
Package ‘coloredICA’
February 24, 2015

Type Package

Title Implementation of Colored Independent Component Analysis and
Spatial Colored Independent Component Analysis

Version 1.0.0

Date 2014-03-04

Author Lee, S., Shen, H., Truong, Y. and Zanini, P.

Maintainer Paolo Zanini <paolo.zanini@polimi.it>

Depends MASS

Suggests fastICA

Description It implements colored Independent Component Analysis (Lee et al., 2011) and spatial col-
ored Independent Component Analysis (Shen et al., 2014). They are two algorithms to per-
form ICA when sources are assumed to be temporal or spatial stochastic processes, respectively.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-24 11:01:51

R topics documented:

amari_distance . 2
cICA . 3
grad . 6
hess . 7
kern . 8
locmulti . 9
rerow . 10
scICA . 11

Index 16

1

2 amari_distance

amari_distance Amari error

Description

This function measures the Amari error between two matrices.

Usage

amari_distance(Q1, Q2)

Arguments

Q1 First matrix.

Q2 Second matrix.

Details

The Amari error D(Q1|Q2) between two M x M matrices Q1 and Q2 is evaluated through

D(Q1|Q2) =
1

2M(M − 1)

M∑
j=1

(∑
i |aij |

maxi|aij |
− 1

)
+

1

2M(M − 1)

M∑
i=1

(∑
j |aij |

maxj |aij |
− 1

)
,

where Q2 is invertible and aij is the ijth element of Q1Q2−1.

Value

It returns the Amari error between two matrices Q1 and Q2.

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

References

Amari, S., Cichocki, A., Yang, H. et al. (1996). A New Learning Algorithm for Blind Signal
Separation. Advances in Neural Information Processing Systems, 8, 757–763

Bach, F., Jordan, M. (2003). Kernel Independent Component Analysis. Journal of Machine Learn-
ing Research, 3, 1–48

See Also

cICA, scICA

cICA 3

Examples

M <- 4
A <- matrix(rnorm(M*M),M,M)
B <- matrix(rnorm(M*M),M,M)

amari_distance(A,B)

cICA colored Independent Component Analysis

Description

This function implements the colored Independent Component Analysis (cICA) algorithm, where
sources are treated as temporal stochastic processes.

Usage

cICA(Xin, M = dim(Xin)[1], Win = diag(M), tol = 1e-04, maxit = 20, nmaxit = 1,
unmixing.estimate = "eigenvector", maxnmodels = 100)

Arguments

Xin Data matrix with p rows (representing variables) and n columns (representing
observations).

M Number of components to be extracted.

Win Initial guess for the unmixing matrix W. Dimensions need to be M x M.

tol Tolerance used to establish the convergence of the algorithm.

maxit Maximum number of iterations.

nmaxit If the algorithm does not converge, it is run again with a new initial guess for
the unmixing matrix W. This operation is done nmaxit times.

unmixing.estimate

The method used in the unmixing matrix estimation step. The two allowed
choices are "eigenvector" and "newton" (see Details).

maxnmodels Maximum number of models tested in the spectral density estimation step of the
algorithm (see Details).

Details

In the Independent Component Analysis approach, the data matrix X is considered to be a linear
combination of independent components, i.e. X = AS, where rows of S contain the unobserved
realizations of the independent components and A is a linear mixing matrix. According to classi-
cal ICA procedures data matrix X is centered and, then, whitened by projecting the data onto its
principal component directions, i.e. X → KX = X̃ where K is a M x p pre-whitening ma-
trix. The cICA algorithm then estimates the unmixing matrix W , with WX̃ = S, according to the

4 cICA

procedure described below. Then, defining W̃ = WK, the mixing matrix A is recovered through
A = W̃T (W̃W̃T)−1.

Colored Independent Component Analysis assumes that the independent sources are temporal stochas-
tic processes. To perform ICA, the Whittle log-likelihood is exploited. In particular the log-
likelihood is written in function of the unmixing matrix W and the spectral densities fSj

of the
autocorrelated sources as follows:

l(W,fS ; X̃) =

p∑
j=1

n∑
k=1

(
eTj W f̃(rk, X̃)WTej

fSj (rk)
+ ln fSj

(rk)

)
+ n ln |det(W)|.

Due to whitening, W is orthogonal and the last term of the objective function can be dropped. The
orthogonality of the unmixing matrixW can be imposed in two different ways, setting the argument
unmixing.estimate. In this way the estimate of the unmixing matrix W can be found according
two different procedures:

• as described in Shen et al. (2014). A penalty term is added to the objective function. In particu-
lar τw′jCjwj , where w′j is the jth column ofW ,Cj =

∑
k 6=j wkw

′
k and τ is a tuning parame-

ter. The matrixCj provides an orthogonality constraint in the sense that w′jCjwj =
∑

k 6=j . In
this way the objective function assumes a symmetric and positive-definite form and the argmin
correspond to the lower eigenvalue. This choice is obtained setting unmixing.matrix = "eigenvector".

• as described in Lee et al. (2011). The orthogonality constraint is considered performing the
minimization of the objective function according a Newton-Raphson method with Lagrange
multiplier. This choice is obtained setting unmixing.matrix = "newton".

Independently from the choice of the technique to minimize the objective function, the cICA algo-
rithm is based on an iterative procedure. While the Amari error is greater than tol and the number
of iteration is less or equal than maxit, the two following steps are repeated:

• parametric estimation of the sources spectral densities using the Yule-Walker method, evalu-
ating maxmodels models.

• estimate the unmixing matrix W according the method selected in unmixing.estimate.

Value

A list containing the following components:

W Estimate of the M x M unmixing matrix in the whitened space.

K pre-whitening matrix that projects data onto the first M principal components.
Dimensions are M x p.

A Estimate of the p x M mixing matrix.

S Estimate of the M x n source matrix.

X Original p x n data matrix.

iter number of iterations.

NInv number of times the algorithm is rerun after it does not achieve convergence.

den Estimate of the spectral density of the sources. Dimensions are M x n.

cICA 5

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

References

Lee, S., Shen, H., Truong, Y., Lewis, M., Huang, X. (2011). Independent Component Analysis
Involving Autocorrelated Sources With an Application to Funcional Magnetic Resonance Imaging.
Journal of the American Statistical Association, 106, 1009–1024.

Shen, H., Truong, Y., Zanini, P. (2014). Independent Component Analysis for Spatial Processes on
a Lattice. MOX report 38/2014, Department of Mathematics, Politecnico di Milano.

See Also

scICA

Examples

Not run:

require(fastICA)

T=256
n1=16
n2=16
M=2

S1 = arima.sim(list(order=c(0,0,2),ma=c(1,0.25)),T)
S2 = arima.sim(list(order=c(1,0,0), ar=-0.5),T,rand.gen = function(n, ...) (runif(n)-0.5)*sqrt(3))

A = rerow(matrix(runif(M^2)-0.5,M,M))
W = solve(A)
S=rbind(S1,S2)
X = A %*% S

cica = cICA(X,tol=0.001)
scica = scICA(X,n1=n1,n2=n2,h=0.8,tol=0.001)
fica = fastICA(t(X),2)

amari_distance(t(A),t(cica$A))
amari_distance(t(A),t(scica$A))
amari_distance(t(A),fica$A)

Shat1=cica$S
Shat2=scica$S
Shat3=t(fica$S)

par(mfrow=c(2,2))
plot(S[1,],type="l",lwd=2)
plot(S[2,],type="l",lwd=2)
plot(Shat1[1,],type="l",lwd=2,col="red")
plot(Shat1[2,],type="l",lwd=2,col="red")

6 grad

par(mfrow=c(2,2))
plot(S[1,],type="l",lwd=2)
plot(S[2,],type="l",lwd=2)
plot(Shat2[1,],type="l",lwd=2,col="green")
plot(Shat2[2,],type="l",lwd=2,col="green")

par(mfrow=c(2,2))
plot(S[1,],type="l",lwd=2)
plot(S[2,],type="l",lwd=2)
plot(Shat3[1,],type="l",lwd=2,col="blue")
plot(Shat3[2,],type="l",lwd=2,col="blue")

End (Not run)

grad Gradient

Description

This function evaluates the gradient of the objective function for the spectral density local maximum
likelihood estimator.

Usage

grad(x, omega, l_period, n, freq, h)

Arguments

x Current estimate

omega Frequency at which the spectral density estimate is evaluated.

l_period Vector of length n with the log-periodogram evaluations at the n Fourier fre-
quencies.

n Number of points in the analyzed lattice.

freq n × 2 matrix with the n Fourier frequencies.

h Kernel bandwidth.

Details

In scICA function the maximization for the spectral density local maximum likelihood estimator is
obtained through the Newton-Raphson algorithm. This function returns the gradient needed in the
optimization method. See locmulti for further details.

Value

It returns a gradient vector of length 3.

hess 7

Note

It is auxiliary for scICA function.

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

See Also

scICA, locmulti, kern.

hess Hessian

Description

This function evaluates the Hessian matrix of the objective function for the spectral density local
maximum likelihood estimator.

Usage

hess(x, omega, l_period, n, freq, h)

Arguments

x Current estimate

omega Frequency at which the spectral density estimate is evaluated.

l_period Vector of length n with the log-periodogram evaluations at the n Fourier fre-
quencies.

n Number of points in the analyzed lattice.

freq n × 2 matrix with the n Fourier frequencies.

h Kernel bandwidth.

Details

In scICA function the maximization for the spectral density local maximum likelihood estimator is
obtained through the Newton-Raphson algorithm. This function returns the Hessian matrix needed
in the optimization method. See locmulti for further details.

Value

It returns a 3× 3 Hessian matrix.

Note

It is auxiliary for scICA function.

8 kern

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

See Also

scICA, locmulti, kern.

kern Kernel evaluation

Description

This function returns a vector of length n with the evaluation of an exponential Kernel at a point x0
∈ R2 for the n Fourier frequencies.

Usage

kern(x0, h, freq)

Arguments

x0 Point ∈ R2 at which the Kernel is evaluated.
h Kernel bandwidth.
freq n × 2 matrix with the n Fourier frequencies, where n is the number of points in

the analyzed lattice.

Details

This function returns a vector of length n with the evaluation of an exponential Kernel at a point x0
∈ R2 for the n Fourier frequencies. In particular the k-th vector element is

e−
(ωk−x0)T (ωk−x0)

h2 .

Value

It returns a list containing the following component:

v vector containing the n exponential Kernel evaluations.

Note

It is auxiliary for locmulti, grad and hess functions.

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

See Also

scICA, locmulti, grad, hess.

locmulti 9

locmulti Local polynomial spectral density estimation

Description

This function implements a local polinomial estimation for the log spectral density at a point x0
∈ R2.

Usage

locmulti(x0, l_period, n, freq, h)

Arguments

x0 Point ∈ R2 at which the spectral density estimate is evaluated.
l_period Vector of length n with the log-periodogram evaluations at the n Fourier fre-

quencies.
n Number of points in the analyzed lattice.
freq n × 2 matrix with the n Fourier frequencies.
h Kernel bandwidth.

Details

locmulti function is auxiliary for the nonparametric estimation of the sources spectral density step
of the scICA function. locmulti function implements the initial estimates for the local maximum
likelihood estimator of the log spectral density m(x0) at a point x0 ∈ R2. To obtain an estimate of
m(x0) the local likelihood function∑

k

(
Yk − a− b′(ωk − x0)− eYk−a−b′(ωk−x0)

)
KH(ωk − x0)

is constructed, where Yk denotes the log-periodogram value at the Fourier frequency ωk, KH a sur-
face kernel and H = (h, h). The local maximum estimator m̂LK(x0) is â in the maximizer (â, b̂).
The estimate is implemented directly in the scICA function through a Newton-Rapshon algorithm.
The initialization for the Newton-Rapshon algorithm is derived through a local polynomial approx-
imation implemented in this locmulti function. In particular the following function is minimized
to find a local polynomial approximation for m(x0)∑

k

(
Yk − a− b′(ωk − x0)

)2
KH(ωk − x0)

and the minimizer â is used as an initial value in order to obtain the local maximum likelihood
estimator m̂LK(x0).

Value

It returns a list containing the following component:

ahat local polynomial estimate of the log spectral density at x0.

10 rerow

Note

It is auxiliary for scICA function.

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

References

Shen, H., Truong, Y., Zanini, P. (2014). Independent Component Analysis for Spatial Processes on
a Lattice. MOX report 38/2014, Department of Mathematics, Politecnico di Milano.

Fan, J., Kreutzberger, E. (1998). Automatic Local Smoothing for Spectral Density Estimation.
Scandinavian Journal of Statistics, 25, 359–369.

See Also

scICA, kern

rerow Standardization of a matrix reordering the rows

Description

This function reorders and standardizes the rows of a matrix.

Usage

rerow(w)

Arguments

w Matrix to standardize.

Details

The standardization is done in such a way that every row has length 1, the largest absolute value of
the row has a positive sign and the rows are ordered decreasingly according to their largest value.

Value

It returns the standardized matrix.

Note

It is auxiliary for cICA and scICA functions.

scICA 11

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

See Also

amari_distance, cICA, scICA

scICA spatial colored Independent Component Analysis

Description

This function implements the spatial colored Independent Component Analysis (scICA) algorithm,
where sources are treated as spatial stochastic processes on a lattice.

Usage

scICA(Xin, M = dim(Xin)[1], Win = diag(M), tol = 1e-04, maxit = 20, nmaxit = 1,
unmixing.estimate = "eigenvector", n1, n2, nx01 = n1, nx02 = n2, h)

Arguments

Xin Data matrix with p rows (representing variables) and n columns (representing
observations).

M Number of components to be extracted.

Win Initial guess for the unmixing matrix W. Dimensions need to be M x M.

tol Tolerance used to establish the convergence of the algorithm.

maxit Maximum number of iterations.

nmaxit If the algorithm does not converge, it is run again with a new initial guess for
the unmixing matrix W. This operation is done nmaxit times.

unmixing.estimate

The method used in the unmixing matrix estimation step. The two allowed
choices are "eigenvector" and "newton" (see Details).

n1 Number of rows of the lattice.

n2 Number of columns of the lattice.

nx01 Number of rows of the lattice where the spectral density is evaluate. Default
value is n1.

nx02 Number of columns of the lattice where the spectral density is evaluate. Default
value is n2.

h Kernel bandwidth used for the nonparametric estimation of the sources spectral
densities.

12 scICA

Details

In the Independent Component Analysis approach, the data matrix X is considered to be a linear
combination of independent components, i.e. X = AS, where rows of S contain the unobserved
realizations of the independent components and A is a linear mixing matrix. According to classi-
cal ICA procedures data matrix X is centered and, then, whitened by projecting the data onto its
principal component directions, i.e. X → KX = X̃ where K is a M x p pre-whitening matrix.
The scICA algorithm then estimates the unmixing matrix W , with WX̃ = S, according to the
procedure described below. Then, defining W̃ = WK, the mixing matrix A is recovered through
A = W̃T (W̃W̃T)−1.

Spatial colored Independent Component Analysis assumes that the independent sources are spatial
stochastic processes on a lattice. To perform ICA, the Whittle log-likelihood is exploited. In par-
ticular the log-likelihood is written in function of the unmixing matrix W and the spectral densities
fSj

of the spatial autocorrelated sources as follows:

l(W,fS ; X̃) =

p∑
j=1

n∑
k=1

(
eTj W f̃(rk, X̃)WTej

fSj
(rk)

+ ln fSj
(rk)

)
+ n ln |det(W)|.

Due to whitening, W is orthogonal and the last term of the objective function can be dropped. The
orthogonality of the unmixing matrixW can be imposed in two different ways, setting the argument
unmixing.estimate. In this way the estimate of the unmixing matrix W can be found according
two different procedures:

• as described in Shen et al. (2014). A penalty term is added to the objective function. In particu-
lar τw′jCjwj , where w′j is the jth column ofW ,Cj =

∑
k 6=j wkw

′
k and τ is a tuning parame-

ter. The matrixCj provides an orthogonality constraint in the sense that w′jCjwj =
∑

k 6=j . In
this way the objective function assumes a symmetric and positive-definite form and the argmin
correspond to the lower eigenvalue. This choice is obtained setting unmixing.matrix = "eigenvector".

• as described in Lee et al. (2011). The orthogonality constraint is considered performing the
minimization of the objective function according a Newton-Raphson method with Lagrange
multiplier. This choice is obtained setting unmixing.matrix = "newton".

Independently from the choice of the technique to minimize the objective function, the scICA algo-
rithm is based on an iterative procedure. While the Amari error is greater than tol and the number
of iteration is less or equal than maxit, the two following steps are repeated:

• nonparametric estimation of the sources spectral density through a multidimensional local
linear kernel estimator m̂LK (see Shen et al. (2014) for further details).

• estimate the unmixing matrix W according the method selected in unmixing.estimate.

Value

A list containing the following components:

W Estimate of the M x M unmixing matrix in the whitened space.

K pre-whitening matrix that projects data onto the first M principal components.
Dimensions are M x p.

A Estimate of the p x M mixing matrix.

scICA 13

S Estimate of the M x n source matrix.

X Original p x n data matrix.

iter number of iterations.

NInv number of times the algorithm is rerun after it does not achieve convergence.

den Estimate of the spectral density of the sources. Dimensions are M x n.

Note

Note that source matrix S and spectral density matrix den are n x M matrices. Every row, that
should be in a n1 x n2 grid, has been vectorized in a n vector by column, with n = n1 x n2.

Author(s)

Lee, S., Shen, H., Truong, Y. and Zanini, P.

References

Shen, H., Truong, Y., Zanini, P. (2014). Independent Component Analysis for Spatial Processes on
a Lattice. MOX report 38/2014, Department of Mathematics, Politecnico di Milano.

Lee, S., Shen, H., Truong, Y., Lewis, M., Huang, X. (2011). Independent Component Analysis
Involving Autocorrelated Sources With an Application to Funcional Magnetic Resonance Imaging.
Journal of the American Statistical Association, 106, 1009–1024.

See Also

cICA

Examples

Not run:

require(fastICA)

n1=20
n2=20
M=2

Fist source

sigma1=2
S1=matrix(0,n1,n2)
for (i in 1:n1){
S1[i,]=rnorm(n2,i*2,0.2)
}
for (j in 1:n2){
S1[,j]=S1[,j]+rnorm(n1,j*2,0.2)
}
S1=S1+matrix(rnorm(n1*n2,0,sigma1),n1,n2)

image(1:n2,1:n1,t(S1[n1:1,]),xlab="",ylab="",main="Source 1")

14 scICA

contour(1:n2,1:n1,t(S1[n1:1,]),add=TRUE)

Second source

val1=1
val2=1.2
val3=1.5
val4=2
sigma2=0.1

S2=matrix(0,n1,n2)
S2[2:5,4:10]=val1
S2[3:4,5:9]=val3
S2[13:18,16:19]=val2
S2[14:17,17:18]=val4
S2=S2+matrix(rnorm(n1*n2,0,sigma2),n1,n2)

image(1:n2,1:n1,t(S2[n1:1,]),xlab="",ylab="",main="Source 2")
contour(1:n2,1:n1,t(S2[n1:1,]),add=TRUE)

Generating data matrix X

A = rerow(matrix(runif(M^2)-0.5,M,M))
W = solve(A)
S=rbind(as.vector(S1),as.vector(S2))
X = A %*% S

Solving Blind Source Separation problem with three different methods

cica = cICA(X,tol=0.001)
scica = scICA(X,n1=n1,n2=n2,h=(2*pi/10),tol=0.001)
fica = fastICA(t(X),2)

amari_distance(t(A),t(cica$A))
amari_distance(t(A),t(scica$A))
amari_distance(t(A),fica$A)

Shat1=cica$S
Shat2=scica$S
Shat3=t(fica$S)

par(mfrow=c(2,2))
image(t(S1[n1:1,]),xlab="",ylab="")
contour(t(S1[n1:1,]),add=TRUE)
image(t(S2[n1:1,]),xlab="",ylab="")
contour(t(S2[n1:1,]),add=TRUE)
image(t(matrix(Shat1[1,],n1,n2)[n1:1,]),xlab="",ylab="")
contour(t(matrix(Shat1[1,],n1,n2)[n1:1,]),add=TRUE)
image(t(matrix(Shat1[2,],n1,n2)[n1:1,]),xlab="",ylab="")
contour(t(matrix(Shat1[2,],n1,n2)[n1:1,]),add=TRUE)

par(mfrow=c(2,2))
image(t(S1[n1:1,]),xlab="",ylab="")

scICA 15

contour(t(S1[n1:1,]),add=TRUE)
image(t(S2[n1:1,]),xlab="",ylab="")
contour(t(S2[n1:1,]),add=TRUE)
image(t(matrix(Shat2[1,],n1,n2)[n1:1,]),xlab="",ylab="")
contour(t(matrix(Shat2[1,],n1,n2)[n1:1,]),add=TRUE)
image(t(matrix(Shat2[2,],n1,n2)[n1:1,]),xlab="",ylab="")
contour(t(matrix(Shat2[2,],n1,n2)[n1:1,]),add=TRUE)

par(mfrow=c(2,2))
image(t(S1[n1:1,]),xlab="",ylab="")
contour(t(S1[n1:1,]),add=TRUE)
image(t(S2[n1:1,]),xlab="",ylab="")
contour(t(S2[n1:1,]),add=TRUE)
image(t(matrix(Shat3[1,],n1,n2)[n1:1,]),xlab="",ylab="")
contour(t(matrix(Shat3[1,],n1,n2)[n1:1,]),add=TRUE)
image(t(matrix(Shat3[2,],n1,n2)[n1:1,]),xlab="",ylab="")
contour(t(matrix(Shat3[2,],n1,n2)[n1:1,]),add=TRUE)

End (Not run)

Index

amari_distance, 2, 11

cICA, 2, 3, 10, 11, 13

grad, 6, 8

hess, 7, 8

kern, 7, 8, 8, 10

locmulti, 6–9, 9

rerow, 10

scICA, 2, 5–11, 11

16

	amari_distance
	cICA
	grad
	hess
	kern
	locmulti
	rerow
	scICA
	Index

