
Package ‘compstatr’
May 14, 2020

Type Package
Title Tools for St. Louis Crime Data
Version 0.2.1
Description Provides a set of tools for creating yearly data sets of St. Louis

Metropolitan Police Department (SLMPD) crime data, which are available from
January 2008 onward as monthly CSV releases on their website
(<http:www.slmpd.org/Crimereports.shtml>). Once data are validated and created
(monthly data releases have varying numbers of columns
as well as different column names and formats), 'compstatr' also provides
functions for categorizing and mapping crimes in St. Louis. The categorization
tools that are provided will also work with any police department that uses 5
and 6 digit numeric codes to identify specific crimes. These data provide researchers
and policy makers detailed data for St. Louis, which in the last several years
has had some of the highest or the highest violent crime rates in the United States.

Depends R (>= 3.4)
License GPL-3

URL https://github.com/slu-openGIS/compstatr

BugReports https://github.com/slu-openGIS/compstatr

Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports dplyr, fs, httr, janitor, lubridate, purrr, rlang, readr,

rvest, sf, stringr, tibble, tidyr, xml2
Suggests testthat, knitr, rmarkdown, covr
VignetteBuilder knitr
NeedsCompilation no
Author Christopher Prener [aut, cre],

Cree Foeller [aut],
Taylor Braswell [com]

Maintainer Christopher Prener <chris.prener@slu.edu>
Repository CRAN
Date/Publication 2020-05-14 17:30:08 UTC

1

https://github.com/slu-openGIS/compstatr
https://github.com/slu-openGIS/compstatr

2 cs_address

R topics documented:
cs_address . 2
cs_collapse . 3
cs_combine . 4
cs_create_index . 5
cs_crime . 6
cs_crime_cat . 8
cs_example . 9
cs_extract_month . 10
cs_filter_count . 11
cs_filter_crime . 11
cs_get_data . 13
cs_last_update . 14
cs_load_year . 15
cs_missingXY . 16
cs_parse_date . 16
cs_parse_month . 17
cs_prep_year . 18
cs_projectXY . 19
cs_replace0 . 20
cs_replace_month . 21
cs_standardize . 22
cs_validate . 23
january2018 . 24

Index 26

cs_address Create a Single Address Field

Description

The street address data in SLMPD releases (either ILEADSAddress and ILEADSStreet or CADAddress
and CADStreet) are stored in separate columns. In order to faciliate geocoding, this function com-
bines the fields and removes inappropriate characters in the address fields.

Usage

cs_address(.data, address, street, newVar)

Arguments

.data A tibble or data frame

address Name of address number variable (typically either ILEADSAddress or CADAddress)

street Name of street name variable (typically either ILEADSStreet or CADStreet)

newVar Name of new variable to store concatenated address

cs_collapse 3

Value

A copy of the object with a character vector that contains the concatenated street address data.

Examples

load example data
testData <- january2018

add concatenated address variable
testData <- cs_address(testData, address = ileads_address, street = ileads_street, newVar = address)

cs_collapse Collapse Months in Year List Object into Single Tibble

Description

This function takes a year-list containing individual tibbles - one per month - that have been vali-
dated and collapses them into a single tibble.

Usage

cs_collapse(.data)

Arguments

.data A list containing monthly crime data

Details

cs_collapse applies common sense variable classes to a number of variables. This is motivated
by issues that originate with SLMPD .csv files. When they are imported, the readr package
sometimes applies the incorrect variable classes because of formatting issues in the tables. Since
the tables have inconsistent variable names and numbers of variables, all variables are imported as
chr data. During cs_collapse’s execution, the following changes are made:

Count Converted to int

Crime Converted to int

District Converted to int

ILEADSAddress Converted to int

Neighborhood Converted to int

CADAddress Converted to int

XCoord Converted to dbl

YCoord Converted to dbl

4 cs_combine

Value

A tibble containing all crime data in a given year-list object.

Examples

load example year-list object
load(system.file("testdata", "yearList17.rda", package = "compstatr", mustWork = TRUE))

validate
cs_validate(yearList17, year = 2017)

standaridze May, which has 26 variables
yearList17 <- cs_standardize(yearList17, month = "May", config = 26)

validate again to confirm fix
cs_validate(yearList17, year = 2017)

collapse now that the data are valid
crimeReports17 <- cs_collapse(yearList17)

cs_combine Ensure Objects Contain Data Only For a Given Year

Description

Since crimes are sometimes reported well after they are committed, objects created with cs_collapse
often contain crimes that occurred in prior years. The cs_combine function ensures that objects
contain only data for a given year, with the ability to add in crimes reported for the given year in
later years.

Usage

cs_combine(type = "year", date, ...)

Arguments

type "year" is the only valid input currently; year to date functionality is planned for
a later update

date For type = "year", this should be the year of data to be returned. For type =
"ytd", this should be the last month to be included in each estimate.

... An unquoted list of objects

cs_create_index 5

Details

When applied to a single year’s worth of data, cs_combine will subset out any crimes that occured
in a year other than the one given for the date argument.

When applied to a range of objects, such as objects for 2017 and 2018, each object will be subset to
identify crimes that occured in the year given for the date argument. This creates a more complete
accounting of crime in a given year since it adds in crimes reported in subsequent years to the object.
At the same time, crimes that occured prior to the given year will also be subset out to ensure the
resulting object only contains crimes that occured in that given year.

Value

A tibble containing a selection of combined crime data for a given time period.

Examples

load example year-list objects
load(system.file("testdata", "yearList17.rda", package = "compstatr", mustWork = TRUE))
load(system.file("testdata", "yearList18.rda", package = "compstatr", mustWork = TRUE))

validate
cs_validate(yearList17, year = 2017)
cs_validate(yearList18, year = 2018)

standaridze May for the 2017 object, which has 26 variables
yearList17 <- cs_standardize(yearList17, month = "May", config = 26)

validate again to confirm fix
cs_validate(yearList17, year = 2017)

collapse now that the data are valid
crimeReports17 <- cs_collapse(yearList17)
crimeReports18 <- cs_collapse(yearList18)

combine to add all sample 2017 crimes reported in 2018 to a single 2017 object
and remove from our 2017 object all sample crimes reported in 2017 that occured prior
to that year
crime17 <- cs_combine(type = "year", date = 2017, crimeReports17, crimeReports18)

cs_create_index Create Index of Available Months

Description

Constructs a table for finding a given table of crime data or a set of tables (such as year to date
or full year). This is largely needed for internal use when downloading tables, but is exported for
reference and troubleshooting.

6 cs_crime

Usage

cs_create_index()

Value

A tibble with all available monthly crime tables, the iframe page they appear on, and their row
number.

Examples

create index
i <- cs_create_index()

preview of index object
i

cs_crime Identify Crimes

Description

cs_crime can be used to easily identify crimes based on a specific single UCR categories or com-
mon groupings. This can be used on any police department’s data where codes like 31111 (robbery
with a firearm) or 142320 (malicious destruction of property) are used to identify crimes.

Usage

cs_crime(.data, var, newVar, crime)

Arguments

.data A tibble or data frame

var Name of variable with 5 or 6 digit crime codes

newVar Name of output variable to be created with logical data

crime A string describing the crime type to be identified

Details

The categories used here are derived from the U.S. Federal Bureau of Investigation’s Uniform Crime
Reporting codes. Valid inputs for the crime argument are as follows:

"violent" Violent crimes (homicide, rape, aggravated assault, and robbery)

"property" Property crimes (burglary, larceny, larceny of a motor vehicle, and arson)

"part 1" All violent and property crimes

"homicide" "murder" is also acceptable as input as is UCR code 1

cs_crime 7

"rape" "forcible rape" is also acceptable as input as is UCR code 2

"robbery" UCR code 3 is also acceptable input

"agg assualt" "aggravated assualt" is also acceptable as input as is UCR code 4

"burglary" UCR code 5 is also acceptable input

"larceny-theft" "larceny" and "theft" are also acceptable inputs as is UCR code 6

"mv theft" "motor vehicle theft", "motor vehicle larceny", and "mv larceny" are also ac-
ceptable inputs as input as is UCR code 7

"arson" UCR code 8 is also acceptable input

"part 2" All other crimes

"assault" "other assaults" is also acceptable input as is UCR code 9

"forgery" "forgery and counterfeiting" is also acceptable input as is UCR code 10

"fraud" UCR code 11 is also acceptable input

"embezzlement" UCR code 12 is also acceptable input

"stolen prop" "stolen property" is also acceptable input as is UCR code 13

"vandalism" UCR code 14 is also acceptable input

"weapons" UCR code 15 is also acceptable input

"prostitution" "prostitution and commercialized vice" is also acceptable input as is UCR
code 16

"sex offenses" UCR code 17 is also acceptable input

"drugs" "drug abuse violations" is also acceptable input as is UCR code 18

"gambling" UCR code 19 is also acceptable input

"family" "offenses against the family and children" is also acceptable input as is UCR code
20

"dwi" "driving under the influence" is also acceptable input as is UCR code 21

"liquor laws" UCR code 22 is also acceptable input

"drunkenness" UCR code 23 is also acceptable input

"discon" "disorderly conduct" is also acceptable input as is UCR code 24

"vagrancy" UCR code 25 is also acceptable input

"other" "all other offenses" is also acceptable input as is UCR code 26

"suspicion" UCR code 27 is also acceptable input

"curfew" "curfew and loitering laws-persons under 18" is also acceptable input as is UCR
code 28

"runaway" "runaways-persons under 18" is also acceptable input as is UCR code 29

Value

A copy of the object with a logical vector that is TRUE if the given crime matches the category given
in the function.

8 cs_crime_cat

Examples

load example data
testData <- january2018

add logical vector for violent crimes
testData <- cs_crime(testData, var = crime, newVar = violentCrimes, crime = "violent")

cs_crime_cat Categorize Crime

Description

The SLMPD data contains 5 or 6 digit codes to refer to specific categories of crime. cs_crime_cat
transforms these into either string, factor, or simplified numeric categories like "murder" or "aggra-
vated assault". This can be used on any police department’s data where codes like 31111 (robbery
with a firearm) or 142320 (malicious destruction of property) are used to identify crimes.

Usage

cs_crime_cat(.data, var, newVar, output)

Arguments

.data A tibble or data frame

var Name of variable with 5 or 6 digit crime codes

newVar Name of output variable to be created with simplified categories

output Type of output - either "string", "factor", or "numeric". If "numeric" is
selected, the general UCR code will be returned (i.e. 1 for homicide, 3 for
aggravated assault, etc.). Factor output will be returned in order of descending
UCR code (i.e. beginning with homicide, which has a UCR code of 1).

Details

The categories used here are derived from the U.S. Federal Bureau of Investigation’s Uniform Crime
Reporting codes.

Value

A copy of the object with the new output variable appended to it.

cs_example 9

Examples

load example data
testData <- january2018

apply categories
testData <- cs_crime_cat(testData,var = crime, newVar = crimeCat, output = "numeric")

preview categories
table(testData$crimeCat)

apply categories
testData <- cs_crime_cat(testData,var = crime, newVar = crimeCat, output = "factor")

preview categories
table(testData$crimeCat)

apply categories
testData <- cs_crime_cat(testData,var = crime, newVar = crimeCat, output = "string")

preview categories
table(testData$crimeCat)

cs_example Load Example Files

Description

Adds a sample set of twelve files, one for each month of 2017, to the specified path. These are not
full data files; each file has twenty observations. They can be used to practice preparing, loading,
standardizing, and collapsing data.

Usage

cs_example(path, overwrite = FALSE)

Arguments

path File path where example data should be placed

overwrite Overwrite files if they exist. If this is FALSE and the file exists an error will be
thrown.

Examples

create temporary directory
tmpdir <- tempdir()
fs::dir_create(paste0(tmpdir,"/data/"))

load sample files into temporary directory

10 cs_extract_month

cs_example(path = paste0(tmpdir,"/data/"))

list files
list.files(paste0(tmpdir,"/data/"))

delete data
fs::dir_delete(paste0(tmpdir,"/data/"))

cs_extract_month Extract Month from Year List Object

Description

This function extracts a given month from a list containing 12 tibbles - one per month - for additional
data cleaning prior to collapsing the list. Since months are ordered alphabetically in the year list
objects, this function makes the process of extracting a particular month more intuitive.

Usage

cs_extract_month(.data, month)

Arguments

.data A list containing monthly crime data

month A string name or abbreviation of a month, or its numeric value. Acceptable
inputs include, for example, "January", "january", "Jan", "jan", and 1.

Value

A tibble containing a single month worth of crime data.

See Also

cs_replace_month

Examples

load example year-list object
load(system.file("testdata", "yearList17.rda", package = "compstatr", mustWork = TRUE))

extract May
may17 <- cs_extract_month(yearList17, month = 5)
may17 <- cs_extract_month(yearList17, month = "May")

cs_filter_count 11

cs_filter_count Remove Negative Counts

Description

Removes the row that contains -1 in a specified column, indicating that the charge described in that
observation has either been deemed unfounded or has been up-coded. For example, a victim of an
aggravated assault dies, and the charge is changed to homicide.

Usage

cs_filter_count(.data, var)

Arguments

.data A tibble or data frame

var the name of the column

Value

A subset object with rows containing -1 removed

Examples

load example data
testData <- january2018

subset data to remove negative counts
testData <- cs_filter_count(testData, var = count)

cs_filter_crime Filter Crimes

Description

cs_filter_crime can be used to subset based on specific single UCR categories or common group-
ings. This can be used on any police department’s data where codes like 31111 (robbery with a
firearm) or 142320 (malicious destruction of property) are used to identify crimes.

Usage

cs_filter_crime(.data, var, crime)

12 cs_filter_crime

Arguments

.data A tibble or data frame

var Name of variable with 5 or 6 digit crime codes

crime A string describing the crime type to be identified

Details

The categories used here are derived from the U.S. Federal Bureau of Investigation’s Uniform Crime
Reporting codes. Valid inputs for the crime argument are as follows:

"violent" Violent crimes (homicide, rape, aggravated assault, and robbery)

"property" Property crimes (burglary, larceny, larceny of a motor vehicle, and arson)

"part 1" All violent and property crimes

"homicide" "murder" is also acceptable as input as is UCR code 1

"rape" "forcible rape" is also acceptable as input as is UCR code 2

"robbery" UCR code 3 is also acceptable input

"agg assualt" "aggravated assualt" is also acceptable as input as is UCR code 4

"burglary" UCR code 5 is also acceptable input

"larceny-theft" "larceny" and "theft" are also acceptable inputs as is UCR code 6

"mv theft" "motor vehicle theft", "motor vehicle larceny", and "mv larceny" are also ac-
ceptable inputs as input as is UCR code 7

"arson" UCR code 8 is also acceptable input

"part 2" All other crimes

"assault" "other assaults" is also acceptable input as is UCR code 9

"forgery" "forgery and counterfeiting" is also acceptable input as is UCR code 10

"fraud" UCR code 11 is also acceptable input

"embezzlement" UCR code 12 is also acceptable input

"stolen prop" "stolen property" is also acceptable input as is UCR code 13

"vandalism" UCR code 14 is also acceptable input

"weapons" UCR code 15 is also acceptable input

"prostitution" "prostitution and commercialized vice" is also acceptable input as is UCR
code 16

"sex offenses" UCR code 17 is also acceptable input

"drugs" "drug abuse violations" is also acceptable input as is UCR code 18

"gambling" UCR code 19 is also acceptable input

"family" "offenses against the family and children" is also acceptable input as is UCR code
20

"dwi" "driving under the influence" is also acceptable input as is UCR code 21

"liquor laws" UCR code 22 is also acceptable input

"drunkenness" UCR code 23 is also acceptable input

cs_get_data 13

"discon" "disorderly conduct" is also acceptable input as is UCR code 24

"vagrancy" UCR code 25 is also acceptable input

"other" "all other offenses" is also acceptable input as is UCR code 26

"suspicion" UCR code 27 is also acceptable input

"curfew" "curfew and loitering laws-persons under 18" is also acceptable input as is UCR
code 28

"runaway" "runaways-persons under 18" is also acceptable input as is UCR code 29

Value

A subset object with only the specified crimes

Examples

load example data
testData <- january2018

subset data to retain only violent crimes
testData <- cs_filter_crime(testData, var = crime, crime = "violent")

cs_get_data Download Crime Data from SLMPD

Description

Downloads crime data from the SLMPD website.

Usage

cs_get_data(year, month, index)

Arguments

year A year value in the style YYYY

month Optional; a month number, name, or abbreviation - 1, "Jan", and "January"
are all acceptible inputs.

index Optional; an index object created with cs_create_index. Building the index
prior to downloading data, especially if you are downloading multiple years
worth of data, will result in dramatically faster execution times for this function.

Value

A year-list object ready for validation.

14 cs_last_update

Examples

create index
i <- cs_create_index()

download single month
may18 <- cs_get_data(year = 2018, month = "May", index = i)

preview single month
may18

download full year
yearList18 <- cs_get_data(year = 2018, index = i)

preview year list object
yearList18

cs_last_update Date of Last Crime Data Update from SLMPD

Description

Data are updated by SLMPD on their crime statistics site on a monthly basis. This function returns
the date of the last update.

Usage

cs_last_update(output = "string")

Arguments

output A character scalar; if "string" the date will be returned in the style of "January
2019". If "date" the date will be returned as a YYYY-MM-DD date object.

Value

The date of the last posted data set in the format specified in the output parameter.

Examples

obtain data of last update
cs_last_update()

cs_load_year 15

cs_load_year Create Year List Object

Description

cs_load_year is used to load a set of .csv files contained in the given directory. This should be
used to load a full year worth of data or a partial year. There should be no more than 12 files in a
given path, and all should correspond to the same year. All columns will be read in as character
data in order to address inconsistencies in how the data are created. When cs_collapse is executed,
variables will be converted numeric when doing so is applicable.

Usage

cs_load_year(path)

Arguments

path A file path

Value

A year-list object containing 12 tibbles - one per month - worth of crime data stored within a list.

Examples

create temporary directory
tmpdir <- tempdir()
fs::dir_create(paste0(tmpdir,"/data/"))

load sample files into temporary directory
cs_example(path = paste0(tmpdir,"/data/"))

prep sample files
cs_prep_year(path = paste0(tmpdir,"/data/"))

load sample files
yearList17 <- cs_load_year(path = paste0(tmpdir,"/data/"))

delete data
fs::dir_delete(paste0(tmpdir,"/data/"))

print year-list object
yearList17

16 cs_parse_date

cs_missingXY Identify Missing Coordinates

Description

cs_missingXY compares X and Y coordinates and adds a logical column that identifies observations
that are missing coordinate data.

Usage

cs_missingXY(.data, varX, varY, newVar)

Arguments

.data A tibble or data frame

varX Name of column containing x coordinate data

varY Name of column containing y coordinate data

newVar Name of new column that is TRUE if coordinate data are missing and FALSE
otherwise.

Value

A tibble or data frame with a logical vector appended to it.

Examples

load example data
testData <- january2018

identify missing x and y coordinates
testData <- cs_missingXY(testData, varX = x_coord, varY = y_coord, newVar = missingXY)

cs_parse_date Separate Date Occur

Description

Creates two columns. One contains month, day, and year and the other contains hour, and minute.

Usage

cs_parse_date(.data, var, dateVar, timeVar, tz = NULL, keepDateTime = TRUE)

cs_parse_month 17

Arguments

.data A tibble or data frame

var A column containing month, day, year, and time separated by /

dateVar Name of new column to contain date data

timeVar Name of new column to contain time data

tz String name of timezone, defaults to system’s timezone

keepDateTime A logical scalar. Keep an intermediate dateTime variable if TRUE.

Value

A copy of the object with two columns appended. One is the time data and the other is the date
data.

Examples

load example data
testData <- january2018

parse date occured
testData <- cs_parse_date(testData, var = date_occur, dateVar = dateOcc, timeVar = timeOcc)

cs_parse_month Separate Coded Month

Description

Separates a column containing coded year and coded month separated by "-" into two columns and
removes the input column.

Usage

cs_parse_month(.data, var, yearVar, monthVar)

Arguments

.data A tibble or data frame

var the variable containing coded month and coded year

yearVar the name of the column to contain the year data

monthVar the name of the column to contain month data

Value

Returns a copy of the object with two new columns for the coded year and coded month appended
to it.

18 cs_prep_year

Examples

load example data
testData <- january2018

parse CodedMonth
testData <- cs_parse_month(testData, var = coded_month, yearVar = reportYear,

monthVar = reportMonth)

cs_prep_year Prepare Raw Data

Description

Data downloaded from the St. Louis Metropolitan Police Department are downloaded with incorrect
file paths - e.g. January2008.CSV.html. This function iterates over all files in a given path and
replaces their file extensions. Thus January2008.CSV.html will be replaced by january2008.csv.
There should be no more than 12 files in a given path, and all should correspond to the same year.

Usage

cs_prep_year(path, verbose = FALSE)

Arguments

path File path where raw STLMPD data are

verbose If TRUE, returns a tibble with results; otherwise if FALSE, no output is returned.

Value

A tibble containing old file names and new file names for reference is verbose = TRUE. Otherwise,
no output is returned. This function will change all problematic filenames in the specified path.

Examples

create temporary directory
tmpdir <- tempdir()
fs::dir_create(paste0(tmpdir,"/data/"))

load sample files into temporary directory
cs_example(path = paste0(tmpdir,"/data/"))

list files
list.files(paste0(tmpdir,"/data/"))

prep sample files
cs_prep_year(path = paste0(tmpdir,"/data/"))

cs_projectXY 19

list files again
list.files(paste0(tmpdir,"/data/"))

delete data
fs::dir_delete(paste0(tmpdir,"/data/"))

create temporary directory
fs::dir_create(paste0(tmpdir,"/data/"))

load sample files into temporary directory
cs_example(path = paste0(tmpdir,"/data/"))

prep sample files
cs_prep_year(path = paste0(tmpdir,"/data/"), verbose = TRUE)

delete data again
fs::dir_delete(paste0(tmpdir,"/data/"))

cs_projectXY Project Data

Description

cs_projectXY converts STLMPD data into a simple features object using the XCoord and YCoord
columns.

Usage

cs_projectXY(.data, varX, varY, crs)

Arguments

.data A tibble or data frame

varX Name of column containing x coordinate data

varY Name of column containing y coordinate data

crs integer with the EPSG code, or character with proj4string representing the coor-
dinate reference system

Value

A sf object with the crime data projected for mapping.

20 cs_replace0

Examples

load example data
testData <- january2018

identify missing x and y coordinates
testData <- cs_missingXY(testData, varX = x_coord, varY = y_coord, newVar = missingXY)

subset to remove missing data
testData <- dplyr::filter(testData, missingXY == FALSE)

project data
testData_sf <- cs_projectXY(testData, varX = x_coord, varY = y_coord)

project data and transform to new CRS
testData_sf <- cs_projectXY(testData, varX = x_coord, varY = y_coord, crs = 4269)

cs_replace0 Replace Coordinates with 0 Value with NA

Description

This function a specified column from the data frame and replaces cells that have the value 0 with
NA

Usage

cs_replace0(.data, var)

Arguments

.data A tibble or data frame

var Name of column containing coordinate data

Value

A tibble or data frame with the coordinate column updated.

Examples

load example data
testData <- january2018

replace 0s in the x and y coordinate variables
testData <- cs_replace0(testData, var = x_coord)
testData <- cs_replace0(testData, var = y_coord)

cs_replace_month 21

cs_replace_month Extract Month from Year-list Object

Description

This function replaces a single month worth of crime data that has previously been extracted from
a year-list object.

Usage

cs_replace_month(.data, month, monthData)

Arguments

.data A year list object

month A string name or abbreviation of a month, or its numeric value. Acceptable
inputs include, for example, "January", "january", "Jan", "jan", and 1.

monthData A tibble containing a single month worth of crime data.

Value

An updated year-list object.

See Also

cs_extract_month

Examples

load example year-list object
load(system.file("testdata", "yearList17.rda", package = "compstatr", mustWork = TRUE))

extract May
may17 <- cs_extract_month(yearList17, month = 5)

replace
yearList17 <- cs_replace_month(yearList17, month = 5, monthData = may17)
yearList17 <- cs_replace_month(yearList17, month = "May", monthData = may17)

22 cs_standardize

cs_standardize Standardized Variables

Description

Different time points of SLMPD have different numbers of variables and different names for those
variables that are included in both sets of releases. This function reformats non-standard configura-
tions to a 20 variable standard.

Usage

cs_standardize(.data, month, config = 18)

Arguments

.data A tbl

month An option string name or abbreviation of a month, or its numeric value. Accept-
able inputs include, for example, "January", "january", "Jan", "jan", and 1. If
all months in a year-list need to be standardized (this is applicable, as of March
2019, to all years from 2008 through 2012), the month should be given as "all"
to standardize them en masse.

config The non-standard configuration, either 18 or 26

Details

For all months prior to 2013 and approximately half of the months during 2013, SLMPD data are
released with 18 variables. For one month, May 2017, the data are released with 26 variables. This
function can be used to either edit an entire year list object or to edit only a specified month within
it. In general, years 2008 through 2012 should be edited en masse while the month specification
can be used to edit the months in 2013 and 2017 that are non-standard.

Examples

load example year-list object
load(system.file("testdata", "yearList17.rda", package = "compstatr", mustWork = TRUE))

validate
cs_validate(yearList17, year = 2017)

standaridze May, which has 26 variables
yearList17 <- cs_standardize(yearList17, month = "May", config = 26)

validate again to confirm fix
cs_validate(yearList17, year = 2017)

cs_validate 23

cs_validate Validate Year List Object

Description

Data from SLMPD are released with a number of problems that cs_validate is designed to iden-
tify.

Usage

cs_validate(.data, year, verbose = FALSE)

Arguments

.data A tbl

year A string representing the year being checked, e.g. "2008"

verbose A logical scalar. If TRUE, a full validation report summarizing results will be
returned. If FALSE, a single value will be returned.

Details

cs_validate performs a total of five checks on the given year-list object. Each test is summarized
in the verbose = TRUE output:

valMonth Each tibble within a year-list is named for the month it represents. Does the named
month match the month that the data represent?

valYear Does the year provided for the year argument match the year that the data represent?

oneMonth Does each tibble represent only one month of data?

varCount Does each tibble have the correct number of variables (20)?

valVars Does each tibble have the correct variable names?

For all months prior to 2013 and approximately half of the months during 2013, SLMPD data are
released with 18 variables. For one month, May 2017, the data are released with 26 variables. These
problems are identified most easily by using cs_validate.

Value

A tibble with validation results.

Examples

load example year-list object
load(system.file("testdata", "yearList17.rda", package = "compstatr", mustWork = TRUE))

simple validation
cs_validate(yearList17, year = 2017)

24 january2018

verbose validation
cs_validate(yearList17, year = 2017, verbose = TRUE)

january2018 Crimes in St. Louis, January 2018

Description

A data set containing all reported crimes in St. Louis, Missouri during January 2018.

Usage

data(january2018)

Format

A tibble with 3825 rows and 20 variables:

complaint complaint record number

coded_month year and month crime reported

date_occur date and time of crime

flag_crime Returns a Y when a crime occurred

flag_unfounded Reported crime was investigated and determined to be unfounded

flag_administrative Reported crime had a change in classification

count Returns a 1 or -1 for counting purposes

flag_cleanup Returns information if administrative cleanup occured

crime Uniform Crime Reporting code

district Number corresponding to the police determined district

description Name of the crime

ileads_address I/Leads system address

ileads_street I/Leads system street

neighborhood Number corresponding to a neighborhood

location_name Common “Location Name” (i.e. Zoo, Scottrade Center, etc.)

location_comment Information to provide context to the location (i.e. Alley, Restaraunt Name)

cad_address The Computer-Aided Dispatch address is the reported address by the 911 caller

cad_street The Computer-Aided Dispatch street is the reported street by the 911 caller

x_coord X-coordinates in the NAD83 format

y_coord Y-coordinates in the NAD83 format

Source

St. Louis Metropolitan Police Department

http://www.slmpd.org

january2018 25

Examples

str(january2018)
head(january2018)

Index

∗Topic datasets
january2018, 24

cs_address, 2
cs_collapse, 3, 15
cs_combine, 4
cs_create_index, 5, 13
cs_crime, 6
cs_crime_cat, 8
cs_example, 9
cs_extract_month, 10, 21
cs_filter_count, 11
cs_filter_crime, 11
cs_get_data, 13
cs_last_update, 14
cs_load_year, 15
cs_missingXY, 16
cs_parse_date, 16
cs_parse_month, 17
cs_prep_year, 18
cs_projectXY, 19
cs_replace0, 20
cs_replace_month, 10, 21
cs_standardize, 22
cs_validate, 23

january2018, 24

26

	cs_address
	cs_collapse
	cs_combine
	cs_create_index
	cs_crime
	cs_crime_cat
	cs_example
	cs_extract_month
	cs_filter_count
	cs_filter_crime
	cs_get_data
	cs_last_update
	cs_load_year
	cs_missingXY
	cs_parse_date
	cs_parse_month
	cs_prep_year
	cs_projectXY
	cs_replace0
	cs_replace_month
	cs_standardize
	cs_validate
	january2018
	Index

