examples

## create DTM

tc = create_tcorpus(sotu_texts[1:100,], doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE)

dtm = get_dtm(tc,

'feature')

dtm_wordcloud(dtm, nterms = 20)

## or without a DTM

dtm_wordcloud(terms = c('in', 'the', 'cloud'), fregs

c(2,5,10))



22

ego_semnet

ego_semnet

Create an ego network

Description

Create an ego network from an igraph object.

Usage

ego_semnet(g, vertex_names, depth = 1, only_filter_vertices =T,

weight_attr

= "weight"”, min_weight = NULL, top_edges = NULL,

max_edges_level = NULL, directed = c("out”, "in"))

Arguments

g

vertex_names

depth

an igraph object
a character string with the names of the ego vertices/nodes

the number of degrees from the ego vertices/nodes that are included. 1 means
that only the direct neighbours are included

only_filter_vertices

weight_attr

min_weight

top_edges

if True, the algorithm will only filter out vertices/nodes that are not in the ego
network. If False (default) then it also filters out the edges.

the name of the edge attribute. if NA, no weight is used, and min_weight and
top_edges are ignored

a number indicating the minimum weight

for each vertex within the given depth, only keep the top n edges with the
strongest edge weight. Can also be a vector of the same length as the depth
value, in which case a different value is used at each level: first value for level
1, second value for level 2, etc.

max_edges_level

directed

Details

the maximum number of edges to be added at each level of depth.

if the network is directed, specify whether "out’ degrees or ’in’ degrees are used

The function is similar to the ego function in igraph, but with some notable differences. Firstly, if
multiple vertex_names are given, the ego network for both is given in 1 network (whereas igraph
creates a list of networks). Secondly, the min_weight and top_edges parameters can be used to
focus on the strongest edges.



emoticon_dict

Examples

tc = create_tcorpus(c('a b c', 'de f', 'ad'))
g = tc$semnet('token')

igraph::get.data.frame(g)

plot_semnet(g)

## only keep nodes directly connected to given node
g_ego = ego_semnet(g, 'e')
igraph::get.data.frame(g_ego)

plot_semnet(g_ego)

## only keep edges directly connected to given node
g_ego = ego_semnet(g, 'e', only_filter_vertices = FALSE)
igraph::get.data.frame(g_ego)

plot_semnet(g_ego)

## only keep nodes connected to given node with a specified degree (i.e. distance)
g_ego = ego_semnet(g, 'e', depth = 2)

igraph::get.data.frame(g_ego)

plot_semnet(g_ego)

23

emoticon_dict Dictionary with common ASCII emoticons

Description

Obtained from the Wikipedia List_of_emoticons page.

Usage

data(emoticon_dict)

Format

A data.frame with a "string" and "code" column.

feature_associations  Get common nearby features given a query or query hits

Description

Get common nearby features given a query or query hits



a data.frame

Examples

tc = create_tcorpus(sotu_texts, doc_column =

tc$preprocess()

24 feature_associations
Usage
feature_associations(tc, feature, query = NULL, hits = NULL,
query_feature = "token”, window = 15, n = 25, min_freq = 1,
sort_by = c("chi2", "ratio”, "freq"), subset = NULL,
subset_meta = NULL, include_self = F)
Arguments
tc a tCorpus
feature The name of the feature column in $tokens
query A character string that is a query. See search_features for documentation of the
query language.
hits Alternatively, instead of giving a query, the results of search_features can be
used.
query_feature If query is used, the column in $tokens on which the query is performed. By
default uses "token’
window The size of the word window (i.e. the number of words next to the feature)
n the top n of associated features
min_freq Optionally, ignore features that occur less than min_freq times
sort_by The value by which to sort the features
subset A call (or character string of a call) as one would normally pass to subset.tCorpus.
If given, the keyword has to occur within the subset. This is for instance usefull
to only look in named entity POS tags when searching for people or organiza-
tion. Note that the condition does not have to occur within the subset.
subset_meta A call (or character string of a call) as one would normally pass to the sub-
set_meta parameter of subset.tCorpus. If given, the keyword has to occur within
the subset documents. This is for instance usefull to make queries date depen-
dent. For example, in a longitudinal analysis of politicians, it is often required
to take changing functions and/or party affiliations into account. This can be
accomplished by using subset_meta = "date > xxx & date < xxx" (given that the
appropriate date column exists in the meta data).
include_self If True, include the feature itself in the output
Value

"id")

## directly from query

topf = feature_associations(tc,

'feature', 'war')

head(topf, 20) ## frequent words close to "war"



feature_stats 25

## adjust window size
topf = feature_associations(tc, 'feature', 'war', window = 5)

’

head(topf, 20) ## frequent words very close (five tokens) to "war"

## you can also first perform search_features, to get hits for (complex) queries

hits = search_features(tc, '"war terror”~10"')

topf = feature_associations(tc, 'feature', hits = hits)

head(topf, 20) ## frequent words close to the combination of "war"” and "terror” within 10 words

feature_stats Feature statistics

Description

Compute a number of useful statistics for features: term frequency, idf, etc.

Usage

feature_stats(tc, feature, context_level = c("document”, "sentence"))
Arguments

tc a tCorpus

feature The name of the feature column

context_level Should results be returned at document or sentence level

Value

a data.frame

Examples

tc

create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),
split_sentences = TRUE)

fs = feature_stats(tc, 'token')

head(fs)

fs = feature_stats(tc, 'token', context_level = 'sentence')
head(fs)



26 get_dtm

freq_filter Support function for subset method

Description

Support function to enable subsetting by frequency stats of a given feature. Should only be used
within the tCorpus subset method, or any tCorpus method that supports a subset argument.

Usage

freq_filter(x, min = -Inf, max = Inf, top = NULL, bottom = NULL)

Arguments
X the name of the feature column. Can be given as a call or a string.
min A number, setting the minimum frequency value
max A number, setting the maximum frequency value
top A number. If given, only the top x features with the highest frequency are TRUE
bottom A number. If given, only the bottom x features with the highest frequency are
TRUE
Examples

tc = create_tcorpus(c('a a ab b'))

tc$tokens
tc$subset(subset = freq_filter(token, min=3))
tc$tokens
get_dtm Create a document term matrix.
Description

Create a document term matrix. The default output is a sparse matrix (Matrix, dgTMatrix). Alter-
natively, the dtm style from the tm and quanteda package can be used.

The dfm function is shorthand for using quanteda’s dfm (document feature matrix) class. The meta
data in the tcorpus is then automatically added as docvars in the dfm.



get_dtm 27

Usage

get_dtm(tc, feature, context_level = c("document”, "sentence"),
weight = c("termfreq”, "docfreq”, "tfidf"”, "norm_tfidf"),
drop_empty_terms = T, form = c("Matrix"”, "tm_dtm”, "quanteda_dfm"),
subset_tokens = NULL, subset_meta = NULL, context = NULL,
context_labels = T, feature_labels = T, ngrams = NA,
ngram_before_subset = F)

get_dfm(tc, feature, context_level = c("document”, "sentence"),
weight = c("termfreq”, "docfreq”, "tfidf", "norm_tfidf"),
drop_empty_terms = T, subset_tokens = NULL, subset_meta = NULL,
context = NULL, context_labels = T, feature_labels =T,
ngrams = NA, ngram_before_subset = F)

Arguments
tc a tCorpus
feature The name of the feature column

context_level Select whether the rows of the dtm should represent "documents" or "sentences".

weight Select the weighting scheme for the DTM. Currently supports term frequency
(termfreq), document frequency (docfreq), term frequency inverse document
frequency (tfidf) and tfidf with normalized document vectors.

drop_empty_terms
If True, tokens that do not occur (i.e. column where sum is 0) are ignored.

form The output format. Default is a sparse matrix in the dgTMatrix class from the
Matrix package. Alternatives are tm_dtm for a DocumentTermMatrix in the
tm package format or quanteda_dfm for the document feature matrix from the
quanteda package.

subset_tokens A subset call to select which rows to use in the DTM

subset_meta A subset call for the meta data, to select which documents to use in the DTM

context Instead of using the document or sentence context, an custom context can be
specified. Has to be a vector of the same length as the number of tokens, that
serves as the index column. Each unique value will be a row in the DTM.

context_labels If False, the DTM will not be given rownames

feature_labels If False, the DTM will not be given column names

ngrams Optionally, use ngrams instead of individual tokens. This is more memory effi-
cient than first creating an ngram feature in the tCorpus.

ngram_before_subset
If a subset is used, ngrams can be made before the subset, in which case an
ngram can contain tokens that have been filtered out after the subset. Alterna-
tively, if ngrams are made after the subset, ngrams will span over the gaps of
tokens that are filtered out.

Value

A document term matrix, in the format specified in the form argument



28 get_global_i

Examples

tc = create_tcorpus(c("First text first sentence. First text first sentence.”,
"Second text first sentence”), doc_column = 'id', split_sentences = TRUE)

## Perform additional preprocessing on the 'token' column, and save as the 'feature' column
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)
tc$tokens

## default: regular sparse matrix, using the Matrix package
m = get_dtm(tc, 'feature')

class(m)

m

## alternatively, create quanteda ('quanteda_dfm') or tm ('tm_dtm') class for DTM

m = get_dtm(tc, 'feature', form = 'quanteda_dfm')
class(m)
m

## create DTM with sentences as rows (instead of documents)
m = get_dtm(tc, 'feature', context_level = 'sentence')
nrow(m)

## use weighting
m = get_dtm(tc, 'feature', weight = 'norm_tfidf"')

get_global_i Compute global feature positions

Description

Features are given global ids, with an added distance (max_window_size) between contexts (e.g.,
documents, sentences). This way, the distance of features can be calculated across multiple contexts
using a single vector

Usage

get_global_i(tc, context_level = c("document”, "sentence"),
max_window_size = 200)

Arguments

tc tCorpus object

context_level either 'document’ or ’sentence’

max_window_size
Determines the size of the gap between documents. Called max_window_size
because this gap determines what the maximum window size is for non-overlapping
windows between documents



get_kwic

Value

a tCorpus object

29

get_kwic

Get keyword-in-context (KWIC) strings

Description

Create a data.frame with keyword-in-context strings for given indices (i), search results (hits) or
search strings (keyword).

Usage

get_kwic(tc, hits = NULL, i = NULL, query = NULL, code = "",
ntokens = 10, n = NA, nsample = NA, output_feature = "token”,

query_feature = "token”, context_level = c("document”, "sentence"),
kW_tag = C(H<H’ u>n), . ‘)
Arguments
tc a tCorpus
hits results of feature search. see search_features.
i instead of the hits argument, you can give the indices of features directly.
query instead of using the hits or i arguments, a search string can be given directly.
Note that this simply a convenient shorthand for first creating a hits object with
search_features. If a query is given, then the ... argument is used to pass other
arguments to tCorpus$search_features.
code if ’1” or ’query’ is used, the code argument can be used to add a code label.
Should be a vector of the same length that gives the code for each i or query, or
a vector of length 1 for a single label.
ntokens an integers specifying the size of the context, i.e. the number of tokens left and
right of the keyword.
n a number, specifying the total number of hits
nsample like n, but with a random sample of hits. If multiple codes are used, the sample

output_feature
query_feature
context_level

kw_tag

is drawn for each code individually.

the feature column that is used to make the KWIC.

If query is used, the feature column that is used to perform the query
Select the maxium context (document or sentence).

a character vector of length 2, that gives the symbols before (first value) and
after (second value) the keyword in the KWIC string. Can for instance be used
to prepare KWIC with format tags for highlighting.

See search_features for the query parameters



30 get_stopwords

Details

This is mainly for viewing results in the R console. If you want to create a subset corpus based
on the context of query results, you can use subset_query with the window argument. Also, the
browse_hits function is a good alternative for viewing query hits in full text.

Examples

tc = tokens_to_tcorpus(corenlp_tokens, sentence_col = 'sentence', token_id_col = 'id')

## look directly for a term (or complex query)
get_kwic(tc, query = 'lovex')

## or, first perform a feature search, and then get the KWIC for the results
hits = search_features(tc, '(john OR mark) AND mary AND lovex', context_level = 'sentence')

get_kwic(tc, hits=hits, context_level = 'sentence')
get_stopwords Get a character vector of stopwords
Description

Get a character vector of stopwords

Usage

get_stopwords(lang)

Arguments
lang The language. Current options are: "danish", "dutch", "english", "finnish",
"french", "german", "hungarian", "italian", "norwegian", "portuguese", "roma-
nian", "russian", "spanish" and "swedish"
Value

A character vector containing stopwords

Examples

en_stop = get_stopwords('english')
nl_stop = get_stopwords('dutch")
ge_stop = get_stopwords('german')

head(en_stop)
head(nl_stop)
head(ge_stop)



laplace 31

laplace Laplace (i.e. add constant) smoothing

Description

Laplace (i.e. add constant) smoothing

Usage
laplace(freq, add = 0.5)

Arguments
freq A numeric vector of term frequencies (integers).
add The added value

Value

A numeric vector with the smoothed term proportions

Examples

laplace(c(0,0,1,1,1,2,2,2,3,3,4,7,10))

melt_quanteda_dict Convert a quanteda dictionary to a long data.table format

Description

This is used internally in the tCorpus dictionary search functions, but can be used manually for
more control. For example, adding numeric scores for sentiment dictionaries, and specifying which
label/code to use in search_dictionary().

Usage

melt_quanteda_dict(dict, column = "code"”, .index = NULL)

Arguments
dict The quanteda dictionary
column The name of the column with the label/code. If dictionary contains multiple

levels, additional columns are added with the suffix _l[i], where [i] is the level.

.index Do not use (used for recursive melting)



32

Value

A data.table

Examples

merge_tcorpora

d = quanteda::data_dictionary_LSD2015
melt_quanteda_dict(d)

merge_tcorpora

Merge tCorpus objects

Description

Create one tcorpus based on multiple tcorpus objects

Usage
merge_tcorpora(..., keep_data = c("intersect”, "all"),
keep_meta = c("intersect”, "all"), if_duplicate = c("stop”, "rename”,
"drop"), duplicate_tag = "#D")
Arguments
tCorpus objects, or a list with tcorpus objects
keep_data if intersect’, then only the token data columns that occur in all tCorpurs objects
are kept
keep_meta if ’intersect’, then only the document meta columns that occur in all tCorpurs

if_duplicate

duplicate_tag

Value

a tCorpus object

objects are kept

determine behaviour if there are duplicate doc_ids across tcorpora. By default,
this yields an error, but you can set it to "rename" to change the names of dupli-
cates (which makes sense of only the doc_ids are duplicate, but not the actual
content), or "drop" to ignore duplicates, keeping only the first unique occurence.

a character string. if if_duplicates is "rename", this tag is added to the document
id. (this is repeated till no duplicates remain)



plot.contextHits 33

Examples
tcl = create_tcorpus(sotu_texts[1:10,], doc_column = 'id')
tc2 = create_tcorpus(sotu_texts[11:20,], doc_column = 'id")
tc = merge_tcorpora(tcl, tc2)
tc$n_meta

#### duplicate handling ####
tcl = create_tcorpus(sotu_texts[1:10,], doc_column = 'id')
tc2 = create_tcorpus(sotu_texts[6:15,], doc_column = 'id')

## duplicate error
tc = merge_tcorpora(tcl,tc2)

## with "rename”, has 20 documents of which 5 duplicates
tc = merge_tcorpora(tcl,tc2, if_duplicate = 'rename')
tc$n_meta

sum(grepl('#D', tc$meta$doc_id))

## with "drop”, has 15 documents without duplicates
tc = merge_tcorpora(tcl,tc2, if_duplicate = 'drop')
tc$n_meta

mean(grepl('#D', tc$meta$doc_id))

plot.contextHits S3 plot for contextHits class

Description

S3 plot for contextHits class

Usage
## S3 method for class 'contextHits'
plot(x, min_weight = @, backbone_alpha = NA, ...)
Arguments
X a contextHits object, as returned by search_contexts
min_weight Optionally, the minimum weight for an edge in the network

backbone_alpha Optionally, the alpha threshold for backbone extraction (similar to a p-value,
and lower is more strict)

not used



34 plot.featureAssociations

Examples

tc = create_tcorpus(sotu_texts, doc_column="'id")
hits = search_contexts(tc, c('War# warx OR army OR bombx', 'Terrorism# terrorisx',
'"Economy# econom* OR bankx', 'Education# educat* OR schoolx'))

plot(hits)

plot.featureAssociations
visualize feature associations

Description

visualize feature associations

Usage

## S3 method for class 'featureAssociations'
plot(x, n = 25, size = c("chi2", "freq",

"ratio"), ...)
Arguments
X a featureAssociations object, created with the feature_associations function
n the number of words in the plot
size use "freq", "chi2" or "ratio" for determining the size of words

additional arguments passed to dtm_wordcloud

Examples

## as example, compare SOTU paragraphs about taxes to rest
tc = create_tcorpus(sotu_texts[1:100,], doc_column = 'id')
comp = tc$compare_subset('token', query_x = 'tax*')

plot(comp, balance=T)
plot(comp, mode = 'ratio_x')
plot(comp, mode = 'ratio_y')



plot.featureHits 35

plot.featureHits S3 plot for featureHits class

Description

S3 plot for featureHits class

Usage
## S3 method for class 'featureHits'
plot(x, min_weight = @, backbone_alpha = NA, ...)
Arguments
X a featureHits object, as returned by search_features
min_weight Optionally, the minimum weight for an edge in the network

backbone_alpha Optionally, the alpha threshold for backbone extraction (similar to a p-value,
and lower is more strict)

not used

Examples

tc = create_tcorpus(sotu_texts, doc_column='id")
hits = search_features(tc, c('War# war* OR army OR bombx*', 'Terrorism# terroris*',
"Economy# economx OR bank*', 'Education# educat* OR schoolx'))

plot(hits)

plot.vocabularyComparison
visualize vocabularyComparison

Description

visualize vocabularyComparison

Usage

## S3 method for class 'vocabularyComparison'

plot(x, n = 25, mode = c("both”,
"ratio_x", "ratio_y"), balance = T, size = c("chi2", "freq",
"ratio"), ...)



36 plot_semnet

Arguments
X a vocabularyComparison object, created with the compare_corpus or compare_subset
method
n the number of words in the plot
mode use "both" to plot both overrepresented and underrepresented words using the
plot_words function. Whether a term is under- or overrepresented is indicated
on the x-axis, which shows the log ratios (negative is underrepresented, positive
is overrepresented). Use "ratio_x" or "ratio_y" to only plot overrepresented or
underrepresented words using dtm_wordcloud
balance if TRUE, get an equal amount of terms on the left (underrepresented) and right
(overrepresented) side. If FALSE, the top chi words are used, regardless of ratio.
size use "freq", "chi2" or "ratio" for determining the size of words
additional arguments passed to plot_words ("both" mode) or dtm_wordcloud
(ratio modes)
Examples

## as example, compare SOTU paragraphs about taxes to rest
tc = create_tcorpus(sotu_texts[1:100,], doc_column = 'id')
comp = tc$compare_subset('token', query_x = 'tax*')

plot(comp, balance=T)
plot(comp, mode = 'ratio_x')
plot(comp, mode = 'ratio_y')

plot_semnet Visualize a semnet network

Description

plot_semnet is a wrapper for the plot.igraph() function optimized for plotting a semantic network
of the "semnet" class.

Usage

plot_semnet(g, weight_attr = "weight", min_weight = NA,
delete_isolates = F, vertexsize_attr = "freq", vertexsize_coef =1,
vertexcolor_attr = NA, edgewidth_coef = 1, max_backbone_alpha = NA,
labelsize_coef = 1, labelspace_coef = 1.1, reduce_labeloverlap = F,
redo_layout = F, return_graph = T, vertex.label.dist = 0.25,
layout_fun = igraph::layout_with_fr, ...)



plot_semnet 37

Arguments

g A network in the igraph format. Specifically designed for the output of coOc-
curenceNetwork() and windowedCoOccurenceNetwork()

weight_attr The name of the weight attribute. Default is "weight’

min_weight The minimum weight. All edges with a lower weight are dropped
delete_isolates
If TRUE, isolate vertices (also after applying min_weight) are dropped
vertexsize_attr
a character string indicating a vertex attribute that represents size. Default is
"freq’, which is created in the coOccurenceNetwork functions to indicate the
number of times a token occured.
vertexsize_coef

a coefficient for changing the vertex size.
vertexcolor_attr
a character string indicating a vertex attribute that represents color. The attribute
can also be a numeric value (e.g., a cluster membership) in which case colors
are assigned to numbers. If no (valid) color attribute is given, vertex color are
based on undirected fastgreedy.community() clustering.
edgewidth_coef a coefficient for changing the edge width
max_backbone_alpha
If g has an edge attribute named alpha (added if backbone extraction is used),
this specifies the maximum alpha value.
labelsize_coef a coefficient for increasing or decreasing the size of the vertexlabel.
labelspace_coef
a coefficient that roughly determines the minimal distance between vertex labels,
based on the size of labels. Only used if reduce_labeloverlap is TRUE.
reduce_labeloverlap
if TRUE, an algorithm is used to reduce overlap as best as possible.

redo_layout If TRUE, a new layout will be calculated using layout_with_fr(). If g does not
have a layout attribute (g$layout), a new layout is automatically calculated.

return_graph if TRUE, plot_semnet() also returns the graph object with the attributes and
layout as shown in the plot.

vertex.label.dist
The distance of the label to the center of the vertex

layout_fun The igraph layout function that is used.

additional arguments are passed on to plot.igraph()

Details

Before plotting the network, the set_network_attributes() function is used to set pretty defaults for
plotting. Optionally, reduce_labeloverlap can be used to prevent labeloverlap (as much as possible).

Value

Plots a network, and returns the network object if return_graph is TRUE.



38 plot_words

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE, min_docfreq=10)

g = tc$semnet_window('feature', window.size = 10)
g = backbone_filter(g, max_vertices = 100)
plot_semnet(g)

plot_words Plot a wordcloud with words ordered and coloured according to a
dimension (x)

Description

Plot a wordcloud with words ordered and coloured according to a dimension (x)

Usage
plot_words(x, y = NULL, words, wordfreq = rep(1, length(x)),
xlab = "", ylab = "", yaxt = "n", scale = 1, random.y =T,
xlim = NULL, ylim = NULL, col = c("darkred”, "navyblue"), ...)
Arguments
X The (approximate) x positions of the words
y The (approximate) y positions of the words
words A character vector with the words to plot
wordfreq The frequency of the words, defaulting to 1
xlab Label of the x axis
ylab Label of the y axis
yaxt see par documentation
scale Maximum size to scale the wordsize
random.y if TRUE, the y position of words is random, otherwise it represents the word
frequency.
x1lim Starting value of x axis
ylim Starting value of y axis
col A vector of colors that is passed to colorRamp to interpolate colors over x axis

additional parameters passed to the plot function

Value

nothing



preprocess_tokens 39

Examples

x = c(-10, -5, 3, 5)
y =c¢c(9, 2, 5, 10)
words = c('words', 'where', 'you', 'like')

plot_words(x,y,words, c(1,2,3,4))

preprocess_tokens Preprocess tokens in a character vector

Description

Preprocess tokens in a character vector

Usage

preprocess_tokens(x, context = NULL, language = "english”,
use_stemming = F, lowercase = T, ngrams = 1,
replace_whitespace = F, as_ascii = F, remove_punctuation =T,
remove_stopwords = F, remove_numbers = F, min_freq = NULL,
min_docfreq = NULL, max_freq = NULL, max_docfreq = NULL,
min_char = NULL, max_char = NULL, ngram_skip_empty = T)

Arguments
X A character or factor vector in which each element is a token (i.e. a tokenized
text)
context Optionally, a character vector of the same length as x, specifying the context of
token (e.g., document, sentence). Has to be given if ngram > 1
language The language used for stemming and removing stopwords

use_stemming  Logical, use stemming. (Make sure the specify the right language!)
lowercase Logical, make token lowercase

ngrams A number, specifying the number of tokens per ngram. Default is unigrams (1).
replace_whitespace
Logical. If TRUE, all whitespace is replaced by underscores
as_ascii Logical. If TRUE, tokens will be forced to ascii
remove_punctuation
Logical. if TRUE, punctuation is removed
remove_stopwords
Logical. If TRUE, stopwords are removed (Make sure to specify the right lan-
guage!)

remove_numbers remove features that are only numbers



40 print.contextHits

min_freq an integer, specifying minimum token frequency.

min_docfreq an integer, specifying minimum document frequency.
max_freq an integer, specifying minimum token frequency.

max_docfreq an integer, specifying minimum document frequency.
min_char an integer, specifying minimum number of characters in a term
max_char an integer, specifying maximum number of characters in a term

ngram_skip_empty
if ngrams are used, determines whether empty (filtered out) terms are skipped
(i.e. c("this", NA, "test"), becomes "this_test") or

Value

a factor vector

Examples

tokens = c('I', 'am', 'a', 'SHORT', 'example', 'sentence', '!')
## default is lowercase without punctuation
preprocess_tokens(tokens)

## optionally, delete stopwords, perform stemming, and make ngrams
preprocess_tokens(tokens, remove_stopwords = TRUE, use_stemming = TRUE)
preprocess_tokens(tokens, context = NA, ngrams = 3)

print.contextHits S3 print for contextHits class

Description

S3 print for contextHits class

Usage
## S3 method for class 'contextHits'
print(x, ...)
Arguments
X a contextHits object, as returned by search_contexts
not used
Examples

text = c('ABC', 'DEF. GHI', '"AD', '"GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)
hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI"'))

hits



print.featureHits 41

print.featureHits S3 print for featureHits class

Description

S3 print for featureHits class

Usage
## S3 method for class 'featureHits'
print(x, ...)
Arguments
X a featureHits object, as returned by search_features
not used
Examples

text = c('ABC', 'DEF. GHI', '"AD', '"GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)
hits = search_features(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI"'))

hits

print.tCorpus S3 print for tCorpus class

Description

S3 print for tCorpus class

Usage
## S3 method for class 'tCorpus'
print(x, ...)
Arguments
X a tCorpus object
not used
Examples
tc = create_tcorpus(c('First text', 'Second text'))

print(tc)



42 require_package

refresh_tcorpus Refresh a tCorpus object using the current version of corpustools

Description

As an R6 class, tCorpus contains its methods within the class object (i.e. itself). Therefore, if you
use a new version of corpustools with an older tCorpus object (e.g., stored as a .rds. file), then
the methods are not automatically updated. You can then use refresh_tcorpus() to reinitialize the
tCorpus object with the current version of corpustools.

Usage

refresh_tcorpus(tc)

Arguments

tc a tCorpus object

Value

a tCorpus object

Examples

tc = create_tcorpus(c('First text', 'Second text'))
refresh_tcorpus(tc)

require_package Check if package with given version exists

Description

Check if package with given version exists

Usage

require_package(package, min_version = NULL)

Arguments
package The name of the package
min_version The minimum version
Value

An error if package does not exist



search_contexts 43

search_contexts Search for documents or sentences using Boolean queries

Description

Search for documents or sentences using Boolean queries

Usage

search_contexts(tc, query, code = NULL, feature = "token”,
context_level = c("document”, "sentence"), verbose = F,
as_ascii = F)

Arguments

tc a tCorpus

query A character string that is a query. See details for available query operators and
modifiers. Can be multiple queries (as a vector), in which case it is recom-
mended to also specifiy the code argument, to label results.

code If given, used as a label for the results of the query. Especially usefull if multiple
queries are used.

feature The name of the feature column

context_level Select whether the queries should occur within while "documents" or specific
"sentences". Returns results at the specified level.

verbose If TRUE, progress messages will be printed
as_ascii if TRUE, perform search in ascii.
Details

Brief summary of the query language

The following operators and modifiers are supported:

* The standaard Boolean operators: AND, OR and NOT. As a shorthand, an empty space can
be used as an OR statement, so that "this that those" means "this OR that OR those". NOT
statements stricly mean AND NOT, so should only be used between terms. If you want to find
everything except certain terms, you can use * (wildcard for anything) like this: "* NOT (this
that those)".

» For complex queries parentheses can (and should) be used. e.g. *(spam AND eggs) NOT (fish
and (chips OR albatros))

* Wildcards ? and *. The questionmark can be used to match 1 unknown character or no
character at all, e.g. "?at" would find "cat", "hat" and "at". The asterisk can be used to match
any number of unknown characters. Both the asterisk and questionmark can be used at the
start, end and within a term.

» Multitoken strings, or exact strings, can be specified using quotes. e.g. "united states"



44 search_contexts

* tokens within a given token distance can be found using quotes plus tilde and a number speci-
fiying the token distance. e.g. "climate chang*"~10

 Alternatively, angle brackets (<>) can be used instead of quotes, which also enables nesting
exact strings in proximity/window search

* Queries are not case sensitive, but can be made so by adding the ~s flag. e.g. COP~s only
finds "COP" in uppercase. The ~s flag can also be used on quotes to make all terms within
quotes case sensitive, and this can be combined with the token proximity flag. e.g. "Marco
Polo"~s10

Value

A contextHits object, which is a list with $hits (data.frame with locations) and $queries (copy of
queries for provenance)

Examples

text = c('ABC', 'DEF. GHI', '"AD', 'GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)
tc$tokens

hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI'))
hits ## print shows number of hits

hits$hits ## hits is a list, with hits$hits being a data.frame with specific contexts
summary (hits) ## summary gives hits per query

## sentence level

hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI"),
context_level = 'sentence')

hits$hits ## hits is a list, with hits$hits being a data.frame with specific contexts

## query language examples

## single term
search_contexts(tc, 'A')$hits

search_contexts(tc, 'Gx')$hits ## wildcard
search_contexts(tc, '*G')$hits ## wildcard
search_contexts(tc, 'G*G')$hits  ## wildcard

* % %

search_contexts(tc, 'G?G')$hits  ## wildcard ?
search_contexts(tc, 'G?')$hits ## wildcard ? (no hits)

## boolean

search_contexts(tc, 'A AND B')$hits
search_contexts(tc, 'A AND D')$hits
search_contexts(tc, 'A AND (B OR D)')$hits

search_contexts(tc, 'A NOT B')$hits
search_contexts(tc, 'A NOT (B OR D)')$hits



search_dictionary 45

## sequence search (adjacent words)
search_contexts(tc, '"A B"')$hits
search_contexts(tc, '"A C"')$hits ## no hit, because not adjacent

search_contexts(tc, '"A (B OR D)"')$hits ## can contain nested OR
## cannot contain nested AND or NOT!!

search_contexts(tc, '<A B>')$hits ## can also use <> instead of "".

## proximity search (using ~ flag)
search_contexts(tc, '"A C"~5')$hits ## A AND C within a 5 word window
search_contexts(tc, '"A C"~1')$hits ## no hit, because A and C more than 1 word apart

search_contexts(tc, '"A (B OR D)"~5')$hits ## can contain nested OR

search_contexts(tc, '"A <B C>"~5')$hits ## can contain nested sequence (must use <>)
search_contexts(tc, '<A<B C>>~5')$hits ## (<> is always OK, but cannot nest quotes in quotes)
## cannot contain nested AND or NOT!!

## case sensitive search
search_contexts(tc, 'g')$hits ## normally case insensitive
search_contexts(tc, 'g~s')$hits ## use ~s flag to make term case sensitive

search_contexts(tc, '(a OR g)~s')$hits ## use ~s flag on everything between parentheses
search_contexts(tc, '(a OR G)~s')$hits ## use ~s flag on everything between parentheses

search_contexts(tc, '"a b"~s')$hits ## use ~s flag on everything between quotes
search_contexts(tc, '"A B"~s')$hits ## use ~s flag on everything between quotes
search_dictionary Dictionary lookup
Description

Similar to search_features, but for fast matching of large dictionaries.

Usage

search_dictionary(tc, dict, token_col = "token”, string_col = "string"”,

n

code_col = "code", sep = " ", case_sensitive = F,
use_wildcards = T, flatten_colloc = T, ascii = F, verbose = F)

Arguments

tc A tCorpus



46

dict

token_col

string_col

code_col

sep

case_sensitive

use_wildcards

flatten_colloc

search_dictionary

A dictionary. Can be either a data.frame or a quanteda dictionary. If a data.frame
is given, it has to have a column named "string" (or use string_col argument) that
contains the dictionary terms, and a column "code" (or use code_col argument)
that contains the label/code represented by this string. Each row has a single
string, that can be a single word or a sequence of words seperated by a whites-
pace (e.g., "not bad"), and can have the common ? and * wildcards. If a quanteda
dictionary is given, it is automatically converted to this type of data.frame with
the melt_quanteda_dict function. This can be done manually for more control
over labels.

The feature in tc that contains the token text.

If dict is a data.frame, the name of the column in dict with the dictionary lookup
string. Default is "string"

The name of the column in dict with the dictionary code/label. Default is "code".
If dict is a quanteda dictionary with multiple levels, "code_12", "code_I3", etc.
can be used to select levels..

A regular expression for separating multi-word lookup strings (default is " ",
which is what quanteda dictionaries use). For example, if the dictionary con-
tains "Barack Obama", sep should be " " so that it matches the consequtive
tokens "Barack" and "Obama". In some dictionaries, however, it might say
"Barack+Obama", so in that case sep = "\+’ should be used.

logical, should lookup be case sensitive?

Use the wildcards * (any number including none of any character) and ? (one or
none of any character). If FALSE, exact string matching is used

If true, collocations in the tokens (rows in tc$tokens) will be considered separate

words. For example, "President_Obama" will be split to "president” "obama",
so that "president obama" in the dictionary matches correctly.
ascii If true, convert text to ascii before matching
verbose If true, report progress
Value
A vector with the id value (taken from dict$id) for each row in tc$tokens
Examples
dict = data.frame(string = c('this is', 'for a', 'not big enough'), code=c('a','c','b"))

tc = create_tcorpus(c('this is a test','This town is not big enough for a test'))
search_dictionary(tc, dict)$hits



search_features

47

search_features

Find tokens using a Lucene-like search query

Description

Search tokens in a tokenlist using Lucene-like queries. For a detailed explanation of the query
language, see the details below.

Usage

search_features(tc, query, code = NULL, feature = "token”,
mode = c("unique_hits", "features"), context_level = c("document”,
"sentence”), keep_longest = TRUE, as_ascii = F, verbose = F)

Arguments
tc
query

code

feature

mode

context_level

keep_longest

as_ascii

verbose

Details

a tCorpus

A character string that is a query. See details for available query operators and
modifiers. Can be multiple queries (as a vector), in which case it is recom-
mended to also specifiy the code argument, to label results.

The code given to the tokens that match the query (usefull when looking for
multiple queries). Can also put code label in query with # (see details)

The name of the feature column within which to search.

There are two modes: "unique_hits" and "features". The "unique_hits" mode
prioritizes finding full and unique matches., which is recommended for counting
how often a query occurs. However, this also means that some tokens for which
the query is satisfied might not assigned a hit_id. The "features" mode, instead,
prioritizes finding all tokens, which is recommended for coding coding features
(the code_features and search_recode methods always use features mode).

Select whether the queries should occur within while "documents" or specific
"sentences".

If TRUE, then overlapping in case of overlapping queries strings in unique_hits
mode, the query with the most separate terms is kept. For example, in the text
"mr. Bob Smith", the query [smith OR "bob smith"] would match "Bob" and
"Smith". If keep_longest is FALSE, the match that is used is determined by the
order in the query itself. The same query would then match only "Smith".

if TRUE, perform search in ascii.

If TRUE, progress messages will be printed

Brief summary of the query language

The following operators and modifiers are supported:



48 search_features

* The standaard Boolean operators: AND, OR and NOT. As a shorthand, an empty space can
be used as an OR statement, so that "this that those" means "this OR that OR those". NOT
statements stricly mean AND NOT, so should only be used between terms. If you want to find
everything except certain terms, you can use * (wildcard for anything) like this: "* NOT (this
that those)".

» For complex queries parentheses can (and should) be used. e.g. ’(spam AND eggs) NOT (fish
and (chips OR albatros))

* Wildcards ? and *. The questionmark can be used to match 1 unknown character or no
character at all, e.g. "?at" would find "cat", "hat" and "at". The asterisk can be used to match
any number of unknown characters. Both the asterisk and questionmark can be used at the
start, end and within a term.

* Multitoken strings, or exact strings, can be specified using quotes. e.g. "united states"

* tokens within a given token distance can be found using quotes plus tilde and a number speci-
fiying the token distance. e.g. "climate chang*"~10

 Alternatively, angle brackets (<>) can be used instead of quotes, which also enables nesting
exact strings in proximity/window search

* Queries are not case sensitive, but can be made so by adding the ~s flag. e.g. COP~s only finds
"COP" in uppercase. The ~s flag can also be used on parentheses or quotes to make all terms
within case sensitive, and this can be combined with the token proximity flag. e.g. "Marco
Polo"~s10

* The ~g (ghost) flag can be used to mark a term (or all terms within parentheses/quotes) as a
ghost term. This has two effects. Firstly, features that match the query term will not be in the
results. This is usefull if a certain term is important for getting reliable search results, but not
conceptually relevant. Secondly, ghost terms can be used multiple times, in different query
hits (only relevant in unique_hits mode). For example, in the text "A B C", the query "A~g
AND (B C)’ will return both B and C as separate hit, whereas ’A AND (B C)’ will return A
and B as a single hit.

* A code label can be included at the beginning of a query, followed by a # to start the query
(label# query). Note that to search for a hashtag symbol, you need to escape it with \ (double
\'in R character vector)

* Aside from the feature column (specified with the feature argument) a query can include any
column in the token data. To manually select a column, use ’columnname: ’ at the start of a
query or nested query (i.e. between parentheses or quotes). See examples for clarification.

Value

A featureHits object, which is a list with $hits (data.frame with locations) and $queries (copy of
queries for provenance)

Examples

text = c('ABC', 'DEF. GHTI', '"AD', 'GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)
tc$tokens ## (example uses letters instead of words for simple query examples)

hits = tc$search_features(c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI'))
hits ## print shows number of hits



search_features 49

hits$hits ## hits is a list, with hits$hits being a data.frame with specific features
summary (hits) ## summary gives hits per query

## sentence level

hits = search_features(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI"),
context_level = 'sentence')

hits$hits ## hits is a list, with hits$hits being a data.frame with specific features

## query language examples

## single term
search_features(tc, 'A')$hits

*

search_features(tc, 'Gx')$hits ## wildcard
search_features(tc, '*G')$hits ## wildcard *
search_features(tc, 'GxG')$hits  ## wildcard

*

search_features(tc, 'G?G')$hits  ## wildcard ?
search_features(tc, 'G?')$hits ## wildcard ? (no hits)

## boolean

search_features(tc, 'A AND B')$hits
search_features(tc, 'A AND D')$hits
search_features(tc, 'A AND (B OR D)')$hits

search_features(tc, 'A NOT B')$hits
search_features(tc, 'A NOT (B OR D)')$hits

## sequence search (adjacent words)
search_features(tc, '"A B"')$hits
search_features(tc, '"A C"')$hits ## no hit, because not adjacent

search_features(tc, '"A (B OR D)"')$hits ## can contain nested OR
## cannot contain nested AND or NOT!!

search_features(tc, '<A B>')$hits ## can also use <> instead of "".

## proximity search (using ~ flag)
search_features(tc, '"A C"~5')$hits ## A AND C within a 5 word window
search_features(tc, '"A C"~1')$hits ## no hit, because A and C more than 1 word apart

search_features(tc, '"A (B OR D)"~5')$hits ## can contain nested OR

search_features(tc, '"A <B C>"~5"')$hits ## can contain nested sequence (must use <>)
search_features(tc, '<A <B C>>~5')$hits ## <> is always OK, but cannot nest "" in ""
## cannot contain nested AND or NOT!!

## case sensitive search (~s flag)
search_features(tc, 'g')$hits ## normally case insensitive
search_features(tc, 'g~s')$hits ## use ~s flag to make term case sensitive



50

search_features

search_features(tc, '(a OR g)~s')$hits ## use ~s flag on everything between parentheses
search_features(tc, '(a OR G)~s')$hits

search_features(tc, '"a b"~s')$hits ## use ~s flag on everything between quotes
search_features(tc, '"A B"~s')$hits ## use ~s flag on everything between quotes

## ghost terms (~g flag)
search_features(tc, 'A AND B~g')$hits ## ghost term (~g) has to occur, but is not returned
search_features(tc, 'A AND Q~g')$hits ## no hi

# (can also be used on parentheses/quotes/anglebrackets for all nested terms)

## "unique_hits" versus "features” mode
tc = create_tcorpus('A A B')

search_features(tc, 'A AND B')$hits ## in "unique_hits” (default), only match full queries
# (B is not repeated to find a second match of A AND B)

search_features(tc, 'A AND B', mode = 'features')$hits ## in "features”, match any match
# (note that hit_id in features mode is irrelevant)

# ghost terms (used for conditions) can be repeated
search_features(tc, 'A AND B~g')$hits

## advanced queries
tc = tokens_to_tcorpus(corenlp_tokens, doc_col = 'doc_id',

sentence_col = 'sentence', token_id_col = 'id')
head(tc$tokens) ## search in multiple feature columns with "columnname: "
## using the sub/flag query to find only mary as a direct object
hits = search_features(tc, 'mary~{relation: dobj}', context_level = 'sentence')
hits$hits

## add a second sub query
hits = search_features(tc, 'mary~{relation: dobj, parent: 12 20}', context_level = 'sentence')
hits$hits

## selecting from a different column without changing the feature column
## (can be used to combine columns)

hits = search_features(tc, 'relation: nsubj')

hits$hits

hits = search_features(tc, '(relation: nsubj) AND mary~g{relation: dobj}',
context_level = 'sentence')
hits$hits

## sequence: nsubj sayx
hits = search_features(tc,
hits$hits

"y

(relation: nsubj) sayx"')



semnet 51

semnet Create a semantic network based on the co-occurence of tokens in
documents

Description

This function calculates the co-occurence of features and returns a network/graph in the igraph for-
mat, where nodes are tokens and edges represent the similarity/adjacency of tokens. Co-occurence
is calcuated based on how often two tokens occured within the same document (e.g., news arti-
cle, chapter, paragraph, sentence). The semnet_window() function can be used to calculate co-
occurrence of tokens within a given token distance.

Usage
semnet(tc, feature = "token", measure = c("con_prob”,
"con_prob_weighted”, "cosine”, "count_directed”, "count_undirected”,
"chi2"), context_level = c("document”, "sentence"), backbone = F,

n.batches = NA)

Arguments
tc a tCorpus or a featureHits object (i.e. the result of search_features)
feature The name of the feature column
measure The similarity measure. Currently supports: "con_prob" (conditional probabil-

ity), "con_prob_weighted", "cosine" similarity, "count_directed" (i.e number of
cooccurrences) and "count_undirected" (same as count_directed, but returned as
an undirected network, chi2 (chi-square score))

context_level Determine whether features need to co-occurr within "documents” or "sentences"

backbone If True, add an edge attribute for the backbone alpha
n.batches If a number, perform the calculation in batches
Value

an Igraph graph in which nodes are features and edges are similarity scores

Examples

text = c('ABC', 'DEF. GHI', '"AD', '"GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)

g = semnet(tc, 'token')
g
igraph::get.data.frame(g)
plot_semnet(g)



52

semnet_window

semnet_window

Create a semantic network based on the co-occurence of tokens in
token windows

Description

This function calculates the co-occurence of features and returns a network/graph in the igraph for-
mat, where nodes are tokens and edges represent the similarity/adjacency of tokens. Co-occurence
is calcuated based on how often two tokens co-occurr within a given token distance.

If a featureHits object is given as input, then for for query hits that have multiple positions (i.e.
terms connected with AND statements or word proximity) the raw count score is biased. For the
count_* measures therefore only the first position of the query hit is used.

Usage
semnet_window(tc, feature = "token", measure = c("con_prob"”, "cosine",
"count_directed”, "count_undirected”, "chi2"),
context_level = c("document”, "sentence"”), window.size = 10,
direction = "<>", backbone = F, n.batches = 5,
matrix_mode = c("positionXwindow”, "windowXwindow"))
Arguments
tc a tCorpus or a featureHits object (i.e. the result of search_features)
feature The name of the feature column
measure The similarity measure. Currently supports: "con_prob" (conditional proba-

context_level
window.size

direction

backbone

n.batches

matrix_mode

bility), "cosine" similarity, "count_directed" (i.e number of cooccurrences) and
"count_undirected" (same as count_directed, but returned as an undirected net-
work, chi2 (chi-square score))

Determine whether features need to co-occurr within "documents” or "sentences"
The token distance within which features are considered to co-occurr

Determine whether co-occurrence is assymmetricsl ("<>") or takes the order of
tokens into account. If direction is ’<’, then the from/x feature needs to occur
before the to/y feature. If direction is *>’, then after.

If True, add an edge attribute for the backbone alpha

To limit memory use the calculation is divided into batches. This parameter
controls the number of batches.

There are two approaches for calculating window co-occurrence (see details).
By default we use positionXmatrix, but matrixXmatrix is optional because it
might be favourable for some uses, and might make more sense for cosine sim-
ilarity.



set_network_attributes 53

Details

There are two approaches for calculating window co-occurrence. One is to measure how often a
feature occurs within a given token window, which can be calculating by calculating the inner prod-
uct of a matrix that contains the exact position of features and a matrix that contains the occurrence
window. We refer to this as the "positionXwindow" mode. Alternatively, we can measure how
much the windows of features overlap, for which take the inner product of two window matrices,
which we call the "windowXwindow" mode. The positionXwindow approach has the advantage
of being easy to interpret (e.g. how likely is feature "Y" to occurr within 10 tokens from feature
"X"?7). The windowXwindow mode, on the other hand, has the interesting feature that similarity is
stronger if tokens co-occurr more closely together (since then their windows overlap more), but this
only works well for similarity measures that normalize the similarity (e.g., cosine). Currently, we
only use the positionXwindow mode, but windowXwindow could be interesting to use as well, and
for cosine it might actually make more sense.

Value

an Igraph graph in which nodes are features and edges are similarity scores

Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b",'c','d"), split_sentences = TRUE)

g = semnet_window(tc, 'token', window.size = 1)
g

igraph::get.data.frame(g)

plot_semnet(g)

set_network_attributes
Set some default network attributes for pretty plotting

Description

The purpose of this function is to create some default network attribute options to plot networks in
a nice and insightfull way.

Usage

set_network_attributes(g, size_attribute = "freq",
color_attribute = NA, redo_layout = F, edgewidth_coef = 1,
layout_fun = igraph::layout_with_fr)



54 sgt

Arguments

g A graph in the Igraph format.

size_attribute the name of the vertex attribute to be used to set the size of nodes
color_attribute

the name of the attribute that is used to select the color
redo_layout if TRUE, force new layout if layout already exists as a graph attribute
edgewidth_coef A coefficient for changing the edge width

layout_fun THe igraph layout function used

Value

a network in the Igraph format

Examples

tc = create_tcorpus(c('ABC', 'BC', 'BD"))
g = tc$semnet('token')

igraph::get.edge.attribute(g)
igraph::get.vertex.attribute(g)

plot(g)

g = set_network_attributes(g, size_attribute = 'freq')
igraph::get.edge.attribute(g)
igraph::get.vertex.attribute(g)

plot(g)

sgt Simple Good Turing smoothing

Description

Implementation of the Simple Good Turing smoothing proposed in: Gale, W. A., \& Sampson, G.
(1995). Good turing frequency estimation without tears. Journal of Quantitative Linguistics, 2(3),
217-237.

Usage
sgt(freq)

Arguments

freq A numeric vector of term frequencies (integers).

Value

A numeric vector with the smoothed term proportions



show_udpipe_models 55

show_udpipe_models Show the names of udpipe models

Description

Returns a data.table with the language, treebank and udpipe_model name. Uses the default model
repository provided by the udpipe package (udpipe_download_model). For more information
about udpipe and performance benchmarks of the UD models, see the GitHub page of the udpipe
package.

Usage

show_udpipe_models()

Value

a data.frame

Examples

show_udpipe_models()

sotu_texts State of the Union addresses

Description

State of the Union addresses

Usage

data(sotu_texts)

Format

data.frame


https://github.com/bnosac/udpipe
https://github.com/bnosac/udpipe

56 subset.tCorpus

stopwords_list Basic stopword lists

Description

Basic stopword lists

Usage

data(stopwords_list)

Format

A named list, with names matching the languages used by SnowballC

subset. tCorpus S3 subset for tCorpus class

Description

S3 subset for tCorpus class

Usage

## S3 method for class 'tCorpus'
subset(x, subset = NULL, subset_meta = NULL,

window = NULL, ...)
Arguments
X a tCorpus object
subset logical expression indicating rows to keep in the tokens data.
subset_meta logical expression indicating rows to keep in the document meta data.
window If not NULL, an integer specifiying the window to be used to return the subset.

For instance, if the subset contains token 10 in a document and window is 5, the
subset will contain token 5 to 15. Naturally, this does not apply to subset_meta.

not used



subset_query 57

Examples

tc = create_tcorpus(sotu_texts, doc_col="id")
## subset to keep only tokens where token_id <= 20 (i.e.first 20 tokens)
tcs1 = subset(tc, token_id < 20)

tcsi

## subset to keep only documents where president is Barack Obama

tcs2 = subset(tc, subset_meta = president == 'Barack Obama')
tecs2
subset_query Subset tCorpus token data using a query
Description

A convenience function that searches for contexts (documents, sentences), and uses the results to
subset the tCorpus token data.

Usage
subset_query(tc, query, feature = "token",
context_level = c("document”, "sentence”), window = NA)
Arguments
tc A tCorpus
query A character string that is a query. See search_contexts for query syntax.
feature The name of the feature columns on which the query is used.
context_level Select whether the query and subset are performed at the document or sentence
level.
window If used, uses a word distance as the context (overrides context_level)

Details

See the documentation for search_contexts for an explanation of the query language.

Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)

## subset by reference
tc2 = subset_query(tc, 'A')
tc2$meta



58 summary.featureHits

summary.contextHits S3 summary for contextHits class

Description

S3 summary for contextHits class

Usage
## S3 method for class 'contextHits'
summary (object, ...)
Arguments
object a contextHits object, as returned by search_contexts
not used
Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)
hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI"))

summary (hits)

summary . featureHits S3 summary for featureHits class

Description

S3 summary for featureHits class

Usage
## S3 method for class 'featureHits'
summary (object, ...)
Arguments
object a featureHits object, as returned by search_features

not used



summary.tCorpus 59

Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)
hits = search_features(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI"))

summary (hits)

summary . tCorpus Summary of a tCorpus object

Description

Summary of a tCorpus object

Usage
## S3 method for class 'tCorpus’
summary(object, ...)
Arguments
object A tCorpus object
not used
Examples
tc = create_tcorpus(c('First text', 'Second text'))
summary (tc)
tCorpus tCorpus: a corpus class for tokenized texts
Description

The tCorpus is a class for managing tokenized texts, stored as a data.frame in which each row
represents a token, and columns contain the positions and features of these tokens.

Methods and Functions

The corpustools package uses both functions and methods for working with the tCorpus.

Methods are used for all operations that modify the tCorpus itself, such as subsetting or adding
columns. This allows the data to be modified by reference. Methods are accessed using the dollar
sign after the tCorpus object. For example, if the tCorpus is named tc, the subset method can be
called as tc$subset(...)

Functions are used for all operations that return a certain output, such as search results or a semantic
network. These are used in the common R style that you know and love. For example, if the tCorpus
is named tc, a semantic network can be created with semnet(tc, ...)



60

tCorpus$code_dictionary

Overview of methods and functions

The primary goal of the tCorpus is to facilitate various corpus analysis techniques. The documen-

tation for currently

implemented techniques can be reached through the following links.

Create a tCorpus Functions for creating a tCorpus object

Manage tCorpus data Methods for viewing, modifying and subsetting tCorpus data
Features Preprocessing, subsetting and analyzing features

Using search strings Use Boolean queries to analyze the tCorpus

Co-occurrence networks — Feature co-occurrence based semantic network analysis
Corpus comparison Compare corpora

Topic modeling

Create and visualize topic models

Document similarity Calculate document similarity

tCorpus$code_dictionary

Dictionary lookup

Description

Add a column to the token data that contains a code (the query label) for tokens that match the

dictionary

Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

code_dictionary(...)

Arguments

dict

token_col

string_col

sep

A dictionary. Can be either a data.frame or a quanteda dictionary. If a data.frame
is given, it has to have a column named "string" (or use string_col argument) that
contains the dictionary terms. All other columns are added to the tCorpus $to-
kens data. Each row has a single string, that can be a single word or a sequence
of words seperated by a whitespace (e.g., "not bad"), and can have the common
? and * wildcards. If a quanteda dictionary is given, it is automatically converted
to this type of data.frame with the melt_quanteda_dict function. This can be
done manually for more control over labels.

The feature in tc that contains the token text.

If dict is a data.frame, the name of the column in dict that contains the dictionary
lookup string

A regular expression for separating multi-word lookup strings (default is " ",
which is what quanteda dictionaries use). For example, if the dictionary con-
tains "Barack Obama", sep should be " " so that it matches the consequtive
tokens "Barack” and "Obama". In some dictionaries, however, it might say
"Barack+Obama", so in that case sep = \+” should be used.



tCorpus$code_features 61

case_sensitive logical, should lookup be case sensitive?

column The name of the column added to $tokens. [column]_id contains the unique id
of the match. If a quanteda dictionary is given, the label for the match is in the
column named [column]. If a dictionary has multiple levels, these are added as
[column]_I[level].

use_wildcards Use the wildcards * (any number including none of any character) and ? (one or
none of any character). If FALSE, exact string matching is used.

flatten_colloc If true, collocations in the tokens (rows in tc$tokens) will be considered separate
words. For example, "President_Obama" will be split to "president” "obama",
so that "president obama" in the dictionary matches correctly.

ascii If true, convert text to ascii before matching
verbose If true, report progress
Value

A vector with the id value (taken from dict$id) for each row in tc$tokens

Examples

dict = data.frame(string = c('good', 'bad', 'ugl*', 'nice', 'not pretx'), sentiment=c(1,-1,-1,1,-1))
tc = create_tcorpus(c('The good, the bad and the ugly, is nice but not pretty'))
tc$code_dictionary(dict)

print(tc$tokens)

tCorpus$code_features Code features in a tCorpus based on a search string

Description

Add a column to the token data that contains a code (the query label) for tokens that match the
query (see tCorpus$search_features).

Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

code_features(query, code=NULL, feature='token', column='code', ...)
Arguments
query A character string that is a query. See search_features for documentation of the

query language.

code The code given to the tokens that match the query (usefull when looking for
multiple queries). Can also put code label in query with # (see details)

feature The name of the feature column within which to search.

column The name of the column that is added to the data



62

add_column

context_level

keep_longest

as_ascii
verbose
overwrite

Examples

tCorpus$compare_corpus

list of name-value pairs, used to add additional columns. The name will become
the column name, and the value should be a vector of the same length as the
query vector.

Select whether the queries should occur within while "documents" or specific
"sentences".

If TRUE, then overlapping in case of overlapping queries strings in unique_hits
mode, the query with the most separate terms is kept. For example, in the text
"mr. Bob Smith", the query [smith OR "bob smith"] would match "Bob" and
"Smith". If keep_longest is FALSE, the match that is used is determined by the
order in the query itself. The same query would then match only "Smith".

if TRUE, perform search in ascii.

If TRUE, progress messages will be printed

If TRUE (default) and column already exists, overwrite previous results.
alternative way to specify name-value pairs for adding additional columns

tc = create_tcorpus('Anna and Bob are secretive')

tc$code_features(c("actors# anna bob”, "associations# secretive”))

tc$tokens

tCorpus$compare_corpus

Compare tCorpus vocabulary to that of another (reference) tCorpus

Description

Usage:

Arguments

tc_y
feature
smooth

min_ratio
min_chi2

yates_cor
is_subset

what

the reference tCorpus

the column name of the feature that is to be compared

Laplace smoothing is used for the calculation of the ratio of the relative term
frequency. Here you can set the added value.

threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y

threshold for the chi*2 value

mode for using yates correctsion in the chi*2 calculation. Can be turned on
("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.

Specify whether tc is a subset of tc_y. In this case, the term frequencies of tc
will be subtracted from the term frequencies in tc_y

choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi*2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)



tCorpus$compare_documents 63

Details
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).
compare_corpus(tc_y, feature, smooth=0.1, min_ratio=NULL, min_chi2=NULL, is_subset=F, yates_cor=c('au

Value

A vocabularyComparison object

Examples
tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)
obama = tc$subset_meta(president == 'Barack Obama', copy=TRUE)
bush = tc$subset_meta(president == 'George W. Bush', copy=TRUE)

comp = obama$compare_corpus(bush, 'feature')
comp = comp[order(-comp$chi),]
head(comp)

plot(comp)

tCorpus$compare_documents
Calculate the similarity of documents

Description
Usage:
Arguments
feature the column name of the feature that is to be used for the comparison.
date_col a date with time in POSIXct. If given together with hour_window, only docu-
ments within the given hour_window will be compared.
meta_cols a character vector with columns in the meta data / docvars. If given, only docu-
ments for which these values are identical are compared
hour_window A vector of length 1 or 2. If length is 1, the same value is used for the left and
right side of the window. If length is 2, the first and second value determine the
left and right side. For example, the value 12 will compare each document to all
documents between the previous and next 12 hours, and c(-10, 36) will compare
each document to all documents between the previous 10 and the next 36 hours.
measure the similarity measure. Currently supports cosine similarity (symmetric) and

overlap_pct (asymmetric)



64 tCorpus$compare_subset

min_similarity A threshold for the similarity score

weight a weighting scheme for the document-term matrix. Default is term-frequency
inverse document frequency with normalized rows (document length).

ngrams an integer. If given, ngrams of this length are used

from_subset An expression to select a subset. If given, only this subset will be compared to
other documents

to_subset An expression to select a subset. If given, documents are only compared to this
subset

Details

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

compare_documents(feature="'token', date_col=NULL, hour_window=NULL, measure=c('cosine', 'overlap_pct'

Examples

## deprecated beyond repair. Please use the new compare_documents function

tCorpus$compare_subset
Compare vocabulary of a subset of a tCorpus to the rest of the tCorpus

Description
Usage:
Arguments
feature the column name of the feature that is to be compared
subset_x an expression to subset the tCorpus. The vocabulary of the subset will be com-

pared to the rest of the tCorpus
subset_meta_x like subset_x, but using using the meta data
query_x like subset_x, but using a query search to select documents (see tCorpus$search_contexts)

query_feature if query_x is used, the column name of the feature used in the query search.

smooth Laplace smoothing is used for the calculation of the ratio of the relative term
frequency. Here you can set the added value.

min_ratio threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y

min_chi2 threshold for the chi*2 value

yates_cor mode for using yates correctsion in the chi*2 calculation. Can be turned on

("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.



tCorpus$context 65

what choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi*2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)
Details
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

compare_subset (feature, subset_x=NULL, subset_meta_x=NULL, query_x=NULL, query_feature='token', smoot

Value

A vocabularyComparison object

Examples
tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)
comp = tc$compare_subset('feature', subset_meta_x = president == 'Barack Obama')
comp = comp[order(-comp$chi),]
head(comp)
plot(comp)
comp = tc$compare_subset('feature', query_x = 'terrorisx')

comp = compl[order(-comp$chi), ]
head(comp, 10)

tCorpus$context Get a context vector

Description
Depending on the purpose, the context of an analysis can be the document level or sentence level.
the tCorpus$context() method offers a convenient way to get the context id of tokens for different
settings.

Arguments

context_level Select whether the context is document or sentence level
with_labels Return context as only ids (numeric, starting at 1) or with labels (factor)

Details

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

data(context_level = c('document', 'sentence'), with_labels = T)



66 tCorpus$deduplicate

Examples

tc <- create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),
split_sentences = TRUE)

doc <- tc$context() ## default context is doc_id (document level)
doc

sent <- tc$context('sentence') ## can specify sentence level
sent

tCorpus$deduplicate Deduplicate documents

Description

Deduplicate documents based on similarity scores. Can be used to filter out identical documents,
but also similar documents.

Note that deduplication occurs by reference (tCorpus_modify_by_reference) unless copy is set to
TRUE.

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

deduplicate(feature='token', date_col=NULL, meta_cols=NULL, hour_window=NULL, min_docfreg=2, max_docf

Arguments

feature the column name of the feature that is to be used for the comparison.

date_col The column name for a column with a date vector (in POSIXct). If given to-
gether with hour_window, only documents within the given hour_window will
be compared.

meta_cols a vector with names for columns in the meta data. If given, documents are only
considered duplicates if the values of these columns are identical (in addition to
having a high similarity score)

hour_window A vector of length 1 or 2. If length is 1, the same value is used for the left and
right side of the window. If length is 2, the first and second value determine the
left and right side. For example, the value 12 will compare each document to all
documents between the previous and next 12 hours, and c(-10, 36) will compare
each document to all documents between the previous 10 and the next 36 hours.

min_docfreq a minimum document frequency for features. This is mostly to lighten compu-
tational load. Default is 2, because terms that occur once cannot overlap across
documents

max_docfreq_pct
a maximum document frequency percentage for features. High frequency terms
contain little information for identifying duplicates. Default is 0.5 (i.e. terms
that occur in more than 50 percent of documents are ignored),



tCorpus$delete_columns 67

lowercase

measure

similarity

keep

weight

ngrams

If True, make feature lowercase

the similarity measure. Currently supports cosine similarity (symmetric) and
overlap_pct (asymmetric)

the similarity threshold used to determine whether two documents are dupli-
cates. Default is 1, meaning 100 percent identical.

select either ’first’, ’last’” or 'random’. Determines which document of duplicates
to delete. If a date is given, ’first’ and ’last’ specify whether the earliest or latest
document is kept.

a weighting scheme for the document-term matrix. Default is term-frequency
inverse document frequency with normalized rows (document length).

an integer. If given, ngrams of this length are used

print_deduplicates

verbose

copy

Examples

if TRUE, print ids of duplicates that are deleted
if TRUE, report progress

If TRUE, the method returns a new tCorpus object instead of deduplicating the
current one by reference.

d = data.frame(text = c('ab cde',

'efghijk',
'abc'),

date = as.POSIXct(c('2010-01-01"','2010-01-01"','2012-01-01")))

tc = create_tcorpus(d)

tc$meta

dedup = tc$deduplicate(feature='token', date_col = 'date', similarity = 0.8, copy=TRUE)

dedup$meta

dedup = tc$deduplicate(feature='token', date_col = 'date', similarity = 0.8, keep = 'last’,

dedup$meta

copy=TRUE)

tCorpus$delete_columns

Delete column from the data and meta data

Description

Usage:

Arguments

chames

the names of the columns to delete



68 tCorpus$dtm

Details

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).
delete_columns(cnames)
delete_meta_columns(cnames)

Examples

d = data.frame(text = c('Text one', 'Text two', 'Text three'),
date = c('2010-01-01"','2010-01-01",'2012-01-01"))
tc = create_tcorpus(d)

tc$tokens
tc$delete_columns('token')
tc$tokens

tc$meta
tc$delete_meta_columns('date')
tc$meta

tCorpus$dtm Create a document term matrix.

Description
Create a document term matrix. The default output is a sparse matrix (Matrix, dgTMatrix). Alter-
natively, the dtm style from the tm and quanteda package can be used.

The tCorpus$dfm method is shorthand for using quanteda’s dfm (document feature matrix) class.
The meta data in the tcorpus is then automatically added as docvars in the dfm.

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

dtm(feature, context_level = c('document', 'sentence'), weight = c('termfreq', 'docfreq', 'tfidf"', 'norm_
drop_empty_terms = T, form = c('Matrix', '"tm_dtm', 'quanteda_dfm'), subset_tokens = NULL, subset_met
context = NULL, context_labels =T, feature_labels = T, ngrams = NA, ngram_before_subset = F)

dfm(feature, ...) ## identical, but without form argument
Arguments
feature The name of the feature column

context_level Select whether the rows of the dtm should represent "documents" or "sentences".

weight Select the weighting scheme for the DTM. Currently supports term frequency
(termfreq), document frequency (docfreq), term frequency inverse document
frequency (tfidf) and tfidf with normalized document vectors.



tCorpus$dtm

69

drop_empty_terms

form

subset_tokens
subset_meta

context

context_labels
feature_labels

ngrams

If True, tokens that do not occur (i.e. column where sum is 0) are ignored.

The output format. Default is a sparse matrix in the dgTMatrix class from the
Matrix package. Alternatives are tm_dtm for a DocumentTermMatrix in the
tm package format or quanteda_dfm for the document feature matrix from the
quanteda package.

A subset call to select which rows to use in the DTM
A subset call for the meta data, to select which documents to use in the DTM

Instead of using the document or sentence context, an custom context can be
specified. Has to be a vector of the same length as the number of tokens, that
serves as the index column. Each unique value will be a row in the DTM.

If False, the DTM will not be given rownames
If False, the DTM will not be given column names

Optionally, use ngrams instead of individual tokens. This is more memory effi-
cient than first creating an ngram feature in the tCorpus.

ngram_before_subset

Examples

If a subset is used, ngrams can be made before the subset, in which case an
ngram can contain tokens that have been filtered out after the subset. Alterna-
tively, if ngrams are made after the subset, ngrams will span over the gaps of
tokens that are filtered out.

tc = create_tcorpus(c("First text first sentence. First text first sentence.”,

"Second text first sentence”), doc_column = 'id', split_sentences = TRUE)

## Perform additional preprocessing on the 'token' column, and save as the 'feature' column
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)

tc$tokens

## default: regular sparse matrix, using the Matrix package
m = tc$dtm('feature')

class(m)
m

## alternatively, create quanteda ('quanteda_dfm') or tm ('tm_dtm') class for DTM

m = tc$dtm('feature', form = 'quanteda_dfm')

class(m)
m

## create DTM with sentences as rows (instead of documents)
m = tc$dtm('feature', context_level = 'sentence')

nrow(m)

## use weighting

m = tc$dtm('feature', weight = "norm_tfidf')



70 tCorpus$feature_associations

tCorpus$feats_to_columns
Cast the "feats" column in UDpipe tokens to columns

Description

If the UDpipe parser is used in create_tcorpus, the ’feats’ column contains strings with features
(e.g, Number=Sing|PronType=Dem). To work with these nested features it is more convenient to
cast them to columns.

Arguments
keep Optionally, the names of features to keep
drop Optionally, the names of features to drop
rm_column If TRUE (default), remove the original column
Details
Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

feats_to_columns(keep=NULL, drop=NULL, rm_column=T)

Examples

tc = create_tcorpus('This is a test Bobby.', udpipe_model='english-ewt')
tc$feats_to_columns()
tc$tokens

tc = create_tcorpus('This is a test Bobby.', udpipe_model="english-ewt')
tc$feats_to_columns(keep = c('Gender', 'Tense', 'Person'))
tc$tokens

tCorpus$feature_associations
Get common nearby terms given a feature query

Description

Usage:



tCorpus$feature_associations 71

Arguments

query A character string that is a query. See search_features for documentation of the
query language.

hits Alternatively, instead of giving a query, the results of tCorpus$search_features
can be used.

feature If keyword is used, the name of the feature column within which to search.

window The size of the word window (i.e. the number of words next to the feature)

n the top n of associated features

min_freq Optionally, ignore features that occur less than min_freq times

sort_by The value by which to sort the features

subset A call (or character string of a call) as one would normally pass to subset.tCorpus.
If given, the keyword has to occur within the subset. This is for instance usefull
to only look in named entity POS tags when searching for people or organiza-
tion. Note that the condition does not have to occur within the subset.

subset_meta A call (or character string of a call) as one would normally pass to the sub-
set_meta parameter of subset.tCorpus. If given, the keyword has to occur within
the subset documents. This is for instance usefull to make queries date depen-
dent. For example, in a longitudinal analysis of politicians, it is often required
to take changing functions and/or party affiliations into account. This can be
accomplished by using subset_meta = "date > xxx & date < xxx" (given that the
appropriate date column exists in the meta data).

Details

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

feature_associations(query=NULL, hits=NULL, feature='token',
window=15, n=25, min_freqg=1, sort_by=c('chi2', 'ratio', 'freq'),
subset=NULL, subset_meta=NULL

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')

## directly from query
topf = tc$feature_associations('war')
head(topf, 20) ## frequent words close to "war”

## adjust window size
topf = tc$feature_associations('war', window = 5)
head(topf, 20) ## frequent words very close (five tokens) to "war"

## you can also first perform search_features, to get hits for (complex) queries

hits = tc$search_features('"war terror”~10')

topf = tc$feature_associations(hits = hits)

head(topf, 20) ## frequent words close to the combination of "war"” and "terror” within 10 words



72

tCorpus$feature_subset

tCorpus$feature_stats Feature statistics

Description

Compute a number of useful statistics for features: term frequency, idf, etc.
Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

feature_stats(feature, sent_freq=F)

Arguments

feature The name of the feature column

sent_freq If True, include sentence frequency (only if sentence information is available).
Examples

tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),

split_sentences = TRUE)

fs = tc$feature_stats('token')
head(fs)

fs = tc$feature_stats('token', context_level = 'sentence')
head(fs)

tCorpus$feature_subset

Filter features

Description

Similar to using tCorpus$subset, but instead of deleting rows it only sets rows for a specified feature
to NA. This can be very convenient, because it enables only a selection of features to be used in an
analysis (e.g. a topic model) but maintaining the context of the full article, so that results can be
viewed in this context (e.g. a topic browser).

Just as in subset, it is easy to use objects and functions in the filter, including the special functions
for using term frequency statistics (see documentation for tCorpus$subset).

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

feature_subset(column, new_column, subset)



tCorpus$get 73

Arguments
column the column containing the feature to be used as the input
subset logical expression indicating rows to keep in the tokens data. i.e. rows for which
the logical expression is FALSE will be set to NA.
new_column the column to save the filtered feature. Can be a new column or overwrite an
existing one.
min_freq an integer, specifying minimum token frequency.
min_docfreq an integer, specifying minimum document frequency.
max_freq an integer, specifying minimum token frequency.
max_docfreq an integer, specifying minimum document frequency.
min_char an integer, specifying minimum characters in a token
max_char an integer, specifying maximum characters in a token
Examples

tc = create_tcorpus(‘aaaabbbcc')

tc$feature_subset('token', 'tokens_subsetl', subset = token_id < 5)
tc$feature_subset('token', 'tokens_subset2', subset = freq_filter(token, min = 3))

tc$tokens

tCorpus$get Access the data from a tCorpus

Description

Get the token and meta data.
Usage:
## R6 active method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

get(columns=NULL, keep_df=F, as.df=F, subset=NULL, doc_id=NULL, token_id=NULL, safe_copy=T)

get_meta(columns=NULL, keep_df=F, as.df=F, subset=NULL, doc_id=NULL, safe_copy=T)

Arguments
columns character vector with the names of the columns
keep_df if True, the output will be a data.table (or data.frame) even if it only contains 1
columns
as.df if True, the output will be a regular data.frame instead of a data.table

subset Optionally, only get a subset of rows (see tCorpus$subset method)



74

doc_id

token_id

safe_copy

Examples

tCorpus$kwic

A vector with document ids to select rows. Faster than subset, because it uses
binary search. Cannot be used in combination with subset. If duplicate doc_ids
are given, duplicate rows are returned.

A vector with token indices. Can only be used in pairs with doc_id. For example,
if doc_id = ¢(1,1,1,2,2) and token_id = ¢(1,2,3,1,2), then the first three tokens of
doc 1 and the first 2 tokens of doc 2 are returned. This is mainly usefull for fast
(binary search) retrieval of specific tokens.

for advanced use. The get methods always return a copy of the data, even if
the full data is returned (i.e. use get without parameters). This is to prevent
accidental changes within tCorpus data (which can break it) if the returned data
is modified by reference (see data.table documentation). If safe_copy is set to
FALSE and get is called without parameters—tc$get(safe_copy=F))—then no
copy is made, which is much faster and more memory efficient. Use this if you
need speed and efficiency, but make sure not to change the output data.table by
reference.

d = data.frame(text = c('Text one first sentence. Text one second sentence', 'Text two'),
medium = c('A','B"),

da
do
tc = create_tcorp

## get token data
tc$tokens

tc$get(c('doc_id'
head(tc$get('doc_

te = ¢c('2010-01-01"',"'2010-02-01"),
c_id = c('D1','D2"))
us(d, split_sentences = TRUE)

## full data.table
,'token')) ## data.table with selected columns
id")) ## single column as vector

head(tc$get(as.df = TRUE)) ## return as regular data.frame

## get subset

tc$get(subset = token_id %in% 1:2)

## subset on keys
tc$get(doc_id = '
tc$get(doc_id = '

#i#H#H## use get for
tc$meta

using (fast) binary search
D1") ## for doc_id
D1', token_id = 5) ## for doc_id / token pairs

meta data with get_meta

## option to repeat meta data to match tokens

tc$get_meta(per_t

oken = TRUE) ## (note that first doc is repeated, and rows match tc$n)

tCorpus$kwic

Get keyword-in-context (KWIC) strings




tCorpus$kwic

Description

75

Create a data.frame with keyword-in-context strings for given indices (i), search results (hits) or
search strings (keyword).

Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

kwic(hits = NULL, i = NULL, query = NULL, code = '',

ntokens = 10, nsample = NA, output_feature = 'token',
context_levels = c('document', 'sentence'),
prettypaste = T, kw_tag = c('<','>"), ...)
Arguments
hits results of feature search. see search_features.
i instead of the hits argument, you can give the indices of features directly.
query instead of using the hits or i arguments, a search string can be given directly.
Note that this simply a convenient shorthand for first creating a hits object with
search_features. If a query is given, then the ... argument is used to pass other
arguments to tCorpus$search_features.
code if ’1” or ’query’ is used, the code argument can be used to add a code label.
Should be a vector of the same length that gives the code for each i or query, or
a vector of length 1 for a single label.
ntokens an integers specifying the size of the context, i.e. the number of tokens left and
right of the keyword.
n a number, specifying the total number of hits
nsample like n, but with a random sample of hits. If multiple codes are used, the sample

output_feature

context_level

is drawn for each code individually.
the feature column that is used to make the KWIC.

Select the maxium context (document or sentence).

kw_tag a character vector of length 2, that gives the symbols before (first value) and
after (second value) the keyword in the KWIC string. Can for instance be used
to prepare KWIC with format tags for highlighting.
See search_features for the query parameters
Examples
tc = tokens_to_tcorpus(corenlp_tokens, sentence_col = 'sentence', token_id_col = 'id')

## look directly for a term (or complex query)
tc$kwic(query = 'lovex')

## or, first perform a feature search, and then get the KWIC for the results
hits = search_features(tc, '(john OR mark) AND mary AND love*', context_level = 'sentence')
tcskwic(hits, context_level = 'sentence')



76 tCorpus$lda_fit

tCorpus$lda_fit Estimate a LDA topic model

Description

Estimate an LDA topic model using the LDA function from the topicmodels package. The pa-
rameters other than dtm are simply passed to the sampler but provide a workable default. See the
description of that function for more information

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

lda_fit(feature, create_feature=NULL, K=50, num.iterations=500, alpha=50/K,

eta=.01, burnin=250, context_level=c('document', 'sentence'), ...)
Arguments
feature the name of the feature columns

create_feature optionally, add a feature column that indicates the topic to which a feature was
assigned (in the last iteration). Has to be a character string, that will be the name
of the new feature column

K the number of clusters

num.iterations the number of iterations

method set method. see documentation for LDA function of the topicmodels package
alpha the alpha parameter
eta the eta parameter#’
burnin The number of burnin iterations
Value

A fitted LDA model, and optionally a new column in the tcorpus (added by reference)

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')

tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE, min_freq=10)
set.seed(1)

m = tc$lda_fit('feature', create_feature = 'lda', K = 5, alpha = 0.1)

m
topicmodels: :terms(m, 10)
tc$tokens



tCorpus$preprocess 77

tCorpus$preprocess Preprocess feature
Description
Usage:
Arguments
column the column containing the feature to be used as the input
new_column the column to save the preprocessed feature. Can be a new column or overwrite

an existing one.
lowercase make feature lowercase

ngrams create ngrams. The ngrams match the rows in the token data, with the feature
in the row being the last token of the ngram. For example, given the features
"this is an example", the third feature ("an") will have the trigram "this_is_an".
Ngrams at the beginning of a context will have empty spaces. Thus, in the
previous example, the second feature ("is") will have the trigram "_is_an".

ngram_context Ngrams will not be created across contexts, which can be documents or sen-
tences. For example, if the context_level is sentences, then the last token of
sentence 1 will not form an ngram with the first token of sentence 2.

as_ascii convert characters to ascii. This is particularly usefull for dealing with special
characters.

remove_punctuation
remove (i.e. make NA) any features that are only punctuation (e.g., dots, comma’s)

remove_stopwords
remove (i.e. make NA) stopwords. (!) Make sure to set the language argument
correctly.

remove_numbers remove features that are only numbers

use_stemming reduce features (tokens) to their stem

language The language used for stopwords and stemming

min_freq an integer, specifying minimum token frequency.
min_docfreq an integer, specifying minimum document frequency.
max_freq an integer, specifying minimum token frequency.
max_docfreq an integer, specifying minimum document frequency.
min_char an integer, specifying minimum number of characters in a term

max_char an integer, specifying maximum number of characters in a term



78 tCorpus$replace_dictionary

Details
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).
preprocess(column="token', new_column='feature', lowercase=T, ngrams=1,
ngram_context=c('document', 'sentence'), as_ascii=F, remove_punctuation=T,

remove_stopwords=F, remove_numbers=F, use_stemming=F, language='english',
min_freq=NULL, min_docfreg=NULL, max_freg=NULL, max_docfreq=NULL, min_char=NULL, max_char=NULI

Examples

tc = create_tcorpus('I am a SHORT example sentence! That I am!')

## default is lowercase without punctuation
tc$preprocess('token', 'preprocessed_1')

## delete stopwords and perform stemming
tc$preprocess('token', 'preprocessed_2', remove_stopwords = TRUE, use_stemming = TRUE)

## filter on minimum frequency
tc$preprocess('token', 'preprocessed_3', min_freg=2)

## make ngrams
tc$preprocess('token', 'preprocessed_4', ngrams = 3)

tc$tokens

tCorpus$replace_dictionary
Replace tokens with dictionary match

Description

Uses search_dictionary, and replaces tokens that match the dictionary lookup term with the
dictionary code. Multi-token matches (e.g., "Barack Obama") will become single tokens. Multiple
lookup terms per code can be used to deal with alternatives such as "Barack Obama", "president
Obama" and "Obama".

This method can also be use to concatenate ASCII symbols into emoticons, given a dictionary of
emoticons. A dictionary with common emoticons is included in the corpustools data as "emoti-
con_dict" (see examples).

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

replace_dictionary(...)



tCorpus$replace_dictionary 79

Arguments

dict

token_col

string_col

code_col

replace_cols

sep

A dictionary. Can be either a data.frame or a quanteda dictionary. If a data.frame
is given, it has to have a column named "string" (or use string_col argument) that
contains the dictionary terms, and a column "code" (or use code_col argument)
that contains the label/code represented by this string. Each row has a single
string, that can be a single word or a sequence of words seperated by a whites-
pace (e.g., "not bad"), and can have the common ? and * wildcards. If a quanteda
dictionary is given, it is automatically converted to this type of data.frame with
the melt_quanteda_dict function. This can be done manually for more control
over labels.

The feature in tc that contains the token text.

If dict is a data.frame, the name of the column in dict with the dictionary lookup
string. Default is "string"

The name of the column in dict with the dictionary code/label. Default is "code".
If dict is a quanteda dictionary with multiple levels, "code_12", "code_I3", etc.
can be used to select levels.

The names of the columns in tc$tokens that will be replaced by the dictionary
code. Default is the column on which the dictionary is applied, but in some
cases it might make sense to replace multiple columns (like token and lemma)

A regular expression for separating multi-word lookup strings (default is " ",
which is what quanteda dictionaries use). For example, if the dictionary con-
tains "Barack Obama", sep should be " " so that it matches the consequtive
tokens "Barack” and "Obama". In some dictionaries, however, it might say
"Barack+Obama", so in that case sep = "\+” should be used.

code_from_features

code_sep

decrement_ids

case_sensitive

use_wildcards

flatten_colloc

ascii

verbose

If TRUE, instead of replacing features with the matched code columnm, use the
most frequent occuring string in the features.

If code_from_features is TRUE, the separator for pasting features together. De-
fault is an underscore, which is recommended because it has special features
in corpustools. Most importantly, if a query or dictionary search is performed,
multi-word tokens concatenated with an underscore are treated as separate con-
secutive words. So, "Bob_Smith" would still match a lookup for the two conse-
qutive words "bob smith"

If TRUE (default), decrement token ids after concatenating multi-token matches.
So, if the tokens c(":", ")", "yay") have token_id c(1,2,3), then after concatenat-
ing ASCII emoticons, the tokens will be c(":)", "yay") with token_id c(1,2)

logical, should lookup be case sensitive?

Use the wildcards * (any number including none of any character) and ? (one or
none of any character). If FALSE, exact string matching is used

If true, collocations in the tokens (tokens with spaces or underscores) will be
considered separate words. For example, "President_Obama" will be split to
"president" "obama", so that "president obama" in the dictionary matches cor-
rectly.

If true, convert text to ascii before matching

If true, report progress



80 tCorpus$search_contexts

Value

A vector with the id value (taken from dict$id) for each row in tc$tokens

Examples

tc = create_tcorpus('yay :) :* happy')
tc$replace_dictionary(emoticon_dict)
tc$tokens

tCorpus$search_contexts
Search for documents or sentences using Boolean queries

Description
Usage:
Arguments
query A character string that is a query. See details for available query operators and
modifiers. Can be multiple queries (as a vector), in which case it is recom-
mended to also specifiy the code argument, to label results.
code If given, used as a label for the results of the query. Especially usefull if multiple
queries are used.
feature The name of the feature column

context_level Select whether the queries should occur within while "documents" or specific
"sentences". Returns results at the specified level.

verbose If TRUE, progress messages will be printed

Details

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).
search_contexts(query, code = NULL, feature = 'token', context_level = c('document', 'sentence'), verbo:

Brief summary of the query language

The following operators and modifiers are supported:

» The standaard Boolean operators: AND, OR and NOT. As a shorthand, an empty space can
be used as an OR statement, so that "this that those" means "this OR that OR those". NOT
statements stricly mean AND NOT, so should only be used between terms. If you want to find
everything except certain terms, you can use * (wildcard for anything) like this: "* NOT (this
that those)".

» For complex queries parentheses can (and should) be used. e.g. ’(spam AND eggs) NOT (fish
and (chips OR albatros))



tCorpus$search_contexts 81

e Wildcards ? and *. The questionmark can be used to match 1 unknown character or no
character at all, e.g. "?at" would find "cat", "hat" and "at". The asterisk can be used to match
any number of unknown characters. Both the asterisk and questionmark can be used at the
start, end and within a term.

* Multitoken strings, or exact strings, can be specified using quotes. e.g. "united states"

* tokens within a given token distance can be found using quotes plus tilde and a number speci-
fiying the token distance. e.g. "climate chang*"~10

 Alternatively, angle brackets (<>) can be used instead of quotes, which also enables nesting
exact strings in proximity/window search

* Queries are not case sensitive, but can be made so by adding the ~s flag. e.g. COP~s only
finds "COP" in uppercase. The ~s flag can also be used on quotes to make all terms within
quotes case sensitive, and this can be combined with the token proximity flag. e.g. "Marco
Polo"~s10

Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)
tc$tokens

hits = tc$search_contexts(c('query label# A AND B', 'second query# (AAND Q) OR ("DE") ORI"))
hits ## print shows number of hits

hits$hits ## hits is a list, with hits$hits being a data.frame with specific contexts
summary(hits) ## summary gives hits per query

## sentence level

hits = tc$search_contexts(c('query label# A AND B', 'second query# (AAND Q) OR ("DE") ORI"),
context_level = 'sentence')

hits$hits ## hits is a list, with hits$hits being a data.frame with specific contexts

## query language examples

## single term
tc$search_contexts('A')$hits

tc$search_contexts('Gx')$hits ## wildcard
tc$search_contexts('*G')$hits ## wildcard
tc$search_contexts('GxG')$hits  ## wildcard

* % %

tc$search_contexts('G?G')$hits  ## wildcard ?
tc$search_contexts('G?')$hits ## wildcard ? (no hits)

## boolean

tc$search_contexts('A AND B')$hits
tc$search_contexts('A AND D')$hits
tc$search_contexts('A AND (B OR D)')$hits

tc$search_contexts('A NOT B')$hits



82 tCorpus$search_features

tc$search_contexts('A NOT (B OR D)')$hits

## sequence search (adjacent words)
tc$search_contexts('"”A B"')$hits
tc$search_contexts('”A C"')$hits ## no hit, because not adjacent

tc$search_contexts('"A (B OR D)"')$hits ## can contain nested OR
## cannot contain nested AND or NOT!!

tc$search_contexts('<A B>')$hits ## can also use <> instead of "".

## proximity search (using ~ flag)
tc$search_contexts('"A C"~5"')$hits ## A AND C within a 5 word window
tc$search_contexts('”A C"~1')$hits ## no hit, because A and C more than 1 word apart

tc$search_contexts('”A (B OR D)"~5')$hits ## can contain nested OR

tc$search_contexts('"A <B C>"~5")$hits ## can contain nested sequence (must use <>)
tc$search_contexts('<A <B C>>~5')$hits ## (<> is always OK, but cannot nest quotes in quotes)
## cannot contain nested AND or NOT!!

## case sensitive search
tc$search_contexts('g')$hits ## normally case insensitive
tc$search_contexts('g~s')$hits  ## use ~s flag to make term case sensitive

tc$search_contexts('(a OR g)~s')$hits ## use ~s flag on everything between parentheses
tc$search_contexts('(a OR G)~s')$hits ## use ~s flag on everything between parentheses

tc$search_contexts('"a b"~s')$hits ## use ~s flag on everything between quotes
tc$search_contexts('"A B"~s')$hits  ## use ~s flag on everything between quotes

tCorpus$search_features
Find tokens using a Lucene-like search query

Description

Search tokens in a tokenlist using Lucene-like queries. For a detailed explanation of the query
language, see the details below.

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

search_features(query, code = NA, feature = 'token',
mode = c('unique_hits', 'features'), verbose = F)



tCorpus$search_features 83

Arguments

query A character string that is a query. See details for available query operators and
modifiers. Can be multiple queries (as a vector), in which case it is recom-
mended to also specifiy the code argument, to label results.

code The code given to the tokens that match the query (usefull when looking for
multiple queries). Can also put code label in query with # (see details)

feature The name of the feature column within which to search.

mode There are two modes: "unique_hits" and "features". The "unique_hits" mode

prioritizes finding full and unique matches., which is recommended for counting
how often a query occurs. However, this also means that some tokens for which
the query is satisfied might not assigned a hit_id. The "features" mode, instead,
prioritizes finding all tokens, which is recommended for coding coding features
(the code_features and search_recode methods always use features mode).

context_level Select whether the queries should occur within while "documents" or specific

"sentences".

keep_longest If TRUE, then overlapping in case of overlapping queries strings in unique_hits

mode, the query with the most separate terms is kept. For example, in the text
"mr. Bob Smith", the query [smith OR "bob smith"] would match "Bob" and
"Smith". If keep_longest is FALSE, the match that is used is determined by the
order in the query itself. The same query would then match only "Smith".

as_ascii if TRUE, perform search in ascii.
verbose If TRUE, progress messages will be printed
Details

Brief summary of the query language

The following operators and modifiers are supported:

The standaard Boolean operators: AND, OR and NOT. As a shorthand, an empty space can
be used as an OR statement, so that "this that those" means "this OR that OR those". NOT
statements stricly mean AND NOT, so should only be used between terms. If you want to find
everything except certain terms, you can use * (wildcard for anything) like this: "* NOT (this
that those)".

For complex queries parentheses can (and should) be used. e.g. *(spam AND eggs) NOT (fish
and (chips OR albatros))

Wildcards ? and *. The questionmark can be used to match 1 unknown character or no
character at all, e.g. "?at" would find "cat", "hat" and "at". The asterisk can be used to match
any number of unknown characters. Both the asterisk and questionmark can be used at the
start, end and within a term.

Multitoken strings, or exact strings, can be specified using quotes. e.g. "united states”

tokens within a given token distance can be found using quotes plus tilde and a number speci-
fiying the token distance. e.g. "climate chang*"~10

Alternatively, angle brackets (<>) can be used instead of quotes, which also enables nesting
exact strings in proximity/window search



84 tCorpus$search_features

* Queries are not case sensitive, but can be made so by adding the ~s flag. e.g. COP~s only finds
"COP" in uppercase. The ~s flag can also be used on parentheses or quotes to make all terms
within case sensitive, and this can be combined with the token proximity flag. e.g. "Marco
Polo"~s10

* The ~g (ghost) flag can be used to mark a term (or all terms within parentheses/quotes) as a
ghost term. This has two effects. Firstly, features that match the query term will not be in the
results. This is usefull if a certain term is important for getting reliable search results, but not
conceptually relevant. Secondly, ghost terms can be used multiple times, in different query
hits (only relevant in unique_hits mode). For example, in the text "A B C", the query "A~g
AND (B C)’ will return both B and C as separate hit, whereas A AND (B C)’ will return A
and B as a single hit.

* A code label can be included at the beginning of a query, followed by a # to start the query
(label# query). Note that to search for a hashtag symbol, you need to escape it with \ (double
\'in R character vector)

* Aside from the feature column (specified with the feature argument) a query can include any
column in the token data. To manually select a column, use ’columnname: ’ at the start of a
query or nested query (i.e. between parentheses or quotes). See examples for clarification.

Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c
tc$tokens

,'d"), split_sentences = TRUE)

hits = tc$search_features(c('query label# A AND B', 'second query# (A AND Q) OR ("DE") ORI'))
hits ## print shows number of hits

hits$hits ## hits is a list, with hits$hits being a data.frame with specific features
summary (hits) ## summary gives hits per query

## sentence level

hits = tc$search_features(c('query label# A AND B', 'second query# (AAND Q) OR ("DE")ORTI"),
context_level = 'sentence')

hits$hits ## hits is a list, with hits$hits being a data.frame with specific features

## query language examples

## single term
tc$search_features('A')$hits

tc$search_features('Gx')$hits ## wildcard
tc$search_features('xG')$hits ## wildcard
tc$search_features('GxG')$hits  ## wildcard

* %

*

tc$search_features('G?G')$hits  ## wildcard ?
tc$search_features('G?')$hits ## wildcard ? (no hits)

## boolean



tCorpus$search_features 85

tc$search_features('A AND B')$hits
tc$search_features('A AND D')$hits
tc$search_features('A AND (B OR D)')$hits

tc$search_features('A NOT B')$hits
tc$search_features('A NOT (B OR D)')$hits

## sequence search (adjacent words)
tc$search_features('"A B"')$hits
tc$search_features('"A C"')$hits ## no hit, because not adjacent

tc$search_features('”"A (B OR D)"')$hits ## can contain nested OR
## cannot contain nested AND or NOT!!

tc$search_features('<A B>')$hits ## can also use <> instead of "".

## proximity search (using ~ flag)
tc$search_features('”A C"~5')$hits ## A AND C within a 5 word window
tc$search_features('"A C"~1')$hits ## no hit, because A and C more than 1 word apart

tc$search_features('”A (B OR D)"~5')$hits ## can contain nested OR
tc$search_features('"A <B C>"~5')$hits ## can contain nested sequence (must use <>)
tc$search_features('<A <B C>>~5')$hits ## <> is always OK, but cannot nest "" in ""
## cannot contain nested AND or NOT!!

## case sensitive search (~s flag)
tc$search_features('g')$hits ## normally case insensitive

tc$search_features('g~s')$hits  ## use ~s flag to make term case sensitive

tc$search_features('(a OR g)~s')$hits ## use ~s flag on everything between parentheses
tc$search_features('(a OR G)~s')$hits

tc$search_features('"a b"~s')$hits  ## use ~s flag on everything between quotes
tc$search_features('”"A B"~s')$hits  ## use ~s flag on everything between quotes

## ghost terms (~g flag)

tc$search_features('A AND B~g')$hits  ## ghost term (~g) has to occur, but is not returned
tc$search_features('A AND Q~g')$hits ## no hi

# (can also be used on parentheses/quotes/anglebrackets for all nested terms)

## "unique_hits"” versus "features” mode

tc = create_tcorpus('A A B')

tc$search_features('A AND B')$hits ## in "unique_hits"” (default), only match full queries
# (B is not repeated to find a second match of A AND B)

tc$search_features('A AND B', mode = 'features')$hits ## in "features”, match any match
# (note that hit_id in features mode is irrelevant)

# ghost terms (used for conditions) can be repeated



86 tCorpus$search_recode

tc$search_features('A AND B~g')$hits

## advanced queries
tc = tokens_to_tcorpus(corenlp_tokens, doc_col = 'doc_id',

sentence_col = 'sentence', token_id_col = 'id')
head(tc$tokens) ## search in multiple feature columns with "columnname: "
## using the sub/flag query to find only mary as a direct object
hits = tc$search_features('mary~{relation: dobj}', context_level = 'sentence')
hits$hits

## add a second sub query
hits = tc$search_features('mary~{relation: dobj, parent: 12 20}', context_level = 'sentence')
hits$hits

## selecting from a different column without changing the feature column
## (can be used to combine columns)

hits = tc$search_features('relation: nsubj')

hits$hits

hits = tc$search_features('(relation: nsubj) AND mary~g{relation: dobj}',
context_level = 'sentence')
hits$hits

## sequence: nsubj sayx
hits = tc$search_features(
hits$hits

(Rl

(relation: nsubj) sayx"')

tCorpus$search_recode Recode features in a tCorpus based on a search string

Description

Search features (see tCorpus$search_features) and replace features with a new value
Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

search_recode(feature, new_value, keyword, condition = NA, condition_once = F)

Arguments
feature The feature in which to search
new_value the character string with which all features that are found are replaced
query See tCorpus$search_features for the query parameters

Additional search_features parameters. See tCorpus$search_features



tCorpus$semnet 87

tCorpus$semnet Create a semantic network based on the co-occurence of tokens in
documents

Description

This function calculates the co-occurence of features and returns a network/graph in the igraph for-
mat, where nodes are tokens and edges represent the similarity/adjacency of tokens. Co-occurence
is calcuated based on how often two tokens occured within the same document (e.g., news arti-
cle, chapter, paragraph, sentence). The semnet_window() function can be used to calculate co-
occurrence of tokens within a given token distance.

Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

semnet (feature, measure = c('con_prob', 'con_prob_weighted', 'cosine', 'count_directed', 'count_undire
context_level = c('document', 'sentence'), backbone=F, n.batches=NA)

Arguments
feature The name of the feature column
measure The similarity measure. Currently supports: "con_prob" (conditional probabil-

ity), "con_prob_weighted", "cosine" similarity, "count_directed" (i.e number of
cooccurrences) and "count_undirected" (same as count_directed, but returned as
an undirected network, chi2 (chi-square score))

context_level Determine whether features need to co-occurr within "documents” or "sentences"

backbone If True, add an edge attribute for the backbone alpha
n.batches If a number, perform the calculation in batches
Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG")
tc = create_tcorpus(text, doc_id = c('a','b",'c','d"), split_sentences = TRUE)

g = tc$semnet('token')

g
igraph::get.data.frame(g)
plot_semnet(g)



88 tCorpus$semnet_window

tCorpus$semnet_window Create a semantic network based on the co-occurence of tokens in
token windows

Description

This function calculates the co-occurence of features and returns a network/graph in the igraph for-
mat, where nodes are tokens and edges represent the similarity/adjacency of tokens. Co-occurence
is calcuated based on how often two tokens co-occurr within a given token distance.

Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).
semnet_window(feature, measure = c('con_prob', 'cosine', 'count_directed', 'count_undirected', 'chi2'

context_level = c¢('document’, 'sentence'), window.size = 1@, direction = '<>',
backbone = F, n.batches = 5, set_matrix_mode = c(NA, 'windowXwindow', 'positionXwindow'))

Arguments
feature The name of the feature column
measure The similarity measure. Currently supports: "con_prob" (conditional proba-

bility), "cosine" similarity, "count_directed" (i.e number of cooccurrences) and
"count_undirected" (same as count_directed, but returned as an undirected net-
work, chi2 (chi-square score))

context_level Determine whether features need to co-occurr within "documents” or "sentences"
window.size The token distance within which features are considered to co-occurr

direction Determine whether co-occurrence is assymmetricsl ("<>") or takes the order of
tokens into account. If direction is ’<’, then the from/x feature needs to occur
before the to/y feature. If direction is *>’, then after.

backbone If True, add an edge attribute for the backbone alpha

n.batches If a number, perform the calculation in batches

set_matrix_mode
Advanced feature. There are two approaches for calculating window co-occurrence.
One is to measure how often a feature occurs within a given token window,
which can be calculating by calculating the inner product of a matrix that con-
tains the exact position of features and a matrix that contains the occurrence
window. We refer to this as the "positionXwindow" mode. Alternatively, we
can measure how much the windows of features overlap, for which take the
inner product of two window matrices. By default, semnet_window takes the
mode that we deem most appropriate for the similarity measure. Substantially,
the positionXwindow approach has the advantage of being very easy to interpret
(e.g. how likely is feature "Y" to occurr within 10 tokens from feature "X"7?).
The windowXwindow mode, on the other hand, has the interesting feature that
similarity is stronger if tokens co-occurr more closely together (since then their
windows overlap more). Currently, we only use the windowXwindow mode for
cosine similarity. By using the set_matrix_mode parameter you can override
this.



tCorpus$set 89

Examples

text = c('ABC', 'DEF. GHI', 'AD', 'GGG")
tc = create_tcorpus(text, doc_id = c('a','b','c','d"'), split_sentences = TRUE)

g = tc$semnet_window('token', window.size = 1)
g

igraph::get.data.frame(g)

plot_semnet(g)

tCorpus$set Modify the token and meta data.tables of a tCorpus

Description

Modify the token/meta data.table by setting the values of one (existing or new) column. The subset
argument can be used to modify only subsets of columns, and can be a logical vector (select TRUE
rows), numeric vector (indices of TRUE rows) or logical expression (e.g. pos == 'noun’). If a new
column is made whie using a subset, then the rows outside of the selection are set to NA.

Arguments
column Name of a new column (to create) or existing column (to transform)
value An expression to be evaluated within the token/meta data, or a vector of the
same length as the number of rows in the data. Note that if a subset is used, the
length of value should be the same as the length of the subset (the TRUE cases
of the subset expression) or a single value.
subset logical expression indicating rows to keep in the tokens data or meta data

subset_value If subset is used, should value also be subsetted? Default is TRUE, which is
what you want if the value has the same length as the full data.table (which
is the case if a column in tokens is used). However, if the vector of values is
already of the length of the subset, subset_value should be FALSE
Details

Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

set(column, value, subset)

set_meta(column, value, subset)



90 tCorpus$set_levels

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$tokens ## show original

## create new column

i <= 1:tc$n

tc$set(column = 'i', i)

## create new column based on existing column(s)

tc$set(column = 'token_upper', toupper(token))

## use subset to modify existing column

tc$set('token', paste@('**x', token, 'x*x') subset = token_id == 1)
## use subset to create new column with NA's

tc$set('second_token', token, subset = token_id == 2)

tc$tokens ## show after set

#i#### use set for meta data with set_meta

tc$set_meta('party_pres', paste(party, president, sep=': "))
tc$meta
tCorpus$set_levels Change levels of factor columns
Description

For factor columns, the levels can be changed directly (and by reference). This is particularly usefull
for fast preprocessing (e.g., making tokens lowercase, )

Arguments
column the name of the column
levels The new levels

Details
Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

set_levels(column, levels)

set_meta_levels(column, levels)



tCorpus$set_name

Examples
tc = create_tcorpus(c('Text one first sentence. Text one second sentence',

## change factor levels of a column in the token data
unique_tokens <- tc$get_levels('token')
tc$set_levels('token', toupper(unique_tokens))
tc$tokens

91

'Text two'))

tCorpus$set_name Change column names of data and meta data

Description

Usage:

Arguments

oldname the current/old column name

newname the new column name

Details

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).
set_name(oldname, newname)
set_meta_name(oldname, newname)

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')

## change column name in token data

tc$names ## original column names
tc$set_name(oldname = 'token', newname = 'word')
tc$tokens

## change column name in meta data

tc$meta_names ## original column names

tc$set_meta_name(oldname = 'party', newname = 'clan')
tc$set_meta_name(oldname = 'president', newname = 'clan leader')
tcmeta



92 tCorpus$subset

tCorpus$set_special Designate column as columns with special meaning (token, lemma,
POS, relation, parent)

Description
Usage:
Arguments
token Name of the column that will be designated as the token, and renamed to "token’
lemma Name of the column that will be designated as the lemma of the token, and
renamed to "lemma’
pos Name of the column that will be designated as the part-of-speech tag of the
token, and renamed to "POS’
relation Name of the column that will be designated as the dependency relation of the
token to its parent, and renamed to ’relation’
parent Name of the column that will be designated as the parent of the token, and
renamed to ’parent’
Details

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

set_special (token=NULL, lemma=NULL, POS=NULL, relation=NULL, parent=NULL)

tCorpus$subset Subset a tCorpus

Description

Returns the subset of a tCorpus. The selection can be made separately (and simultaneously) for
the token data (using subset) and the meta data (using subset_meta). The subset arguments work
according to the subset.data.table function.

Important!! Note that subset is performed by reference. In other words, when performed, subset will
delete the rows from the tCorpus, instead of returning a new tCorpus (see example for clarification).
This is the standard behaviour, because it is much more efficient. If you want to create a subset of a
copy of the tCorpus, you can set the copy argument to TRUE.

Subset can also be used to select rows based on token/feature frequences. This is a common step
in corpus analysis, where it often makes sense to ignore very rare and/or very frequent tokens. To
do so, there are several special functions that can be used within a subset call. The freq_filter()
and docfreq_filter() can be used to filter terms based on term frequency and document frequency,
respectively. (see examples)



tCorpus$subset 93

The subset_meta() method is an alternative for using subset(subset_meta = ...), that is added for
consistency with the other _meta accessor methods.

Note that you can also use the tCorpus$feature_subset method if you want to filter out low/high
frequency tokens, but do not want to delete the rows in the tCorpus.

Usage:
## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

subset(subset = NULL, subset_meta = NULL,
window = NULL, copy = F)
subset_meta(subset = NULL, copy = F)

Arguments
subset logical expression indicating rows to keep in the tokens data.
subset_meta logical expression indicating rows to keep in the document meta data.
window If not NULL, an integer specifiying the window to be used to return the subset.
For instance, if the subset contains token 10 in a document and window is 5, the
subset will contain token 5 to 15. Naturally, this does not apply to subset_meta.
copy If TRUE, the method returns a new tCorpus object instead of subsetting the
current one. This is added for convenience when analyzing a subset of the data.
e.g., tc_nyt = tc$subset_meta(medium == "New_York_Times", copy=T)
Examples
tc = create_tcorpus(sotu_texts, doc_column = 'id')

tc$n ## original number of tokens

## select only first 20 tokens per document
tc$subset(token_id < 20)

tc$n ## number of tokens after subset

## note that the return value is not assigned to tc, or to a new name.

## rather, tc is changed by reference. To subset a copy of tc (the more classic R way),
## the copy argument can be used. The following line creates tc2 as a copy of tc,

## with only the first 10 tokens per document

tc2 <- tc$subset(token_id < 10, copy=TRUE)

tc$n  ## unchanged
tc2$n ## subset of tc

## you can filter on term frequency and document frequency with the freq_filter() and
## docfreq_filter() functions

tc = create_tcorpus(sotu_texts, doc_column = 'id')

tc$subset( freg_filter(token, min = 20, max = 100) )

tc$tokens



94 tCorpus$subset_query

#iHt#HH subset can be used for meta data by using the subset_meta argument, or the subset_meta method

tc$n_meta

tc$subset (subset_meta = president == 'Barack Obama')
tc$n_meta

tc$subset_meta(date == '2013-02-12")

tc$n_meta

tCorpus$subset_query  Subset tCorpus token data using a query

Description

A convenience function that searches for contexts (documents, sentences), and uses the results to
subset the tCorpus token data.

See the documentation for search_contexts for an explanation of the query language.

Usage:

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

subset_query(query, feature = 'token', context_level = c('document', 'sentence’, 'window'))

Arguments

query A character string that is a query. See search_contexts for query syntax.

feature The name of the feature columns on which the query is used.

context_level Select whether the query and subset are performed at the document or sentence
level.

window If used, uses a word distance as the context (overrides context_level)

copy If true, return modified copy of data instead of subsetting the input tcorpus by
reference.

Examples
text = c('ABC', 'DEF. GHI', 'AD', 'GGG")

tc = create_tcorpus(text, doc_id = c('a','b','c','d"), split_sentences = TRUE)

## subset by reference
tc$subset_query('A')
tc$meta

## using copy mechanic
class(tc$tokens$doc_id)
tc2 = tc$subset_query('A AND D', copy=TRUE)

tc2$get_meta()

tc$meta ## (unchanged)



tCorpus_compare 95

tCorpus$top_features  Show top features

Description
Usage:
Arguments
feature The name of the feature
n Return the top n features
group_by A column in the token data to group the top features by. For example, if token

data contains part-of-speech tags (pos), then grouping by pos will show the top
n feature per part-of-speech tag.

group_by_meta A column in the meta data to group the top features by.

return_

Details

long if True, results will be returned in a long format. Default is a table, but this can
be inconvenient if there are many grouping variables.

## R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

top_features(feature, n =10, group_by = NULL, group_by_meta = NULL, return_long = F

Examples

tc = tokens_to_tcorpus(corenlp_tokens, token_id_col = 'id')

top_features(tc, 'lemma')
tc$top_features('lemma')

tc$top_features('lemma’, group_by = 'relation')
tCorpus_compare Corpus comparison
Description

(back to overview)

Details

Compare vocabulary of two corpora

compare_corpus() Compare vocabulary of one tCorpus to another
compare_subset() Compare subset of a tCorpus to the rest of the tCorpus



96 tCorpus_data

tCorpus_create Creating a tCorpus

Description

(back to overview)
Details
Create a tCorpus

create_tcorpus() Create a tCorpus from raw text input
tokens_to_tcorpus() Create a tCorpus from a data.frame of already tokenized texts

tCorpus_data Methods and functions for viewing, modifying and subsetting tCorpus
data

Description

(back to overview)

Details
Get data
$get() Get (by default deep copy) token data, with the possibility to select columns and subset. Instead of copying you
$get_meta() Get meta data, with the possibility to select columns and subset. Like tokens, you can also access meta data wit
get_dtm() Create a document term matrix
get_dfm() Create a document term matrix, using the Quanteda dfm format

$context() Get a context vector. Currently supports documents or globally unique sentences.

Modify

The token and meta data can be modified with the set* and delete* methods. All modifications are
performed by reference.

$set() Modify the token data by setting the values of one (existing or new) column.
$set_meta() The set method for the document meta data

$set_levels() Change the levels of factor columns.

$set_meta_levels() Change the levels of factor columns in the meta data

$set_name() Modify column names of token data.

$set_meta_name() Delete columns in the meta data

$delete_columns() Delete columns.

$delete_meta_columns() Delete columns in the meta data



tCorpus_features 97

Modifying is restricted in certain ways to ensure that the data always meets the assumptions required
for tCorpus methods. tCorpus automatically tests whether assumptions are violated, so you don’t
have to think about this yourself. The most important limitations are that you cannot subset or
append the data. For subsetting, you can use the tCorpus$subset method, and to add data to a
tcorpus you can use the merge_tcorpora function.

Subsetting, merging/adding

subset() Modify the token and/or meta data using the subset function. A subset expression can be specified for both
subset_query()  Subset the tCorpus based on a query, as used in search_contexts
$subset() Like subset, but as an R6 method that changes the tCorpus by reference

$subset_query() Like subset_query, but as an R6 method that changes the tCorpus by reference

Fields

For the sake of convenience, the number of rows and column names of the data and meta data.tables
can be accessed directly.

$n The number of tokens (i.e. rows in the data)
$n_meta The number of documents (i.e. rows in the document meta data)
$names The names of the token data columns

$names_meta The names of the document meta data columns

tCorpus_docsim Document similarity

Description

(back to overview)
Details
Compare documents, and perform similarity based deduplication

compare_documents() Compare documents
$deduplicate() Remove duplicate documents

tCorpus_features Preprocessing, subsetting and analyzing features

Description

(back to overview)



98 tCorpus_modify_by_reference
Details
Pre-process features

$preprocess() Create or modify a feature by preprocessing an existing feature
$feature_subset()  Similar to using subset, but instead of deleting rows it only sets rows for a specified feature to NA.

Inspect features

feature_stats()  Create a data.frame with feature statistics
top_features() Show top features, optionally grouped by a given factor

tCorpus_modify_by_reference
Modify tCorpus by reference

Description

(back to overview)

Details

If any tCorpus method is used that changes the corpus (e.g., set, subset), the change is made by
reference. This is convenient when working with a large corpus, because it means that the corpus
does not have to be copied when changes are made, which is slower and less memory efficient.

To illustrate, for a tCorpus object named ‘tc’, the subset method can be called like this:
te$subset(doc_id %in% selection)

The ‘tc* object itself is now modified, and does not have to be assigned to a name, as would be the
more common R philosophy. Like this:

tc = te$subset(doc_id %in% selection)

The results of both lines of code are the same. The assignment in the second approach is not
necessary, but doesn’t harm either because tc$subset returns the modified corpus invisibly (see
Tinvisible if that sounds spooky).

Be aware, however, that the following does not work!!
tc2 = te$subset(doc_id %in% selection)
In this case, tc2 does contain the subsetted corpus, but tc itself will also be subsetted!!

Using the R6 method for subset forces this approach on you, because it is faster and more memory
efficient. If you do want to make a copy, there are several solutions.

Firstly, for some methods we provide identical functions. For example, instead of the $subset() R6
method, we can use the subset() function.

tc2 = subset(tc, doc_id %in % selection)

We promise that only the R6 methods (called as tc$method()) will change the data by reference.



tCorpus_semnet 99

A second option is that R6 methods where copying is often usefull have copy parameter Modifying
by reference only happens in the R6 methods

tc2 = te$subset(doc_id %in% selection, copy=TRUE)

Finally, you can always make a deep copy of the entire tCorpus before modifying it, using the
$copy() method.

tc2 = te$copy()

tCorpus_querying Use Boolean queries to analyze the tCorpus

Description

(back to overview)

Details

Feature-level queries

search_features()) Search for features based on keywords and conditions
$code_features()) Add a column to the token data based on feature search results
$search_recode() Use the search_features query syntax to recode features
feature_associations()  Given a query, get words that often co-occur nearby

kwic() Get keyword-in-context (kwic) strings

browse_hits() Create full-text browsers with highlighted search hits

Context-level queries

search_contexts()  Search for documents or sentences using Lucene-like queries
$subset_query()  use the search_contexts query syntax to subset the tCorpus

tCorpus_semnet Feature co-occurrence based semantic network analysis

Description

(back to overview)

Details
Create networks

semnet) Feature co-occurrence within contexts (documents, sentences)
semnet_window() Feature co-occurrence within a specified token distance



100 tokens_to_tcorpus

Support functions for analyzing and visualizing the semantic network

ego_semnet()  Create an ego network from an Igraph network
plot_semnet() Convenience function for visualizing an Igraph network, specialized for semantic networks

tCorpus_topmod Topic modeling

Description

(back to overview)

Details

Train a topic model

$lda_fit() Latent Dirichlet Allocation

tokens_to_tcorpus Create a tcorpus based on tokens (i.e. preprocessed texts)

Description

Create a tcorpus based on tokens (i.e. preprocessed texts)

Usage

tokens_to_tcorpus(tokens, doc_col = "doc_id",
token_id_col = "token_id"”, sentence_col = "sentence”,
token_col = NULL, lemma_col = NULL, pos_col = NULL,
relation_col = NULL, parent_col = NULL, meta = NULL,
meta_cols = NULL, feature_cols = NULL, sent_is_local =T,
token_is_local = T)

Arguments
tokens A data.frame in which rows represent tokens, and columns indicate (at least) the
document in which the token occured (doc_col) and the position of the token in
that document or globally (token_id_col)
doc_col The name of the column that contains the document ids/names

token_id_col The name of the column that contains the positions of tokens. If NULL, it
is assumed that the data.frame is ordered by the order of tokens and does not
contain gaps (e.g., filtered out tokens)



tokenWindowOccurence 101

sentence_col Optionally, the name of the column that indicates the sentences in which tokens

occured.
token_col Optionally, the name of the column that contains the token text
lemma_col Optionally, the name of the column that contains the lemma of the token
pos_col Optionally, the name of the column that contains the part-of-speech tag of the
token

relation_col Optionally, the name of the column that contains the relation of the token to its
parent

parent_col Optionally, the name of the column that contains the id of the parent

meta Optionally, a data.frame with document meta data. Needs to contain a column
with the document ids (with the same name)

meta_cols Alternatively, if there are document meta columns in the tokens data.table, meta_cols
can be used to recognized them. Note that these values have to be unique within
documents.

feature_cols Optionally, specify which columns to include in the tcorpus. If NULL, all col-
umn are included (except the specified columns for documents, sentences and
positions)

sent_is_local Sentences in the tCorpus are assumed to be locally unique within documents.
If sent_is_local is FALSE, then sentences are transformed to be locally unique.
However, it is then assumed that the first sentence in a document is sentence 1,
which might not be the case if tokens (input) is a subset.

token_is_local Same as sent_is_local, but for token_id. Note that if a parent column is present,
it will not be changed along.

Examples

head(corenlp_tokens)

tc = tokens_to_tcorpus(corenlp_tokens, doc_col = 'doc_id',
sentence_col = 'sentence', token_id_col = 'id')
tc

meta = data.frame(doc_id = 1, medium = 'A', date = '2010-01-01"')
tc = tokens_to_tcorpus(corenlp_tokens, doc_col = 'doc_id',

sentence_col = 'sentence', token_id_col = 'id', meta=meta)
tc

tokenWindowOccurence  Gives the window in which a term occured in a matrix.

Description

This function returns the occurence of tokens (position.matrix) and the window of occurence (win-
dow.matrix). This format enables the co-occurence of tokens within sliding windows (i.e. token
distance) to be calculated by multiplying position.matrix with window.matrix.



102 top_features

Usage

tokenWindowOccurence(tc, feature, context_level = c("document”,
"sentence”), window.size = 10, direction = "<>",
distance_as_value = F, batch_rows = NULL, drop_empty_terms = T)

Arguments
tc a tCorpus object
feature The name of the feature column

context_level Select whether to use "document" or "sentence" as context boundaries

window.size The distance within which tokens should occur from each other to be counted as
a co-occurence.

direction a string indicating whether only the left (’<’) or right (">") side of the window,
or both (’<>’), should be used.

distance_as_value
If True, the values of the matrix will represent the shorts distance to the oc-
curence of a feature

batch_rows Used in functions that call this function in batches

drop_empty_terms
If TRUE, emtpy terms (with zero occurence) will be dropped

Value

A list with two matrices. position.mat gives the specific position of a term, and window.mat gives
the window in which each token occured. The rows represent the position of a term, and matches
the input of this function (position, term and context). The columns represents terms.

top_features Show top features

Description

Show top features

Usage

top_features(tc, feature, n = 10, group_by = NULL,
group_by_meta = NULL, rank_by = c("freq”, "chi2"), dropNA =T,
return_long = F)



top_features

Arguments

tc
feature
n

group_by

group_by_meta
rank_by

dropNA

return_long

Value

a data.frame

Examples

103

a tCorpus
The name of the feature
Return the top n features

A column in the token data to group the top features by. For example, if token
data contains part-of-speech tags (pos), then grouping by pos will show the top
n feature per part-of-speech tag.

A column in the meta data to group the top features by.

The method for ranking the terms. Currently supports frequency (default) and
the "Chi2’ value for the relative frequency of a term in a topic compared to the
overall corpus. If return_long is used, the Chi2 score is also returned, but note
that there are negative Chi2 scores. This is used to indicate that the relative
frequency of a feature in a group was lower than the relative frequency in the
corpus (i.e. under-represented).

if TRUE, drop NA features

if TRUE, results will be returned in a long format that contains more informa-
tion.

tc = tokens_to_tcorpus(corenlp_tokens, token_id_col = 'id')

top_features(tc,
top_features(tc,

'lemma’')
'lemma', group_by = 'NER', group_by_meta='doc_id')



Index

*Topic datasets
corenlp_tokens, 15
emoticon_dict, 23
sotu_texts, 55
stopwords_list, 56

(back to overview), 95-100

$code_features()), 99

$context(), 96

$deduplicate(), 97

$delete_columns(), 96

$delete_meta_columns(), 96

$feature_subset(), 98

$get(), 96

$get_meta(), 96

$1da_fit(), 100

$preprocess(), 98

$search_recode(), 99

$set(), 96

$set_levels(), 96

$set_meta(), 96

$set_meta_levels(), 96

$set_meta_name(), 96

$set_name(), 96

$subset (), 97

$subset_query(), 97, 99

add_collocation_label, 4
agg_tcorpus, 4
as.tcorpus, 5
as.tcorpus.default, 6
as.tcorpus.tCorpus, 6

backbone_filter, 7
browse_hits, 8, 30
browse_hits(), 99
browse_texts, 9

calc_chi2, 11
Co-occurrence networks, 60

104

code_dictionary
(tCorpus$code_dictionary), 60

code_features (tCorpus$code_features),
61

compare_corpus, 11, 36

compare_corpus(), 95

compare_documents, 12

compare_documents(), 97

compare_subset, 14, 36

compare_subset(), 95

context (tCorpus$context), 65

corenlp_tokens, 15

Corpus comparison, 60

count_tcorpus, 15

Create a tCorpus, 60

create_tcorpus, 16, 70

create_tcorpus(), 96

deduplicate (tCorpus$deduplicate), 66

delete_columns
(tCorpus$delete_columns), 67

delete_meta_columns
(tCorpus$delete_columns), 67

docfreq_filter, 19

Document similarity, 60

dtm_compare, 20

dtm_wordcloud, 21

ego_semnet, 22
ego_semnet (), 100
emoticon_dict, 23

feats_to_columms
(tCorpus$feats_to_columns), 70

feature_associations, 23, 34

feature_associations(), 99

feature_stats, 25

feature_stats(), 98

feature_subset
(tCorpus$feature_subset), 72



INDEX

Features, 60
freq_filter, 26

get (tCorpus$get), 73
get_dfm(get_dtm), 26
get_dfm(), 96

get_dtm, 26

get_dtm(), 96
get_global_i, 28
get_kwic, 29

get_meta (tCorpus$get), 73
get_stopwords, 30

kwic(), 99

laplace, 31
lda_fit (tCorpus$lda_fit), 76

Manage tCorpus data, 60
melt_quanteda_dict, 31, 46, 60, 79
merge_tcorpora, 32, 97

modified by reference, 59

plot.contextHits, 33
plot.featureAssociations, 34
plot.featureHits, 35
plot.vocabularyComparison, 35
plot_semnet, 36
plot_semnet(), 100
plot_words, 38

preprocess, I8

preprocess (tCorpus$preprocess), 77
preprocess_tokens, 39
print.contextHits, 40
print.featureHits, 41
print.tCorpus, 41

refresh_tcorpus, 42

replace_dictionary
(tCorpus$replace_dictionary),
78

require_package, 42

search_contexts, 14, 16, 33, 40, 43, 57, 58,
94, 97

search_contexts(), 99

search_dictionary, 16, 45, 78

search_features, 8, 16, 24, 29, 35, 41, 47,
58,61,71,75

search_features()), 99

105

search_recode (tCorpus$search_recode),

86
semnet, 51
semnet), 99

semnet_window, 52
semnet_window(), 99

set (tCorpus$set), 89

set_levels (tCorpus$set_levels), 90
set_meta (tCorpus$set), 89
set_meta_levels (tCorpus$set_levels), 90
set_meta_name (tCorpus$set_name), 91
set_name (tCorpus$set_name), 91
set_network_attributes, 53
set_special (tCorpus$set_special), 92
sgt, 54

show_udpipe_models, 17, 55
sotu_texts, 55

stopwords_list, 56

subset, 57, 94, 97

subset (tCorpus$subset), 92
subset (), 97

subset.data.table, 92

subset. tCorpus, 56

subset_meta (tCorpus$subset), 92
subset_query, 30, 57
subset_query(), 97
summary.contextHits, 58
summary . featureHits, 58
summary . tCorpus, 59

tCorpus, 12-14, 16,24,27,43,47, 57,59
tcorpus (tCorpus), 59
tCorpus$code_dictionary, 60
tCorpus$code_features, 61
tCorpus$compare_corpus, 62
tCorpus$compare_documents, 63
tCorpus$compare_subset, 64
tCorpus$context, 65
tCorpus$deduplicate, 66
tCorpus$delete_columns, 67
tCorpus$delete_meta_columns

(tCorpus$delete_columns), 67
tCorpus$dfm (tCorpus$dtm), 68
tCorpus$dtm, 68
tCorpus$feats_to_columns, 70
tCorpus$feature_associations, 70
tCorpus$feature_stats, 72
tCorpus$feature_subset, 72, 93
tCorpuss$get, 73



106 INDEX

tCorpus$get_meta (tCorpus$get), 73
tCorpus$kwic, 74
tCorpus$lda_fit, 76
tCorpus$preprocess, 77
tCorpus$replace_dictionary, 78
tCorpus$search_contexts, 64, 80
tCorpus$search_features, 29,61, 71, 75,
82, 86
tCorpus$search_recode, 86
tCorpus$semnet, 87
tCorpus$semnet_window, 88
tCorpus$set, 89
tCorpus$set_levels, 90
tCorpus$set_meta (tCorpus$set), 89
tCorpus$set_meta_levels
(tCorpus$set_levels), 90
tCorpus$set_meta_name
(tCorpus$set_name), 91
tCorpus$set_name, 91
tCorpus$set_special, 92
tCorpus$subset, 72, 73,92, 97
tCorpus$subset_meta (tCorpus$subset), 92
tCorpus$subset_query, 94
tCorpus$top_features, 95
tCorpus_compare, 95
tCorpus_create, 96
tCorpus_data, 96
tCorpus_docsim, 97
tCorpus_features, 97
tCorpus_modify_by_reference, 66, 98
tCorpus_querying, 99
tCorpus_semnet, 99
tCorpus_topmod, 100
tokens_to_tcorpus, 100
tokens_to_tcorpus(), 96
tokenWindowOccurence, 101
top_features, 102
top_features(), 98
Topic modeling, 60

udpipe_annotate, 17
udpipe_download_model, 55
Using search strings, 60



	add_collocation_label
	agg_tcorpus
	as.tcorpus
	as.tcorpus.default
	as.tcorpus.tCorpus
	backbone_filter
	browse_hits
	browse_texts
	calc_chi2
	compare_corpus
	compare_documents
	compare_subset
	corenlp_tokens
	count_tcorpus
	create_tcorpus
	docfreq_filter
	dtm_compare
	dtm_wordcloud
	ego_semnet
	emoticon_dict
	feature_associations
	feature_stats
	freq_filter
	get_dtm
	get_global_i
	get_kwic
	get_stopwords
	laplace
	melt_quanteda_dict
	merge_tcorpora
	plot.contextHits
	plot.featureAssociations
	plot.featureHits
	plot.vocabularyComparison
	plot_semnet
	plot_words
	preprocess_tokens
	print.contextHits
	print.featureHits
	print.tCorpus
	refresh_tcorpus
	require_package
	search_contexts
	search_dictionary
	search_features
	semnet
	semnet_window
	set_network_attributes
	sgt
	show_udpipe_models
	sotu_texts
	stopwords_list
	subset.tCorpus
	subset_query
	summary.contextHits
	summary.featureHits
	summary.tCorpus
	tCorpus
	tCorpus$code_dictionary
	tCorpus$code_features
	tCorpus$compare_corpus
	tCorpus$compare_documents
	tCorpus$compare_subset
	tCorpus$context
	tCorpus$deduplicate
	tCorpus$delete_columns
	tCorpus$dtm
	tCorpus$feats_to_columns
	tCorpus$feature_associations
	tCorpus$feature_stats
	tCorpus$feature_subset
	tCorpus$get
	tCorpus$kwic
	tCorpus$lda_fit
	tCorpus$preprocess
	tCorpus$replace_dictionary
	tCorpus$search_contexts
	tCorpus$search_features
	tCorpus$search_recode
	tCorpus$semnet
	tCorpus$semnet_window
	tCorpus$set
	tCorpus$set_levels
	tCorpus$set_name
	tCorpus$set_special
	tCorpus$subset
	tCorpus$subset_query
	tCorpus$top_features
	tCorpus_compare
	tCorpus_create
	tCorpus_data
	tCorpus_docsim
	tCorpus_features
	tCorpus_modify_by_reference
	tCorpus_querying
	tCorpus_semnet
	tCorpus_topmod
	tokens_to_tcorpus
	tokenWindowOccurence
	top_features
	Index

