Package ‘collectArgs’

October 14, 2017

Title Quickly and Neatly Collect Arguments from One Environment to
Pass to Another

Version 0.4.0

Description We often want to take all (or most) of the objects in one environment (such as the parame-
ter values of a function) and pass them to another. This might be calling a second function, or it-
erating over a list, calling the same function. These functions wrap often repeated code.

Current stable version (committed on October 14, 2017).

Depends R (>=3.0.2)

License MIT + file LICENSE

Encoding UTF-8

LazyData TRUE

Imports magrittr, stats

RoxygenNote 6.0.1.9000

Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr

NeedsCompilation no

Author Rick Saporta [aut, cre]

Maintainer Rick Saporta <RickSaporta@gmail.com>
Repository CRAN

Date/Publication 2017-10-14 15:06:49 UTC

R topics documented:
collectArgs-and-iterateWithArgs Lo 2

Index 4

2 collectArgs-and-iterate WithArgs

collectArgs-and-iterateWithArgs
collectArgs and iterateWithArgs

Description

Functions to cleanly collect arguments from within one function or environment (to then pass to
another or to iterate over)

Usage

collectArgs(except = c(), incl.dots = TRUE, all.names = TRUE,
envir = parent.frame())

iterateWithArgs(arg_to_iterate_over, FUNC,
nm.arg_to_iterate_over = as.character(substitute(arg_to_iterate_over)),
except = c(), incl.dots = TRUE, envir = parent.frame())

Arguments

except A vector of string values. Objects to NOT include in the collection Generally,
the user will not want to pass objets created inside the function and hence will
pass to except _NOTE_ pass the quoted string-name of the object, not the object
itself.

incl.dots A single logical value. Should the ... be collected as well? NOTE: Has no
effect in functions without dots argument Default is TRUE.

all.names A single logical value. Passed to 1s(). When FALSE, then objects whose name
begins with a ’.” are omitted from the collection

envir An environment object. Passed to 1s(). The environment from which to col-

lect the objects. Defaults to parent. frame
arg_to_iterate_over
Object, not the string-name of the object.
FUNC function or string of length 1. function to iterate over. Normally the same func-
tion in which iterateWithArgs is being called
nm.arg_to_iterate_over
The string-name of the object.
Default is as.character(substitute(arg_to_iterate_over))

Details

collectArgs() colects objects from an envrionment into a single list. Generally, the list will then
be passed to other functions (usually with do. call)

iterateWithArgs() similarly collects the objects in an environment, with the difference that one
specific object is selected to iterate over. For each iteration, the given value is passed along with all
the other objects to FUNC.

collectArgs-and-iterateWithArgs 3

Value

for collectArgs: A list of all of the objects in envir (less any objects excluded via the parameters).
The names of the list are the names of object in envir.

for iterateWithArgs: A list of the return values of FUNC, the length of arg_to_iterate_over.
Naming of the list will be handled by do.call

Examples

sample_function <- function(x, base, thresh=500, verbose=TRUE) {

some_object <- is.na(x) ## an example of an object that we will exclude
another_object <- 1:10 ## an example of an object that we will exclude

if (length(x) > 1) {
return(iterateWithArgs(x, FUNC=sample_function, except=c("some_object”, "another_object")))

}
ret <- (base * x)

if (verbose)
cat(base, "*", x, " is ", ifelse(ret > thresh, "", "NOT "), "larger than ", thresh, "\n")

return(ret)

}

sample_function(5, base=2)
sample_function(5:10, base=2)

some_function <- function(x, paraml, param2, etc, ...) {

ARGS <- collectArgs(except="x")
return(
lapply(x, function(x_i)
do.call(some_function, c(ARGS, x=x_i))
)
)

Index

collectArgs
(collectArgs-and-iterateWithArgs),
2

collectArgs-and-iterateWithArgs, 2

do.call, 2, 3

iterateWithArgs
(collectArgs-and-iterateWithArgs),
2

	collectArgs-and-iterateWithArgs
	Index

