
Package ‘conjurer’
March 22, 2020

Type Package

Title A Parametric Method for Generating Synthetic Data

Version 1.1.1

Date 2020-03-22

Description Builds synthetic data applicable across multiple domains. This package also pro-
vides flexibility to control data distribution to make it relevant to many industry examples.

Depends R (>= 2.10)

License MIT + file LICENSE

URL https://github.com/SidharthMacherla/conjurer

BugReports https://github.com/SidharthMacherla/conjurer/issues

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.0.2.9000

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Sidharth Macherla [aut, cre] (<https://orcid.org/0000-0002-4825-2026>)

Maintainer Sidharth Macherla <msidharthrasik@gmail.com>

Repository CRAN

Date/Publication 2020-03-22 03:00:02 UTC

R topics documented:
buildCust . 2
buildDistr . 3
buildName . 4
buildNames . 5
buildOutliers . 6
buildPareto . 7

1

https://github.com/SidharthMacherla/conjurer
https://github.com/SidharthMacherla/conjurer/issues

2 buildCust

buildProd . 7
buildSpike . 8
genFirstPairs . 9
genMatrix . 9
genTrans . 10
genTriples . 11
missingArgHandler . 12
nextAlphaProb . 12

Index 14

buildCust Build a Unique Customer Identifier

Description

Builds a customer identifier. This is often used as a primary key of the customer dim table in
databases.

Usage

buildCust(numOfCust)

Arguments

numOfCust A number. This specifies the number of unique customer identifiers to be built.

Details

A customer is identified by a unique customer identifier(ID). A customer ID is alphanumeric with
prefix "cust" followed by a numeric. This numeric ranges from 1 and extend to the number of
customers provided as the argument within the function. For example, if there are 100 customers,
then the customer ID will range from cust001 to cust100. This ensures that the customer ID is
always of the same length.

Value

A character with unique customer identifiers

Examples

df <- buildCust(numOfCust = 1000)
df <- buildCust(numOfCust = 223)

buildDistr 3

buildDistr Build Data Distribution

Description

Builds data distribution. For example, the function genTrans uses this function to build the data
distributions necessary. This function uses trigonometry based functions to generate data. This is
an internal function and is currently not exported in the package.

Usage

buildDistr(st, en, cycles, trend)

Arguments

st A number. This defines the starting value of the number of data points.

en A number. This defines the ending value of the number of data points.

cycles A string. This defines the cyclicality of data distribution.

trend A number. This defines the trend of data distribution i.e if the data has a positive
slope or a negative slope.

Details

A parametric method is used to build data distribution. The data distribution function uses the
formulation of

sin(a ∗ x) + cos(b ∗ x) + c

Where,

1. a and b are the parameters

2. x is a variable

3. c is a constant

Firstly, parameter ’a’ defines the number of outer level crests (peaks in the data distribution). Gen-
erally speaking, the number of crests is approximately twice the value of a. This means that if a is
set to a value 0.5, there will be one crest and if it is set to 2, there will be 4 crests. On account of
this behavior, this parameter is set based on the argument cycles of the function. For example, if
the argument cycles is set to "y" i.e yearly cycle, it means that there must be one crest i.e peak in
the distribution. To have one crest, the parameter must be around 0.5. A random number is then
generated between 0.2 and 0.6 to get to that one crest.

Secondly, the variable ’x’ is the x-axis of the data distribution. Since the function buildDistr is
used internally to generate data at different levels, this variable could have a range of 1 to 12 or 1
to 31 depending on the arguments ’st’ and ’en’. For example, if the data is generated at the month
level, then arguments ’st’ is set to 1 and ’en’ is set to 12. Similarly, if the data is set to day level,
the ’st’ is set to 1 and ’en’ is set to the number of days in that month i.e 28 for month 2 and 31 for
month 12 etc.

4 buildName

Thirdly, the parameter ’b’ defines the inner level crests(peaks in data distribution). This parame-
ter helps in making the data distribution seem more realistic by adding more "ruggedness" of the
distribution.

Finally, the constant ’c’ is the intercept part of the formulation and primarily serves as a way to
ensure that the data distribution has a positive ’y’ axis component. This value is randomly generated
between 2 and 5.

Value

A data frame with data distribution is returned.

buildName Build Dynamic Strings

Description

Builds strings that could be further used as identifiers. This is an internal function and is currently
not exported in the package.

Usage

buildName(numOfItems, prefix)

Arguments

numOfItems A number. This defines the number of elements to be output.

prefix A string. This defines the prefix for the strings. For example, the function build-
Cust uses this function and passes the prefix "cust" while the function buildProd
passes the prefix "sku"

Details

This function is used by other internal functions namely, buildCust and buildProd to produce the
alphanumeric identifiers for customers and products respectively.

Value

A character with the alphanumeric strings is returned. These strings use the prefix that is mentioned
in the argument "prefix"

buildNames 5

buildNames Generate Names

Description

Generates names based on a given training data or using the default data

Usage

buildNames(dframe, numOfNames, minLength, maxLength)

Arguments

dframe A dataframe. This argument is passed on to another function genMatrix for gen-
erating an alphabet frequency table. This dataframe is single column dataframe
with rows that contain names. These names must only contain english alpha-
bets(upper or lower case) from A to Z.

numOfNames A numeric. This specifies the number of names to be generated. It should be
non-zero natural number.

minLength A numeric. This specifies the minimum number of alphabets in the name. It
must be a non-zero natural number.

maxLength A numeric. This specifies the maximum number of alphabets in the name. It
must be a non-zero natural number.

Details

This function generates names. There are two options to generate names. The first option is to use
an existing sample of names and generate names. The second option is to use the default table of
prior probabilities.

Value

A list of names.

Examples

buildNames(numOfNames = 3, minLength = 5, maxLength = 7)

6 buildOutliers

buildOutliers Build Outliers in Data Distribution

Description

Builds outlier values and replaces random data points with outliers. This is an internal function and
is currently not exported in the package.

Usage

buildOutliers(distr)

Arguments

distr numeric vector. This is the target vector which is processed for outlier genera-
tion.

Details

It is a common occurrence to have outliers in production data. For instance, in the retail industry,
there are days such as black Friday where the sales for that day are far more than the daily average
for the year. For the synthetic data generated to seem similar to production data, package conjurer
uses this function to build such outlier data.

This function takes a numeric vector and then randomly selects at least 1 data point and a maximum
of 3 percent data points to be replaced with an outlier. The process for generating outliers is as fol-
lows. This methodology of outlier generation is based on a popular method of identifying outliers.
For more details refer to the function ’outlier’ in R package ’GmAMisc’.

1. First, the interquartile range(IQR) of the numeric vector is computed.

2. Second, a random number between 1.5 and 3 is generated.

3. Finally, the random number above is multiplied with the IQR to compute the outlier.

These steps mentioned above are repeated for at least once and a maximum of 3

Value

A numeric vector with random values replaced with outlier values.

buildPareto 7

buildPareto Map Factors Based on Pareto Arguments

Description

Maps a factor to another factor in a one to many relationship following Pareto principle. For exam-
ple, 80 percent of transactions can be mapped to 20 percent of customers.

Usage

buildPareto(factor1, factor2, pareto)

Arguments

factor1 A factor. This factor is mapped to factor2 as given in the details section.

factor2 A factor. This factor is mapped to factor1 as given in the details section.

pareto This defines the percentage allocation and is a numeric data type. This argument
takes the form of c(x,y) where x and y are numeric and their sum is 100. If we
set Pareto to c(80,20), it then allocates 80 percent of factor1 to 20 percent of
factor 2. This is based on a well-known concept of the Pareto principle.

Details

This function is used to map one factor to another based on the Pareto argument supplied. If factor1
is a factor of customer identifiers, factor2 is a factor of transactions and Pareto is set to c(80,20),
then 80 percent of customer identifiers will be mapped to 20 percent of transactions and vice versa.

Value

A data frame with factor 1 and factor 2 as columns. Based on the Pareto arguments passed, column
factor 1 is mapped to factor 2.

buildProd Build Product Data

Description

Builds a unique product identifier and price. The price of the product is generated randomly within
the minimum and the maximum range provided as input.

Usage

buildProd(numOfProd, minPrice, maxPrice)

8 buildSpike

Arguments

numOfProd A number. This defines the number of unique products.

minPrice A number. This is the minimum value of the product’s price range.

maxPrice A number. This is the maximum value of the product’s price range.

Details

A product ID is alphanumeric with prefix "sku" which signifies a stock keeping unit. This prefix
is followed by a numeric ranging from 1 and extending to the number of products provided as the
argument within the function. For example, if there are 10 products, then the product ID will range
from sku01 to sku10. This ensures that the product ID is always of the same length. For these
product IDs, the product price will be within the range of minPrice and maxPrice arguments.

Value

A character with product identifier and price.

Examples

df <- buildProd(numOfProd = 1000, minPrice = 5, maxPrice = 100)
df <- buildProd(numOfProd = 29, minPrice = 3, maxPrice = 50)

buildSpike Build Spikes in the Data Distribution

Description

Builds spikes in the data distribution. For example, in retail industry transactions are generally
higher during the holiday season such as December. This function is used to set the same.

Usage

buildSpike(distr, spike)

Arguments

distr numeric vector. This is the input vector for which the spike value needs to be
set.

spike A number. This represents the seasonality of data. It can take any value from
1 to 12. These numbers represent months in a year, from January to December
respectively. For example, if the spike is set to 12, it means that December has
the highest number of transactions. This is an internal function and is currently
not exported in the package.

Value

A numeric vector reordered

genFirstPairs 9

genFirstPairs Extracts the First Two Alphabets of the String

Description

For a given string, this function extracts the first two alphabets. This function is further used by
genMatrix function.

Usage

genFirstPairs(s)

Arguments

s A string. This is the string from which the first two alphabets are to be extracted.

Value

First two alphabets of the string input.

genMatrix Generate Frequency Distribution Matrix

Description

For a given names dataframe and placement, a frequency distribution table is returned.

Usage

genMatrix(dframe, placement)

Arguments

dframe A dataframe with one column that has one name per row. These names must be
english alphabets from A to Z and must not include any non-alphabet characters
such as as hyphen or apostrophe.

placement A string argument that takes three values namely "first", "last" and "all". Cur-
rently, only "first" and "all" are used while the option "last" is a placeholder for
future versions of the package **conjurer**

10 genTrans

Details

The purpose of this function is to generate a frequency distribution table of alphabets. There are
currently 2 tables that could be generated using this function. The first table is generated using the
internal function genFirstPairs. For this, the argument placement is assigned the value "first".
The rows of the table returned by the function represent the first alphabet of the string and the
columns represent the second alphabet. The values in the table represent the number of times the
combination is observed i.e the combination of the row and column alphabets. The second table is
generated using the internal function genTriples. For this, the argument placement is assigned the
value "all". The rows of the table returned by the function represent two consecutive alphabets of the
string and the columns represent the third consecutive alphabet. The values in the table represent the
number of times the combination is observed i.e the combination of the row and column alphabets.

Value

A table. The rows and columns of the table depend on the argument placement. A detailed expla-
nation is as given below in the detail section.

genTrans Build Transaction Data

Description

Build Transaction Data

Usage

genTrans(cycles, trend, transactions, spike, outliers)

Arguments

cycles This represents the cyclicality of data. It can take the following values

1. "y". If cycles is set to the value "y", it means that there is only one instance
of a high number of transactions during the entire year. This is a very
common situation for some retail clients where the highest number of sales
are during the holiday period in December.

2. "q". If cycles is set to the value "q", it means that there are 4 instances of
a high number of transactions. This is generally noticed in the financial
services industry where the financial statements are revised every quarter
and have an impact on the equity transactions in the secondary market.

3. "m". If cycles is set to the value "m", it means that there are 12 instances
of a high number of transactions for a year. This means that the number of
transactions increases once every month and then subside for the rest of the
month.

trend A number. This represents the slope of data distribution. It can take a value of 1
or -1. If the trend is set to value 1, then the aggregated monthly transactions will
exhibit an upward trend from January to December and vice versa if it is set to
-1.

genTriples 11

transactions A number. This represents the number of transactions to be generated.

spike A number. This represents the seasonality of data. It can take any value from
1 to 12. These numbers represent months in a year, from January to December
respectively. For example, if the spike is set to 12, it means that December has
the highest number of transactions.

outliers A number. This signifies the presence of outliers. If set to value 1, then outliers
are generated randomly. If set to value 0, then no outliers are generated. The
presence of outliers is a very common occurrence and hence setting the out-
liers to 1 is recommended. However, there are instances where outliers are not
needed. For example, if the objective of data generation is solely for visualiza-
tion purposes then outliers may not be needed.

Value

A dataframe with day number and count of transactions on that day

Examples

df <- genTrans(cycles = "y", trend = 1, transactions = 10000, spike = 10, outliers = 0)
df <- genTrans(cycles = "q", trend = -1, transactions = 32000, spike = 12, outliers = 1)

genTriples Extracts Three Consecutive Alphabets of the String

Description

For a given string, this function extracts three consecutive alphabets. This function is further used
by genMatrix function.

Usage

genTriples(s)

Arguments

s A string. This is the string from which three consecutive alphabets are to be
extracted.

Value

List of three alphabet combinations of the string input.

12 nextAlphaProb

missingArgHandler Handle Missing Arguments in Function

Description

Replaces the missing argument with the default value. This is an internal function and is currently
not exported in the package.

Usage

missingArgHandler(argMissed, argDefault)

Arguments

argMissed This is the argument that needs to be handled.

argDefault This is the default value of the argument that is missing in the function called.

Details

This function plays the role of error handler by setting the default values of the arguments when a
function is called without specifying any arguments.

Value

The default value of the missing argument.

nextAlphaProb Generate Next Alphabet

Description

Generates next alphabet based on prior probabilities.

Usage

nextAlphaProb(alphaMatrix, currentAlpha, placement)

Arguments

alphaMatrix A table. This table is generated using the genMatrix function .

currentAlpha A string. This is the alphabet(s) for which the next alphabet is generated.

placement A string. This takes one of the two values namely "first" or "all".

nextAlphaProb 13

Details

The purpose of this function is to generate the next alphabet for a given alphabet(s). This func-
tion uses prior probabilities to generate the next alphabet. Although there are two types of input
tables passed into the function by using the parameter alphaMatrix, the process to generate the next
alphabet remains the same as given below.

Firstly, the input table contains frequencies of the combination of current alphabet currentAlpha
(represented by rows) and next alphabet(represented by columns). These frequencies are converted
into a percentage at a row level. This means that for each row, the sum of all the column values will
add to 1.

Secondly, for the given currentAlpha, the table is looked up for the corresponding column where the
probability is the highest. The alphabet for the column with maximum prior probability is selected
as the next alphabet and is returned by the function.

Value

The next alphabet following the input alphabet(s) passed by the argument currentAlpha.

Index

buildCust, 2
buildDistr, 3, 3
buildName, 4
buildNames, 5
buildOutliers, 6
buildPareto, 7
buildProd, 7
buildSpike, 8

genFirstPairs, 9, 10
genMatrix, 5, 9, 9, 11, 12
genTrans, 3, 10
genTriples, 10, 11

missingArgHandler, 12

nextAlphaProb, 12

14

	buildCust
	buildDistr
	buildName
	buildNames
	buildOutliers
	buildPareto
	buildProd
	buildSpike
	genFirstPairs
	genMatrix
	genTrans
	genTriples
	missingArgHandler
	nextAlphaProb
	Index

