
Package ‘commandr’
February 19, 2015

Title Command pattern in R

Version 1.0.1

Author Michael Lawrence

Depends methods

Imports utils

Description An S4 representation of the Command design pattern. The
Operation class is a simple implementation using closures and supports
forward and reverse (undo) evaluation. The more complicated Protocol
framework represents each type of command (or analytical protocol) by
a formal S4 class. Commands may be grouped and consecutively executed
using the Pipeline class. Example use cases include logging, do/undo,
analysis pipelines, GUI actions, parallel processing, etc.

Maintainer Tengfei Yin <yintengfei@gmail.com>

License Artistic-2.0

NeedsCompilation no

Repository CRAN

Date/Publication 2014-08-25 20:22:16

R topics documented:
Command-class . 2
Operation-class . 2
Pipeline-class . 3
PipelineData-class . 7
Protocol-class . 8
setProtocol . 10
setStage . 11
Stage-class . 13

Index 15

1

2 Operation-class

Command-class Virtual Command Class

Description

Command represents any generic operation and is often combined with other such objects in a se-
quence. This is the foundation for implementations of pipelines, logging, undo stacks, etc, accord-
ing to the Command design pattern. Since Command is virtual, it cannot be constructed directly.
Rather, one should construct an instance of a concrete derivative, like Operation or Protocol.

Details

Developers are encouraged to extend Command for new implementations of the Command design
pattern.

There are a number of generics for which a Command derivative should provide methods:

displayName(object): Gets the display name of the command, i.e., the name displayed in a
user interface. The default implementation returns the class name. A Command may provide
other visual attributes; the display name is considered fundamental for integration with user
interfaces.

widget(object, ...): Creates a widget for viewing and controlling this object. No default
implementation.

rev(object): Returns a Command that performs the opposite action, i.e., to undo an operation.
This will not always be possible, so it is acceptable for a subclass to leave this unimplemented.

active(object): Gets whether the command is considered active. This is meant for temporarily
disabling or enabling a command without removing it completely from, e.g., a pipeline or GUI
menu. No default implementation.

Of course, a Command implementation also needs a method that executes the command. The signa-
ture for such a function highly depends on the nature of the command, so the generic depends on
the class.

Author(s)

Michael Lawrence

Operation-class Operation: A Simple Command Implementation

Description

An Operation object implements a Command with an R closure. This may be useful as a base for
customized Command derivatives. Otherwise, consider it a skeletal proof-of-concept.

Pipeline-class 3

Constructors

Operation(do, undo = NULL): Constructs an Operation that invokes the closure do. If undo is
specified, it is the closure invoked for the reverse operation.

OperationQ(do, undo): Constructs an Operation that invokes a function with the body taken
from the quoted argument do. The function is enclosed in the calling environment. If undo is
specified, it is treated equivalently to do, except it should implement the reverse operation.

Methods

eval(expr): Executes the operation by evaluating the closure.

rev(x): Returns a new Operation that performs the reverse operation, as long as undo was
provided.

Author(s)

Michael Lawrence

Examples

op <- OperationQ(message("hello world"))
eval(op)

x <- 2
op <- OperationQ(x^2, sqrt(x))
x <- eval(op)
rop <- rev(op)
identical(2, eval(rop))

Pipeline-class Pipeline: A Sequence of Protocols

Description

A Pipeline represents a sequence of Protocols. When executed, it executes each of the protocols
in turn, where each protocol is passed the output of the previous protocol. Pipeline extends list,
so, in general, it can be treated as one when it comes to subsetting, etc.

Constructor

Pipeline(..., displayName = NULL): Constructs a Pipeline object with the protocols named
in The arguments in ... should be named and be either a Protocol object or a role
name for which a default Protocol is constructed. Optionally, a user-readable display name
can be specified as displayName.

4 Pipeline-class

Execution

perform(object, data, ...): Executes the protocols in order, with the output of each pipeline
passed as input to the next. Takes data as input to the first protocol and returns the output of
the last protocol.

Accessors

inType(object): Get the input type of the first protocol in the pipeline, or NULL if there are no
protocols.

outType(object): Get the input type of the first protocol in the pipeline, or NULL if there are no
protocols.

parameters(object): Obtains a list, each element of which is a list of the parameters for the
corresponding protocol.

protocol(object, role, method = character()): Gets the first protocol with the matching
role and method.

protocol(object, role) <- value: Replace the first protocol with the role given by role with
value.

Subsetting

pipeline(object, intype = "ANY", outtype = "ANY"): Gets the sub-pipeline that spans
from the first protocol with the input type derived from intype and the last protocol with the
output type derived from outtype.

head(x, n = 6L, role, method = character(), outtype): Like ordinary head, takes
a prefix of the pipeline. If outtype is provided, this returns the pipeline through the first
protocol with outtype as its output type. Otherwise, if role is specified, the result is the
pipeline through the first protocol performing that role. This can optionally be qualified by
method. If neither role nor outtype are specified, the first n elements are returned, as usual.

tail(x, n = 6L, role, method = character(), intype): Like ordinary tail, takes a suffix
of the pipeline. If intype is provided, this returns the pipeline starting at the last protocol with
intype as its input type. Otherwise, if role is specified, the result is the pipeline starting at
the last protocol performing that role. This can optionally be qualified by method. If neither
role nor outtype are specified, the last n elements are returned, as usual.

Pipeline extends list, so, in general, it can be treated as one when it comes to subsetting, etc.
For example, [method works for subsetting of Pipeline object.

Utilities

findProtocols(object, role, method = character()): Get the indices of the protocols in
the pipeline with the specified role and method.

Author(s)

Michael Lawrence

Pipeline-class 5

Examples

setStage("average", intype = "numeric")
setProtocol("mean", fun = mean, parent = "average")
setProtocol("quantile", representation = list(probs = "numeric"),

fun = quantile, parent = "average")
setProtocol("range", representation = list(low = "numeric", high = "numeric"),

fun = function(x, low = 0, high = Inf) x[x >= low & x <= high],
parent = setStage("trim", intype = "numeric"))

d <- c(1, 2, 4)
p <- Pipeline("trim", "average")
perform(p, d)

p <- Pipeline(Protocol("trim", low = 2), "average")
perform(p, d)

p <- Pipeline(Protocol("trim", low = 2),
Protocol("average", "quantile", probs = 0.75),
displayName = "Filter and Average")

perform(p, d)

accessor
inType(p)
outType(p)
parameters(p)
protocol(p, "average")
protocol(p, "average", "quantile")
displayName(p)

utils
findProtocols(p, "average")

subsetting
make a new example
setStage("DemoCastN2C", intype = "numeric", outtype = "character")
setProtocol("cast", fun = function(x){

message("Convert from numeric to character")
as.character(x)

},
parent = "DemoCastN2C")

setStage("DemoCastC2F", intype = "character", outtype = "factor")
setProtocol("cast", fun = function(x){

message("Convert from character to factor")
as.factor(x)

},
parent = "DemoCastC2F")

setStage("DemoCastF2L", intype = "factor", outtype = "list")
setProtocol("cast", fun = function(x){

message("Convert from factor to list")
as.list(x)

6 Pipeline-class

},
parent = "DemoCastF2L")

d <- 1:3
p <- Pipeline(Protocol("DemoCastN2C"),

Protocol("DemoCastC2F"),
Protocol("DemoCastF2L"))

p
perform(p, d)
subsetting
convert to a factor
p12 <- p[1:2]
p12
perform(p12, d)

#
p23 <- pipeline(p, intype = "character")
p23
perform(p23, as.character(d))

#
p12 <- head(p, 2)
p12
#or
head(p, outtype = "factor")
head(p, role = "DemoCastC2F")

tail(p, 2)
tail(p, intype = "character")
tail(p, intype = "factor")
tail(p, role = "DemoCastC2F")

#combination
p1 <- Pipeline(Protocol("DemoCastN2C"))
p2 <- Pipeline(Protocol("DemoCastC2F"))
p3 <- Pipeline(Protocol("DemoCastF2L"))
c(p1 ,p2)
p[2] <- p2

setClass("ExChar", contains = "character")

setStage("DemoCastC2FV2", intype = "ExChar", outtype = "factor")
setProtocol("cast", fun = function(x){

as.factor(x)
},
parent = "DemoCastC2FV2")

p4 <- Pipeline(Protocol("DemoCastC2FV2"))

Not run:
doesn't work, input 'charcter' is super class of output 'ExChar'.
p[2] <- p4

PipelineData-class 7

End(Not run)
p

as a subclass, works.
setStage("DemoCastN2CV2", intype = "numeric", outtype = "ExChar")
setProtocol("cast", fun = function(x){

new("ExChar", as.character(x))
},
parent = "DemoCastN2CV2")

p5 <- Pipeline(Protocol("DemoCastN2CV2"))
p[1] <- p5
p

Not run:
won't work, because the outtype doesn't match the intype.
c(p1, p3, p2)
p[c(1, 3)]
p[2] <- p3

End(Not run)

PipelineData-class PipelineData: Data with history

Description

PipelineData is a virtual class representing a dataset with an attached pipeline that describes the
series of steps that produced the object. The storage of the data is up to the implementation. The
methods described here apply equally to PipelineData and any other object that has pipeline as
a slot/attribute.

Methods

pipeline(object, ancestry = TRUE, local = TRUE): Gets the pipeline that produced
the object. If ancestry is TRUE, the returned pipeline includes the protocols that produced
predecessors of a different type. If local is TRUE, the pipeline includes protocols after the last
protocol that output an object of a different type, i.e., all local protocols have this type as both
their input and output.

explore(object): Produces an interactive, exploratory visualization of this data, in the context
of the last applied protocol.

Author(s)

Michael Lawrence

8 Protocol-class

Examples

A non-PipelineData data example
setStage("average", intype = "numeric")
setProtocol("mean", fun = mean, parent = "average")
setProtocol("quantile", representation = list(probs = "numeric"),

fun = quantile, parent = "average")
setProtocol("range", representation = list(low = "numeric", high = "numeric"),

fun = function(x, low = 0, high = Inf) x[x >= low & x <= high],
parent = setStage("trim", intype = "numeric"))

d <- c(1, 2, 4)
p <- Pipeline("trim", "average")
d2 <- perform(p, d)
attr(d2, 'pipeline')
pipeline(d2)
Not run:
this will give an error, no slot called pipelinem, just numeric value.
d2@pipeline

End(Not run)

setClass("ProcessNumeric", contains = c("numeric", "PipelineData"))
d <- new("ProcessNumeric", c(1, 2, 4))
d@pipeline
setStage("average", intype = "ProcessNumeric")
setProtocol("mean", fun = function(x) new("ProcessNumeric", mean(x)), parent = "average")
setProtocol("quantile", representation = list(probs = "numeric"),

fun = function(x) new("ProcessNumeric", quantile(x)), parent = "average")
setProtocol("range", representation = list(low = "numeric", high = "numeric"),

fun = function(x, low = 0, high = Inf) new("ProcessNumeric",
x[x >= low & x <= high]),

parent = setStage("trim", intype = "ProcessNumeric"))

p <- Pipeline("trim", "average")
d2 <- perform(p, d)
attr(d2, 'pipeline')
pipeline(d2)
class(d2)
d2@pipeline

Protocol-class Protocol: Concrete Step in a Pipeline

Description

A Protocol object performs a Stage in a particular way, as part of a Pipeline. Most users will
simply construct a Protocol and add it to a pipeline. To define a new type of Protocol, see
setProtocol.

Protocol-class 9

Constructors

Protocol(role, method = defaultMethod(role), ...): Creates a protocol of the stage
identified by role and method given by method. The role argument may be either a Stage
object or a string naming the role. Parameters in ... are passed to the initializer, i.e., they
specify parameters of the protocol by name.

Accessors

stage(object, where = topenv(parent.frame())): Return a Stage object that represents the
role this protocol plays in a pipeline. Searches for the class definition of the stage in where.

method(object, where = topenv(parent.frame())): Returns the method name of this pro-
tocol. This is derived from the class name of the protocol by removing the stage name. The
environment where should contain the definition of the stage class.

displayName(object): Gets the name for displaying this protocol in a user interface.

inType(object): Gets the class of data that this protocol accepts as input.

outType(object): Gets the class of data that this protocol yields as output.

parameters(object): Gets the list of parameters, i.e., the slots of the object, that control the
execution of the protocol.

pipeline(object): Some protocols delegate to a secondary pipeline, i.e., they have a slot named
"pipeline". This function retrieves that, or returns NULL if the protocol does not delegate to a
pipeline.

Author(s)

Michael Lawrence

See Also

setProtocol for defining new types of protocols

Examples

setStage("average", intype = "numeric")
setProtocol("mean", fun = mean, parent = "average")
setProtocol("quantile", representation = list(probs = "numeric"),

fun = quantile, parent = "average")

proto_avg_mean <- Protocol("average")
proto_avg_mean <- Protocol("average", "mean")
proto_avg_quantile <- Protocol("average", "quantile")
proto_avg_quantile_075 <- Protocol("average", "quantile", probs = 0.75)

proto <- proto_avg_quantile_075
proto
stage(proto)
inType(proto)
parameters(proto)

10 setProtocol

setProtocol Define a Protocol Type

Description

This function defines new derivatives of the Protocol class. It is a wrapper around setClass and
thus has a very similar interface.

Usage

setProtocol(method, dispname = method, representation = list(), fun,
parent, prototype = list(), validity = NULL,
where = topenv(parent.frame()))

Arguments

method The name of the method performed by protocols of this type

dispname The display name for protocols of this type

representation A list declaring the names and types of the parameters, implemented as slots in
the S4 class

fun The function implementing the protocol. If omitted, this protocol type will be
virtual. This function will be passed the input data, any parameters named in
its formals, and any arguments passed to perform. Default values for its argu-
ments override values in prototype. Use callNextProtocol to chain up to the
implementation of a parent protocol.

parent The single parent/super class for this protocol class. Usually, this is the role, i.e.,
the name of the Stage for this protocol type. Also could be the name of a class
inheriting from Protocol, or the concantenation of the role and method names.

prototype As in setClass, the list indicating initial values for the parameters/slots. Usu-
ally not necessary, because it is derived from the formals of fun.

validity The function for checking the validity of an object, see setClass.

where The environment in which this protocol class is defined.

Details

Every type of protocol in a pipeline is implemented as an S4 class, ultimately derived from Protocol.
The parameters controlling the execution of the protocol are represented by slots in that S4 class.

Through S4 inheritance, each protocol is associated with a Stage, which represents the role a pro-
tocol plays in the pipeline. For example, a protocol might have an “average” stage, with two proto-
cols: “mean” and “median”. Here, “average” would be the role name and would have an associated
Stage derivative. Meanwhile, “mean” and “median” are method names and would each have a cor-
responding Protocol derivative. Protocols that have the same stage all derive from a common, vir-
tual Protocol derivative corresponding to that stage. In our example, we would have two protocol
classes: ProtoAverageMean and ProtoAverageMedian. Both would inherit from ProtoAverage,
which in turn inherits from Protocol.

setStage 11

Another side effect of this function is that a generic is defined, named of the form role.Method, that
performs this protocol, given the data and additional arguments. There is a method for the inType
of the stage. Thus, in our example, we would have generics average.mean and average.median.

Value

The name of the class

Author(s)

Michael Lawrence

See Also

Protocol for constructing protocol objects, setStage for defining Stage classes.

Examples

setStage("average")
setProtocol("mean", fun = mean, parent = "average")
setProtocol("median", fun = median, parent = "average")
d <- c(1, 2, 4)
average(d)
average(d, "median")
average.median(d)

setStage Define a Stage Class

Description

This function defines new derivatives of the Stage class. It is a wrapper around setClass and thus
has a similar interface.

Usage

setStage(name, dispname = name, intype = "ANY", outtype = intype,
where = topenv(parent.frame()))

Arguments

name The name of the stage, i.e., the role string

dispname The name for display in a user interface

intype The class of the data that protocols of this stage accept as input

outtype The class of the data that protocols of this stage accept as output

where The environment in which to define the stage class

12 setStage

Details

Calling setStage defines two classes:

• A derivative of Stage that represents this stage

• A derivative of Protocol from which all protocols that implement this stage derive

For example, if we had a stage named “average”, calling setStage would create the classes StageAverage
and ProtoAverage.

The function also defines a generic, named by the name argument, that performs a protocol of this
stage. There is a method that takes an object of type intype as first argument and a method name
as its second. Additional arguments are passed to the perform method of the protocol. In our prior
example, there would be a generic called average and method average,numeric if intype was
given as “numeric”.

It also defines a generic of the form nameProto that serves as an accessor for protocols of this stage.
A method is defined for Pipeline and outtype, so that one could retrieve our “average” protocol
with averageProto(pipeline) or averageProto(result). Similarly, a replacement generic and
methods are defined.

Value

The name of the role

Author(s)

Michael Lawrence

See Also

The Stage class; setProtocol for defining a new type of protocol

Examples

simplest definition
setStage("average")
add a display name and specialize to numeric input
setStage("average", "Average Vector", intype = "numeric")
setProtocol("mean", fun = mean, parent = "average")
setProtocol("quantile", representation = list(probs = "numeric"),

fun = quantile, parent = "average")
setProtocol("range", representation = list(low = "numeric", high = "numeric"),

fun = function(x, low = 0, high = Inf) x[x >= low & x <= high],
parent = setStage("trim", intype = "numeric"))

Class Stage derivative
showClass("StageAverage")
Class Protocol derivative
showClass("ProtoAverage")

generic defined
showMethods("average")

Stage-class 13

try this generic method
d <- c(1, 2, 4)
average(d, "mean")

create a pipeline
p <- Pipeline("trim", "average")
res <- perform(p, d)
res
generic *Proto
averageProto(p)
averageProto(res)

Stage-class Stage: Abstract Step in a Pipeline

Description

A Stage object represents a role to be played by protocols in a pipeline. In other words, a stage is
an abstract step that transforms one data type into another. The transformation may be implemented
in a number of ways, each corresponding to a protocol. Users normally do not have to interact with
this object. Developers can define new types of stages with setStage.

Constructors

Stage(role): Creates a stage object given the role name.

Accessors

role(object): Gets the name of the role represented by this stage.

displayName(object): Gets the name for displaying this stage in a user interface.

inType(object): Gets the class of data that protocols of this stage accept as input.

outType(object): Gets the class of data that protocols of this stage yield as output.

defaultMethod(object): Gets the name of the default method associated with the role of this
stage. If not explicitly set, this becomes the first protocol registered for the stage.

defaultMethod(object) <- value: Sets the name of the default method associated with the
role of this stage.

methodNames(object, where = topenv(parent.frame())): Gets the names of the
methods for this stage, looking in where for the protocol classes.

Author(s)

Michael Lawrence

See Also

setStage for defining new types of stages

14 Stage-class

Examples

setStage("average", "Average Numbers", intype = "numeric")
setProtocol("mean", fun = mean, parent = "average")
setProtocol("median", fun = median, parent = "average")

stage <- Stage("average")
stage

defaultMethod(stage)
defaultMethod(stage) <- "median"
defaultMethod(stage)

Index

[,Pipeline-method (Pipeline-class), 3
[<-,Pipeline-method (Pipeline-class), 3

active (Command-class), 2
active,Command-method (Command-class), 2
active<- (Command-class), 2
active<-,Command-method

(Command-class), 2

c,Pipeline-method (Pipeline-class), 3
callNextProtocol, 10
callNextProtocol (Protocol-class), 8
class:Command (Command-class), 2
class:Operation (Operation-class), 2
class:Pipeline (Pipeline-class), 3
class:PipelineData

(PipelineData-class), 7
class:Protocol (Protocol-class), 8
class:Stage (Stage-class), 13
Command-class, 2

defaultMethod (Stage-class), 13
defaultMethod,character-method

(Stage-class), 13
defaultMethod,missing-method

(Stage-class), 13
defaultMethod,Stage-method

(Stage-class), 13
defaultMethod<- (Stage-class), 13
defaultMethod<-,Stage-method

(Stage-class), 13
displayName (Command-class), 2
displayName,ANY-method (Command-class),

2
displayName,Pipeline-method

(Pipeline-class), 3

eval,Operation-method
(Operation-class), 2

explore (PipelineData-class), 7

explore,ANY,missing-method
(PipelineData-class), 7

findProtocols (Pipeline-class), 3
findProtocols,Pipeline-method

(Pipeline-class), 3

head, 4
head,Pipeline-method (Pipeline-class), 3

inType (Stage-class), 13
inType,Pipeline-method

(Pipeline-class), 3

method (Protocol-class), 8
method,Protocol-method

(Protocol-class), 8

Operation, 2
Operation (Operation-class), 2
Operation-class, 2
OperationQ (Operation-class), 2
outType (Stage-class), 13
outType,Pipeline-method

(Pipeline-class), 3

parameters (Protocol-class), 8
parameters,Pipeline-method

(Pipeline-class), 3
parameters,Protocol-method

(Protocol-class), 8
perform (Protocol-class), 8
perform,Pipeline-method

(Pipeline-class), 3
Pipeline, 8
Pipeline (Pipeline-class), 3
pipeline (Pipeline-class), 3
pipeline,ANY-method

(PipelineData-class), 7
pipeline,Pipeline-method

(Pipeline-class), 3

15

16 INDEX

pipeline,Protocol-method
(Protocol-class), 8

Pipeline-class, 3
PipelineData-class, 7
Protocol, 2, 3, 11, 12
Protocol (Protocol-class), 8
protocol (Pipeline-class), 3
protocol,Pipeline-method

(Pipeline-class), 3
Protocol-class, 8
protocol<- (Pipeline-class), 3
protocol<-,Pipeline-method

(Pipeline-class), 3
protocolClass (Protocol-class), 8

rev,Operation-method (Operation-class),
2

role (Stage-class), 13
role,Stage-method (Stage-class), 13

setClass, 10, 11
setProtocol, 8, 9, 10, 12
setStage, 11, 11, 13
Stage, 8–10, 12
Stage (Stage-class), 13
stage (Protocol-class), 8
stage,Protocol-method (Protocol-class),

8
Stage-class, 13

tail, 4
tail,Pipeline-method (Pipeline-class), 3

widget (Command-class), 2

	Command-class
	Operation-class
	Pipeline-class
	PipelineData-class
	Protocol-class
	setProtocol
	setStage
	Stage-class
	Index

