Overview

The Container class serves as the base class for Deque, Set and Dict, which inherit all methods from Container, except those that are overwritten (see below). In addition, the Container and all its subclasses are iterable, that is, they provide a method returning an Iterator to iterate through the elements of the container object. Class diagram with basic class hierarchy.

The following table shows member methods divided by class. The top half contains all Container methods, each derived by the subclasses to the right unless there is a new entry in a sub-class column, meaning the method is overwritten by the subclass. The bottom half contains methods unique to each subclass.

Iterable Container Deque Set Dict
Container$new() Deque$new() s <- Set$new() Dict$new()
iter()
add(elem) add(elem) add(key, value)
apply(f)
clear()
discard(elem, right=F) discard(key)
empty()
has(elem) has(key)
print(list.len=10)
remove(elem, right=F) remove(key)
size()
type()
values()
addleft(elem) union(s) get(key)
count(elem) intersect(s) keys()
peek() diff(s) peek(key, default=NULL)
peekleft() is.equal(s) pop(key)
pop() is.subset(s) popitem()
popleft() is.superset(s) set(key, value, add=FALSE)
reverse() sort(decr=FALSE)
rotate(n=1L) update(other)

More details about the methods are found in the respective online helps (see ?Container, ?Deque, ?Set, and ?Dict).

Container

The base Container is ready to be used by itself. Examples of Deque, Set, and Dict, follow below.

library(container)
collection <- Container$new()
collection$empty()
#> [1] TRUE

add

By default, elements internally are stored in a basic list and therefore can be of any type.

collection$add(1)
collection$add("A")
collection$add(data.frame(B=1, C=2))
collection$type()
#> [1] "list"

The internal representation can always be retrieved directly using the values function.

collection$values()
#> [[1]]
#> [1] 1
#> 
#> [[2]]
#> [1] "A"
#> 
#> [[3]]
#>   B C
#> 1 1 2

The container's print method presents the content more compact similar to utils::str

collection$print()
#> <Container> of 3 elements: List of 3
#>  $ : num 1
#>  $ : chr "A"
#>  $ :'data.frame':    1 obs. of  2 variables:
#>   ..$ B: num 1
#>   ..$ C: num 2

If initialized with an R object, the type of the object is adopted to allow for efficient internal representations, if required.

ints <- Container$new(integer())
ints$type()
#> [1] "integer"

The add method supports chaining.

ints$add(1)$add(2)$add(3.7)$print()
#> <Container> of 3 elements:  int [1:3] 1 2 3

Initialization also works with vectors.

ints <- Container$new(1:10)$print()
#> <Container> of 10 elements:  int [1:10] 1 2 3 4 5 6 7 8 9 10

ints$values()
#>  [1]  1  2  3  4  5  6  7  8  9 10

ints$size()
#> [1] 10

discard, remove

ints$has(11)
#> [1] FALSE

ints$has(7)
#> [1] TRUE

ints$discard(7)$has(7)
#> [1] FALSE

ints$remove(8)$values()
#> [1]  1  2  3  4  5  6  9 10

Using remove on non-existent elements throws an error,

ints$remove(8)
#> Error in ints$remove(8): 8 not in Container

but discard does not.

ints$discard(8) # ok

Discard and remove work also from the right.

ints$add(1:3)$values()
#>  [1]  1  2  3  4  5  6  9 10  1  2  3

ints$discard(1)$values()
#>  [1]  2  3  4  5  6  9 10  1  2  3

ints$discard(2, right=TRUE)$values()
#> [1]  2  3  4  5  6  9 10  1  3

There is also an apply method, which applies a function to all elements and returns a copy of the result.

unlist(ints$apply(f = function(x) x^2))
#> [1]   4   9  16  25  36  81 100   1   9

ints$clear()$empty()
#> [1] TRUE

More details and examples are found in the online help (see ?Container).

Reference semantics and iterator

Being based on R6 classes, any Container object provides reference semantics.

members <- Container$new(c("Lisa", "Bob", "Joe"))$print()
#> <Container> of 3 elements:  chr [1:3] "Lisa" "Bob" "Joe"

remove_Joe <- function(cont) cont$discard("Joe")
remove_Joe(members)
members
#> <Container> of 2 elements:  chr [1:2] "Lisa" "Bob"
it <- members$iter()
print(it)
#> <Iterator> at position 0

while(it$has_next()) {
    print(it$get_next())
    print(it)
}
#> [1] "Lisa"
#> <Iterator> at position 1 
#> [1] "Bob"
#> <Iterator> at position 2

Once iterated to the last element, trying to iterate further leads to an error.

it$get_next()
#> Error in private$`i++`(): Iterator has no more elements.

Deque

d <- Deque$new(0L)
d$type()
#> [1] "integer"
d
#> <Deque> of 1 elements:  int 0

addleft, count

d$add(1)$add(2)$addleft(1)$addleft(2)$values()
#> [1] 2 1 0 1 2

d$count(0)  # count number of 0s
#> [1] 1

d$count(1)  # count number of 1s
#> [1] 2

peek, pop

A peek shows the last value, while pop shows and removes it afterwards.

d$peek()
#> [1] 2

d$pop()
#> [1] 2

d$pop()
#> [1] 1

d$values()
#> [1] 2 1 0

Being a double-ended queue, both methods are also defined for the left side.

d$peekleft()
#> [1] 2

d$popleft()
#> [1] 2

d$values()
#> [1] 1 0

d$count(2)
#> [1] 0

Invoking peek on an empty Deque gives NULL while pop stops with an error.

Deque$new()$peek()
#> NULL

Deque$new()$pop()
#> Error in Deque$new()$pop(): pop at empty Deque

rotate, reverse

d$add(rep(0, 3))$values()
#> [1] 1 0 0 0 0

d$rotate()$values()    # rotate 1 to the right
#> [1] 0 1 0 0 0

d$rotate(2)$values()   # rotate 2 to the right
#> [1] 0 0 0 1 0

d$rotate(-3)$values()  # rotate 3 to the left
#> [1] 1 0 0 0 0

d$addleft(4:2)$values()
#> [1] 4 3 2 1 0 0 0 0

d$reverse()$values()
#> [1] 0 0 0 0 1 2 3 4

Deque iterator

As a silly example, define a reverse perfect shuffler.

reverse_ps <- function(x)
{
    it <- Iterator$new(seq_along(x))
    d <- Deque$new(integer())

    while(it$has_next()) {
        it$.next()
        d$add(it$get())
        if (it$has_next()) d$addleft(it$get_next())
    }
    x[d$values()]
}

(zz <- rep(c(0, 1), 10))
#>  [1] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

reverse_ps(zz)
#>  [1] 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Set

s1 <- Set$new(1:3)$print()
#> <Set> of 3 elements:  int [1:3] 1 2 3

s1$add(1)  # does not change the set 
s1
#> <Set> of 3 elements:  int [1:3] 1 2 3

set operators

s1 <- Set$new(c(1, 2,    4, 5))
s2 <- Set$new(c(   2, 3,    5, 6))

s1$union(s2)$print()
#> <Set> of 6 elements:  num [1:6] 1 2 4 5 3 6

s1$intersect(s2)$print()
#> <Set> of 2 elements:  num [1:2] 2 5

s1$diff(s2)$print()
#> <Set> of 2 elements:  num [1:2] 1 4

s1$is.subset(s2)
#> [1] FALSE
s1$is.subset(s1$union(s2))
#> [1] TRUE
s1$intersect(s2)$is.subset(s1)
#> [1] TRUE

s1$is.equal(s2)
#> [1] FALSE
s1$is.equal(s1)
#> [1] TRUE

s1$is.superset(s2)
#> [1] FALSE
s1$union(s2)$is.superset(s2)
#> [1] TRUE

Dict

ages <- Dict$new(c(Peter=24, Lisa=23, Bob=32))$print()
#> <Dict> of 3 elements:  Named num [1:3] 24 23 32
#>  - attr(*, "names")= chr [1:3] "Peter" "Lisa" "Bob"

ages$keys()
#> [1] "Peter" "Lisa"  "Bob"

ages$peek("Lisa")
#> [1] 23

ages$peek("Anna")
#> NULL

add, discard, remove

Due to the key-value semantic, several Container methods are modified/extended to take the key argument.

ages$add("Albert", 139)$values()
#>  Peter   Lisa    Bob Albert 
#>     24     23     32    139

ages$add("Bob", 40)
#> Error in ages$add("Bob", 40): key 'Bob' already in Dict

ages$has("Peter")
#> [1] TRUE

ages$discard("Albert")$values()
#> Peter  Lisa   Bob 
#>    24    23    32

# Trying to discard a non-existing key has no effect
ages$discard("Albert")$values()
#> Peter  Lisa   Bob 
#>    24    23    32

# Trying to remove a non-existing key throws an error
ages$remove("Albert")
#> Error in ages$remove("Albert"): key 'Albert' not in Dict

add vs set

Trying to set a value at a non-existing key throws an error unless the set method is explicitly told to add it to the Dict.

ages$set("Anna", 23)
#> Error in ages$set("Anna", 23): key 'Anna' not in Dict

ages$set("Anna", 23, add=TRUE)  # alternatively ages$add("Anna", 23)
ages
#> <Dict> of 4 elements:  Named num [1:4] 24 23 32 23
#>  - attr(*, "names")= chr [1:4] "Peter" "Lisa" "Bob" "Anna"

This allows fine control over the insert-behaviour of the Dict. If already existing, the value is overwritten.

ages$set("Lisa", 11)$values()
#> Peter  Lisa   Bob  Anna 
#>    24    11    32    23

peek, pop, and popitem

A similar control is provided via the different methods to retrieve elements.

ages$pop("Lisa")
#> [1] 11

ages$values()
#> Peter   Bob  Anna 
#>    24    32    23

ages$pop("Lisa")
#> Error in self$remove(key): key 'Lisa' not in Dict

ages$get("Lisa")
#> Error in ages$get("Lisa"): key 'Lisa' not in Dict

ages$peek("Lisa")
#> NULL

The Dict can also be used as a sampler (without replacement).

set.seed(123)
while(!ages$empty()) print(ages$popitem())
#> Peter 
#>    24 
#> Anna 
#>   23 
#> Bob 
#>  32

update

shoplist <- Dict$new(list(eggs=10, potatoes=10, bananas=5, apples=4))

shoplist2 <- Dict$new(list(eggs=6, broccoli=4))

shoplist$update(shoplist2)$values()
#> $eggs
#> [1] 6
#> 
#> $potatoes
#> [1] 10
#> 
#> $bananas
#> [1] 5
#> 
#> $apples
#> [1] 4
#> 
#> $broccoli
#> [1] 4