
Package ‘concurve’
April 20, 2020

Type Package

Title Computes and Plots Compatibility (Confidence) Intervals,
P-Values, S-Values, & Likelihood Intervals to Form Consonance,
Surprisal, & Likelihood Functions

Version 2.5.0

Date 2020-04-19

Maintainer Zad Rafi <zad@lesslikely.com>

Description Allows one to compute compatibility (confidence)
intervals for various statistical tests along with their corresponding
P-values, S-values, and likelihoods. The intervals can be plotted to
create consonance, surprisal, and likelihood functions allowing one to
see what effect sizes are compatible with the test model at various
compatibility levels rather than being limited to one interval estimate
such as 95\{}%. Functions can also be compared to one another to see how much
they overlap with one another and differ. Results can also be exported for
Word, Powerpoint, and TeX documents. The package currently supports bootstrapping,
linear models, generalized linear models, linear mixed-effects models,
survival analysis, and meta-analysis. These methods are discussed by
Poole C. (1987) <doi:10.2105/AJPH.77.2.195>, Schweder T, Hjort NL. (2002)
<doi:10.1111/1467-9469.00285>, Singh K, Xie M, Strawderman WE. (2007)
<arXiv:0708.0976>, Rothman KJ, Greenland S, Lash TL. (2008,
ISBN:9781451190052), Greenland S. (2019)
<doi:10.1080/00031305.2018.1529625>, Chow ZR, Greenland S. (2019)
<arXiv:1909.08579>, and Greenland S, Chow ZR. (2019)
<arXiv:1909.08583>.

License GPL-3 | file LICENSE

URL https://data.lesslikely.com/concurve/,

https://github.com/zadrafi/concurve, https://lesslikely.com/

BugReports https://github.com/zadrafi/concurve/issues

Imports MASS, bcaboot, boot, lme4, dplyr, flextable, ggplot2, knitr,
metafor, officer, parallel, pbmcapply, ProfileLikelihood,
scales, survival, survminer, tibble, tidyr, methods, cowplot,
patchwork

1

https://data.lesslikely.com/concurve/
https://github.com/zadrafi/concurve
https://lesslikely.com/
https://github.com/zadrafi/concurve/issues

2 curve_boot

Suggests covr, roxygen2, spelling, testthat, rmarkdown, Lock5Data,
carData, bench, brms, rstan, rstanarm, bayesplot, vdiffr

VignetteBuilder knitr

ByteCompile true

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.1.0

X-schema.org-keywords confidence, compatibility, consonance,
surprisal, interval, function, curve

Depends R (>= 3.6.0)

NeedsCompilation no

Author Zad Rafi [aut, cre] (<https://orcid.org/0000-0003-1545-8199>),
Andrew D. Vigotsky [aut] (<https://orcid.org/0000-0003-3166-0688>)

Repository CRAN

Date/Publication 2020-04-20 06:00:02 UTC

R topics documented:
curve_boot . 2
curve_compare . 3
curve_corr . 5
curve_gen . 6
curve_lik . 7
curve_lmer . 8
curve_mean . 9
curve_meta . 10
curve_rev . 12
curve_surv . 13
curve_table . 14
ggcurve . 15
plot_compare . 17

Index 20

curve_boot Generate Consonance Functions via Bootstrapping

Description

Use the Bca bootstrap method and the t-boostrap method from the bcaboot and boot packages to
generate consonance distrbutions.

curve_compare 3

Usage

curve_boot(data = data, func = func, method = "bca", t0, tt, bb,
replicates = 2000, steps = 1000, table = TRUE)

Arguments

data Dataset that is being used to create a consonance function.

func Custom function that is used to create parameters of interest that will be boot-
strapped.

method The boostrap method that will be used to generate the functions. Methods in-
clude "bca" which is the default, "bcapar", which is parametric bootstrapping
using the bca method and "t", for the t-bootstrap/percentile method.

t0 Only used for the "bcapar" method. Observed estimate of theta, usually by
maximum likelihood.

tt Only used for the "bcapar" method. A vector of parametric bootstrap replica-
tions of theta of length B, usually large, say B = 2000

bb Only used for the "bcapar" method. A B by p matrix of natural sufficient vectors,
where p is the dimension of the exponential family.

replicates Indicates how many bootstrap replicates are to be performed. The defaultis cur-
rently 20000 but more may be desirable, especially to make the functions more
smooth.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 7 items where the dataframe of standard values is in the first list and the table for it in
the second if table = TRUE. The Bca intervals and table are found in the third and fourth list. The
values for the density function are in the fifth object, while the Bca stats are in the sixth and seventh
objects.

curve_compare Compare Two Functions and Produces An AUC Score

Description

Compares the p-value/s-value, and likelihood functions and computes an AUC number.

4 curve_compare

Usage

curve_compare(data1, data2, type = "c", plot = TRUE, ...)

Arguments

data1 The first dataframe produced by one of the interval functions in which the inter-
vals are stored.

data2 The second dataframe produced by one of the interval functions in which the
intervals are stored.

type Choose whether to plot a "consonance" function, a "surprisal" function or "like-
lihood". The default option is set to "c". The type must be set in quotes, for ex-
ample curve_compare (type = "s") or curve_compare(type = "c"). Other options
include "pd" for the consonance distribution function, and "cd" for the conso-
nance density function, "l1" for relative likelihood, "l2" for log-likelihood, "l3"
for likelihood and "d" for deviance function.

plot by default it is set to TRUE and will use the plot_compare() function to plot the
two functions.

... Can be used to pass further arguments to plot_compare().

Value

Computes an AUC score and returns a plot that graphs two functions.

See Also

plot_compare()

ggcurve()

curve_table()

Examples

library(concurve)
GroupA <- rnorm(50)
GroupB <- rnorm(50)
RandomData <- data.frame(GroupA, GroupB)
intervalsdf <- curve_mean(GroupA, GroupB, data = RandomData)
GroupA2 <- rnorm(50)
GroupB2 <- rnorm(50)
RandomData2 <- data.frame(GroupA2, GroupB2)
model <- lm(GroupA2 ~ GroupB2, data = RandomData2)
randomframe <- curve_gen(model, "GroupB2")
curve_compare(intervalsdf[[1]], randomframe[[1]])
curve_compare(intervalsdf[[1]], randomframe[[1]], type = "s")

curve_corr 5

curve_corr Consonance Functions for Correlations

Description

Computes consonance intervals to produce P- and S-value functions for correlational analysesusing
the cor.test function in base R and places the interval limits for each interval levelinto a data frame
along with the corresponding p-values and s-values.

Usage

curve_corr(x, y, alternative, method, steps = 10000, table = TRUE)

Arguments

x A vector that contains the data for one of the variables that will be analyzed for
correlational analysis.

y A vector that contains the data for one of the variables that will be analyzed for
correlational analysis.

alternative Indicates the alternative hypothesis and must be one of "two.sided", "greater" or
"less". You can specify just the initial letter. "greater" corresponds to positive
association, "less" to negative association.

method A character string indicating which correlation coefficient is to be used for the
test. One of "pearson", "kendall", or "spearman", can be abbreviated.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

Examples

GroupA <- rnorm(50)
GroupB <- rnorm(50)
joe <- curve_corr(x = GroupA, y = GroupB, alternative = "two.sided", method = "pearson")

6 curve_gen

curve_gen Consonance Functions For Linear Models, Generalized Linear Mod-
els, and Robust Linear Models

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the selected
model (ANOVA, ANCOVA, regression, logistic regression) and places the interval limits for each
interval level into a data frame along with the corresponding p-values and s-values.

Usage

curve_gen(model, var, method = "lm", steps = 1000, table = TRUE)

Arguments

model The statistical model of interest (ANOVA, regression, logistic regression) is to
be indicated here.

var The variable of interest from the model (coefficients, intercept) for which the
intervals are to be produced.

method Chooses the method to be used to calculate the consonance intervals. There are
currently threo methods: "lm", "rlm", "glm" and "aov". The "lm" method uses
the profile likelihood method to compute intervals and can be used for models
created by the ’lm’ function. It is typically what most people are familiar with
when computing intervals based on the calculated standard error. The "rlm"
method is designed for usage with the "rlm" function from the MASS package.
The "glm" method allows this function to be used for specific scenarios like
logistic regression and the ’glm’ function.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

curve_lik 7

Examples

Simulate random data
GroupA <- rnorm(50)
GroupB <- rnorm(50)
RandomData <- data.frame(GroupA, GroupB)
rob <- lm(GroupA ~ GroupB, data = RandomData)
bob <- curve_gen(rob, "GroupB")

curve_lik Compute Profile Likelihood Functions

Description

Compute Profile Likelihood Functions

Usage

curve_lik(likobject, data, table = TRUE)

Arguments

likobject An object from the ProfileLikelihood package

data The dataframe that was used to create the likelihood object in the ProfileLikeli-
hood package.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 2 items where the dataframe of values is in the first object, and the table for the values
in the second if table = TRUE.

Examples

library(ProfileLikelihood)
data(dataglm)
xx <- profilelike.glm(y ~ x1 + x2, dataglm, profile.theta = "group", binomial("logit"))
lik <- curve_lik(xx, dataglm)

8 curve_lmer

curve_lmer Consonance Functions For Linear & Non-Linear Mixed-Effects Mod-
els.

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the selected
lme4 model and places the interval limits for each interval level into a data frame along with the
corresponding p-values and s-values.

Usage

curve_lmer(object, parm, method = "profile", zeta = NULL, nsim = NULL,
FUN = NULL, boot.type = NULL, steps = 1000, mc.cores = 1,
table = FALSE)

Arguments

object The statistical model of interest from lme4 is to be indicated here.
parm The variable of interest from the model (coefficients, intercept) for which the

intervals are to be produced.
method Chooses the method to be used to calculate the consonance intervals. There

are currently four methods: "default", "wald", "lm", and "boot". The "default"
method uses the profile likelihood method to compute intervals and can be used
for models created by the ’lm’ function. The "wald" method is typicallywhat
most people are familiar with when computing intervals based on the calculated
standard error. The "lm" method allows this function to be used for specific
scenarios like logistic regression and the ’glm’ function. The "boot" method
allows for bootstrapping at certain levels.

zeta (for method = "profile" only:) likelihood cutoff (if not specified, as by default,
computed from level).

nsim number of simulations for parametric bootstrap intervals.
FUN function; if NULL, an internal function that returns the fixed-effect parameters

as well as the random-effect parameters on the standard deviation/correlationscale
will be used.

boot.type bootstrap confidence interval type, as described in boot.c i. Methods stud and
bca are unavailable because they require additional components to be calculated.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

mc.cores For parallel processing. Defaults to 1 core.
table Indicates whether or not a table output with some relevant statistics should be

generated. The default is TRUE and generates a table which is included in the
list object.

curve_mean 9

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

curve_mean Consonance Functions For Mean Differences

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in a statistical
test that compares means and places the interval limits for each interval level into a data frame along
with the corresponding p-values and s-values.

Usage

curve_mean(x, y, data, paired = F, method = "default", replicates = 1000,
steps = 10000, table = TRUE)

Arguments

x Variable that contains the data for the first group being compared.

y Variable that contains the data for the second group being compared.

data Data frame from which the variables are being extracted from.

paired Indicates whether the statistical test is a paired difference test. By default, it is
set to "F",which means the function will be an unpaired statistical test compar-
ing two independent groups.Inserting "paired" will change the test to a paired
difference test.

method By default this is turned off (set to "default"), but allows for bootstrapping if
"boot" is insertedinto the function call.

replicates Indicates how many bootstrap replicates are to be performed. The defaultis cur-
rently 20000 but more may be desirable, especially to make the functions more
smooth.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

10 curve_meta

Examples

Simulate random data
GroupA <- runif(100, min = 0, max = 100)
GroupB <- runif(100, min = 0, max = 100)
RandomData <- data.frame(GroupA, GroupB)
bob <- curve_mean(GroupA, GroupB, RandomData)

curve_meta Consonance Functions For Meta-Analytic Data

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the meta-
analysis done by the metafor package and places the interval limits for each interval level into a
data frame along with the corresponding p-values and s-values.

Usage

curve_meta(x, measure = "default", method = "uni", robust = FALSE,
cluster = NULL, adjust = FALSE, steps = 1000, table = TRUE)

Arguments

x Object where the meta-analysis parameters are stored, typically a list produced
by ’metafor’

measure Indicates whether the object has a log transformation or is normal/default. The
default setting is "default. If the measure is set to "ratio", it will take loga-
rithmically transformed values and convert them back to normal values in the
dataframe. This is typically a setting used for binary outcomes such as risk
ratios, hazard ratios, and odds ratios.

method Indicates which meta-analysis metafor function is being used. Currently sup-
ports rma.uni ("uni"), which is the default, rma.mh ("mh"), and rma.peto ("peto")

robust a logical indicating whether to produce cluster robust interval estimates Default
is FALSE.

cluster a vector specifying a clustering variable to use for constructing the sandwich
estimator of the variance-covariance matrix. Default setting is NULL.

adjust logical indicating whether a small-sample correction should be applied to the
variance-covariance matrix. Default is FALSE.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

curve_meta 11

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

Examples

Simulate random data for two groups in two studies
GroupAData <- runif(20, min = 0, max = 100)
GroupAMean <- round(mean(GroupAData), digits = 2)
GroupASD <- round(sd(GroupAData), digits = 2)

GroupBData <- runif(20, min = 0, max = 100)
GroupBMean <- round(mean(GroupBData), digits = 2)
GroupBSD <- round(sd(GroupBData), digits = 2)

GroupCData <- runif(20, min = 0, max = 100)
GroupCMean <- round(mean(GroupCData), digits = 2)
GroupCSD <- round(sd(GroupCData), digits = 2)

GroupDData <- runif(20, min = 0, max = 100)
GroupDMean <- round(mean(GroupDData), digits = 2)
GroupDSD <- round(sd(GroupDData), digits = 2)

Combine the data

StudyName <- c("Study1", "Study2")
MeanTreatment <- c(GroupAMean, GroupCMean)
MeanControl <- c(GroupBMean, GroupDMean)
SDTreatment <- c(GroupASD, GroupCSD)
SDControl <- c(GroupBSD, GroupDSD)
NTreatment <- c(20, 20)
NControl <- c(20, 20)

metadf <- data.frame(
StudyName, MeanTreatment, MeanControl,
SDTreatment, SDControl, NTreatment, NControl

)

Use metafor to calculate the standardized mean difference

library(metafor)

dat <- escalc(
measure = "SMD", m1i = MeanTreatment, sd1i = SDTreatment,
n1i = NTreatment, m2i = MeanControl, sd2i = SDControl,
n2i = NControl, data = metadf

)

Pool the data using a particular method. Here "FE" is the fixed-effects model

res <- rma(yi, vi,

12 curve_rev

data = dat, slab = paste(StudyName, sep = ", "),
method = "FE", digits = 2

)

Calculate the intervals using the metainterval function

metaf <- curve_meta(res)

curve_rev Reverse Engineer Consonance / Likelihood Functions Using the Point
Estimate and Confidence Limits

Description

Using the confidence limits and point estimates from a dataset, one can use these estimates to com-
pute thousands of consonance intervals and graph the intervals to form a consonance and surprisal
function. The intervals are calculated from the approximated normal distribution.

Usage

curve_rev(point, LL, UL, type = "c", measure = "default", steps = 10000,
table = TRUE)

Arguments

point The point estimate from an analysis. Ex: 1.20

LL The lower confidence limit from an analysis Ex: 1.0

UL The upper confidence limit from an analysis Ex: 1.4

type Indicates whether the produced result should be a consonance function or a like-
lihood function. The default is "c" for consonance and likelihood can be set via
"l".

measure The type of data being used. If they involve mean differences, then the "default"
option should be used, which is also the default setting. If the data are ratios,
then the "ratio" option should be used.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

curve_surv 13

See Also

ggcurve()

curve_compare()

plot_compare()

Examples

From a real published study. Point estimate of the result was hazard ratio of 1.61 and
lower bound of the interval is 0.997 while upper bound of the interval is 2.59.
#
df <- curve_rev(point = 1.61, LL = 0.997, UL = 2.59, measure = "ratio")

curve_surv Consonance Functions For Survival Data

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the Cox
model computed by the ’survival’ package and places the interval limits for each interval level into
a data frame along with the corresponding p-value and s-value.

Usage

curve_surv(data, x, steps = 10000, table = TRUE)

Arguments

data Object where the Cox model is stored, typically a list produced by the ’survival’
package.

x Predictor of interest within the survival model for which the consonance inter-
vals should be computed.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

14 curve_table

Examples

library(carData)
Rossi[1:5, 1:10]
library(survival)

mod.allison <- coxph(Surv(week, arrest) ~ fin + age + race + wexp + mar + paro + prio,
data = Rossi

)
mod.allison

z <- curve_surv(mod.allison, "prio")

curve_table Produce Tables For concurve Functions

Description

Produces publication-ready tables with relevant statistics of interest for functions produced from
the concurve package.

Usage

curve_table(data, levels, type = "c", format = "data.frame")

Arguments

data Dataframe from a concurve function to produce a table for

levels Levels of the consonance intervals or likelihood intervals that should be included
in the table.

type Indicates whether the table is for a consonance function or likelihood function.
The default is set to "c" for consonance and can be switched to "l" for likelihood.

format The format of the tables. The options include "data.frame" which is the default,
"docx" (which creates a table for a word document), "pptx" (which creates a
table for powerpoint), "latex", (which creates a table for a TeX document), and
"image", which produces an image of the table.

See Also

ggcurve()

curve_compare()

plot_compare()

ggcurve 15

Examples

library(concurve)

GroupA <- rnorm(500)
GroupB <- rnorm(500)

RandomData <- data.frame(GroupA, GroupB)

intervalsdf <- curve_mean(GroupA, GroupB, data = RandomData, method = "default")

(z <- curve_table(intervalsdf[[1]], format = "data.frame"))
(z <- curve_table(intervalsdf[[1]], format = "latex"))
(z <- curve_table(intervalsdf[[1]], format = "image"))

ggcurve Plots Consonance, Surprisal, and Likelihood Functions

Description

Takes the dataframe produced by the interval functions and plots the p-values/s-values, consonance
(confidence) levels, and the interval estimates to produce a p-value/s-value function using ggplot2
graphics.

Usage

ggcurve(data, type = "c", measure = "default", levels = 0.95,
nullvalue = FALSE, position = "pyramid", title = "Interval Function",
subtitle = "The function displays intervals at every level.",
xaxis = expression(Theta ~ "Range of Values"),
yaxis = expression(paste(italic(p), "-value")), color = "#000000",
fill = "#239a98")

Arguments

data The dataframe produced by one of the interval functions in which the intervals
are stored.

type Choose whether to plot a "consonance" function, a "surprisal" function or "like-
lihood". The default option is set to "c". The type must be set in quotes, for ex-
ample ggcurve (type = "s") or ggcurve(type = "c"). Other options include "pd"
for the consonance distribution function, and "cd" for the consonance density
function, "l1" for relative likelihood, "l2" for log-likelihood, "l3" for likelihood
and "d" for deviance function.

measure Indicates whether the object has a log transformation or is normal/default. The
default setting is "default". If the measure is set to "ratio", it will take loga-
rithmically transformed values and convert them back to normal values in the
dataframe. This is typically a setting used for binary outcomes and their mea-
sures such as risk ratios, hazard ratios, and odds ratios.

16 ggcurve

levels Indicates which interval levels should be plotted on the function. By default it is
set to 0.95 to plot the 95% interval on the consonance function, but more levels
can be plotted by using the c() function for example, levels = c(0.50, 0.75, 0.95).

nullvalue Indicates whether the null value for the measure should be plotted. By default, it
is set to FALSE, meaning it will not be plotted as a vertical line. Changing this
to TRUE, will plot a vertical line at 0 when the measure is set to " default" and a
vertical line at 1 when the measure is set to "ratio". For example, ggcurve(type
= "c", data = df, measure = "ratio", nullvalue = "present"). This feature is not
yet available for surprisal functions.

position Determines the orientation of the P-value (consonance) function. By default, it
is set to "pyramid", meaning the p-value function will stand right side up, like
a pyramid. However, it can also be inverted via the option "inverted". This will
also change the sequence of the y-axes to match the orientation.This can be set
as such, ggcurve(type = "c", data = df, position = "inverted").

title A custom title for the graph. By default, it is set to "Consonance Function". In
order to set a title, it must be in quotes. For example, ggcurve(type = "c", data =
x, title = "Custom Title").

subtitle A custom subtitle for the graph. By default, it is set to "The function contains
consonance/confidence intervals at every level and the P-values." In order to set
a subtitle, it must be in quotes. For example, ggcurve(type = "c", data = x,
subtitle = "Custom Subtitle").

xaxis A custom x-axis title for the graph. By default, it is set to "Range of Values. In
order to set a x-axis title, it must be in quotes. For example, ggcurve(type = "c",
data = x, xaxis = "Hazard Ratio").

yaxis A custom y-axis title for the graph. By default, it is set to "Consonance Level".
In order to set a y-axis title, it must be in quotes. For example, ggcurve(type =
"c", data = x, yxis = "Confidence Level").

color Item that allows the user to choose the color of the points and the ribbons in the
graph. By default, it is set to color = "#555555". The inputs must be in quotes.
For example, ggcurve(type = "c", data = x, color = "#333333").

fill Item that allows the user to choose the color of the ribbons in the graph. By
default, it is set to fill = "#239a98". The inputs must be in quotes. For example,
ggcurve(type = "c", data = x, fill = "#333333").

Value

A plot with intervals at every consonance level graphed with their corresponding p-values and com-
patibility levels.

See Also

plot_compare()

Examples

Simulate random data

plot_compare 17

library(concurve)

GroupA <- rnorm(500)
GroupB <- rnorm(500)

RandomData <- data.frame(GroupA, GroupB)

intervalsdf <- curve_mean(GroupA, GroupB, data = RandomData, method = "default")
ggcurve(type = "c", intervalsdf[[1]], nullvalue = TRUE)

plot_compare Graph and Compare Consonance, Surprisal, and Likelihood Func-
tions

Description

Compares the p-value/s-value, and likelihood functions using ggplot2 graphics.

Usage

plot_compare(data1, data2, type = "c", measure = "default",
nullvalue = FALSE, position = "pyramid", title = "Interval Functions",
subtitle = "The function displays intervals at every level.",
xaxis = expression(Theta ~ "Range of Values"),
yaxis = expression(paste(italic(p), "-value")), color = "#000000",
fill1 = "#239a98", fill2 = "#EE6A50")

Arguments

data1 The first dataframe produced by one of the interval functions in which the inter-
vals are stored.

data2 The second dataframe produced by one of the interval functions in which the
intervals are stored.

type Choose whether to plot a "consonance" function, a "surprisal" function or "like-
lihood". The default option is set to "c". The type must be set in quotes, for
example plot_compare(type = "s") or plot_compare(type = "c"). Other options
include "pd" for the consonance distribution function, and "cd" for the conso-
nance density function, "l1" for relative likelihood, "l2" for log-likelihood, "l3"
for likelihood and "d" for deviance function.

measure Indicates whether the object has a log transformation or is normal/default. The
default setting is "default". If the measure is set to "ratio", it will take loga-
rithmically transformed values and convert them back to normal values in the
dataframe. This is typically a setting used for binary outcomes and their mea-
sures such as risk ratios, hazard ratios, and odds ratios.

18 plot_compare

nullvalue Indicates whether the null value for the measure should be plotted. By default,
it is set to FALSE, meaning it will not be plotted as a vertical line. Changing
this to TRUE, will plot a vertical line at 0 when the measure is set to " de-
fault" and a vertical line at 1 when the measure is set to "ratio". For example,
plot_compare(type = "c", data = df, measure = "ratio", nullvalue = "present").
This feature is not yet available for surprisal functions.

position Determines the orientation of the P-value (consonance) function. By default, it
is set to "pyramid", meaning the p-value function will stand right side up, like
a pyramid. However, it can also be inverted via the option "inverted". This will
also change the sequence of the y-axes to match the orientation.This can be set
as such, plot_compare(type = "c", data = df, position = "inverted").

title A custom title for the graph. By default, it is set to "Consonance Function". In
order to set a title, it must be in quotes. For example, plot_compare(type = "c",
data = x, title = "Custom Title").

subtitle A custom subtitle for the graph. By default, it is set to "The function contains
consonance/confidence intervals at every level and the P-values." In order to set
a subtitle, it must be in quotes. For example, plot_compare(type = "c", data = x,
subtitle = "Custom Subtitle").

xaxis A custom x-axis title for the graph. By default, it is set to "Range of Values. In
order to set a x-axis title, it must be in quotes. For example, plot_compare(type
= "c", data = x, xaxis = "Hazard Ratio").

yaxis A custom y-axis title for the graph. By default, it is set to "Consonance Level".
In order to set a y-axis title, it must be in quotes. For example, plot_compare(type
= "c", data = x, yxis = "Confidence Level").

color Item that allows the user to choose the color of the points and the ribbons in the
graph. By default, it is set to color = "#555555". The inputs must be in quotes.
For example, plot_compare(type = "c", data = x, color = "#333333").

fill1 Item that allows the user to choose the color of the ribbons in the graph for
data1. By default, it is set to fill1 = "#239a98". The inputs must be in quotes.
For example, plot_compare(type = "c", data = x, fill1 = "#333333").

fill2 Item that allows the user to choose the color of the ribbons in the graph for
data1. By default, it is set to fill2 = "#d46c5b". The inputs must be in quotes.
For example, plot_compare(type = "c", data = x, fill2 = "#333333").

Value

A plot that compares two functions.

See Also

ggcurve()

curve_compare()

Examples

library(concurve)

plot_compare 19

GroupA <- rnorm(50)
GroupB <- rnorm(50)
RandomData <- data.frame(GroupA, GroupB)
intervalsdf <- curve_mean(GroupA, GroupB, data = RandomData)
GroupA2 <- rnorm(50)
GroupB2 <- rnorm(50)
RandomData2 <- data.frame(GroupA2, GroupB2)
model <- lm(GroupA2 ~ GroupB2, data = RandomData2)

randomframe <- curve_gen(model, "GroupB2")

plot_compare(intervalsdf[[1]], randomframe[[1]], type = "c")

Index

curve_boot, 2
curve_compare, 3
curve_compare(), 13, 14, 18
curve_corr, 5
curve_gen, 6
curve_lik, 7
curve_lmer, 8
curve_mean, 9
curve_meta, 10
curve_rev, 12
curve_surv, 13
curve_table, 14
curve_table(), 4

ggcurve, 15
ggcurve(), 4, 13, 14, 18

plot_compare, 17
plot_compare(), 4, 13, 14, 16

20

	curve_boot
	curve_compare
	curve_corr
	curve_gen
	curve_lik
	curve_lmer
	curve_mean
	curve_meta
	curve_rev
	curve_surv
	curve_table
	ggcurve
	plot_compare
	Index

