Package ‘collapse’

May 27, 2020

Title Advanced and Fast Data Transformation
Version 1.2.1

Date 2020-05-22

BugReports https://github.com/SebKrantz/collapse/issues

Description A C/C++ based package for advanced data transformation in R that is
extremely fast, flexible and parsimonious to code with and programmer
friendly. It is well integrated with 'dplyr', 'pIm' and 'data.table’.

--- Key Features: ---

(1) Advanced data programming: A full set of fast statistical functions
supporting grouped and weighted computations on vectors, matrices and
data frames. Fast (ordered) and programmable grouping, factor
generation, manipulation of data frames and data object conversions.

(2) Advanced aggregation: Fast and easy multi-data-type, multi-function,
weighted, parallelized and fully customized data aggregation.

(3) Advanced transformations: Fast (grouped, weighted) replacing and
sweeping out of statistics, scaling / standardizing, centering (i.e.
between and within transformations), higher-dimensional centering

(i.e. multiple fixed effects transformations), linear

prediction and partialling-out.

(4) Advanced time-computations: Fast (sequences of) lags / leads, and
(lagged / leaded, iterated, quasi-, log-) differences and growth

rates on (unordered) time-series and panel data. Multivariate auto,
partial and cross-correlation functions for panel data.

Panel data to (ts-)array conversions.

(5) List processing: (Recursive) list search / identification, extraction /
subsetting, data-apply, and generalized row-binding / unlisting in 2D.
(6) Advanced data exploration: Fast (grouped, weighted, panel-decomposed)
summary statistics for complex multilevel / panel data.

License GPL (>=2)

Encoding UTF-8

LazyData true

Depends R (>=3.5.0)

Imports Rcpp (>=1.0.1), Ife >=2.7)

https://github.com/SebKrantz/collapse/issues

2 R topics documented:

LinkingTo Rcpp

Suggests dplyr, plm, data.table, ggplot2, scales, vars, knitr,
rmarkdown, testthat, microbenchmark

SystemRequirements C++11

VignetteBuilder knitr

NeedsCompilation yes

Author Sebastian Krantz [aut, cre],
Matt Dowle [ctb],
Arun Srinivasan [ctb],
Simen Gaure [ctb],
Dirk Eddelbuettel [ctb],
R Core Team and contributors worldwide [ctb],
Martyn Plummer [cph],
1999-2016 The R Core Team [cph]

Maintainer Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>
Repository CRAN
Date/Publication 2020-05-26 22:10:10 UTC

R topics documented:

collapse-package 3
AO-collapse-documentationo 8
Al-fast-statistical-functions oL 10
A2-fast-grouping e e e 12
A3-data-frame-manipulationo o oL 14
Ad-quick-conversion L. e e e 15
Ab6-data-transformations 16
AT7-time-series-panel-serieso Lo oL 18
AS-LISt-Processing e e e 19
AOQ-summary-statistics 20
AAl-recode-replace e e 21
AA2-small-helpers e 23
BY . 25
collap e e 28
collapse-depreciated 33
collapse-options L. e e e e e 34
dapply e 34
descr e e 36
extract-list e 38
fbetween, fwithin 41
fdiff . . . e 45
flirst, flast e e e 50
fRtest e e 52
fgrowth L e e 54

fHDbetween, fHDwithin e 57

collapse-package 3

flag . . . e e e 61
fmean L e e e e 65
fmedian e e e 68
fmin, fmax e e 70
fmode e e e 72
fNdistinct e e e e e e e 75
fNObS . . . e e e 77
fprod e 78
fscale e e e 81
fsubseto e 84
fSum . .. e e 86
ftransform L e 89
fvar, fsd e e e 91
GGDCI0S e 94
groupid L 96
GRP . . . e 97
is.regular-is.unlistable L. L L 101
Idepth e 102
psact . . . e 103
PSIAL . . . L e e e e e e e e 105
pweor, pwcov, pwNObS L e 107
qF . e 109
QSU .« o o e e e e e e e e e e e e 111
radiXorder e e e e 115
rapply2d 117
select-replace-vars e e e e e e e 117
seqid e e 121
TRA . o e 123
unlist2d . .. L L e e e e e 126
VATYING . o o v o e e e e e e e e e e e e e e e e e 128
widdev e e e 130
Index 132
collapse-package Advanced and Fast Data Transformation
Description

collapse is a C/C++ based package for data manipulation in R. It’s aims are

* to facilitate complex data transformation and exploration tasks in R

* to help make R code fast, flexible, parsimonious and programmer friendly.

It is compatible with dplyr, data.table and the plm approach to panel-data.

Key Features:

4 collapse-package

1. Advanced data programming: A full set of fast statistical functions supporting grouped and
weighted computations on vectors, matrices and data frames. Fast (ordered) and programmable
grouping, factor generation, manipulation of data frames and data object conversions.

2. Advanced aggregation: Fast and easy multi-data-type, multi-function, weighted, parallelized
and fully customized data aggregation.

3. Advanced transformations: Fast (grouped, weighted) replacing and sweeping out of statis-
tics, scaling / standardizing, centering (i.e. between and within transformations), higher-
dimensional centering (i.e. multiple fixed effects transformations), linear prediction and partialling-
out.

4. Advanced time-computations: Fast (sequences of) lags / leads, and (lagged / leaded, iterated,
quasi-, log-) differences and growth rates on (unordered) time-series and panel data. Mul-
tivariate auto, partial and cross-correlation functions for panel data. Panel data to (ts-)array
conversions.

5. List processing: (Recursive) list search / identification, extraction / subsetting, data-apply, and
generalized row-binding / unlisting in 2D.

6. Advanced data exploration: Fast (grouped, weighted, panel-decomposed) summary statistics
for complex multilevel / panel data.

Getting Started

Please see Collapse Documentation & Overview, or the introductory vignette. A compact but non-
exhaustive set of examples is also provided below.

Details

collapse provides an integrated set of functions organized into several topics (see Collapse Overview).
Many functions are S3 generic with core methods for vectors, matrices and data.frames. Inputs are
quickly passed to compiled C/C++ code, enabling flexible and parsimonious programming in R at
extreme speeds.

Broad areas of use are fast grouped programming and data manipulation to implement complex
statistical techniques, and fast data transformation and exploration code (i.e. for shiny apps). Ap-
plications include fast panel data estimators and techniques, fast weighted programming (i.e. for
survey techniques), fast programming with and aggregation of categorical data, fast programming
with time-series and panel-series data, and programming with lists of data objects.

The package largely avoids non-standard evaluation and exports core methods for maximum pro-
grammability. Smart attribute handling and additional (not-exported) methods ensure compatibility
and support for dplyr, data.table and the plm approach to panel-data. collapse comes with a built-in
hierarchical documentation facilitating the use of the package.

collapse is mainly coded in C++ and built with Rcpp, but also uses C functions from data.table
(grouping, subsetting, row-binding), Ife (centering on multiple factors) and stats (ACF and PACF).

Author(s)

Maintainer: Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

Other contributors from packages collapse utilizes:

¢ Matt Dowle, Arun Srinivasan and contributors worldwide (data.table)

collapse-package 5

¢ Simen Gaure (Ife)
» Dirk Eddelbuettel and contributors worldwide (Rcpp)
¢ R Core Team and contributors worldwide (stats)
I also thank Ralf Stubner, Joseph Wood and Dirk Eddelbuettel for helpful answers on Stackoverflow,

and Joris Meys on R-Devel for encouraging me and helping to set up the github repository for
collapse.

Developing / Feature Requests / Bug Reporting

 If you are interested in extending or optimizing this package, see the source code at https:
//github.com/SebKrantz/collapse/tree/master, fork and send pull-requests, or e-mail
me.

* Please send feature requests via e-mail.

* Please report issues at https://github.com/SebKrantz/collapse/issues or e-mail me.

Examples

World Bank World Development Data: 216 countries, 59 years, 4 series (columns 9-12)
head(wlddev)

Describe data
descr(wlddev)

Pairwise correlations with p-value
pwcor (num_vars(wlddev), P = TRUE)

Panel-summarize columns 9 though 12 of this data (within and between countries)
gsu(wlddev, pid = ~ country, cols = 9:12, vlabels = TRUE)

Do all of that by region and also compute higher moments -> returns a 4D array
gsu(wlddev, ~ region, ~ country, cols = 9:12, higher = TRUE)

Return as nested list of statistics-matrices instead
suml <- gsu(wlddev, ~ region, ~ country,

cols = 9:12, higher = TRUE, array = FALSE)
str(suml)

Create data.frame from this list with 3 identifier columns
head(unlist2d(suml, idcols = c("Variable”,"Trans"), row.names = "Region”))

Select columns from wlddev
series <- get_vars(wlddev, 9:12) # same as wlddev[9:12] but 2x faster and works with data.tables
series <- fselect(wlddev, PCGDP:0DA) # Same thing: > 100x faster t. dplyr::select(wlddev, PCGDP:0DA)

Replace columns, 8x faster than wlddev[9:12] <- series and also replaces names
get_vars(wlddev, 9:12) <- series

Fast subsetting
head(fsubset(wlddev, country == "Ireland”, -country, -iso3c))
head(fsubset(wlddev, country == "Ireland” & year > 1990, year, PCGDP:0DA))

https://github.com/SebKrantz/collapse
https://github.com/SebKrantz/collapse/tree/master
https://github.com/SebKrantz/collapse/tree/master
https://github.com/SebKrantz/collapse/issues

collapse-package

ss(wlddev, 1:10, 1:10) # This is an order of magnitude faster than wlddev[1:10, 1:10]

Fast transforming
head(ftransform(wlddev, ODA_GDP = ODA / PCGDP, ODA_LIFEEX = sqrt(ODA) / LIFEEX))
head(ftransform(wlddev, ODA_GDP = ODA / PCGDP, PCGDP = NULL, ODA = NULL, GINI_sum = fsum(GINI)))

Calculating fast colum-wise statistics
fNobs(series) # Number of non-missing values

fmean(series) # means of series
fmedian(series) # medians of series
fmin(series) # mins of series

Fast grouped statistics
fNobs(series, wlddev$region)
fmean(series, wlddev$region)
fmedian(series, wlddev$region)
fsd(series, wlddev$region)

regional number of obs
regional means

regional medians

regional standard-deviations

Means by region and income
fmean(series, fselect(wlddev, region, income))

Same using GRP objects:

g <- GRP(wlddev, ~ region + income)
print(g)

plot(g)

GRP objects are extremely efficient inputs to fast functions
fmean(series, g)

fmedian(series, g)

fsd(series, g)

Another option is creating a grouped_df, using dplyr::group_by or the faster fgroup_by
gseries <- fgroup_by(fselect(wlddev, region, income, PCGDP:0DA), region, income)
str(gseries)

fmean(gseries) # grouped mean

fmean(gseries, w = ODA) # weighted grouped mean, weighted by ODA

fsd(gseries, w = ODA) # Weighted group standard deviation

Faster aggregations with dplyr:

library(dplyr) # This is already a lot faster than summarize_all(mean)

wlddev %>% group_by(region,income) %>% select(PCGDP,LIFEEX) %>% fmean

Now this is getting fast, apart from the pipe which still slows things down...
wlddev %>% fgroup_by(region,income) %>% fselect(PCGDP,LIFEEX) %>% fmean

Data-Apply to columns
head(dapply(series, log))
dapply(series, quantile, na.rm = TRUE)

Data-Apply to rows (for sum use rowSums(gM(series), na.rm = TRUE), same for rowMeans ...)
head(dapply(mtcars, max, MARGIN = 1, na.rm = TRUE))
head(dapply(mtcars, quantile, MARGIN = 1))

gM -> quickly convert data to matrix, gDF/gDT do the reverse

collapse-package 7

fmean (rowSums(gM(series), na.rm = TRUE))

Split-apply combine computing on columns

BY(series, wlddev$region, sum, na.rm = TRUE) # Please use: fsum(series, wlddev$region) -> faster
BY(series, wlddev$region, quantile, na.rm = TRUE)

BY(series, wlddev$region, quantile, na.rm = TRUE, expand.wide = TRUE)

Convert panel-data to array

psar <- psmat(wlddev, ~country, ~year, cols = 9:12)

str(psar)

psar["Ireland”,,] # Fast data access

psar["Ireland”,,"PCGDP"]

psar[,"2016",]

gDF (psarl[,"2016",]1, row.names.col = "Country") # Convert to data.frame

plot(psar, colour = TRUE, labs = vlabels(wlddev)[9:12]) # Visualize

plot(psar[c("Brazil”,"India","South Africa”,"Russian Federation"”,"China"),,
c("PCGDP","LIFEEX","0DA")], legend = TRUE, labs = vlabels(wlddev)[c(9:10,12)1)

plot(ts(psar["Brazil”,,], 1960, 2018), main = "Brazil, 1960-2018")

Aggregate this data by country and decade: Numeric columns with mean, categorical with mode
head(collap(wlddev, ~ country + decade, fmean, fmode))

Multi-function aggregation of certain columns
head(collap(wlddev, ~ country + decade,
list(fmean, fmedian, fsd),
list(ffirst, flast), cols = c¢(3,9:12)))

Customized Aggregation: Assign columns to functions
head(collap(wlddev, ~ country + decade,

custom = list(fmean = 9:10, fsd = 9:12, flast = 3, ffirst = 6:8)))

Fast functions can also do grouped transformations:

head(fsd(series, g, TRA = "/")) # Scale series by region and income
head(fsum(series, g, TRA = "%")) # Percentages by region and income
head(fmean(series, g, TRA = "-")) # Demean / center by region and income
head(fmedian(series, g, TRA = "-")) # De-median by region and income

gmeds <- fmedian(series, g) # Same thing in 2 steps
head(TRA(series, gmeds, "-", g))

Faster transformations with dplyr:
wlddev %>% fgroup_by(region,income) %>% fselect(PCGDP,LIFEEX,0DA) %>%
fwithin(ODA) # Centering using weighted means, weighted by ODA

But there are also tidy transformation operators for common jobs:
Centering (within-transforming) the 4 series by country
head(W(wlddev, ~ country, cols = 9:12))

Same but adding overall mean back after subtracting out group means
head(W(wlddev, ~ country, cols = 9:12, mean = "overall.mean"))

Partialling out country and year fixed effects from 2 series (gF = quick-factor)
head (HDW(wlddev, PCGDP + LIFEEX ~ gF(country) + gF(year)))

AO0-collapse-documentation

Same, adding ODA as continuous regressor
head (HDW(wlddev, PCGDP + LIFEEX ~ gF(country) + gF(year) + ODA))

Standardizing (scaling and centering) by country
head(STD(wlddev, ~ country, cols = 9:12))

Computing 1 lead and 3 lags of the 4 series: Panel-computations efficient and exactly identified
head(L(wlddev, -1:3, ~ country, ~year, cols = 9:12))

Computing the 1- and 10-year first differences of the 4 series

head(D(wlddev, c(1,10), 1, ~ country, ~year, cols = 9:12))

head(D(wlddev, c(1,10), 1:2, ~ country, ~year, cols = 9:12)) # first and second differences
head(D(wlddev, -1:1, 1, ~ country, ~year, cols = 9:12)) # 1-year lagged and leaded FD

Computing the 1- and 10-year growth rates of the 4 series (also keeping the level series)
head(G(wlddev, c(0,1,10), 1, ~ country, ~year, cols = 9:12))

Adding exactly identified growth rates using data.table
library(data.table)
setDT(wlddev)[, paste@("G."”, names(wlddev)[9:12]) := fgrowth(.SD,1,1,is03c,year), .SDcols = 9:12]

Deleting again and doing the dame thing with add_vars

get_vars(wlddev, "G1.", regex = TRUE) <- NULL

add_vars(wlddev) <- fgrowth(gv(wlddev, 9:12), 1, 1, wlddev$iso3c, wlddev$year)
get_vars(wlddev, "G1.", regex = TRUE) <- NULL

Computing the 1- and 10-year log-differences of GDP per capita and Life-Expectancy
head(G(wlddev, c(@,1,10), 1, PCGDP + LIFEEX ~ country, ~year, logdiff = TRUE))

Same transformations using plm package:

library(plm)

pwlddev <- pdata.frame(wlddev, index = c("country”,"year"))

head (W(pwlddev$PCGDP)) # Country-demeaning
head(W(pwlddev, cols = 9:12))

head(W(pwlddev$PCGDP, effect = 2)) # Time-demeaning
head(W(pwlddev, effect = 2, cols = 9:12))

head (HDW(pwlddev$PCGDP)) # Country- and time-demeaning
head (HDW(pwlddev, cols = 9:12))

head (STD(pwlddev$PCGDP)) # Standardizing by country
head(STD(pwlddev, cols = 9:12))

head(L(pwlddev$PCGDP, -1:3)) # Panel-lags
head(L(pwlddev, -1:3, 9:12))

head (G(pwlddev$PCGDP)) # Panel-Growth rates

head(G(pwlddev, 1, 1, 9:12))

A@-collapse-documentation
Collapse Documentation & Overview

AO0-collapse-documentation

Description

The following table fully summarizes the contents of collapse. The documentation follows a hier-
archical structure: This is the main overview page, linking to topical overview pages and associated
function pages (unless functions are documented on the topic page).

Topics and Functions
Topic
Fast Statistical Functions

Fast (Ordered) Grouping

Fast Data Frame Manipulation
Quick Data Conversion

Advanced Data Aggregation

Data Transformations

Time-Series and Panel-Series
List Processing
Summary Statistics

Recode and Replace Values

Small (Helper) Functions

Data and Global Macros
Global Options

Details

Main Features / Keywords
Fast (grouped and weighted) statistical functions for vector, matrix, data.frame and group

Fast (ordered or unordered) groupings from vectors, data.frames, lists. ’"GRP’ objects are

Fast and flexible select, subset and transform data, including modifying columns by refere
Quick conversions: data.frame <> data.table | matrix <> list, data.frame, data.table | array

Fast and easy (weighted and parallelized) aggregation of multi-type data, with (multiple) 1

Efficient row- and column- data-apply and Split-Apply-Combine computing. Fast (groupe

Fast (sequences of) lags / leads and (lagged / leaded and iterated) differences, quasi-differ
(Recursive) list search and identification, search and extract list-elements / list-subsetting,
Extremely fast (one-pass, grouped and weighted), summary statistics for cross-sectional a

Recode multiple values (exact or regex matching) and replace NaN/Inf/-Inf and outliers

Set and extract variable labels, extract variable classes and C storage types, display variab

Groningen Growth and Development Centre 10-Sector Database, World Bank World Dev
Set the action taken by generic functions encountering unknown arguments. The default i

The added top-level documentation infrastructure in collapse allows you to effectively navigate
the package (as in other commercial software documentations like Mathematica). Calling ?FUN
brings up the documentation page documenting the function as in other R packages, with links

10 A l-fast-statistical-functions

to associated topic pages and closely related functions. You can also call topical documenta-
tion pages directly from the console. The links to these pages are contained in the global macro
.COLLAPSE_TOPICS (i.e. calling help(.COLLAPSE_TOPICS[1]) brings up this page).

Author(s)

Maintainer: Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

See Also

collapse-package

Al-fast-statistical-functions
Fast (Grouped, Weighted) Statistical Functions for Matrix-Like Ob-
jects

Description

With fsum, fprod, fmean, fmedian, fmode, fvar, fsd, fmin, fmax, ffirst, flast, fNobs and
fNdistinct, collapse presents a coherent set of extremely fast and flexible statistical functions (S3
generics) to perform column-wise, grouped and weighted computations on atomic vectors, matrices
and data.frames, with special support for dplyr grouped tibbles and data.table’s.

Notes: (1) Panel-decomposed (i.e. between and within) statistics as well as grouped and weighted
skewness and kurtosis are implemented in gqsu. (2) The vector-valued functions and operators
fscale/STD, fbetween/B, fHDbetween/HDB, fwithin/W, fHDwithin/HDW, flag/L/F, fdiff/D/Dlog
and fgrowth/G are documented under Data Transformations and Time-Series and Panel-Series.
These functions also support plm: :pseries and plm: :pdata.frame’s.

Usage

All functions (FUN) follow a common syntax in 4 methods:
FUN(x, ...)

Default S3 method:
FUN(x, g = NULL, [w = NULL,J] TRA = NULL, [na.rm = TRUE,]
use.g.names = TRUE, ...)

S3 method for class 'matrix'
FUN(x, g = NULL, [w = NULL,] TRA = NULL, [na.rm = TRUE,]
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
FUN(x, g = NULL, [w = NULL,J] TRA = NULL, [na.rm = TRUE,]
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'

A I-fast-statistical-functions 11

FUN(x, [w = NULL,J] TRA = NULL, [na.rm = TRUE,]
use.g.names = FALSE, keep.group_vars = TRUE, [keep.w = TRUE,] ...)

Arguments

TRA

na.rm

use.g.names

drop

keep.group_vars

keep.w

Details

a vector, matrix, data.frame or grouped tibble (dplyr: :grouped_df).

a factor, GRP object, atomic vector (internally converted to factor) or a list of vectors / factors (internal

a numeric vector of (non-negative) weights, may contain missing values. Supported by fsum, fprod,

an integer or quoted operator indicating the transformation to perform: 1 - "replace_fill" | 2 - "replace

logical. Skip missing values in x. Defaults to TRUE in all functions and implemented at very little com

make group-names and add to the result as names (vector method) or row-names (matrix and data.fra

matrix and data.frame methods: Drop dimensions and return an atomic vector if g = NULL and TRA =1

grouped_df method: Logical. FALSE removes grouping variables after computation. By default group:

grouped_df method: Logical. TRUE (default) also aggregates weights and saves them in a column, FAL

arguments to be passed to or from other methods, and extra arguments to some functions, i.e. the algo

Please see the documentation of individual functions.

Value

x aggregated. data.frame column-attributes and overall attributes are preserved.

See Also

Collapse Overview, Data Transformations, Time-Series and Panel-Series

12 A2-fast-grouping

Examples

default vector method
mpg <- mtcars$mpg

fsum(mpg) # Simple sum

fsum(mpg, TRA = "/") # Simple transformation: divide all values by the sum
fsum(mpg, mtcars$cyl) # Grouped sum

fmean(mpg, mtcars$cyl) # Grouped mean

fmean(mpg, w = mtcars$hp) # Weighted mean, weighted by hp

fmean(mpg, mtcars$cyl, mtcars$hp) # Grouped mean, weighted by hp

fsum(mpg, mtcars$cyl, TRA = "/") # Proportions / division by group sums

fmean(mpg, mtcars$cyl, mtcars$hp, # Subtract weighted group means, see also ?fwithin
TRA = "-")

data.frame method

fsum(mtcars)

fsum(mtcars, TRA = "%") # This computes percentages
fsum(mtcars, mtcars[c(2,8:9)1) # Grouped column sum

g <- GRP(mtcars, ~ cyl + vs + am) # Here precomputing the groups!
fsum(mtcars, g) # Faster !!

fmean(mtcars, g, mtcars$hp)

fmean(mtcars, g, mtcars$hp, "-") # demeaning by weighted group means...

n_n

fmean(fgroup_by(mtcars, cyl, vs, am), hp,) # another way of doing it...

fmode (wlddev, drop = FALSE) # Compute statistical modes of variables in this data
fmode(wlddev, wlddev$income) # grouped statistical modes ..

matrix method
m <- gM(mtcars)

fsum(m)

fsum(m, g) # ...

method for grouped tibbles - for use with dplyr

library(dplyr)

mtcars %>% group_by(cyl,vs,am) %>% select(mpg,carb) %>% fsum

mtcars %>% fgroup_by(cyl,vs,am) %>% fselect(mpg,carb) %>% fsum # equivalent and faster !!
mtcars %>% fgroup_by(cyl,vs,am) %>% fsum(TRA = "%")

mtcars %>% fgroup_by(cyl,vs,am) %>% fmean(hp) # weighted grouped mean, save sum of weights
mtcars %>% fgroup_by(cyl,vs,am) %>% fmean(hp, keep.group_vars = FALSE)

A2-fast-grouping Fast (Ordered) Grouping

Description
collapse provides the following functions to efficiently group (and order) data:

* radixorder, provides fast radix-ordering (+ grouping information) through direct access to
the method base::order(...,method = "radix"). The source code for both radixorder
and base: :order(...,method = "radix"), comes from data. table: : : forder. radixorder

A2-fast-grouping 13

was modified to optionally return either a vector of group starts, a vector of group sizes, or
both as an attribute, and also an attribute providing the size of the largest group and a logical
statement on whether the input was already ordered. The function radixorderv exists as a
programmers alternative.

GRP creates collapse grouping objects of class ’"GRP’ based on radixorderv. ’GRP’ objects
form the central building block for grouped operations and programming in collapse and are
very efficient inputs to all collapse functions supporting grouped operations. A ’GRP’ object
provides information about (1) the number of groups, (2) which rows belong to which group,
(3) the group sizes, (4) the unique groups, (5) the variables used for grouping, (6) whether
the grouping and initial inputs were ordered and (7) (optionally) the output from radixorder
containing the ordering vector with group starts and maximum group size attributes.

fgroup_by provides a fast replacement for dplyr: : group_by, creating a grouped tibble with
a’GRP’ object attached. This grouped tibble can however only be used for grouped operations
using collapse fast functions. dplyr functions will treat this tibble like an ordinary (non-
grouped) one.

gF, shorthand for ’quick-factor’ implements very fast (ordered) factor generation from atomic
vectors using either radix ordering method = "radix” or index hashing method = "hash".
Factors can also be used for efficient grouped programming with collapse functions, especially
if they are generated using gF (x,na.exclude = FALSE) which assigns a level to missing val-
ues and attaches a class ’na.included’ ensuring that no additional missing value checks are
executed by collapse functions.

qG, shorthand for ’quick-group’, generates a kind of factor-light without the levels attribute
but instead an attribute providing the number of levels. Optionally the levels / groups can be
attached, but without converting them to character. Objects have a class ’qG’, which is also
recognized in the collapse ecosystem.

finteraction is a fast alternative to base: : interaction implemented as a wrapper around
as.factor.GRP(GRP(...)). It can ge used to generate a factor from multiple vectors, factors
or a list of vectors / factors. Unused factor levels are always dropped.

groupid is a generalization of data. table: : rleid providing a run-length type group-id from
atomic vectors. It is generalization as it also supports passing an ordering vector and skipping
missing values. For example qF and qG with method = "radix” are essentially implemented
using groupid(x, radixorder(x)).

seqid is a specialized function which creates a group-id from sequences of integer values. For

any ordinary panel-dataset groupid(id,order(id,time)) and seqid(time,order(id,time))

provide the same id variable. seqid is especially useful for identifying discontinuities in time-
sequences and helps to perform operations such as lags or differences on irregularly spaced
time-series and panels.

Table of Functions

Function / S3 Generic Methods

radixorder, radixorderv No methods, for data.frame’s and vectors

GRP default, factor, G, grouped_df, pseries, pdata.frame
fgroup_by No methods, for data.frame’s

qF No methods, for vectors

qG

No methods, for vectors

Description

radix based ordering + |
fast (ordered) grouping
fast grouped tibbles
quick factor generation
quick grouping

14 A3-data-frame-manipulation
finteraction No methods, for data.frame’s and vectors
groupid No methods, for vectors
seqid No methods, for vectors

See Also

Fast Statistical Functions, Collapse Overview

A3-data-frame-manipulation

Fast Data Frame Manipulation

Description

collapse provides the following functions for fast manipulation of (mostly) data.frames.

fselect is a much faster alternative to dplyr: :select to select columns using expressions
involving column names. get_vars is a more versatile and programmer friendly function to
efficiently select and replace columns by names, indices, logical vectors, regular expressions
or using functions to identify columns.

The functions num_vars, cat_vars, char_vars, fact_vars, logi_vars and Date_vars are
convenience functions to efficiently select and replace columns by data type.

add_vars efficiently adds new columns at any position within a data.frame (default at the
end). This can be done vie replacement (i.e. add_vars(data) <-newdata) or returning
the appended data (i.e. add_vars(data,newdatal,newdata2,...)). Because of the latter,
add_vars is also a more efficient alternative to cbind.data. frame.

fsubset is a much faster version of base: : subset for efficiently subset vectors, matrices and
data.frames. If the non-standard evaluation offered by fsubset is not needed, the function ss
is a much faster and also more secure alternative to [.data. frame.

ftransform is a much faster version of base::transform, to modify and delete existing
columns or append a data frame with new computed columns. settransform does all of that
by reference, i.e. it modifies the data frame in the global environment. fcompute is similar to
ftransform but only returns modified and computed columns in a new data frame.

Table of Functions

Function /83 Generic Methods

fselect
get_vars, num_vars, cat_vars, char_vars, fact_vars, logi_vars, Date_vars
add_vars
fsubset

SS

faster interactions
run-length type group-i
run-length type integer

No methods, for data.frame’s
No methods, for data.frame’s
No methods, for data.frame’s
default, matrix, data.frame

No methods, for data.frame’s

Ad4-quick-conversion 15

ftransform No methods, for data.frame’s

settransform No methods, for data.frame’s

fcompute No methods, for data.frame’s
See Also

Quick Data Conversion, Collapse Overview

A4-quick-conversion Quick Data Conversion

Description
Convert common data objects quickly, without method dispatch and extensive checks:

* gDF and gDT convert vectors, matrices, higher-dimensional arrays and suitable lists to data. frame
and data.table respectively.

* gM converts vectors, higher-dimensional arrays, data.frames and suitable lists to matrix.

* mctl and mrtl column- or row-wise convert a matrix to list, data. frame or data.table. They
are used internally by qDF and qDT, dapply, BY, etc...

* gF converts atomic vectors to factor (documented on a separate page).

e as.numeric_factor and as.character_factor convert factors, or all factor columns in a
list, to numeric or character (by converting the levels).

Usage

gDF (X, row.names.col = FALSE)

gDT(X, row.names.col = FALSE)

aM(Xx)

mctl(X, names = FALSE, return = "list")
mrtl(X, names = FALSE, return = "list")
as.numeric_factor(X, keep.attr = TRUE)
as.character_factor (X, keep.attr = TRUE)

Arguments

X a vector, factor, matrix, higher-dimensional array, data.frame or list. mctl and
mrtl only take matrices.

row.names.col should a column capturing names or row.names be added? i.e. when converting
atomic objects to data.frame or data.frame to data.table. Can be logical TRUE,
which will add a column "row.names” in front, or can supply a name for the
column i.e. "column1”.

names logical. Should the list be named?

return an integer or string specifying what to return. The options are:

16 A6-data-transformations

Int. String Description
1 "list" returns a plain list
2 "data.frame" returns a data.frame
3 "data.table" returns a data.table
keep.attr logical. TRUE keeps all attributes of factor variables apart from the levels and

class attributes (such as variable labels etc.).

Value

gDF - returns a data.frame

gDT - returns a data.table

gM - returns a matrix

mctl, mrtl - return a list, data.frame or data.table

gF - returns a factor

as.numeric_factor - returns X with factors converted to numeric variables
as.character_factor - returns X with factors converted to character variables

See Also

GRP, Collapse Overview

Examples
mtcarsM <- gM(mtcars) # Matrix from data.frame
mtcarsDT <- gDT(mtcarsM) # data.table from matrix columns
mrtl(mtcarsM, TRUE, "data.frame") # data.frame from matrix rows, etc...
gDF (mtcarsM, "cars") # Adding a row.names column when converting from matrix
gDT(mtcars, "cars") # Saving row.names when converting data.frame to data.table
cylF <- gF(mtcars$cyl) # Factor from atomic vector
cylF

Factor to numeric conversions
identical(mtcars, as.numeric_factor(dapply(mtcars, qF)))

A6-data-transformations
Data Transformations

Description

collapse provides an ensemble of functions to perform common data transformations efficiently and
user friendly:

* dapply applies functions to rows or columns of matrices and data.frame’s.

A6-data-transformations 17

* BY is an S3 generic for Split-Apply-Combine computing and can perform aggregation as
well as grouped transformations. (for aggregation please also see collap and Fast Statistical
Functions).

* TRA is an S3 generic to efficiently perform (groupwise) replacement and sweeping out of
statistics. Supported operations are:

Integer-id String-id Description

1 "replace_fill" replace and overwrite missing values
2 "replace” replace but preserve missing values
3 " subtract

4 " subtract group-statistics but add group-frequency weighted average of group statistics
5 " divide

6 "%" compute percentages

7 4" add

8 " multiply

9 "% %" modulus

10 "-%%" subtract modulus

All of collapse’s Fast Statistical Functions have a built-in TRA argument for faster access (i.e.
you can compute (groupwise) statistics and use them to transform your data with a single
function call).

» fscale/STD is an S3 generic to perform (groupwise and / or weighted) scaling / standardiz-
ing of data and is orders of magnitude faster than base: : scale.

» fwithin/W is an S3 generic to efficiently perform (groupwise and / or weighted) within-
transformations / demeaning / centering of data. Similarly fbetween/B computes (group-
wise and / or weighted) between-transformations / averages.

e fHDwithin/HDW, shorthand for "higher-dimensional within transform’, is an S3 generic to
efficiently center data on multiple groups and partial-out linear models (possibly involving
many levels of fixed effects and interactions). In other words, fHDwithin/HDW efficiently com-
putes residuals from (potentially complex) linear models. Similarly fHDbetween/HDB, short-
hand for ’higher-dimensional between transformation’, computes the corresponding means or
fitted values.

* fFtest is a fast implementation of the R-Squared based F-test, to test exclusion restrictions
on linear models potentially involving multiple large factors (fixed effects). It internally uti-
lizes fHDwithin to project out factors while counting the degrees of freedom.

» flag/L/F, fdiff/D/Dlog and fgrowth/G are S3 generics to compute sequences of lags /
leads and suitably lagged and iterated (quasi-, log-) differences and growth rates on time-
series and panel data. More in Time-Series and Panel-Series.

e STD,W,B,HDW,HDB,L,D,Dlog and G are parsimonious wrappers around the f- functions above
representing the corresponding transformation ’operators’. They have additional capabilities
when applied to data-frames (i.e. variable selection, formula input, auto-renaming and id-
variable preservation), and are easier to employ in regression formulas, but are otherwise
identical in functionality.

Table of Functions

18

Function / 83 Generic

dapply

BY

TRA
fscale/STD
fwithin/W
fbetween/B
fHDwithin/HDW
fHDbetween/HDB
fFtest
flag/L/F
fdiff/D/Dlog
fgrowth/G

See Also

Methods

A7-time-series-panel-series

No methods, works with matrices and data frames

default, matrix, data.
default, matrix, data.
default, matrix, data.
default, matrix, data.
default, matrix, data.
default, matrix, data.
default, matrix, data.

frame, grouped_df

frame, grouped_df

frame, pseries, pdata
frame, pseries, pdata
frame, pseries, pdata
frame, pseries, pdata
frame, pseries, pdata

.frame, grouped_df
.frame, grouped_df
.frame, grouped_df
.frame
.frame

No methods, it’s a standalone test to which data needs to be supplied.

default, matrix, data.frame, pseries, pdata.frame, grouped_df
default, matrix, data.frame, pseries, pdata.frame, grouped_df
default, matrix, data.frame, pseries, pdata.frame, grouped_df

Collapse Overview, Fast Statistical Functions, collap, Time-Series and Panel-Series

A7-time-series-panel-series
Time-Series and Panel-Series

Description

collapse provides the following functions to work with time-dependent data:

* flag, and the lag- and lead- operators L and F are S3 generics to efficiently compute sequences
of lags and leads on ordered or unordered time-series and panel data.

o fdiff, fgrowth, and the operators D, Dlog and G are S3 generics to efficiently compute se-
quences of suitably lagged / leaded and iterated differences, log-differences and growth
rates on ordered or unordered time-series and panel data. fdiff/D/Dlog can also compute
quasi-differences of the form z; — px;_; or log(x;) — plog(x,—1) for log-differences.

* psmat is an S3 generic to efficiently convert panel-vectors or plm: : pseries and data.frame’s
or plm: :pdata.frame’s to panel-series matrices and 3D arrays, respectively.

* psacf, pspacf and psccf are S3 generics to compute estimates of the auto-, partial auto-
and cross- correlation or covariance functions for panel-vectors or plm::pseries, and
multivariate versions for data.frame’s or plm: :pdata.frame’s.

Table of Functions

S3 Generic
flag/L/F
fdiff/D/Dlog
fgrowth/G

Methods

default, matrix, data.frame, pseries, pdata.frame, grouped_df
default, matrix, data.frame, pseries, pdata.frame, grouped_df
default, matrix, data.frame, pseries, pdata.frame, grouped_df

Description

apply functions to
Split-Apply-Comt
replace and sweep
scale / standardize
demean / center d:
compute means /
high-dimensional «
high-dimensional -
fast F-test of exclu
(sequences of) lag
(sequences of lagg
(sequences of lagg

Description

compute (sequences of) la
compute (sequences of lag
compute (sequences of lag

AS8-list-processing

19

convert panel-data to matr
compute ACF on panel-da
compute PACF on panel-d
compute CCF on panel-da

psmat default, pseries, data.frame, pdata.frame

psacf default, pseries, data.frame, pdata.frame

pspacf default, pseries, data.frame, pdata.frame

psccf default, pseries, data.frame, pdata.frame
See Also

Collapse Overview, Data Transformations

A8-list-processing List Processing

Description

collapse provides the following set of functions to work with lists of R objects:

¢ Search and Identification

— is.regular checks whether an R object is either atomic or a list. A (nested) list com-

posed of regular objects at each level of the list-tree is unlistable to an atomic vector,
checked by is.unlistable.

— ldepth determines the level of nesting of the list (i.e. the maximum number of nodes of

the list-tree).

— has_elem searches elements in a list using element names, regular expressions applied

to element names, or a function applied to the elements, and returns TRUE if any matches
were found.

* Subsetting

— atomic_elem examines the top-level of a list and returns a sublist with the atomic ele-

ments. Conversely 1ist_elem returns the sublist of elements which are themselves lists
or list-like objects.

reg_elem and irreg_elem are recursive versions of the former. reg_elem extracts
the regular part of the list-tree (leading to atomic elements in the final nodes), while
irreg_elem extracts the ’irregular’ part of the list tree leading to non-atomic elements
in the final nodes. (Zipp: try calling both on an 1m object). Naturally for all lists 1,
is.unlistable(reg_elem(1l)) evaluates to TRUE...

get_elem extracts elements from a list using element names, regular expressions applied
to element names, a function applied to the elements, or element-indices used to subset
the lowest-level sub-lists. by default the result is presented as a simplified list containing
all matching elements. With the keep. tree option however get_elem can also be used
to subset lists i.e. maintain the full tree but cut off non-matching branches.

* Apply Functions

— rapply2dis arecursive version of base: : lapply with two key differences to base: : rapply:

(1) Data frames are considered as atomic objects, not as (sub-)lists, and (2) the result is
not simplified.

20 A9-summary-statistics

* Unlisting / Row-Binding

— unlist2d efficiently unlists unlistable lists in 2-dimensions and creates a data.frame
(or data.table) representation of the list (unlike base: :unlist which returns an atomic
vector). This is done by recursively flattening and row-binding R objects in the list (using
data.table::rbindlist) while creating identifier columns for each level of the list-tree
and (optionally) saving the row-names of the objects in a separate column. unlist2d can
thus also be understood as a recursive generalization of do.call(rbind, 1), for lists of
vectors, data.frames, arrays or heterogeneous objects.

Table of Functions

Function Description

is.regular function(x) is.atomic(x) || is.list(x)

is.unlistable checks if list is unlistable

ldepth level of nesting / maximum depth of list-tree

has_elem checks if list contains a certain element

get_elem subset list / extract certain elements

get_elem subset list / extract certain elements

reg_elem subset / extract regular part of list

irreg_elem subset / extract non-regular part of list

atomic_elem top-level subset atomic elements

list_elem top-level subset list/list-like elements

rapply2d recursively apply functions to lists of data objects

unlist2d recursively unlist/row-bind lists of data objects in 2D, to data. frame or data.table
See Also

Collapse Overview

A9-summary-statistics Summary Statistics

Description
collapse provides the following functions to efficiently summarize and examine data:

* gsu, shorthand for quick-summary, is an extremely fast summary command inspired by the
(xt)summarize command in the STATA statistical software. It computes a set of 7 statis-
tics (nobs, mean, sd, min, max, skewness and kurtosis) using a numerically stable one-pass
method. Statistics can be computed weighted, by groups, and also within-and between entities
(for multilevel / panel-data).

» descr computes a concise and detailed description of a data.frame, including frequency ta-
bles for categorical variables and various statistics and quantiles for numeric variables. It is
inspired by Hmisc: : describe, but about 10x faster.

AA1l-recode-replace 21

* pwcor, pwcov and pwNobs compute pairwise correlations, covariances and observation counts
on matrices and data frame’s. Pairwise correlations and covariances can be computed together
with observation counts and p-values, and output as 3D array (default) or list of matrices. A
major feature of pwcor and pwcov is the print method displaying all of these statistics in a
single correlation table.

* varying very efficiently checks for the presence of any variation in data (optionally) within
groups (such as panel-identifiers).

Table of Functions

Function / S3 Generic Methods Description

gsu default, matrix, data.frame, pseries, pdata.frame fast (grouped, wei,
descr No methods, for data.frame’s or lists of vectors detailed statistical
pwcor No methods, for matrices or data.frame’s pairwise correlatic
pwcov No methods, for matrices or data.frame’s pairwise covarianc
pwNobs No methods, for matrices or data.frame’s pairwise observati
varying default, matrix, data.frame, pseries, pdata.frame, grouped_df fast variation chec

See Also

Fast Statistical Functions, Collapse Overview

AA1-recode-replace Recode and Replace Values in Matrix-Like Objects

Description

A small suite of functions to efficiently perform common recoding and replacing tasks in matrix-like
objects (vectors, matrices, arrays, data.frames, lists of atomic objects):

* recode_num and recode_char can be used to efficiently recode multiple numeric or charac-
ter values, respectively. The syntax is inspired by dplyr::recode, but the functionality is
enhanced in the following respects: (1) they are faster than dplyr: :recode, (2) when passed
a data.frame/list, all appropriately typed columns will be recoded. (3) They preserve the at-
tributes of the data object and of columns in a data.frame/list, and (4) recode_char also
supports regular expression matching using grepl.

* replace_NA efficiently replaces NA/NaN with a value. data.frame’s can be multi-typed.

* replace_Inf replaces Inf/-Inf (or optionally NaN/Inf/-Inf) with a value (default is NA).
replace_Inf skips non-numeric columns in a data.frame.

* replace_outliers replaces values falling outside a 1- or 2-sided numeric threshold or out-
side a certain number of column- standard deviations with a value (default is NA). replace_outliers
skips non-numeric columns in a data.frame.

22

Usage

recode_num(X,

recode_char (X,

AAl-recode-replace

., default = NULL, missing = NULL)

., default = NULL, missing = NULL, regex = FALSE)

replace_NA(X, value)

replace_Inf(X, value = NA, replace.nan = FALSE)

replace_outliers(X, limits, value = NA,

Arguments

X

default

missing

regex

value
replace.nan
limits

single.limit

noson n

single.limit = c("SDs", "min"”, "max", "overall_SDs"))

a vector, matrix, array, data.frame or list of atomic objects.

comma-separated recode arguments of the form: value = replacement, ‘2" =
0,Secondary = "SEC" etc.. recode_char with regex = TRUE also supports reg-
ular expressions i.e. **S|D$* = "STD" etc.

optional argument to specify a scalar value to replace non-matched elements
with.

optional argument to specify a scalar value to replace missing elements with.
Note that to increase efficiency this is done before the rest of the recoding i.e.
the recoding is performed on data where missing values are filled!

logical. If TRUE, all recode-argument names are (sequentially) passed to grepl
as a pattern to search X. All matches are replaced. Note that NA’s are also matched
as strings by grepl.

a single (scalar) value to replace matching elements with.
logical. TRUE replaces NaN/Inf/-Inf. FALSE (default) replaces only Inf/-Inf.

either a vector of two-numeric values c(minval,maxval) constituting a two-
sided outlier threshold, or a single numeric value constituting either a factor
of standard deviations (default), or the minimum or maximum of a one-sided
outlier threshold. See also single.limit.

a character or integer (argument only applies if length(limits) ==1):

e 1 -"SDs" specifies that 1imits will be interpreted as a (two-sided) thresh-
old in column standard-deviations. The underlying code is equivalent to
X[abs(fscale(X)) > 1limits] <-value but faster. Since fscale is S3
generic with methods for grouped_df, pseries and pdata.frame, the
standardizing will be grouped if such objects are passed (i.e. the outlier
threshold is then measured in within-group standard deviations).

e 2 -"min" specifies that 1imits will be interpreted as a (one-sided) mini-
mum threshold. The underlying code is equivalent to X[X < 1imits] <-value.

e 3 -"max" specifies that 1imits will be interpreted as a (one-sided) maxi-
mum threshold. The underlying code is equivalent to X[X > 1imits] <-value.

* 4 -"overall_SDs" is equivalent to "SDs" but ignores groups when a grouped_df,

pseries or pdata.frame is passed (i.e. standardizing and determination of
outliers is by the overall column standard deviation).

AAZ2-small-helpers 23

Note

These functions are not generic and do not offer support for factors or date(-time) objects. see
dplyr::recode_factor, forcats and other appropriate packages for dealing with these classes.

See Also

Small (Helper) Functions, Collapse Overview

Examples

recode_char(c("a","b","c"), a = "b", b = "c")

recode_char(month.name, ber = NA, regex = TRUE)

mtcr <- recode_num(mtcars, ‘@' = 2, ‘4 = Inf, 1% = NaN)

replace_Inf(mtcr)

replace_Inf(mtcr, replace.nan = TRUE)

replace_outliers(mtcars, c(2, 100)) # replace all values below 2 and above 100 w. NA

replace_outliers(mtcars, 2, single.limit = "min") # replace all value smaller than 2 with NA

replace_outliers(mtcars, 100, single.limit = "max") # replace all value larger than 100 with NA

replace_outliers(mtcars, 2) # replace all values above or below 2 column-
standard-deviations from the column-mean w. NA

replace_outliers(fgroup_by(iris, Species), 2) # Passing a grouped_df, pseries or pdata.frame

allows to remove outliers according to
in-group standard-deviation. see ?fscale

AA2-small-helpers Small (Helper) Functions

Description

Convenience functions in the collapse package that help to deal with variable names, labels, missing
values, matching and object checking etc.. Some functions are performance improved replacements
for base R functions.

Usage
vlabels(X, attrn = "label”) # Get labels of variables in X, in attr(X[[i]], attrn)
vlabels(X, attrn = "label”) <- value # Set labels of variables in X
vclasses(X) # Get classes of variables in X
vtypes(X) # Get data storage types of variables in X (calling typeof)
namlab(X, class = FALSE, # Return data.frame of names, labels and classes

attrn = "label")
add_stub(X, stub, pre = TRUE) # Add a stub (i.e. prefix or postfix) to column names
rm_stub(X, stub, pre = TRUE) # Remove stub from column names

X %!'in% table # The opposite of %in%

ckmatch(x, table, # Check-match: throws an informative error if non-matched
e = "Unknown columns:")

fnlevels(x) # Faster version of nlevels(x) (for factors)

funique(x, ordered = TRUE) # Faster unique(x) and sort(unique(x)) for vectors

24 AA2-small-helpers

fnrow(X) # Faster nrow for data.frames (not faster for matrices)
fncol(X) # Faster ncol for data.frames (not faster for matrices)
fdim(X) # Faster dim for data.frames (not faster for matrices)
na_rm(x) # Remove missing values from vector and return vector
na_omit(X, cols = NULL, # Faster na.omit for matrices and data.frames
na.attr = FALSE)
na_insert(X, prop =0.1) # Insert missing values at random in vectors, matrices DF's
all_identical(...) # Check exact equality of multiple objects or list-elements
all_obj_equal(...) # Check near equality of multiple objects or list-elements
seq_row(X) # Fast integer sequences along rows of X
seg_col(X) # Fast integer sequences along columns of X
setRownames(object = nm, # Set rownames of object and return object

nm = seq_row(object))
setColnames(object = nm, nm) # Set colnames of object and return object
setDimnames(object = dn, dn) # Set dimension names of object and return object
#
#

unattrib(object) Remove all attributes from object

is.categorical(x) The opposite of is.numeric

is.Date(x) # Check if object is of class "Date”, "POSIX1t" or "POSIXct"”

Arguments

X a matrix or data.frame (some functions also support vectors and arrays although
that is less common).

object a suitable R object.

X, table a atomic vector.

attrn character. Name of attribute to store labels or retrieve labels from.

value a matching character vector of variable labels.

class logical. Also show the classes of variables in X in a column?

stub a single character stub, i.e. "log.", which by default will be pre-applied to all
variables or column names in X.

pre logical. FALSE will post-apply stub.

cols only removes rows with missing values on these columns. Columns can be

selected using column names, indices or a selector function (i.e. is.numeric).

na.attr logical. TRUE adds an attribute containing the removed cases. For compatibility
reasons this is exactly the same format as na.omit i.e. the attribute is called
"na.action" and of class "omit".

nm a suitable vector of row- or column-names.

dn a suitable list of dimension names.

ordered logical. TRUE (default) sorts the output, FALSE is slightly faster.
prop specify the proportion of observations randomly replaced with NA.
e The error message thrown by ckmatch for non-matched elements.

for all_identical / all_obj_equal: either multiple comma-separated ob-
jects or a single list of objects in which all elements will be checked for exact or
numeric equality by all_identical and all_obj_equal, respectively.

BY 25

See Also

Collapse Overview

Examples

Variable labels

namlab(wlddev, class = TRUE)
vlabels(wlddev)

vlabels(wlddev) <- vlabels(wlddev)

Stub-renaming

log_mtc <- add_stub(log(mtcars), "log.")
rm_stub(log_mtc, "log.")

rm(log_mtc)

Checking exact equality of multiple objects

all_identical(iris, iris, iris, iris)

1 <- replicate(100, fmean(num_vars(iris), iris$Species), simplify = FALSE)
all_identical(l)

rm(1)

Missing values

mtc_na <- na_insert(mtcars, 0.15) # Set 15% of values missing at random
fNobs(mtc_na) # See observation count
na_omit(mtc_na) # 12x faster than na.omit(airquality)
na_omit(mtc_na, na.attr = TRUE) # Adds attribute with removed cases, like na.omit
na_omit(mtc_na, cols = c("vs”,"am"”)) # Removes only cases missing vs or am
na_omit(gM(mtc_na)) # Also works for matrices
na_omit(mtc_na$vs, na.attr = TRUE) # Also works with vectors
na_rm(mtc_na$vs) # For vectors na_rm is faster ...
rm(mtc_na)
BY Split-Apply-Combine Computing
Description

BY is an S3 generic that efficiently applies functions over vectors or matrix- and data.frame columns
by groups, and returns various output formats. A simple parallelism is also available.

Usage
BY(X, ...)

Default S3 method:

BY(X, g, FUN, ..., use.g.names = TRUE, sort = TRUE,
expand.wide = FALSE, parallel = FALSE, mc.cores = 1L,
return = c("same"”,"list"))

26

BY

S3 method for class 'matrix'
BY(X, g, FUN, ..., use.g.names = TRUE, sort = TRUE,
expand.wide = FALSE, parallel = FALSE, mc.cores = 1L,

non

return = c("same"”,"matrix","data.frame”,"list"))

S3 method for class 'data.frame'
BY(X, g, FUN, ..., use.g.names = TRUE, sort = TRUE,
expand.wide = FALSE, parallel = FALSE, mc.cores = 1L,

non

return = c("same"”,"matrix","data.frame”,"list"))

S3 method for class 'grouped_df'
BY(X, FUN, ..., use.g.names = FALSE, keep.group_vars = TRUE,
expand.wide = FALSE, parallel = FALSE, mc.cores = 1L,

non

return = c("same"”,"matrix","data.frame”,"list"))

Arguments

X a atomic vector, matrix or data frame.

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

FUN a function, can be scalar- or vector-valued.
further arguments to FUN.

use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and grouped tibbles.

sort logical. Sort the groups? Internally passed to GRP or gF, and only effective if g
is not already a factor or GRP object.

expand.wide logical. If FUN is a vector-valued function returning a vector of fixed length > 1
(such as the quantile function), expand.wide can be used to return the result
in a wider format (instead of stacking the resulting vectors of fixed length above
each other in each output column).

parallel logical. TRUE implements simple parallel execution by internally calling parallel
instead of base: : lapply.

mc.cores integer. Argument to parallel::mclapply indicating the number of cores to
use for parallel execution. Can use parallel::detectCores() to select all
available cores. See also ?parallel: :mclapply.

return an integer or string indicating the type of object to return. The default 1 -"same”

returns the same object type (i.e. passing a matrix returns a matrix and passing
a data frame returns a data frame). 2 -"matrix" always returns the output as
matrix, 3 -"data.frame" always returns a data frame and 4 -"1ist" returns the
raw (uncombined) output. Note: 4 -"1ist"” works together with expand.wide
to return a list of matrices.
keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

BY 27

Details

BY is a frugal reimplementation of the Split-Apply-Combine computing paradigm. It is faster
than base: : tapply, base: :by, base: :aggregate and plyr, and preserves data attributes just like
dapply.

I note at this point that the philosophy of collapse is to move beyond this rather slow computing
paradigm, which is why the Fast Statistical Functions were implemented. However sometimes tasks
need to be performed that involve more complex and customized operations on data, and for these
cases BY is a good solution.

BY is built principally as a wrapper around lapply(split(x,g),FUN,...), but strongly optimizes
on attribute checking compared to base R. For more details examine the code yourself or look at
the documentation for dapply which works very similar (the only difference really is the splitting
performed in BY).

BY is used internally in collap (collapse’s main aggregation command) for functions that are not
Fast Statistical Functions.

Value

X where FUN was applied to every column split by g.

See Also

dapply, collap, Fast Statistical Functions, Data Transformations, Collapse Overview

Examples

v <- iris$Sepal.Length # A numeric vector
f <- iris$Species # A factor. Vectors/lists will internally be converted to factor

default vector method

BY(v, f, sum) # Sum by species

BY(v, f, scale) # Scale by species (please use fscale instead)
BY(v, f, scale, use.g.names = FALSE) # Omitting auto-generated names

BY(v, f, quantile) # Species quantiles: by default stacked

BY(v, f, quantile, expand.wide = TRUE) # Wide format

matrix method

m <- gM(num_vars(iris))

BY(m, f, sum) # Also return as matrix

BY(m, f, sum, return = "data.frame") # Return as data.frame ... also works for computations below

BY(m, f, scale)

BY(m, f, scale, use.g.names = FALSE)

BY(m, f, quantile)

BY(m, f, quantile, expand.wide = TRUE)

BY(m, f, quantile, expand.wide = TRUE, # Return as list of matrices
return = "list")

data.frame method

BY(num_vars(iris), f, sum) # Also returns a data.fram

BY(num_vars(iris), f, sum, return = 2) # Return as matrix ... also works for computations below
BY(num_vars(iris), f, scale)

28 collap

BY(num_vars(iris), f, scale, use.g.names = FALSE)

BY(num_vars(iris), f, quantile)

BY(num_vars(iris), f, quantile, expand.wide = TRUE)

BY(num_vars(iris), f, quantile, # Return as list of matrices
expand.wide = TRUE, return = "list")

grouped tibble method

library(dplyr)

giris <- group_by(iris, Species)

giris %>% BY(sum) # Compute sum

giris %>% BY(sum, use.g.names = TRUE, # Use row.names and

keep.group_vars = FALSE) # remove 'Species' and groups attribute
#
#

giris %>% BY(sum, return = "matrix") Return matrix

giris %>% BY(sum, return = "matrix”, Matrix with row.names
use.g.names = TRUE)

giris %>% BY(log) # Take logs

giris %>% BY(log, use.g.names = TRUE, # Use row.names and
keep.group_vars = FALSE) # remove 'Species' and groups attribute
giris %>% BY(quantile) # Compute quantiles (output is stacked)
giris %>% BY(quantile, # Much better, also keeps 'Species'
expand.wide = TRUE)

collap Advanced Data Aggregation

Description

collap is a fast and easy to use multi-purpose data aggregation command.

It performs simple aggregations, multi-type data aggregations applying different functions to nu-
meric and categorical data, weighted aggregations (including weighted multi-type aggregations),
aggregations applying multiple functions to each column (which can be performed in parallel), and
fully customized aggregations where the user passes a list mapping functions to columns.

collap works with collapse’s Fast Statistical Functions, providing extremely fast conventional and
weighted aggregation. It also works with other functions but this does not deliver high speeds on
large data and does not support weighted aggregations.

Usage

Main function: allows formula and data input to ‘by‘ and ‘w‘ arguments

collap(X, by, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum,
custom = NULL, keep.by = TRUE, keep.w = TRUE, keep.col.order = TRUE,
sort.row = TRUE, parallel = FALSE, mc.cores = 1L,

n o n

return = c("wide"”,"list"”,"long","long_dupl”), give.names = "auto”, ...)

Programmer function: allows column names and indices input to ‘by"‘ and ‘w‘ arguments

collapv(X, by, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum,
custom = NULL, keep.by = TRUE, keep.w = TRUE, keep.col.order = TRUE,
sort.row = TRUE, parallel = FALSE, mc.cores = 1L,

collap 29

n on

return = c("wide"”,"list"”,"long","long_dupl”), give.names = "auto”, ...)

Auxiliary function: for grouped tibble ('grouped_df') input + non-standard evaluation
collapg(X, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum, custom = NULL,
keep.group_vars = TRUE, keep.w = TRUE, keep.col.order = TRUE, sort.row = TRUE,

parallel = FALSE, mc.cores = 1L,

return = c("wide"”,"1list”,"”long"”,"long_dupl”), give.names = "auto”, ...)
Arguments

X a data.frame, or an object coercible to data.frame using gDF.

by for collap: a one-or two sided formula, i.e. ~ group1 or var1 + var2 ~ group1
+ group2, or a atomic vector, list of vectors or GRP object used to group X. For
collapv: names or indices of grouping columns, or a logical vector or selector
function such as is.categorical selecting grouping columns.

FUN a function, list of functions (i.e. list(fsum,fmean,fsd) or list(myfunl =
function(x)..,sd = sd)), or a character vector of function names, which are
automatically applied only to numeric variables.

catFUN same as FUN, but applied only to categorical (non-numeric) typed columns (is.categorical).

cols select columns to aggregate using a function, column names, indices or logical
vector. Note: cols is ignored if a two-sided formula is passed to by.

w weights. Can be passed as numeric vector or alternatively as formula i.e. ~
weightvar in collap or column name/index etc. i.e. "weightvar” in collapv.
collapg supports non-standard evaluations so weightvar can be indicate with-
out quotes if found in X.

wFUN same as FUN: Function(s) to aggregate weight variable if keep.w = TRUE. By
default the sum of the weights is computed in each group.

custom a named list specifying a fully customized aggregation task. The names of the

list are function names and the content columns to aggregate using this func-
tion (same input as cols). For example custom=1list(fmean=1:6,fsd=
7:9,fmode = 10:11) tells collap to aggregate columns 1-6 of X using the mean,
columns 7-9 using the standard deviation etc. Note: custom lets collap ignore
any inputs passed to FUN, catFUN or cols.
keep.by, keep.group_vars

logical. FALSE will omit grouping variables from the output. TRUE keeps the
variables, even if passed externally in a list or vector (unlike other collapse func-
tions).

keep.w logical. FALSE will omit weight variable from the output i.e. no aggregation of
the weights. TRUE aggregates and adds weights, even if passed externally as a
vector (unlike other collapse functions).

keep.col.order logical. Retain original column order post-aggregation.

sort.row logical. Sort rows by the groups. From collapse 1.2.0 this only applies to char-
acter grouping variables.

parallel logical. Use parallel: :mclapply instead of lapply for multi-function or cus-
tom aggregation.

30 collap

mc.cores integer. Argument to parallel: :mclapply setting the number of cores to use.

return character. Control the output format when aggregating with multiple func-
tions or performing custom aggregation. "wide" (default) returns a wider data
frame with added columns for each additional function. "list" returns a list of
data frame’s - one for each function. "long" adds a column "Function" and
row-binds the results from different functions using data.table: :rbindlist.
"long.dupl” is a special option for aggregating multi-type data using multiple
FUN but only one catFUN or vice-versa. In that case the format is long and data
aggregated using only one function is duplicated. See Examples.

give.names logical. Create unique names of aggregated columns by adding a prefix "FUN.’.
"auto’ will automatically create such prefixes whenever multiple functions are
applied to a column or custom is used.

additional arguments passed to all functions supplied to FUN, catFUN, wFUN or
custom. The behavior of Fast Statistical Functions is regulated by option("”collapse_unused_arg_act:i
and defaults to "warning”.

Details

collap automatically checks each function passed to it whether it is a Fast Statistical Function
(i.e. whether the function name is contained in . FAST_STAT_FUN). If the function is a fast function,
collap only does the grouping and then calls the function to carry out the grouped computations.
If the function is not one of . FAST_STAT_FUN, BY is called internally to perform the computation.
The resulting computations from each function are put into a list and recombined to produce the
desired output format as controlled by the return argument. When multiple functions are used with
collap, setting parallel = TRUE and the number of cores with mc.cores will instruct collap to
execute these function calls in parallel using parallel::mclapply. If only a single function is
used which is not a . FAST_STAT_FUN, the parallel and mc.cores arguments are handed down to
BY. See Examples.

Value

X aggregated by groups supplied to the by argument.

Note

Since BY does not check and split additional arguments passed to it, it is presently not possible to
create a weighted function in R and apply it to data by groups with collap. Weighted aggregations
only work with Fast Statistical Functions supporting weights. User written weighted functions can
be applied using the data.table package.

collap by default (keep.by = TRUE, keep.w = TRUE) preserves all arguments passed to the by or w
arguments, whether passed in a formula or externally. The names of externally passed vectors and
lists are intelligently extracted. So it is possible to write collap(iris,iris$Species), and obtain
an aggregated data frame with two Species columns, whereas collap(iris,~ Species) only has
one Species column. Similarly for weight vectors passed to w. In this regard collap is more
sophisticated than other collapse functions where preservation of grouping and weight variables is
restricted to formula use. For example STD(iris, iris$Species) does not preserve Species in the
output, whereas STD(iris,~ Species) does. This collap feature is there simply for convenience,
for example sometimes a survey is disaggregated into several datasets, and this now allows easy

collap 31

pulling of identifiers or weights from other datasets for aggregations. If all information is available
in one dataset, just using formulas is highly recommended.
See Also

BY, Fast Statistical Functions, Collapse Overview

Examples

A Simple Introduction --------==---——--——mmmmmmm oo
head(iris)
collap(iris, ~ Species) # Default: FUN = fmean for numeric

collapv(iris, 5) # Same using collapv
collap(iris, ~ Species, fmedian) # Using the median
collap(iris, ~ Species, fmedian, keep.col.order = FALSE) # Groups in-front
collap(iris, Sepal.Width + Petal.Width ~ Species, fmedian) # Only '.Width' columns
collapv(iris, 5, cols = c(2, 4)) # Same using collapv
collap(iris, ~ Species, list(fmean, fmedian)) # Two functions
collap(iris, ~ Species, list(fmean, fmedian), return = "long") # Long format

#

collapv(iris, 5, custom = list(fmean = 1:2, fmedian = 3:4)) Custom aggregation
collapv(iris, 5, custom = list(fmean = 1:2, fmedian = 3:4), # Raw output, no column reordering

return = "list")
collapv(iris, 5, custom = list(fmean = 1:2, fmedian = 3:4), # A strange choice...
return = "long")
collap(iris, ~ Species, w = ~ Sepal.Length) # Using Sepal.Length as weights, ..
weights <- abs(rnorm(fnrow(iris)))
collap(iris, ~ Species, w = weights) # Some random weights..
collap(iris, iris$Species, w = weights) # Note this behavior...

collap(iris, iris$Species, w = weights,
keep.by = FALSE, keep.w = FALSE)
library(dplyr) # Needed for "%>%"
iris %>% fgroup_by(Species) %>% collapg # dplyr style, but faster

Multi-Type Aggregation --—----—---—---————-———--———o———o— o

head(wlddev) # World Development Panel Data

head(collap(wlddev, ~ country + decade)) # Aggregate by country and decade

head(collap(wlddev, ~ country + decade, fmedian, ffirst)) # Different functions

head(collap(wlddev, ~ country + decade, cols = is.numeric)) # Aggregate only numeric columns

head(collap(wlddev, ~ country + decade, cols = 9:12)) # Only the 4 series

head(collap(wlddev, PCGDP + LIFEEX ~ country + decade)) # Only GDP and life-expactancy

head(collap(wlddev, PCGDP + LIFEEX ~ country + decade, fsum)) # Using the sum instead

head(collap(wlddev, PCGDP + LIFEEX ~ country + decade, sum, # Same using base::sum -> slower!!
na.rm = TRUE))

head(collap(wlddev, wlddev[c("country”,"decade")], fsum, # same, exploring different inputs
cols = 9:10))

head(collap(wlddev[9:10], wlddev[c("country”,"decade”)], fsum))

head(collapv(wlddev, c("country”,"decade"), fsum)) # ... names/indices with collapv

head(collapv(wlddev, c(1,5), fsum))

g <- GRP(wlddev, ~ country + decade) # Precomputing the grouping
head(collap(wlddev, g, keep.by = FALSE)) # This is slightly faster now
Aggregate categorical data using not the mode but the last element

head(collap(wlddev, ~ country + decade, fmean, flast))

collap

head(collap(wlddev, ~ country + decade, catFUN = flast, # Aggregate only categorical data
cols = is.categorical))

Weighted aggregation -----------------———--——---———-————

weights <- abs(rnorm(fnrow(wlddev))) # Random weight vector
head(collap(wlddev, ~ country + decade, w = weights)) # Takes weighted mean for numeric. .
..and weighted mode for categorical data. The weight vector is aggregated using fsum
wlddev$weights <- weights # Adding to data
head(collap(wlddev, ~ country + decade, w = ~ weights)) # Keeps column order
head(collap(wlddev, ~ country + decade, w = ~ weights, # Aggregating weights using sum
WFUN = list(fsum, fmax))) # and max (corresponding to mode)

wlddev$weights <- NULL

Multi-Function Aggregation ------------—=---——---——mo—mmmo

head(collap(wlddev, ~ country + decade, list(fmean, fNobs), # Saving mean and Nobs
cols = 9:12))
head(collap(wlddev, ~ country + decade, # same using base R -> slower
list(mean = mean,
Nobs = function(x,...) sum(!is.na(x))),

cols = 9:12, na.rm = TRUE))

head(collap(wlddev, ~ country + decade, # list output format
list(fmean, fNobs), cols = 9:12, return = "list"))

head(collap(wlddev, ~ country + decade, # long output format
list(fmean, fNobs), cols = 9:12, return = "long"))

head(collap(wlddev, ~ country + decade, # also aggregating categorical data,

list(fmean, fNobs), return = "long_dupl”)) # and duplicating it 2 times

head(collap(wlddev, ~ country + decade, # now also using 2 functions on
list(fmean, fNobs), list(fmode, flast), # categorical data

keep.col.order = FALSE))

head(collap(wlddev, ~ country + decade, # more functions, string input,
c("fmean”,"fsum"”, "fNobs","fsd","fvar"), # parallelized execution
c("fmode”,"ffirst"”,"flast"”,"fNdistinct"), # (choose more than 1 cores,

parallel = TRUE, mc.cores = 1L, # depending on your machine)

keep.col.order = FALSE))

Custom Aggregation -------------—--—--——-———————— -
head(collap(wlddev, ~ country + decade, # custom aggregation
custom = list(fmean = 9:12, fsd = 9:10, fmode = 7:8)))

head(collap(wlddev, ~ country + decade, # using column names
custom = list(fmean = "PCGDP", fsd = c("LIFEEX","GINI"),
flast = "date")))

head(collap(wlddev, ~ country + decade, # weighted parallelized custom

collapse-depreciated 33

custom = list(fmean = 9:12, fsd = 9:10, # aggregation
fmode = 7:8), w = weights,

WwFUN = list(fsum, fmax),

parallel = TRUE, mc.cores = 1L))

head(collap(wlddev, ~ country + decade, # No column reordering
custom = list(fmean = 9:12, fsd = 9:10,
fmode = 7:8), w = weights,
wFUN = list(fsum, fmax),
parallel = TRUE, mc.cores = 1L, keep.col.order = FALSE))

Piped use ---------——--------———mmmo oo
wlddev %>% fgroup_by(country, decade) %>% collapg
wlddev %>% fgroup_by(country, decade) %>% collapg(w = ODA)
wlddev %>% fgroup_by(country, decade) %>% collapg(fmedian, flast)
wlddev %>% fgroup_by(country, decade) %>%

collapg(custom = list(fmean = 9:12, fmode = 5:7, flast = 3))

collapse-depreciated Depreciated collapse Functions

Description

The functions Recode and replace_non_finite available until collapse v1.1.0 will be removed
in the next update of collapse. Since v1.2.0, Recode is replaced by recode_num and recode_char
and replace_non_finite is replaced by replace_Inf.

Usage
Recode(X, ..., copy = FALSE, reserve.na.nan = TRUE, regex = FALSE)

replace_non_finite(X, value = NA, replace.nan = TRUE)

Arguments
X a vector, matrix or data.frame.
comma-separated recode arguments of the form: name = newname, *2* = @, *NaN*
=0, NA* =0, Inf* =NA,*-Inf" = NA, etc...
value a single (scalar) value to replace matching elements with. Default is NA.
copy logical. For reciprocal or sequential replacements of the form a = b,b = ¢ make

a copy of X to prevent a being replaced with b and then all b-values being re-
placed with c again. In general Recode does the replacements one-after the
other, starting with the first.

reserve.na.nan logical. TRUE identifies NA and NaN as special numeric values and does the cor-
rect replacement. FALSE will treat NA/NaN as strings, and thus not match numeric
NA/NaN. Note: This is not an issue for Inf/-Inf, which are matched in both nu-
meric and character variables.

34 dapply

regex logical. If TRUE, all recode-argument names are (sequentially) passed to grepl
as a pattern to search X. All matches are replaced.

replace.nan logical. TRUE (default) replaces NaN/Inf/-Inf. FALSE replaces only Inf/-Inf.

Note

Recode is not suitable for recoding factors or other classed objects / columns, it simply does
X[X == value] <-replacement in a more efficient way. For classed objects, see for example
dplyr: :recode.

See Also

Recode Replace, Collapse Overview

Examples

ReCOde(C("a","b", ncll) ,
ReCOde(C("a",”b”,"C”) ,

="b", b ="c")

"b”, b = "c", copy = TRUE)
Recode(c("a","b","c"), a = "b", b = "a", copy = TRUE)
Recode(month.name, ber = NA, regex = TRUE)

mtcr <- Recode(mtcars, ‘0 = 2, ‘4% = Inf, ‘1% = NaN)
replace_non_finite(mtcr)

replace_non_finite(mtcr, replace.nan = FALSE)

n o o0 @
1

collapse-options collapse Global Options

Description

currently collapse only provides option(”collapse_unused_arg_action”), which regulates how
generic functions (such as the Fast Statistical Functions) in the package react when an unknown
argument is passed to a method. The default action is "warning"” which issues a warning. Other

options are "error”, "message” or "none”, whereby the latter enables silent swallowing of such
arguments.

dapply Data Apply

Description

dapply efficiently applies functions to columns or rows of matrices and data frame’s and (default)
returns an object of the same type and with the same attributes, or converts to the other type. A
simple parallelism is also available.

dapply 35
Usage
dapply(X, FUN, ..., MARGIN = 2, parallel = FALSE, mc.cores = 1L,
return = c("same”,"matrix"”,"data.frame”), drop = TRUE)
Arguments
X a matrix or data frame.
FUN a function, can be scalar- or vector-valued.
further arguments to FUN.
MARGIN integer. The margin which FUN will be applied over. Default 2 indicates columns
while 1 indicates rows. See also Details.
parallel logical. TRUE implements simple parallel execution by internally calling parallel
instead of base: : lapply.
mc.cores integer. Argument to parallel::mclapply indicating the number of cores to
use for parallel execution. Can use parallel::detectCores() to select all
available cores. See also ?parallel: :mclapply.
return an integer or string indicating the type of object to return. The default 1 -"same”
returns the same object type (i.e. passing a matrix returns a matrix and passing
a data frame returns a data frame). 2 -"matrix"” always returns the output as
matrix and 3 -"data.frame" always returns a data frame.
drop logical. If the result has only one row or one column, drop = TRUE will drop
dimensions and return a (named) atomic vector.
Details

dapply is an efficient command to apply functions to rows or columns of data without loosing
information (attributes) about the data or changing the classes or format of the data. It is principally
an efficient wrapper around base: : 1lapply and works as follows:

Save the attributes of X.

If MARGIN = 2 (columns), convert matrices to plain lists of columns using mctl and remove all
attributes from data frames.

If MARGIN =1 (rows), convert matrices to plain lists of rows using mrtl. For data frames
remove all attributes, efficiently convert to matrix using do.call(rbind,X) and also convert
to list of rows using mrtl1.

Call base: :lapply or parallel: :mclapply on these plain lists (which is faster than calling
lapply on an object with attributes).

depending on the requested output type, use base: :matrix, base::unlistordo.call(cbhind,...

to convert the result back to a matrix or list of columns.

modify the relevant attributes accordingly and efficiently attach to the object again (no further
checks).

This performance gain from working with plain lists makes dapply not much slower than calling
lapply itself on a data frame. Because of the conversions involved, row-operations require some
memory, but are still faster than base: :apply.

::mclapply

36 descr
Value
X where FUN was applied to every row or column.
See Also
BY, collap, Fast Statistical Functions, Data Transformations, Collapse Overview
Examples
dapply(mtcars, log) # Take natural log of each variable
dapply(mtcars, log, return = "matrix") # Return as matrix
m <- as.matrix(mtcars)
dapply(m, log) # Same thing
dapply(m, log, return = "data.frame") # Return data frame from matrix
dapply(mtcars, sum); dapply(m, sum) # Computing sum of each column, return as vector
dapply(mtcars, sum, drop = FALSE) # This returns a data.frame of 1 row
dapply(mtcars, sum, MARGIN = 1) # Compute row-sum of each column, return as vector
dapply(m, sum, MARGIN = 1) # Same thing for matrices, faster than apply(m, 1, sum)
dapply(m, sum, MARGIN = 1, drop = FALSE) # Gives matrix with one column
dapply(m, quantile, MARGIN = 1) # Compute row-quantiles
dapply(m, quantile) # Column-quantiles

dapply(mtcars, quantile, MARGIN = 1) # Same for data frames, output is also a data.frame

dapply(mtcars, quantile)

Let's now take a more complex classed object, like a dplyr grouped tibble

library(dplyr)
gmtcars <- group_by(mtcars,cyl,vs,am)
dapply(gmtcars, log) # Still gives a grouped tibble back

dapply(gmtcars, log, MARGIN = 1)
dapply(gmtcars, quantile, MARGIN = 1) # Also works for quantiles
dapply(gmtcars, log, return = "matrix"”) # Output as matrix

descr Detailed Statistical Description of Data Frame

Description

descr offers concise description of each variable in a data frame. It is built as a wrapper around
gsu, but by default also computes frequency tables with percentages for categorical variables, and
quantiles and the number of distinct values for numeric variables (next to the mean, sd, min, max,
skewness and kurtosis computed by gsu).

Usage

descr(X, Ndistinct = TRUE, higher = TRUE, table = TRUE,
Qprobs = c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99),
cols = NULL, label.attr = "label”, ...)

S3 method for class 'descr'

descr 37

print(x, n = 6, perc = TRUE, summary = TRUE, ...)

S3 method for class 'descr'

as.data.frame(x, ...)
Arguments
X a data.frame or list of atomic vectors. Atomic vectors, matrices or arrays can be

passed but will first be coerced to data.frame using qDF.

Ndistinct logical. TRUE (default) computes the number of distinct values on all variables
using fNdistinct.

higher logical. Argument is passed down to qsu: TRUE (default) computes the skewness
and the kurtosis.

table logical. TRUE (default) calls table on all categorical variables (excluding Date
variables).

Qprobs probabilities for quantiles to compute on numeric variables, passed down to

quantile. If something non-numeric is passed (i.e. NULL, FALSE, NA, "" etc.),
no quantiles are computed.

cols select columns to describe using column names, indices or a function (i.e. is.numeric).
label.attr character. The name of a label attribute to display for each variable (if variables
are labeled).
other arguments passed to qsu.default.
X an object of class ’descr’.
n integer. The number of first and last entries to display of the table computed for

categorical variables.

perc logical. TRUE (default) adds percentages in brackets behind the frequencies in
the table for categorical variables.

summary logical. TRUE (default) computes and displays a summary of the frequencies if
the size of the table for a categorical variables exceeds 2*n.

Details

descr was heavily inspired by Hmisc: :describe, but computes about 10x faster. The performance
is comparable to base: :summary. descr was built as a wrapper around gsu, to enrich the set of
statistics computed by gsu for both numeric and categorical variables.

gsu itself is yet about 10x faster than descr, and is optimized for grouped, panel-data and weighted
statistics. It is possible to also compute grouped, panel-data and/or weighted statistics with desc
by passing group-ids to g, panel-ids to pid or a weight vector to w. These arguments are handed
down to gsu.default and only affect the statistics natively computed by gsu, i.e. passing a weight
vector produces a weighted mean, sd, skewness and kurtosis but not weighted quantiles.

The list-object returned from descr can be converted to a tidy data.frame using as.data. frame.
This representation will not include frequency tables computed for categorical variables, and the
method cannot handle arrays of statistics (applicable when g or pid arguments are passed to descr,
in that case as.data. frame.descr will throw an appropriate error).

38 extract-list

Value

A 2-level nested list, the top-level containing the statistics computed for each variable, which are
themselves stored in a list containing the class, the label, the basic statistics and quantiles / tables
computed for the variable. The object is given a class ’descr’ and also has the number of observa-
tions in the dataset attached as an "N’ attribute, as well as an attribute "arstat’ indicating whether the
object contains arrays of statistics.

See Also

gsu, pwcor, Fast Statistical Functions, Collapse Overview

Examples

Standard Use
descr(iris)
descr(wlddev)
descr(GGDC10S)

as.data.frame(descr(wlddev))

Passing Arguments down to gsu: For Panel-Data Statistics
descr(iris, pid = iris$Species)
descr(wlddev, pid = wlddev$iso3c)

Grouped Statistics
descr(iris, g = iris$Species)
descr(GGDC10S, g = GGDC1@S$Region)

extract-list Find and Extract / Subset List Elements

Description

A suite of functions to subset or extract from (potentially complex) lists and list-like structures.
Subsetting may occur according to certain data types, using identifier functions, element names or
regular expressions to search the list for certain objects.

* atomic_elem and list_elem are non-recursive functions to extract and replace the atomic
and sub-list elements at the top-level of the list tree.

* reg_elemis the recursive equivalent of atomic_elem and returns the 'regular’ part of the list
- with atomic elements in the final nodes. See is.regular and is.unlistable. irreg_elem
returns all the non-regular elements (i.e. call and terms objects, formulas, etc...). See Exam-
ples.

» get_elemreturns the part of the list responding to either an identifier function, regular expres-
sion or exact element names, or indices applied to all final objects. has_elem checks for the
existence of the searched element and returns TRUE if a match is found. See Examples.

extract-list 39

Usage

Non-recursive (top-level) subsetting and replacing
atomic_elem(l, return = "sublist”, keep.class = FALSE)
atomic_elem(l) <- value

list_elem(l, return = "sublist”, keep.class = FALSE)
list_elem(1l) <- value

Recursive separation of regular (atomic) and irregular (non-atomic) parts
reg_elem(l, recursive = TRUE, keep.tree = FALSE, keep.class = FALSE)
irreg_elem(l, recursive = TRUE, keep.tree = FALSE, keep.class = FALSE)

Extract elements using a function or regular expression
get_elem(l, elem, recursive = TRUE, DF.as.list = TRUE, keep.tree = FALSE,
keep.class = FALSE, regex = FALSE, ...)

Check for the existence of elements

has_elem(l, elem, recursive = TRUE, DF.as.list = TRUE, regex = FALSE, ...)
Arguments

1 a list.

value a list of the same length as the extracted subset of 1.

elem a function returning TRUE or FALSE when applied to elements of 1, or a character

vector of element names or regular expressions (if regex = TRUE). get_elem
also supports a vector or indices which will be used to subset all final objects.

return an integer or string specifying what the selector function should return. The
options are:

Int. String Description

1 "sublist" subset of data.frame (default)
2 "names" column names

3 "indices" column indices

4 "named_indices" named column indices

5 "logical" logical selection vector

6 "named_logical" named logical vector

Note: replacement functions only replace data, However column names are re-
placed together with the data.

recursive logical. should the list search be recursive (i.e. go though all the elements), or
just at the top-level?

DF.as.list logical. treat data.frame’s like (sub-)lists or like atomic elements?

keep.tree logical. TRUE always returns the entire list tree leading up to all matched results,

while FALSE drops the top-level part of the tree if possible.

keep.class logical. for classed objects: Should the class be retained?

40 extract-list

regex logical. should regular expression search be used on the list names, or only exact
matches?

further arguments to grep (if regex = TRUE).

Details

A list is made up of regular and irregular elements. I defined regular elements as all elements
that are either atomic or a list (see is.regular). reg_elem with recursive = TRUE therefore ex-
tracts the subset of the list tree leading up to atomic elements in the final nodes. This part of the
list tree is unlistable - calling is.unlistable(reg_elem(1l)) will be TRUE for all lists 1. Con-
versely, all elements left behind by reg_elem will be picked up be irreg_elem (if available).
Thus is.unlistable(irreg_elem(1l)) is always FALSE for lists with irregular elements (other-
wise irreg_elem returns an empty list).

If keep.tree = TRUE, reg_elem, irreg_elem and get_elem always return the entire list tree, but
cut off all of the branches not leading to the desired result. If keep. tree = FALSE, top-level parts
of the tree are omitted so far this is possible. For example in a nested list with three levels and one
data-matrix in one of the final branches, get_elem(1l,is.matrix,keep.tree = TRUE) will return
a list (Lres) of depth 3, from which the matrix can be accessed as 1res[[1]JIL[1]ICL1]]. This
however does not make much sense. get_elem(1l,is.matrix,keep.tree = FALSE) will therefore
figgure out that it can drop the entire tree and return just the matrix. keep.tree = FALSE makes
additional optimizations if matching elements are at far-apart corners in a nested structure, by only
preserving the hierarchy if elements are above each other on the same branch. Thus for a list
1<-list(list(2,list("a",1)),list(1,1list("b",2))) calling get_elem(1l,is.character)
will just return 1ist("a"”,"b").

See Also

List Processing, Collapse Overview

Examples

1 <- list(list(2,list("a",1)),list(1,list("b",2)))
has_elem(1l, is.logical)

has_elem(l, is.character)

get_elem(l, is.character)

get_elem(l, is.character, keep.tree = TRUE)

1 <= Im(mpg ~ cyl + vs, data = mtcars)
str(reg_elem(l))

str(irreg_elem(1l))

get_elem(l, is.matrix)

get_elem(l, "residuals"”)

get_elem(1l, "fit", regex = TRUE)
has_elem(1,"tol")

get_elem(l, "tol")

fbetween, fwithin 41

fbetween, fwithin Fast Between (Averaging) and Within (Centering) Transformations

Description

fbetween and fwithin are S3 generics to efficiently obtain between-transformed (averaged) or
within-transformed (demeaned) data. These operations can be performed groupwise and/or weighted.
B and W are wrappers around fbetween and fwithin representing the "between-operator’ and the
’within-operator’. B / W provide more flexibility than fbetween / fwithin when applied to data
frames (i.e. column subsetting, formula input, auto-renaming and id-variable-preservation capabil-
ities...), but are otherwise identical.

(fbetween and fwithin are simple programmers functions in style of the Fast Statistical Functions
while B and W are more practical to use in regression formulas or for ad-hoc computations on data
frames.)

Usage

fbetween(x,
fwithin(x,
B(x,

W(x,

A g

Default S3 method:

fbetween(x, g = NULL, w = NULL, na.rm = TRUE, fill = FALSE, ...)
Default S3 method:
fwithin(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, ...)

Default S3 method:

B(x, g = NULL, w = NULL, na.rm = TRUE, fill = FALSE, ...)

Default S3 method:

W(x, g = NULL, w = NULL, na.rm = TRUE, mean = 0@, ...)

S3 method for class 'matrix'

fbetween(x, g = NULL, w = NULL, na.rm = TRUE, fill = FALSE, ...)
S3 method for class 'matrix'

fwithin(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, ...)

S3 method for class 'matrix'

B(x, g = NULL, w = NULL, na.rm = TRUE, fill = FALSE, stub = "B.", ...)
S3 method for class 'matrix'

W(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, stub = "W.", ...)
S3 method for class 'data.frame'

fbetween(x, g = NULL, w = NULL, na.rm = TRUE, fill = FALSE, ...)
S3 method for class 'data.frame'

fwithin(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, ...)

S3 method for class 'data.frame'
B(x, by = NULL, w = NULL, cols = is.numeric, na.rm = TRUE,

42 fbetween, fwithin

fill = FALSE, stub = "B.", keep.by = TRUE, keep.w = TRUE, ...)
S3 method for class 'data.frame'
W(x, by = NULL, w = NULL, cols = is.numeric, na.rm = TRUE,

mean = @, stub = "W.", keep.by = TRUE, keep.w = TRUE, ...)

Methods for compatibility with plm:

S3 method for class 'pseries'

fbetween(x, effect = 1L, w = NULL, na.rm = TRUE, fill = FALSE, ...)
S3 method for class 'pseries'
fwithin(x, effect = 1L, w = NULL, na.rm = TRUE, mean = @, ...)

S3 method for class 'pseries'

B(x, effect = 1L, w = NULL, na.rm = TRUE, fill = FALSE, ...)

S3 method for class 'pseries'

W(x, effect = 1L, w = NULL, na.rm = TRUE, mean = @, ...)

S3 method for class 'pdata.frame'

fbetween(x, effect = 1L, w = NULL, na.rm = TRUE, fill = FALSE, ...)
S3 method for class 'pdata.frame'

fwithin(x, effect = 1L, w = NULL, na.rm = TRUE, mean = @, ...)

S3 method for class 'pdata.frame'
B(x, effect = 1L, w = NULL, cols = is.numeric, na.rm = TRUE,
fill = FALSE, stub = "B.", keep.ids = TRUE, keep.w = TRUE, ...)
S3 method for class 'pdata.frame'
W(x, effect = 1L, w = NULL, cols = is.numeric, na.rm = TRUE,
mean = @, stub = "W.", keep.ids = TRUE, keep.w = TRUE, ...)

Methods for compatibility with dplyr:

S3 method for class 'grouped_df'

fbetween(x, w = NULL, na.rm = TRUE, fill = FALSE,
keep.group_vars = TRUE, keep.w = TRUE, ...)

S3 method for class 'grouped_df"'

fwithin(x, w = NULL, na.rm = TRUE, mean = 0,
keep.group_vars = TRUE, keep.w = TRUE, ...)

S3 method for class 'grouped_df'

B(x, w = NULL, na.rm = TRUE, fill = FALSE,

stub = "B.", keep.group_vars = TRUE, keep.w = TRUE, ...)
S3 method for class 'grouped_df'
W(x, w = NULL, na.rm = TRUE, mean = 0,
stub = "W.", keep.group_vars = TRUE, keep.w = TRUE, ...)
Arguments
X anumeric vector, matrix, data.frame, panel-series (plm: : pseries), panel-data.frame
(plm: :pdata.frame) or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of

vectors / factors (internally converted to a GRP object) used to group x.

fbetween, fwithin

by

cols

na.rm

effect

stub

fill

mean

43

B and W data.frame method: Same as g, but also allows one- or two-sided
formulas i.e. ~ group1 or var1 + var2 ~ group1 + group2. See Examples.

a numeric vector of (non-negative) weights. B/W data frame and pdata.frame
methods also allow a one-sided formula i.e. ~weightcol. The grouped_df
(dplyr) method supports lazy-evaluation. See Examples.

data.frame method: Select columns to center/average using a function, column
names or indices. Default: All numeric variables. Note: cols is ignored if a
two-sided formula is passed to by.

logical. skip missing values in x when computing averages. If na.rm = FALSE
and a NA or NaN is encountered, the average for that group will be NA, and all
data points belonging to that group will also be NA.

plm methods: Select which panel identifier should be used as grouping variable.
1L means first variable in the p1lm: : index, 2L the second etc. if more than one
integer is supplied, the corresponding index-variables are interacted.

a prefix or stub to rename all transformed columns. FALSE will not rename
columns.

option to fbetween/B: Logical. TRUE will overwrite missing values in x with
the respective average. By default missing values in x are preserved.

option to fwithin/W: The mean to center on, default is 0, but a different mean
can be supplied and will be added to the data after the centering is performed. A
special option when performing grouped centering is mean = "overall.mean”.
In that case the overall mean of the data will be added after subtracting out group
means.

keep.by, keep.ids, keep.group_vars

keep.w

Details

B and W data.frame, pdata.frame and grouped_df methods: Logical. Retain
grouping / panel-identifier columns in the output. For data frames this only
works if grouping variables were passed in a formula.

B and W data.frame, pdata.frame and grouped_df methods: Logical. Retain col-
umn containing the weights in the output. Only works if w is passed as formula
/ lazy-expression.

arguments to be passed to or from other methods.

Without groups, fbetween/B replaces all data points in x with their mean or weighted mean (if w is
supplied). Similarly fwithin/W subtracts the mean from all data points i.e. centers the data on the

mean.

With groups supplied to g, the replacement / centering performed by fbetween/B | fwithin/W be-
comes groupwise. I like to think of this in terms of panel data: If x is a vector in such a dataset,
xit denotes a single data-point belonging to group i in time-period t (t need not be a time-period).
Then xi. denotes x, averaged over t. fbetween/B now returns xi. and fwithin/W returns x -xi..
Thus for any data x and any grouping vector g: B(x,g) + W(x,g) =xi. + x -xi. = x. In terms of
variance, fbetween/B only retains the variance between group averages, while fwithin/W, by sub-
tracting out group means, only retains the variance within those groups.

44 fbetween, fwithin

The data replacement performed by fbetween/B can keep (default) or overwrite missing values
(option fill = TRUE) in x. fwithin/W can center data simply (default), or add back a mean af-
ter centering (option mean = value), or add the overall mean in groupwise computations (option
mean = "overall.mean"). Let x.. denote the overall mean of x, then fwithin/W with mean
= "overall.mean"” returns x -xi. + x.. instead of x -xi.. This is useful to get rid of group-
differences but preserve the overall level of the data (as simple groupwise centering will set the
overall mean of the data to 0, or any other arbitrary value passed to mean). In regression analysis,
centering with mean = "overall.mean" will only change the constant term. See Examples.

Value

fbetween/B returns x with every element replaced by its (groupwise) mean (xi.). fwithin/W
returns x where every element was subtracted its (groupwise) mean (x -xi. or x -xi. + mean or x
-xi. + x..). See Details.

See Also

fHDbetween/HDB and fHDwithin/HDW, fscale/STD, TRA, Data Transformations, Collapse Overview

Examples

Simple centering and averaging

fbetween(mtcars)

B(mtcars)

fwithin(mtcars)

W(mtcars)

fbetween(mtcars) + fwithin(mtcars) == mtcars # This should be true apart from rounding errors

Groupwise centering and averaging

fbetween(mtcars, mtcars$cyl)

fwithin(mtcars, mtcars$cyl)

fbetween(mtcars, mtcars$cyl) + fwithin(mtcars, mtcars$cyl) == mtcars

W(wlddev, ~ iso3c, cols = 9:12) # Center the 4 series in this dataset by country
cbind(get_vars(wlddev, "iso3c"), # Same thing done manually using fwithin...
add_stub(fwithin(get_vars(wlddev,9:12), wlddev$iso3c), "W."))

Using B() and W() in regressions:

Several ways of running the same regression with cyl-fixed effects

Im(W(mpg,cyl) ~ W(carb,cyl), data = mtcars) # Centering each individually

Im(mpg ~ carb, data = W(mtcars, ~ cyl, stub = FALSE)) # Centering the entire data

Im(mpg ~ carb, data = W(mtcars, ~ cyl, stub = FALSE, # Here only the intercept changes
mean = "overall.mean"))

Im(mpg ~ carb + B(carb,cyl), data = mtcars) # Procedure suggested by

...Mundlak (1978) - partialling out group averages amounts to the same as demeaning the data

Now with cyl, vs and am fixed effects

Im(W(mpg,list(cyl,vs,am)) ~ W(carb,list(cyl,vs,am)), data = mtcars)
Im(mpg ~ carb, data = W(mtcars, ~ cyl + vs + am, stub = FALSE))
Im(mpg ~ carb + B(carb,list(cyl,vs,am)), data = mtcars)

fdiff 45

Now with cyl, vs and am fixed effects weighted by hp:
Im(W(mpg,list(cyl,vs,am),hp) ~ W(carb,list(cyl,vs,am),hp), data = mtcars)
Im(mpg ~ carb, data = W(mtcars, ~ cyl + vs + am, ~ hp, stub = FALSE))

Im(mpg ~ carb + B(carb,list(cyl,vs,am),hp), data = mtcars) # Gives a different coefficient!!
fdiff Fast (Quasi-, Log-) Differences for Time-Series and Panel Data
Description

fdiff is a S3 generic to compute (sequences of) suitably lagged / leaded and iterated differences,
quasi-differences, log-differences or quasi-log-differences. The difference and log-difference op-
erators D and Dlog also exists as parsimonious wrappers around fdiff. Apart from being more
parsimonious, they provide a bit more flexibility than fdiff when applied to data frames.

Usage
fdiff(x, n =1, diff =1, ...)
D(x, n =1, diff =1, ...)
Dlog(x, n =1, diff =1, ...)

Default S3 method:
fdiff(x, n =1, diff =1, g = NULL, t = NULL, fill = NA, logdiff = FALSE, rho = 1,
stubs = TRUE, ...)
Default S3 method:
D(x, n =1, diff =1, g = NULL, t = NULL, fill = NA, rho = 1,
stubs = TRUE, ...)
Default S3 method:
Dlog(x, n =1, diff =1, g = NULL, t = NULL, fill = NA, rho = 1, stubs = TRUE, ...)

S3 method for class 'matrix'’
fdiff(x, n=1, diff =1, g = NULL, t = NULL, fill = NA, logdiff = FALSE, rho =1,
stubs = TRUE, ...)
S3 method for class 'matrix'
D(x, n =1, diff =1, g = NULL, t = NULL, fill = NA, rho
stubs = TRUE, ...)
S3 method for class 'matrix'
Dlog(x, n=1, diff =1, g = NULL, t = NULL, fill = NA, rho =1, stubs = TRUE, ...)

1,

S3 method for class 'data.frame'
fdiff(x, n =1, diff =1, g = NULL, t = NULL, fill = NA, logdiff = FALSE, rho =1,
stubs = TRUE, ...)
S3 method for class 'data.frame'
D(x, n =1, diff =1, by = NULL, t = NULL, cols = is.numeric,
fill = NA, rho = 1, stubs = TRUE, keep.ids = TRUE, ...)
S3 method for class 'data.frame'

46

fdiff

1, diff =1, by = NULL, t = NULL, cols = is.numeric,
NA, rho = 1, stubs = TRUE, keep.ids = TRUE, ...)

Dlog(x, n
fill

Methods for compatibility with plm:

S3 method for class 'pseries'
fdiff(x, n =1, diff =1, fill = NA, logdiff = FALSE, rho = 1, stubs = TRUE, ...)
S3 method for class 'pseries'

D(x, n =1, diff =1, fill = NA, rho = 1, stubs = TRUE, ...)
S3 method for class 'pseries'
Dlog(x, n =1, diff = 1, fill = NA, rho = 1, stubs = TRUE, ...)

S3 method for class 'pdata.frame'

fdiff(x, n =1, diff =1, fill = NA, logdiff = FALSE, rho = 1, stubs = TRUE, ...)

S3 method for class 'pdata.frame'

D(x, n=1, diff =1, cols = is.numeric, fill = NA, rho = 1, stubs = TRUE,
keep.ids = TRUE, ...)

S3 method for class 'pdata.frame'

Dlog(x, n =1, diff = 1, cols = is.numeric, fill = NA, rho = 1, stubs = TRUE,

keep.ids = TRUE, ...)

Methods for compatibility with dplyr:

S3 method for class 'grouped_df'

fdiff(x, n=1, diff =1, t = NULL, fill = NA, logdiff = FALSE, rho = 1, stubs = TRUE,
keep.ids = TRUE, ...)

S3 method for class 'grouped_df'

D(x, n=1, diff =1, t = NULL, fill = NA, rho = 1, stubs = TRUE,

keep.ids = TRUE, ...)

S3 method for class 'grouped_df'

Dlog(x, n =1, diff = 1, t = NULL, fill = NA, rho = 1, stubs = TRUE,
keep.ids = TRUE, ...)

Arguments

X anumeric vector, matrix, data.frame, panel-series (plm: : pseries), panel-data.frame

(plm: :pdata.frame) or grouped tibble (dplyr: : grouped_df).

n a integer vector indicating the number of lags or leads.
diff a vector of integers > 1 indicating the order of differencing / log-differencing.
g a factor, GRP object, atomic vector (internally converted to factor) or a list of

vectors / factors (internally converted to a GRP object) used to group x.

by data.frame method: Same as g, but also allows one- or two-sided formulas i.e.
~groupl or var1 + var2 ~ groupl + group2. See Examples.

t same input as g, to indicate the time-variable. For safe computation of dif-
ferences on unordered time-series and panels. Notes: data.frame method also
allows name, index or one-sided formula i.e. ~time. grouped_df method also
allows lazy-evaluation i.e. time (no quotes).

fdiff 47

cols data.frame method: Select columns to difference using a function, column names
or indices. Default: All numeric variables. Note: cols is ignored if a two-sided
formula is passed to by.

fill value to insert when vectors are shifted. Default is NA.
logdiff logical. TRUE Computes log-differences instead. See Details.
rho double. Autocorrelation parameter. Set to a value between 0 and 1 for quasi-

differencing. However any numeric value can be supplied.

stubs logical. TRUE will rename all differenced columns by adding prefixes "LnDdiff."
/"FnDdiff." for differences "LnDlogdiff." /"FnDlogdiff." for log-differences
and replacing "D" / "Dlog" with "QD" / "QDlog" for quasi-differences.

keep.ids data.frame / pdata.frame / grouped_df methods: Logical. Drop all panel-identifiers
from the output (which includes all variables passed to by or t). Note: For
panel-data.frame’s and grouped tibbles identifiers are dropped, but the *index’ /
“groups’ attributes are kept.

arguments to be passed to or from other methods.

Details

By default, fdiff/D/Dlog return x with all columns differenced / log-differenced. Differences are
computed as repeat(diff) x[i] -rhoxx[i-n], and log-differences as repeat (diff) log(x[i])
-rhoxlog(x[i-n]). If rho < 1, this becomes quasi- (or partial) differencing, which is a technique
suggested by Cochrane and Orcutt (1949) to deal with serial correlation in regression models, where
rho is typically estimated by running a regression of the model residuals on the lagged residuals.
Setting diff = 2 returns differences of differences etc... and setting n = 2 returns simple differences
computed by subtracting twice-lagged x from x. It is also possible to compute forward differences
by passing negative n values. n also supports arbitrary vectors of integers (lags), and diff supports
positive sequences of integers (differences):

If more than one value is passed to n and/or diff, the data is expanded-wide as follows: If x is an
atomic vector or time-series, a (time-series) matrix is returned with columns ordered first by lag,
then by difference. If x is a matrix or data.frame, each column is expanded in like manor such that
the output has ncol(x)*length(n)xlength(diff) columns ordered first by column name, then
by lag, then by difference.

With groups/panel-identifiers supplied to g/by, fdiff/D/Dlog efficiently compute panel-differences.
If t is left empty, the data needs to be ordered such that all values belonging to a group are consec-
utive and in the right order. It is not necessary that the groups themselves occur in the right order.
If time-variable(s) are supplied to t, the panel is fully identified and differences can be securely
computed even if the data is completely unordered.

fdiff/D/Dlog supports balanced panels and unbalanced panels where various individuals are ob-
served for different time-sequences (both start, end and duration of observation can differ for each
individual), but does not natively support irregularly spaced time-series and panels. For computa-
tional details and efficiency considerations see the help page for flag. A work-around for differ-
encing irregular panels is easily achieved with the help of seqid.

It is also possible to compute differences on unordered vectors / time-series (thus utilizing t but
leaving g/by empty).

48 fdiff

The methods applying to plm objects (panel-series and panel-data.frames) automatically utilize
the panel-identifiers attached to these objects and thus securely compute fully identified panel-
differences. If these objects have > 2 panel-identifiers attached to them, the last identifier is assumed
to be the time-variable, and the others are taken as grouping-variables and interacted.

Value

x differenced diff times using lags n of itself. Quasi and log-differences are toggled by the rho and
logdiff arguments or the D1og operators. Computations can be grouped by g/by and/or ordered
by t. See Details and Examples.

References

Cochrane, D.; Orcutt, G. H. (1949). Application of Least Squares Regression to Relationships
Containing Auto-Correlated Error Terms. Journal of the American Statistical Association. 44 (245):
32-61.

See Also

flag/L/F, fgrowth/G, Time-Series and Panel-Series, Collapse Overview

Examples

Simple Time-Series: AirPassengers

D(AirPassengers) # 1st difference, same as fdiff(AirPassengers)

D(AirPassengers,-1) # forward difference

Dlog(AirPassengers) # log-difference

D(AirPassengers,1,2) # second difference

Dlog(AirPassengers,1,2) # second log-difference

D(AirPassengers,12) # seasonal difference (data is monthly)

D(AirPassengers, # quasi-difference, See a better example below
rho = pwcor(AirPassengers, L(AirPassengers))) #

D(AirPassengers,-2:2,1:3) # sequence of leaded/lagged and iterated differences

let's do some visual analysis

plot(AirPassengers) # plot the series - seasonal pattern is evident

plot(stl(AirPassengers, "periodic”)) # Seasonal decomposition

plot(D(AirPassengers,c(1,12),1:2)) # plotting ordinary and seasonal first and second differences

plot(stl(window(D(AirPassengers,12), # Taking seasonal differences removes most seasonal variation
1950), "periodic"))

Time-Series Matrix of 4 EU Stock Market Indicators, recorded 260 days per year

plot(D(EuStockMarkets, c(@, 260))) # Plot series and annual differnces
mod <- 1m(DAX ~., L(EuStockMarkets, c(@, 260))) # Regressing the DAX on its annual lag
summary (mod) # and the levels and annual lags others
r <- residuals(mod) # Obtain residuals

pwcor(r, L(r)) # Residual Autocorrelation
fFtest(r, L(r)) # F-test of residual autocorrelation

(better use lmtest::bgtest)
modCO <- 1m(QD1.DAX ~., D(L(EuStockMarkets, c(@, 260)), # Cochrane-Orcutt (1949) estimation

fdiff 49

rho = pwcor(r, L(r))))
summary (modCO)
rCo <- residuals(modCO)
fFtest(rCo, L(rco)) # No more autocorrelation

World Development Panel Data

head(fdiff(num_vars(wlddev), 1, 1, # Computes differences of numeric variables
wlddev$country, wlddev$year)) # fdiff requires external inputs...

head(D(wlddev, 1, 1, ~country, ~year)) # Differences of numeric variables

head(D(wlddev, 1, 1, ~country)) # Without t: Works because data is ordered

head(D(wlddev, 1, 1, PCGDP + LIFEEX ~ country, ~year)) # Difference of GDP & Life Expectancy
head(D(wlddev, @:1, 1, ~ country, ~year, cols =9:10)) # Same, also retaining original series
head(D(wlddev, ©@:1, 1, ~ country, ~year, 9:10, # Dropping id columns

keep.ids = FALSE))

Dynamic Panel-Data Models:
summary (Im(D(PCGDP,1,1,is03c,year) ~ # Diff. GDP regressed on it's lagged level
L(PCGDP,1,iso3c,year) + # and the difference of Life Expanctancy
D(LIFEEX,1,1,is03c,year), data = wlddev))

g = gF (wlddev$country) # Omitting t and precomputing g allows for
summary (1lm(D(PCGDP,1,1,g) ~ L(PCGDP,1,g) + # a bit more parsimonious specification
D(LIFEEX,1,1,g), wlddev))

summary (1m(D1.PCGDP ~., # Now adding level and lagged level of
L(D(wlddev,@:1,1, ~ country, ~year,9:10),0:1, # LIFEEX and lagged differences rates
~ country, ~year, keep.ids = FALSE)[-11))

Using plm can make things easier, but avoid attaching or 'with' calls:

non

pwlddev <- plm::pdata.frame(wlddev, index = c("country”,"year"))

head(D(pwlddev, @:1, 1, 9:10)) # Again differences of LIFEEX and PCGDP
PCGDP <- pwlddev$PCGDP # A panel-Series of GDP per Capita
D(PCGDP) # Differencing the panel series.
summary (1m(D1.PCGDP ~., # Running the dynamic model again ->
data = L(D(pwlddev,0:1,1,9:10),0:1, # code becomes a bit simpler

keep.ids = FALSE)[-11))

One could be tempted to also do something like this, but THIS DOES NOT WORK!!!:
1m drops the attributes (-> with(pwlddev, PCGDP) drops attr. so D.default and L.matrix are used)
summary (1lm(D(PCGDP) ~ L(D(PCGDP,@:1)) + L(D(LIFEEX,0:1),0:1), pwlddev))

To make it work, one needs to create pseries (note: attach(pwlddev) also won't work)
LIFEEX <- pwlddev$LIFEEX
summary (1m(D(PCGDP) ~ L(D(PCGDP,0:1)) + L(D(LIFEEX,0:1),0:1))) # THIS WORKS !!

Using dplyr:
library(dplyr)
wlddev %>% group_by(country) %>%
select (PCGDP,LIFEEX) %>% fdiff(0:1,1:2) # Adding a first and second difference
wlddev %>% group_by(country) %>%
select(year,PCGDP,LIFEEX) %>% D(0:1,1:2,year) # Also using t (safer)
wlddev %>% group_by(country) %>% # Ddropping id's
select(year,PCGDP,LIFEEX) %>% D(0:1,1:2,year, keep.ids = FALSE)

50

ffirst, flast

ffirst, flast

Fast (Grouped) First and Last Value for Matrix-Like Objects

Description

ffirst and flast are S3 generic functions that (column-wise) returns the first and last values
in X, (optionally) grouped by g. The TRA argument can further be used to transform x using its

(groupwise) first and last values.

Usage

ffirst(x, ...)
flast(x, ...)

Default S3 method:

ffirst(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, ...)

Default S3 method:

flast(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, ...)

S3 method for class 'matrix'

ffirst(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'matrix'

flast(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'

ffirst(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'

flast(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
ffirst(x, TRA = NULL, na.rm = TRUE,

use.g.names = FALSE, keep.group_vars = TRUE,

S3 method for class 'grouped_df'
flast(x, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars =

Arguments

X a vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).

ffirst, flast 51

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" 12 - "replace" 13 - "-" 14 -"-+"15-"/"16-"%"17-"+"18-"*"19
-"%%" 110 - "-%%". See TRA.

na.rm logical. Skip missing values and choose the first / last non-missing value i.e. if
the first (1) / last (n) value is NA, take the second (2) / second-to-last (n-1) value
etc...

use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and grouped tibbles.

drop matrix and data.frame method: drop dimensions and return an atomic vector if

g =NULL and TRA = NULL.
keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

arguments to be passed to or from other methods.

Value

ffirst returns the first value in x, grouped by g, or (if TRA is used) x transformed by its first value,
grouped by g. Similarly flast returns the last value in x, ...

See Also

Fast Statistical Functions, Collapse Overview

Examples

default vector method
ffirst(airquality$0zone) # Simple first value
ffirst(airquality$0zone, airquality$Month) # Grouped first value
ffirst(airquality$0zone, airquality$Month,
na.rm = FALSE) # Grouped first, but without skipping initial NA's

data.frame method

ffirst(airquality)

ffirst(airquality, airquality$Month)

ffirst(airquality, airquality$Month, na.rm = FALSE) # Again first Ozone measurement in month 6 is NA

matrix method

agm <- gM(airquality)

ffirst(agm)

ffirst(agm, airquality$Month) # etc...

method for grouped tibbles - for use with dplyr

library(dplyr)

airquality %>% group_by(Month) %>% ffirst

airquality %>% group_by(Month) %>% select(Ozone) %>% ffirst(na.rm = FALSE)

52 fFtest

Note: All examples generalize to flast!

fFtest Fast F-test of Linear Models (with Factors)

Description

fFtest computes an R-squared based F-test for the exclusion of the variables in exc, where the
full (unrestricted) model is defined by variables supplied to both exc and X. The test is efficient and
designed for cases where both exc and X may contain multiple factors and continuous variables.

Usage
fFtest(y, exc, X = NULL, full.df = TRUE, ...)
Arguments
y a numeric vector: The dependent variable.
exc a numeric vector, factor, numeric matrix or list / data.frame of numeric vectors
and/or factors: Variables to test / exclude.
X a numeric vector, factor, numeric matrix or list / data.frame of numeric vectors

and/or factors: Covariates to include in both the restricted (without exc) and
unrestricted model. If left empty (X = NULL), the test amounts to the F-test of the
regression of y on exc.

full.df logical. If TRUE (default), the degrees of freedom are calculated as if both re-
stricted and unrestricted models were estimated using 1m() (i.e. as if factors
were expanded to matrices of dummies). FALSE only uses one degree of free-
dom per factor.

other arguments passed to 1fe: :demeanlist, the workhorse function underly-
ing fHDwithin.

Details

Factors and continuous regressors are efficiently projected out using fHDwithin, and the option
full.df regulates whether a degree of freedom is subtracted for each used factor level (equivalent
to dummy-variable estimator / expanding factors), or only one degree of freedom per factor (fixed-
effects estimation / treating factors as variables). The test automatically removes missing values and
considers only the complete cases of y, exc and X. Unused factor levels in exc and X are dropped.

Value

A 5 x 3 numeric matrix of statistics. The columns contain statistics:

1. the R-squared of the model

2. the numerator degrees of freedom i.e. the number of variables (k) and used factor levels if
full.df = TRUE

fFtest 53

3. the denominator degrees of freedom: N - k - 1.
4. the F-statistic

5. the corresponding P-value
The rows show these statistics for:

1. the Full (unrestricted) Model (y ~ exc + X)
2. the Restricted Model (y ~ X)
3. the Exclusion Restriction of exc. The R-squared shown is simply the difference of the full

and restricted R-Squared’s, not the R-Squared of the model y ~ exc.

If X = NULL, only a vector of the same 5 statistics testing the model (y ~ exc) is shown.

See Also

fHDbetween/HDB and fHDwithin/HDW, Data Transformations, Collapse Overview

Examples

We could use fFtest as a seasonality test:

fFtest(AirPassengers, gF(cycle(AirPassengers))) # Testing for level-seasonality

fFtest(AirPassengers, gF(cycle(AirPassengers)), # Seasonality test around a cubic trend
poly(seqg_along(AirPassengers), 3))

A more classical example with only continuous variables
fFtest(mtcars$mpg, mtcars[c("cyl”,"vs")]1, mtcars[c("hp”,"carb”)])

Now encoding cyl and vs as factors
fFtest(mtcars$mpg, dapply(mtcars[c("cyl”,"”vs")]1, gF), mtcars[c("hp"”,"carb")])

Using iris data: A factor and a continuous variable excluded
fFtest(iris$Sepal.Length, iris[4:5], iris[2:3])

Testing the significance of country-FE in regression of GDP on life expectancy
fFtest(wlddev$PCGDP, wlddev$iso3c, wlddev$LIFEEX)

Ok, country-FE are significant, what about adding time-FE
fFtest(wlddev$PCGDP, qF (wlddev$year), wlddev[c("iso3c","LIFEEX")])

Same test done using 1lm:

data <- na_omit(get_vars(wlddev, c("iso3c","year","PCGDP","LIFEEX")))
full <- 1m(PCGDP ~ LIFEEX + iso3c + gF(year), data)

rest <- 1m(PCGDP ~ LIFEEX + iso3c, data)

anova(rest, full)

54 fgrowth

fgrowth Fast Growth Rates for Time-Series and Panel Data

Description

fgrowth is a S3 generic to compute (sequences of) suitably lagged / leaded and iterated growth
rates, obtained with via the exact method of computation of through log differencing. By default
growth rates are provided in percentage terms, but any scale factor can be applied. The growth
operator G is a parsimonious wrapper around fgrowth. Apart from being more parsimonious, it
provides a bit more flexibility than fgrowth when applied to data frames.

Usage

fgrowth(x, n =1, diff
G(x, n =1, diff

1]
—_
~

I
—_
~—

Default S3 method:
fgrowth(x, n =1, diff =1, g = NULL, t = NULL, fill = NA,
logdiff = FALSE, scale = 100, stubs = TRUE, ...)
Default S3 method:
G(x, n =1, diff =1, g = NULL, t = NULL, fill = NA,
logdiff = FALSE, scale = 100, stubs = TRUE, ...)

S3 method for class 'matrix'
fgrowth(x, n =1, diff =1, g = NULL, t = NULL, fill = NA,
logdiff = FALSE, scale = 100, stubs = TRUE, ...)
S3 method for class 'matrix'’
G(x, n=1, diff =1, g = NULL, t = NULL, fill = NA,
logdiff = FALSE, scale = 100, stubs = TRUE, ...)

S3 method for class 'data.frame'
fgrowth(x, n =1, diff = 1, g = NULL, t = NULL, fill = NA,
logdiff = FALSE, scale = 100, stubs = TRUE, ...)
S3 method for class 'data.frame'
G(x, n =1, diff =1, by = NULL, t = NULL, cols = is.numeric,
fill = NA, logdiff = FALSE, scale = 100, stubs = TRUE, keep.ids = TRUE, ...)

Methods for compatibility with plm:

S3 method for class 'pseries'
fgrowth(x, n=1, diff =1, fill = NA, logdiff = FALSE, scale = 100, stubs = TRUE, ..
S3 method for class 'pseries'
G(x, n=1, diff =1, fill = NA, logdiff = FALSE, scale = 100, stubs = TRUE, ...)

S3 method for class 'pdata.frame'
fgrowth(x, n=1, diff =1, fill = NA, logdiff = FALSE, scale = 100, stubs = TRUE, ..
S3 method for class 'pdata.frame'

>

)

fgrowth 55

G(x, n =1, diff =1, cols = is.numeric, fill = NA,
logdiff = FALSE, scale = 100, stubs = TRUE, keep.ids = TRUE, ...)

Methods for compatibility with dplyr:

S3 method for class 'grouped_df'

fgrowth(x, n =1, diff = 1, t = NULL, fill = NA, logdiff = FALSE, scale = 100,
stubs = TRUE, keep.ids = TRUE, ...)

S3 method for class 'grouped_df'

G(x, n =1, diff =1, t = NULL, fill = NA, logdiff = FALSE, scale = 100,

stubs = TRUE, keep.ids = TRUE, ...)
Arguments
X anumeric vector, matrix, data.frame, panel-series (plm: : pseries), panel-data.frame
(plm: :pdata.frame) or grouped tibble (dplyr: : grouped_df).
n a integer vector indicating the number of lags or leads.
diff a vector of integers > 1 indicating the order of taking growth rates.
g a factor, GRP object, atomic vector (internally converted to factor) or a list of

vectors / factors (internally converted to a GRP object) used to group x.

by data.frame method: Same as g, but also allows one- or two-sided formulas i.e.
~groupl or var1 + var2 ~ groupl + group2. See Examples.

t same input as g, to indicate the time-variable. For safe computation of growth
rates on unordered time-series and panels. Notes: data.frame method also allows
name, index or one-sided formula i.e. ~time. grouped_df method also allows
lazy-evaluation i.e. time (no quotes).

cols data.frame method: Select columns to compute growth rates using a function,
column names or indices. Default: All numeric variables. Note: cols is ignored
if a two-sided formula is passed to by.

fill value to insert when vectors are shifted. Default is NA.

logdiff logical. Compute log-differences instead of exact growth rates. See Details.

scale logical. Scale factor post-applied to growth rates, default is 100 which gives
growth rates in percentage terms. See Details.

stubs logical. TRUE will rename all computed columns by adding a prefix "LnGdiff."
/"FnGdiff.", or "LnDlogdiff." / "FnDlogdiff." if logdiff = TRUE.

keep.ids data.frame / pdata.frame / grouped_df methods: Logical. Drop all panel-identifiers

from the output (which includes all variables passed to by or t). Note: For
panel-data.frame’s and grouped tibbles identifiers are dropped, but the *index’ /
“groups’ attributes are kept.

arguments to be passed to or from other methods.

Details

fgrowth/G by default computes exact growth rates using repeat (diff) (x[i] -x[i-n])/x[i-n]*scale,
and, if ‘logdiff = TRUE® approximate growth rates using repeat (diff) (log(x[i]) -log(x[i-n]))*scale.
So for diff > 1 it computes growth rate of growth rates etc.. For further details see the help pages

for fdiff and flag.

56 fgrowth

Value

x where the growth rate was taken diff times using lags n of itself, scaled by scale. Computations
can be grouped by g/by and/or ordered by t. See Details and Examples.

See Also

flag/L/F, fdiff/D/Dlog, Time-Series and Panel-Series, Collapse Overview

Examples

Simple Time-Series: AirPassengers

G(AirPassengers) # growth rate, same as fgrowth(AirPassengers)
G(AirPassengers, logdiff = TRUE) # log-difference

G(AirPassengers,1,2) # growth rate of growth rate

G(AirPassengers,12) # seasonal growth rate (data is monthly)
G(AirPassengers,-2:2,1:3) # sequence of leaded/lagged and iterated growth rates

let's do some visual analysis

plot(G(AirPassengers,c(0,1,12)))

plot(stl(window(G(AirPassengers,12), # Taking seasonal growth rate removes most seasonal variation
1950), "periodic"))

Time-Series Matrix of 4 EU Stock Market Indicators, recorded 260 days per year

plot(G(EuStockMarkets,c(@,260))) # Plot series and annual growth rates

summary (1m(L260G1.DAX ~., G(EuStockMarkets,260))) # Annual growth rate of DAX regressed on the
growth rates of the other indicators

World Development Panel Data

head(fgrowth(num_vars(wlddev), 1, 1, # Computes growth rates of numeric variables
wlddev$country, wlddev$year)) # fgrowth requires externall inputs...

head(G(wlddev, 1, 1, ~country, ~year)) # Growth of numeric variables, id's attached

head(G(wlddev, 1, 1, ~country)) # Without t: Works because data is ordered

head(G(wlddev, 1, 1, PCGDP + LIFEEX ~ country, ~year)) # Growth of GDP per Capita & Life Expectancy
head(G(wlddev, @:1, 1, ~ country, ~year, cols = 9:10)) # Same, also retaining original series
head(G(wlddev, @:1, 1, ~ country, ~year, 9:10, # Dropping id columns

keep.ids = FALSE))

Dynamic Panel-Data Models:
summary (1m(G(PCGDP,1,1,iso3c,year) ~ # GDP growth regressed on it's lagged level
L(PCGDP,1,is03c,year) + # and the growth rate of Life Expanctancy
G(LIFEEX,1,1,is03c,year), data = wlddev))

g = gF (wlddev$country) # Omitting t and precomputing g allows for a
summary (Im(G(PCGDP,1,1,g) ~ L(PCGDP,1,g) + # bit more parsimonious specification
G(LIFEEX,1,1,g), wlddev))

summary (Im(G1.PCGDP ~., # Now adding level and lagged level of
L(G(wlddev,@:1,1, ~ country, ~year,9:10),0:1, # LIFEEX and lagged growth rates
~ country, ~year, keep.ids = FALSE)[-11))

fHDbetween, fHDwithin 57

Using plm can make things easier, but avoid attaching or 'with' calls:

non

pwlddev <- plm::pdata.frame(wlddev, index = c("country”,"year"))

head(G(pwlddev, 0:1, 1, 9:10)) # Again growth rates of LIFEEX and PCGDP
PCGDP <- pwlddev$PCGDP # A panel-Series of GDP per Capita
G(PCGDP) # Growth rate of the panel series.
summary (1Im(G1.PCGDP ~., # Running the dynamic model again ->
data = L(G(pwlddev,0:1,1,9:10),0:1, # code becomes a bit simpler

keep.ids = FALSE)[-11))

One could be tempted to also do something like this, but THIS DOES NOT WORK!!!:
1m drops the attributes (-> with(pwlddev, PCGDP) drops attr. so G.default and L.matrix are used)
summary (Im(G(PCGDP) ~ L(G(PCGDP,0:1)) + L(G(LIFEEX,0:1),0:1), pwlddev))

To make it work, one needs to create pseries (note: attach(pwlddev) also won't work)
LIFEEX <- pwlddev$LIFEEX
summary (1Im(G(PCGDP) ~ L(G(PCGDP,0:1)) + L(G(LIFEEX,0:1),0:1))) # THIS WORKS !!

Using dplyr:
library(dplyr)
wlddev %>% group_by(country) %>%
select(PCGDP,LIFEEX) %>% fgrowth(0:1) # Adding growth rates
wlddev %>% group_by(country) %>%
select(year,PCGDP,LIFEEX) %>%
fgrowth(0:1, t = year) # Also using t (safer)

fHDbetween, fHDwithin Higher-Dimensional Centering and Linear Prediction

Description

fHDbetween is a generalization of fbetween to efficiently predict with multiple factors and linear
models (i.e. predict with vectors/factors, matrices, or data.frames/lists where the latter may contain
multiple factor variables). Similarly fHDwithin is a generalization of fwithin to center on multiple
factors and partial-out linear models.

The corresponding operators HDB and HDW also exist and additionally allow to predict / partial out
full Im() formulas with interactions between variables.

Usage

fHDbetween(x,
fHDwithin(x,
HDB(x,

HDW(x,

A e

Default S3 method:
fHDbetween(x, fl, w = NULL, na.rm = TRUE, fill = FALSE, ...)
Default S3 method:
fHDwithin(x, fl, w = NULL, na.rm = TRUE, fill = FALSE, ...)

58

fHDbetween, fHDwithin

Default S3 method:

HDB(x, f1, w = NULL, na.rm = TRUE, fill = FALSE, ...)

Default S3 method:

HDW(x, fl, w = NULL, na.rm = TRUE, fill = FALSE, ...)

S3 method for class 'matrix'

fHDbetween(x, fl, w = NULL, na.rm = TRUE, fill = FALSE, ...)
S3 method for class 'matrix'

fHDwithin(x, fl, w = NULL, na.rm = TRUE, fill = FALSE, ...)

S3 method for class 'matrix'

HDB(x, fl, w = NULL, na.rm = TRUE, fill = FALSE, stub = "HDB.",

S3 method for class 'matrix'
HDW(x, fl, w = NULL, na.rm = TRUE, fill = FALSE, stub = "HDW.",

S3 method for class 'data.frame'
fHDbetween(x, fl, w = NULL, na.rm = TRUE, fill = FALSE,
variable.wise = FALSE, ...)
S3 method for class 'data.frame'
fHDwithin(x, f1, w = NULL, na.rm = TRUE, fill = FALSE,
variable.wise = FALSE, ...)
S3 method for class 'data.frame'
HDB(x, fl, w = NULL, cols = is.numeric, na.rm = TRUE, fill = FALSE,
variable.wise = FALSE, stub = "HDB.", ...)
S3 method for class 'data.frame'
HDW(x, fl, w = NULL, cols = is.numeric, na.rm = TRUE, fill = FALSE,
variable.wise = FALSE, stub = "HDW.", ...)

Methods for compatibility with plm:

S3 method for class 'pseries'

fHDbetween(x, w = NULL, na.rm = TRUE, fill = TRUE, ...)
S3 method for class 'pseries'

fHDwithin(x, w = NULL, na.rm = TRUE, fill = TRUE, ...)
S3 method for class 'pseries'

HDB(x, w = NULL, na.rm = TRUE, fill = TRUE, ...)

S3 method for class 'pseries'

HDW(x, w = NULL, na.rm = TRUE, fill = TRUE, ...)

S3 method for class 'pdata.frame'

fHDbetween(x, w = NULL, na.rm = TRUE, fill = TRUE,
variable.wise = TRUE, ...)

S3 method for class 'pdata.frame'

fHDwithin(x, w = NULL, na.rm = TRUE, fill
variable.wise = TRUE, ...)

S3 method for class 'pdata.frame'

HDB(x, w = NULL, cols = is.numeric, na.rm = TRUE, fill = TRUE,

variable.wise = TRUE, stub = "HDB.", ...)
S3 method for class 'pdata.frame'

TRUE,

.2)
.2)

fHDbetween, fHDwithin 59

HDW(x, w = NULL, cols = is.numeric, na.rm = TRUE, fill = TRUE,
variable.wise = TRUE, stub = "HDW.", ...)

Arguments

X a numeric vector, matrix, data.frame, panel-series (plm: :pseries) or panel-
data.frame (plm: :pdata.frame).

fl a numeric vector, factor, matrix, data.frame or list (which may or may not con-
tain factors). In the data.frame method f1 can also be a one-or two sided 1m()
formula with variables contained in x. Interactions (:) and full interactions (*)
are supported! See Examples.

w a vector of (non-negative) weights. Currently only weighted centering on mul-
tiple factors is supported, not weighted linear models.

cols data.frame methods: Select columns to center (partial-out) or predict using
column names, indices or a function. Unless specified otherwise all numeric
columns are selected. If NULL, all variables are selected.

na.rm remove missing values from both x and f1. by default rows with missing values
in x or f1 are removed. In that case an attribute "na.rm" is attached containing
the rows removed.

fill If na.rm=TRUE, fill = TRUE will not remove rows with missing values in x or
f1, but fill them with NA’s.

variable.wise data.frame methods: Setting variable.wise = TRUE will process each column
individually i.e. use all non-missing cases in each column and in f1 (f1 is only
checked for missing values if na.rm = TRUE). This is a lot less efficient but uses
all data available in each column.

stub a prefix / stub to rename all transformed columns. FALSE will not rename
columns.

further arguments passed to 1fe: :demeanlist (if f1 contains factors), or to /
from other methods.

Details

fHDbetween/HDB and fHDwithin/HDW can be understood as generalizations of 1fe: :demeanlist
to continuous-data and formula input, and more choices dealing with missing values. They are
powerful tools for complex high-dimensional linear prediction problems involving large factors and
datasets, but can just as well handle ordinary regression problems. Intended areas of use are to
efficiently obtain residuals and predicted values from data, and to prepare data for complex linear
models involving multiple levels of fixed effects. Such models can now be fitted using 1m() on data
prepared with fHDwithin / HDW (relying on bootstrapped SE’s for inference, or implementing the
appropriate corrections). See Examples.

If f1 is a vector or matrix, the result are identical to Imi.e. fHDbetween / HDB returns fitted(Im(x
~f1)) and fHDwithin / HDW residuals(1m(x ~ f1)). If f1 is a list containing factors, all vari-
ables in x and non-factor variables in f1 are centered on these factors using the method of alter-
nating projections implemented by 1fe::demeanlist. Afterwards the centered data is regressed
on the centered predictors. If f1 is just a list of factors, fHDwithin/HDW returns the centered
data and fHDbetween/HDB the corresponding means. Take as a most general example a list f1

60 fHDbetween, fHDwithin

=1list(fctl,fct2,...,varl,var2,...) where fcti are factors and vari are continuous vari-
ables. The output of fHDwithin/HDW | fHDbetween/HDB will then be identical to calling resid
| fitted on Im(x ~ fctl+fct2+ ... +varl+var2+...). The computations performed by

fHDwithin/HDW and fHDbetween/HDB are however much faster and more memory efficient than
1m because factors are not passed to stats: :model.matrix and expanded to matrices of dummies
but projected out using 1fe: :demeanlist.

The formula interface to the data.frame method (only supported by the operators HDW | HDB) pro-
vides ease of use and allows for additional modelling complexity. For example it is possible to
project out formulas like HDW(data, ~ fct1xvarl + fct2:fct3 + var2:fct2:fct3 + varl:var2:var3
+ poly(var5,3)*fct5) containing simple (:) or full (x) interactions of factors with continuous
variables or polynomials of continuous variables, and two-or three-way interactions of factors and
continuous variables. If the formula is one-sided as in the example above (the space left of (~) is left
empty), the formula is applied to all variables selected through cols. The specification provided

in cols (default: all numeric variables not used in the formula) can be overridden by supplying
one-or more dependent variables. For example HDW(data,var1 + var2 ~ fct1 + fct2) will return

a data.frame with var1 and var2 centered on fct1 and fct2.

The special methods for plm::pseries and plm::pdata.frame center a panel-series or vari-
ables in a panel-data.frame on all panel-identifiers. By default in these methods fill = TRUE and
variable.wise = TRUE, so missing values are kept. This change in the default arguments was done
to ensure a coherent framework of functions and operators applied to p/m panel-data classes.

Value

HDB returns fitted values of regressing x on f1. HDW returns residuals. See Details and Examples.

Note

Weights are currently only supported for centering / averaging, not for linear regression.

Caution with full (*) and factor-continuous variable interactions:: In general full interactions
specified with (*) can be very slow on large data, and 1fe: :demeanlist is also not very speedy
on interaction between factors and continuous variables, so these structures should be used with
caution (don’t just specify an interaction like that on a large dataset, start with smaller data and
see how long computations take. Upon further updates of 1fe: :demeanlist, performance might
improve).

On the differences between fHDwithin/HDW... and fwithin/W...::

e fHDwithin/HDW can center data on multiple factors and also partial out continuous variables
while fwithin/W only centers on one factor, but does that very efficiently...

* HDW(data,~ gF(group1) + gF(group2)) simultaneously centers numeric variables in data
on group1 and group2, while W(data, ~ group1 + group2) centers data on the interaction of
groupl and group?2. The equivalent operation in HDW would be: HDW(data, ~ qF (group1) : qF (group2)).
* Walways does computations on the variable-wise complete observations (in both matrices and
data.frames), whereas by default HDW removes all cases missing in either x or f1. In short,
W(data,~ groupl + group?2) is actually equivalent to HDW(data, ~ gF (group1) : qF (group2) ,variable.wise
=TRUE). HDW(data,~ qF (group1) : gF (group2)) would remove any missing cases.
» fbetween/B and fwithin/W have options to fill missing cases using group-averages and
to add the overall mean back to group-demeaned data. These options are not available in

flag 61

fHDbetween/HDB and fHDwithin/HDW. Since HDB and HDW by default remove missing cases,
they also don’t have options to keep grouping-columns as in B and W.

See Also

fbetween/B and fwithin/W, fscale/STD, TRA, fFtest, Data Transformations, Collapse Overview

Examples

HDW(mtcars$mpg, mtcars$carb) # Simple regression problems..

HDW(mtcars$mpg, mtcars[-1])

HDW(mtcars$mpg, gM(mtcars[-11))

HDW(gM(mtcars[3:4]), mtcars[1:2])

HDW(iris[1:2], iris[3:4]) # Partialling columns 3 and 4 out of colums 1 and 2
HDOW(iris[1:2], iris[3:5]) # Adding the Species factor -> fixed effect
HDW(wlddev, PCGDP + LIFEEX ~ iso3c + qF(year)) # Partialling out 2 fixed effects (iso3c is factor)
HDW(wlddev, PCGDP + LIFEEX ~ iso3c + gF(year), variable.wise = TRUE) # Variable-wise computations
HDW(wlddev, PCGDP + LIFEEX ~ iso3c + gF(year) + ODA) # Adding ODA as a continuouus regressor
HDW(wlddev, PCGDP + LIFEEX ~ iso3c:qF (decade) + gF (year) + ODA) # Country-decade and year FE's

More complex examples (Currently only recommended for smaller data)
Im(HDW.mpg ~ HDW.hp, data = HDW(mtcars, ~ factor(cyl)*carb + vs + wt:gear + wt:gear:carb))
Im(mpg ~ hp + factor(cyl)*carb + vs + wt:gear + wt:gear:carb, data = mtcars)

Im(HDW.mpg ~ HDW.hp, data = HDW(mtcars, ~ factor(cyl)*carb + vs + wt:gear))
Im(mpg ~ hp + factor(cyl)*carb + vs + wt:gear, data = mtcars)

Im(HDW.mpg ~ HDW.hp, data = HDW(mtcars, ~ cylxcarb + vs + wt:gear))
Im(mpg ~ hp + cylxcarb + vs + wt:gear, data = mtcars)

Im(HDW.mpg ~ HDW.hp, data = HDW(mtcars, mpg + hp ~ cyl*xcarb + factor(cyl)*poly(drat,2)))
Im(mpg ~ hp + cyl*carb + factor(cyl)*poly(drat,2), data = mtcars)

flag Fast Lags and Leads for Time-Series and Panel Data

Description

flag is an S3 generic to compute (sequences of) lags and leads. L and F are wrappers around
flag representing the lag- and lead-operators, such that L (x,-1) = F(x,1) = F(x) and L(x,-3:3)
=F(x,3:-3). L and F provide more flexibility than flag when applied to data frames (i.e. column
subsetting, formula input and id-variable-preservation capabilities...), but are otherwise identical.

(flag is more of a programmers function in style of the Fast Statistical Functions while L and F are
more practical to use in regression formulas or for computations on data frames.)

62

Usage
flag(x, n=1, ...)
L(x, n=1, ...)
F(x, n=1, ...)

Default S3 method:
flag(x, n =1, g = NULL, t = NULL, fill = NA, stubs = TRUE,
Default S3 method:

L(x, n =1, g = NULL, t = NULL, fill = NA, stubs = TRUE,
Default S3 method:
F(x, n =1, g = NULL, t = NULL, fill = NA, stubs = TRUE,

S3 method for class 'matrix'
flag(x, n =1, g = NULL, t = NULL, fill = NA, stubs = TRUE,
S3 method for class 'matrix'

L(x, n =1, g = NULL, t = NULL, fill = NA, stubs = TRUE,
S3 method for class 'matrix'
F(x, n=1, g = NULL, t = NULL, fill = NA, stubs = TRUE,

S3 method for class 'data.frame'
flag(x, n =1, g = NULL, t = NULL, fill = NA, stubs = TRUE,
S3 method for class 'data.frame'
L(x, n =1, by = NULL, t = NULL, cols = is.numeric,
fill = NA, stubs = TRUE, keep.ids = TRUE, ...)
S3 method for class 'data.frame'
F(x, n =1, by = NULL, t = NULL, cols = is.numeric,
fill = NA, stubs = TRUE, keep.ids = TRUE, ...)

Methods for compatibility with plm:

S3 method for class 'pseries'

flag(x, n =1, fill = NA, stubs = TRUE, ...)
S3 method for class 'pseries'

L(x, n =1, fill = NA, stubs = TRUE, ...)

S3 method for class 'pseries'

F(x, n =1, fill = NA, stubs = TRUE, ...)

S3 method for class 'pdata.frame'
flag(x, n =1, fill = NA, stubs = TRUE, ...)
S3 method for class 'pdata.frame'

L(x, n =1, cols = is.numeric, fill = NA, stubs = TRUE,
keep.ids = TRUE, ...)

S3 method for class 'pdata.frame'

F(x, n =1, cols = is.numeric, fill = NA, stubs = TRUE,

keep.ids = TRUE, ...)

Methods for compatibility with dplyr:

D)
D)

)
)

.2

)

)

flag

flag 63

S3 method for class 'grouped_df"'
flag(x, n =1, t = NULL, fill = NA, stubs = TRUE, keep.ids = TRUE, ...)
S3 method for class 'grouped_df"'

L(x, n =1, t = NULL, fill = NA, stubs = TRUE, keep.ids = TRUE, ...)

S3 method for class 'grouped_df'

F(x, n =1, t = NULL, fill = NA, stubs = TRUE, keep.ids = TRUE, ...)

Arguments

X a vector, matrix, data.frame, panel-series (p1lm: : pseries), panel-data.frame (plm: : pdata. frame)
or grouped tibble (dplyr: : grouped_df). Data must not be numeric.

n an integer vector indicating the lags/leads to compute.

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

by data.frame method: Same as g, but also allows one- or two-sided formulas i.e.
~groupl or var1 + var2 ~ groupl + group2. See Examples.

t same input as g, to indicate the time-variable. For safe computation of lags/leads
on unordered time-series and panels. Note: Data frame method also allows one-
sided formula i.e. ~time, and grouped_df method also allows lazy-evaluation
i.e. time (no quotes).

cols data.frame method: Select columns to lag/lead using a function, column names
or indices. Default: All numeric variables. Note: cols is ignored if a two-sided
formula is passed to by.

fill value to insert when vectors are shifted. Default is NA.

stubs logical. TRUE will rename all lagged / leaded columns by adding a stub or prefix
"Ln.ll / I|Fn‘||.

keep.ids data.frame / pdata.frame / grouped_df methods: Logical. Drop all panel-identifiers
from the output (which includes all variables passed to by or t). Note: For
panel-data.frame’s and grouped tibbles identifiers are dropped, but the ’index’ /
"groups’ attributes are kept.
arguments to be passed to or from other methods.

Details

If a single integer is passed to n, and g/by and t are left empty, flag/L/F just returns x with all
columns lagged / leaded by n. If length(n)>1, and x is an atomic vector, flag/L/F returns a matrix
with lags / leads computed in the same order as passed to n. If instead x is a matrix / data.frame,
a matrix / data.frame with ncol (x)*1ength(n) columns is returned where columns are sorted first
by variable and then by lag (so all lags computed on a variable are grouped together). x can be of
any standard data type.

With groups/panel-identifiers supplied to g/by, flag/L/F efficiently computes a panel-lag by shift-
ing the entire vector(s) but inserting fill elements in the right places. If t is left empty, the data
needs to be ordered such that all values belonging to a group are consecutive and in the right order.
It is not necessary that the groups themselves occur in the right order. If a time-variable is supplied
to t (or a list of time-variables uniquely identifying the time-dimension), the panel is fully identified
and lags / leads can be securely computed even if the data is completely unordered.

64

flag

flag/L/F supports balanced panels and unbalanced panels where various individuals are observed
for different time-sequences (both start, end and duration of observation can differ for each individ-
ual). flag/L/F does not natively support irregularly spaced time-series and panels, that is situations
where there are either gaps in time and/or repeated observations in the same time-period for some
individual (see also computational details below). For such cases the function seqid can ge used to
generate an appropriate panel-identifier (i.e. splitting individuals with an irregular time-sequence
into multiple individuals with regular time-sequences before applying flag/L/F).

It is also possible to compute lags / leads on unordered time-series (thus utilizing t but leaving g/by
empty), although this is probably more rare to encounter than unordered panels. Irregularly spaced
time-series can also be lagged using a panel- identifier generated with seqid.

Computationally, if both g/by and t are supplied, flag/L/F uses two initial passes to create an
ordering through which the data are accessed. First-pass: Calculate group sizes and the minimum
time-value for each individual. Second-pass: Generate the ordering by placing the current element
index into the vector slot obtained by adding the cumulative group size and the current time-value
subtracted its individual-minimum together. This method of computation is faster than any sort-
based method and delivers optimal performance if the panel-id supplied to g/by is already a factor
variable, and if t is either an integer or factor variable. If g/by is not factor or t is not factor or
integer, qG or GRP will be called to group the respective identifier and this can be expensive, so
for optimal performance prepare the data (or use plm classes). A caveat of not using sort-based
methods is that gaps or repeated values in time are only recognized towards the end of the second
pass where they cannot be rectified anymore, and thus flag/L/F does not natively support irregular
panels but throws an error.

The methods applying to plm objects (panel-series and panel-data.frames) automatically utilize the
factor panel-identifiers attached to these objects and thus securely and efficiently compute fully
identified panel-lags. If these objects have > 2 panel-identifiers attached to them, the last identifier
is assumed to be the time-variable, and the others are taken as grouping-variables and interacted. I
note that flag/L/F is significantly faster than plm: : lag/plm: : lead since the latter is written in R
and based on a Split-Apply-Combine logic.

Value

x lagged / leaded n-times, grouped by g/by, ordered by t. See Details and Examples.

See Also

fdiff/D/Dlog, fgrowth/G, Time-Series and Panel-Series, Collapse Overview

Examples

Simple Time-Series: AirPassengers

L(AirPassengers) # 1 lag

F(AirPassengers) # 1 lead

all_identical(L(AirPassengers), # 3 identical ways of computing 1 lag
flag(AirPassengers),

F(AirPassengers,-1))

L(AirPassengers,-1:3) # 1 lead and 3 lags - output as matrix

fmean 65

Time-Series Matrix of 4 EU Stock Market Indicators, 1991-1998

tsp(EuStockMarkets) # Data is recorded on 260 days per year
freq <- frequency(EuStockMarkets)

plot(stl(EuStockMarkets[,"DAX"], freq)) # There is some obvious seasonality
L(EuStockMarkets,-1:3*xfreq) # 1 annual lead and 3 annual lags

summary (Im(DAX ~., data = L(EuStockMarkets,-1:3xfreq))) # DAX regressed on it's own annual lead,
lags and the lead/lags of the other series

World Development Panel Data

head(flag(wlddev, 1, wlddev$iso3c, wlddev$year)) # This lags all variables,
head(L(wlddev, 1, ~iso3c, ~year)) # This lags all numeric variables
head(L(wlddev, 1, ~iso3c)) # Without t: Works because data is ordered
head(L(wlddev, 1, PCGDP + LIFEEX ~ iso3c, ~year)) # This lags GDP per Capita & Life Expectancy
head(L(wlddev, @:2, ~ iso3c, ~year, cols =9:10)) # Same, also retaining original series
head(L(wlddev, 1:2, PCGDP + LIFEEX ~ iso3c, ~year, # Two lags, dropping id columns

keep.ids = FALSE))

Different ways of regressing GDP on its's lags and life-Expectancy and it's lags

summary (Im(PCGDP ~ ., L(wlddev, 0:2, ~iso3c, ~year, 9:10, keep.ids = FALSE))) # 1 - Precomputing
summary (Im(PCGDP ~ L(PCGDP,1:2,iso3c,year) + L(LIFEEX,0:2,is03c,year), wlddev)) # 2 - Ad-hoc
summary (1m(PCGDP ~ L(PCGDP,1:2,is03c) + L(LIFEEX,0:2,is03c), wlddev)) # 3 - same no year
g = gF (wlddev$iso3c); t = gF (wlddev$year) # 4- Precomputing
summary (Im(PCGDP ~ L(PCGDP,1:2,g,t) + L(LIFEEX,0:2,g,t), wlddev)) # panel-id's

Using plm:
pwlddev <- plm::pdata.frame(wlddev, index = c("”iso3c”,"year"))

head(L(pwlddev, 0:2, 9:10)) # Again 2 lags of GDP and LIFEEX
PCGDP <- pwlddev$PCGDP # A panel-Series of GDP per Capita
L (PCGDP) # Lagging the panel series
summary (1m(PCGDP ~ ., L(pwlddev, 0:2, 9:10, keep.ids = FALSE))) # Running the 1m again: WORKS!

THIS DOES NOT WORK: Unfortunately 1lm drops the attributes of the columns,

so L.default is used here and ordinary lags are computed. (with and attach don't retain attr.)
summary (1lm(PCGDP ~ L(PCGDP,1:2) + L(LIFEEX,0:2), pwlddev))

LIFEEX <- pwlddev$LIFEEX # To make it work, create pseries
summary (lm(PCGDP ~ L(PCGDP,1:2) + L(LIFEEX,0:2))) # THIS WORKS !!

Using dplyr:

library(dplyr)

wlddev %>% group_by(iso3c) %>% select(PCGDP,LIFEEX) %>% L(@:2)

wlddev %>% group_by(iso3c) %>% select(year,PCGDP,LIFEEX) %>% L(@:2,year) # Also using t (safer)

fmean Fast (Grouped, Weighted) Mean for Matrix-Like Objects

Description

fmean is a generic function that computes the (column-wise) mean of x, (optionally) grouped by
g and/or weighted by w. The TRA argument can further be used to transform x using its (grouped,
weighted) mean.

66 fmean

Usage
fmean(x, ...)
Default S3 method:

fmean(x, g = NULL, w = NULL, TRA
use.g.names = TRUE, ...)

NULL, na.rm = TRUE,

S3 method for class 'matrix'
fmean(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'

fmean(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'grouped_df'
fmean(x, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, ...)
Arguments
X a numeric vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.
w a numeric vector of (non-negative) weights, may contain missing values.
TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" |2 - "replace” | 3-"-"14-"+"15-"/"16-"%"17-"+"18-"*"19
-"%%" 110 - "-%%". See TRA.
na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.
use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and (default) grouped tibbles.
drop matrix and data.frame method: drop dimensions and return an atomic vector if

g = NULL and TRA = NULL.

keep.group_vars
grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain summed weighting variable after compu-
tation (if contained in grouped_df).

arguments to be passed to or from other methods.

Details

Missing-value removal as controlled by the na.rm argument is done very efficiently by simply skip-
ping them in the computation (thus setting na.rm = FALSE on data with no missing values doesn’t

fmean 67

give extra speed). Large performance gains can nevertheless be achieved in the presence of miss-
ing values if na.rm = FALSE, since then the corresponding computation is terminated once a NA is
encountered and NA is returned (unlike base: :mean which just runs through without any checks).

The weighted mean is computed as sum(x * w) / sum(w). If na.rm = TRUE, missing values will be
removed from both x and wi.e. utilizing only x[complete.cases(x,w)] and wlcomplete.cases(x,w)].

This all seamlessly generalizes to grouped computations, which are performed in a single pass
(without splitting the data) and therefore extremely fast.

When applied to data frame’s with groups or drop = FALSE, fmean preserves all column attributes
(such as variable labels) but does not distinguish between classed and unclassed object (thus apply-
ing fmean to a factor column will give a *malformed factor’ error). The attributes of the data frame
itself are also preserved.

Value
The (w weighted) mean of x, grouped by g, or (if TRA is used) x transformed by its mean, grouped
by g.

See Also

fmedian, fmode, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg

fmean(mpg) Simple mean
fmean(mpg, w = mtcars$hp) Weighted mean: Weighted by hp
fmean(mpg, TRA = "-") Simple transformation: demeaning (See also ?W)

fmean(mpg, mtcars$cyl)
fmean(mpg, mtcars[8:9])
g <- GRP(mtcars[c(2,8:9)1)

Grouped mean
another grouped mean.

EEY

fmean(mpg, g) # Pre-computing groups speeds up the computation
fmean(mpg, g, mtcars$hp) # Grouped weighted mean

fmean(mpg, g, TRA = "-") # Demeaning by group

fmean(mpg, g, mtcars$hp, "-") # Group-demeaning using weighted group means

data.frame method

fmean(mtcars)

fmean(mtcars, g)

fmean(fgroup_by(mtcars, cyl, vs, am)) # another way of doing it...
fmean(mtcars, g, TRA = "-") # etc...

matrix method

m <- gM(mtcars)

fmean(m)

fmean(m, g)

fmean(m, g, TRA = "-") # etc...

method for grouped tibbles - for use with dplyr

68

fmedian
library(dplyr)
mtcars %>% group_by(cyl,vs,am) %>% fmean # Ordinary
mtcars %>% group_by(cyl,vs,am) %>% fmean(hp) # Weighted

mtcars %>% group_by(cyl,vs,am) %>% fmean(hp,”-") # Weighted Transform
mtcars %>% group_by(cyl,vs,am) %>%
select(mpg,hp) %>% fmean(hp,”-") # Only mpg

mtcars %>% fgroup_by(cyl,vs,am) %>% # Equivalent but faster !l
fselect(mpg,hp) %>% fmean(hp,”-")

fmedian Fast (Grouped) Median Value for Matrix-Like Objects

Description

fmedian is a generic function that computes the (column-wise) median value of all values in x,
(optionally) grouped by g. The TRA argument can further be used to transform x using its (grouped)
median value.

Usage

fmedian(x, ...)

Default S3 method:
fmedian(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, ...)

S3 method for class 'matrix'
fmedian(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
fmedian(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
fmedian(x, TRA = NULL, na.rm = TRUE,

use.g.names = FALSE, keep.group_vars = TRUE, ...)
Arguments
X a numeric vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.
TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-

place_fill" 12 - "replace”" 13 -"-"14-"-+"15-"/"16-"%"17-"+"18-"%"19
-"%%" 110 - "-%%". See TRA.

fmedian 69

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and (default) grouped tibbles.

drop matrix and data.frame method: drop dimensions and return an atomic vector if
g = NULL and TRA = NULL.

keep.group_vars
grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

arguments to be passed to or from other methods.

Details

Median value estimation is done using std: :nth_element in C++, which is an efficient partial
sorting algorithm. A downside of this is that vectors need to be copied first and then partially
sorted, thus fmedian currently requires additional memory equal to the size of the object (x).

Grouped computations are currently performed by mapping the data to a sparse-array directed by g
and then partially sorting each row (group) of that array. For reasons I don’t fully understand this
requires less memory than a full deep copy which is done with no groups.

When applied to data frame’s with groups or drop = FALSE, fmedian preserves all column attributes
(such as variable labels) but does not distinguish between classed and unclassed objects. The at-
tributes of the data frame itself are also preserved.

Value
The median value of x, grouped by g, or (if TRA is used) x transformed by its median value, grouped
by g.

See Also

fmean, fmode, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg

fmedian(mpg) # Simple median value

fmedian(mpg, TRA = "-") # Simple transformation: Subtract median value
fmedian(mpg, mtcars$cyl) # Grouped median value

fmedian(mpg, mtcars[c(2,8:9)1) # More groups. ..

g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !!
fmedian(mpg, g)

fmedian(mpg, g, TRA = "-") # Groupwise subtract median value

data.frame method
fmedian(mtcars)
fmedian(mtcars, TRA = "-")
fmedian(mtcars, g)

70 fmin, fmax

fmean(fgroup_by(mtcars, cyl, vs, am)) # another way of doing it...
fmedian(mtcars, g, use.g.names = FALSE) # No row-names generated

matrix method

m <- gM(mtcars)
fmedian(m)

fmedian(m, TRA = "-")
fmedian(m, g) # etc...

method for grouped tibbles - for use with dplyr
library(dplyr)

mtcars %>% group_by(cyl,vs,am) %>% fmedian

mtcars %>% fgroup_by(cyl,vs,am) %>% fmedian # Faster grouping!
mtcars %>% fgroup_by(cyl,vs,am) %>% fmedian("-") # De-median
mtcars %>% fgroup_by(cyl,vs,am) %>% fselect(mpg) %>% fmedian

fmin, fmax Fast (Grouped) Maxima and Minima for Matrix-Like Objects

Description

fmax and fmin are generic functions that compute the (column-wise) maximum and minimum value
of all values in x, (optionally) grouped by g. The TRA argument can further be used to transform x
using its (grouped) maximum or minimum value.

Usage
fmax(x, ...)
fmin(x, ...)

Default S3 method:

fmax(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, ...)

Default S3 method:

fmin(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, ...)

S3 method for class 'matrix'

fmax(x, g = NULL, TRA = NULL, na.rm = TRUE,

use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'matrix'
fmin(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'

fmax(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'

fmin, fmax 71

fmin(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
fmax(x, TRA = NULL, na.rm = TRUE,

use.g.names = FALSE, keep.group_vars = TRUE, ...)
S3 method for class 'grouped_df'
fmin(x, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars = TRUE, ...)
Arguments
X a numeric vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.
TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" |2 - "replace” | 3-"-"14-"—+"15-"/"16-"%"17-"+"18-"*"19
-"%%" 110 -"-%%". See TRA.
na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.
use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and grouped tibbles.
drop matrix and data.frame method: drop dimensions and return an atomic vector if

g = NULL and TRA = NULL.

keep.group_vars
grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

arguments to be passed to or from other methods.

Details

Missing-value removal as controlled by the na.rm argument is done at no extra cost since in C++
any logical comparison involving NA or NaN evaluates to FALSE. Large performance gains can never-
theless be achieved in the presence of missing values if na.rm = FALSE, since then the correspond-
ing computation is terminated once a NA is encountered and NA is returned (unlike base: :max and
base: :min which just run through without any checks).

This all seamlessly generalizes to grouped computations, which are performed in a single pass
(without splitting the data) and therefore extremely fast.

When applied to data frame’s with groups or drop = FALSE, fmax and fmin preserve all column
attributes (such as variable labels) but do not distinguish between classed and unclassed objects.
The attributes of the data frame itself are also preserved.

Value

fmax returns the maximum value of x, grouped by g, or (if TRA is used) x transformed by its maxi-
mum value, grouped by g. Analogous, fmin returns the minimum value ...

72 fmode

See Also

Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg

fmax (mpg) # maximum value

fmin(mpg) # minimum value (all examples below use fmax but apply to fmin)
fmax(mpg, TRA = "%") # Simple transformation: Take percentage of maximum value
fmax(mpg, mtcars$cyl) # Grouped maximum value

fmax(mpg, mtcars[c(2,8:9)1) # More groups...

g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !!

fmax(mpg, g)

fmax(mpg, g, TRA = "%") # Groupwise percentage of maximum value

fmax(mpg, g, TRA = "replace"”) # Groupwise replace by maximum value

data.frame method

fmax(mtcars)

fmax(mtcars, TRA = "%")

fmax(mtcars, g)

fmax(mtcars, g, use.g.names = FALSE) # No row-names generated

matrix method

m <- gM(mtcars)
fmax(m)

fmax(m, TRA = "%")
fmax(m, g) # etc...

method for grouped tibbles - for use with dplyr
library(dplyr)

mtcars %>% group_by(cyl,vs,am) %>% fmax

mtcars %>% group_by(cyl,vs,am) %>% fmax("%")

mtcars %>% group_by(cyl,vs,am) %>% select(mpg) %>% fmax

fmode Fast (Grouped, Weighted) Statistical Mode for Matrix-Like Objects

Description

fmode is a generic function and returns the (column-wise) statistical mode i.e. the most frequent
value of x, (optionally) grouped by g and/or weighted by w. The TRA argument can further be used
to transform x using its (grouped, weighted) mode.

Usage
fmode(x, ...)

Default S3 method:

fmode

fmode(x, g = NULL, w = NULL, TRA

73

NULL, na.rm = TRUE,

use.g.names = TRUE, ...)

S3 method for class 'matrix'

fmode(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'data.frame'
fmode(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'grouped_df'
fmode(x, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, ...)
Arguments
X a vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.
w a numeric vector of (non-negative) weights, may contain missing values.
TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" | 2 - "replace” | 3-"-"14-"-+"15-"/"16-"%"|7-"+"18-"*"19
-"%%" 110 -"-%%". See TRA.
na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very

use. g.names

drop

keep.group_vars

keep.w

Details

little computational cost. If na.rm = FALSE, NA is treated as any other value.

make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and grouped tibbles.

matrix and data.frame method: drop dimensions and return an atomic vector if
g = NULL and TRA = NULL.

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

grouped_df method: Logical. Retain sum of weighting variable after computa-
tion (if contained in grouped_df).

arguments to be passed to or from other methods.

fmode implements a pretty fast algorithm to find the statistical mode utilizing index- hashing im-
plemented in the Rcpp: : sugar: : IndexHash class.

If all values are distinct, the first value is returned. If there are multiple distinct values having the
top frequency, the first value established as having the top frequency when passing through the data
from element 1 to element n is returned. If na.rm = FALSE, NA is not removed but treated as any
other value (i.e. it’s frequency is counted). If all values are NA, NA is always returned.

74 fmode

The weighted mode is computed by summing up the weights for all distinct values and choosing
the value with the largest sum. If na.rm = TRUE, missing values will be removed from both x and w
i.e. utilizing only x[complete.cases(x,w)] and w[complete.cases(x,w)].

This all seamlessly generalizes to grouped computations, which are currently performed by map-
ping the data to a sparse-array directed by g and then going group-by group.

fmode preserves all the attributes of the objects it is applied to (apart from names or row-names

which are adjusted as necessary). If a data frame is passed to fmode and drop = TRUE, base: :unlist

will be called on the result, which might or might not be sensible depending on the data at hand.
Value

The statistical mode of x, grouped by g, or (if TRA is used) x transformed by its mode, grouped by

g. See also Details.

See Also

fmean, fmedian, Fast Statistical Functions, Collapse Overview

Examples

World Development Data

attach(wlddev)

default vector method

fmode (PCGDP) # Numeric mode

fmode (PCGDP, iso3c) # Grouped numeric mode

fmode (PCGDP, iso3c, LIFEEX) # Grouped and weighted numeric mode

fmode(region) # Factor mode

fmode (date) # Date mode (defaults to first value since panel is balanced)
fmode (country) # Character mode (also defaults to first value)

fmode (OECD) # Logical mode

...all the above can also be performed grouped and weighted
matrix method
m <- gM(airquality)

fmode (m)
fmode(m, na.rm = FALSE) # NA frequency is also counted
fmode(m, airquality$Month) # Groupwise

fmode(m, w = airquality$Day) # Weighted: Later days in the month are given more weight
fmode(m>50, airquality$Month) # Groupwise logical mode

etc ...
data.frame method
fmode (wlddev) # Gives one row
fmode(wlddev, drop = TRUE) # calling unlist -> coerce to character vector
fmode (wlddev, iso3c) # Grouped mode

fmode (wlddev, iso3c, LIFEEX) # Grouped and weighted mode

detach(wlddev)

fNdistinct

75

fNdistinct

Fast (Grouped) Distinct Value Count for Matrix-Like Objects

Description

fNdistinct is a generic function that (column-wise) computes the number of distinct values in X,
(optionally) grouped by g. It is significantly faster than length(unique(x)). The TRA argument
can further be used to transform x using its (grouped) distinct value count.

Usage

fNdistinct(x,

.2

Default S3 method:

fNdistinct(x, g = NULL, TRA = NULL, na.rm = TRUE

use.g.names = TRUE, ...)

S3 method for class 'matrix'

S3 method for class 'data.frame'

’

fNdistinct(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)
fNdistinct(x, g = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
fNdistinct(x, TRA = NULL, na.rm = TRUE,

use.g.names = FALSE, keep.group_vars

TRUE,

.2

Arguments

X a vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" 12 - "replace" 13 -"-"14-"-+"15-"/"16-"%"17-"+"18-"*"19
-"%%" 110 - "-%%". See TRA.

na.rm

use. g.names

drop

logical. TRUE: Skip missing values in x (faster computation). FALSE: Also con-
sider "NA’ as one distinct value.

make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and grouped tibbles.

matrix and data.frame method: drop dimensions and return an atomic vector if
g = NULL and TRA = NULL.

76 fNdistinct

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

arguments to be passed to or from other methods.

Details

fNdistinct implements a fast algorithm to find the number of distinct values utilizing index- hash-
ing implemented in the Rcpp: : sugar: : IndexHash class.

If na. rm = TRUE (the default), missing values will be skipped yielding substantial performance gains

in data with many missing values. If na.rm = TRUE, missing values will simply be treated as any
other value and read into the hash-map. Thus with the former, a numeric vector c(1.25,NaN, 3.56,NA)
will have a distinct value count of 2, whereas the latter will return a distinct value count of 4.

Grouped computations are currently performed by mapping the data to a sparse-array directed by g
and then hash-mapping each group. This is often not much slower than using a larger hash-map for
the entire data when g = NULL.

fNdistinct preserves all attributes of non-classed vectors / columns, and only the ’label’ attribute
(if available) of classed vectors / columns (i.e. dates or factors). When applied to data frames and
matrices, the row-names are adjusted as necessary.

Value

Integer. The number of distinct values in x, grouped by g, or (if TRA is used) x transformed by its
distinct value count, grouped by g.

See Also

fNobs, Fast Statistical Functions, Collapse Overview

Examples

default vector method
fNdistinct(airquality$Solar.R) # Simple distinct value count
fNdistinct(airquality$Solar.R, airquality$Month) # Grouped distinct value count

data.frame method

fNdistinct(airquality)

fNdistinct(airquality, airquality$Month)

fNdistinct(wlddev) # Works with data of all types!
head(fNdistinct(wlddev, wlddev$iso3c))

matrix method

agm <- gM(airquality)

fNdistinct(agm) # Also works for character or logical matrices
fNdistinct(agm, airquality$Month)

method for grouped tibbles - for use with dplyr:
library(dplyr)

airquality %>% group_by(Month) %>% fNdistinct
wlddev %>% group_by(country) %>%

fNobs 77
select (PCGDP,LIFEEX,GINI,ODA) %>% fNdistinct
fNobs Fast (Grouped) Observation Count for Matrix-Like Objects
Description

fNobs is a generic function that (column-wise) computes the number of non-missing values in x,
(optionally) grouped by g. It is much faster than sum(!is.na(x)). The TRA argument can further
be used to transform x using its (grouped) observation count.

Usage
fNobs(x, ...)

Default S3 method:

fNobs(x, g = NULL, TRA = NULL, use.g.names = TRUE, ...)

S3 method for class 'matrix'

fNobs(x, g = NULL, TRA = NULL, use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'

fNobs(x, g = NULL, TRA = NULL, use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'

fNobs(x, TRA = NULL, use.g.names = FALSE, keep.group_vars = TRUE, ...)

Arguments

X a vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" | 2 - "replace" | 3-"-"14-"+"15-"/"16-"%"|17-"+"18-"*"19
-"%%" 110 - "-%%". See TRA.

use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and grouped tibbles.

drop matrix and data.frame method: drop dimensions and return an atomic vector if

g =NULL and TRA = NULL.
keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-

tion.

arguments to be passed to or from other methods.

78 fprod

Details

fNobs preserves all attributes of non-classed vectors / columns, and only the ’label’ attribute (if
available) of classed vectors / columns (i.e. dates or factors). When applied to data frames and
matrices, the row-names are adjusted as necessary.

Value

Integer. The number of non-missing observations in X, grouped by g, or (if TRA is used) x trans-
formed by its number of non-missing observations, grouped by g.

See Also

fNdistinct, Fast Statistical Functions, Collapse Overview

Examples

default vector method
fNobs(airquality$Solar.R) # Simple Nobs
fNobs(airquality$Solar.R, airquality$Month) # Grouped Nobs

data.frame method

fNobs(airquality)

fNobs(airquality, airquality$Month)

fNobs(wlddev) # Works with data of all types!
head(fNobs(wlddev, wlddev$iso3c))

matrix method

agm <- gM(airquality)

fNobs (agm) # Also works for character or logical matrices
fNobs(agm, airquality$Month)

method for grouped tibbles - for use with dplyr
library(dplyr)
airquality %>% group_by(Month) %>% fNobs
wlddev %>% group_by(country) %>%
select (PCGDP,LIFEEX,GINI,ODA) %>% fNobs

fprod Fast (Grouped, Weighted) Product for Matrix-Like Objects

Description

fprod is a generic function that computes the (column-wise) product of all values in x, (optionally)
grouped by g and/or weighted by w. The TRA argument can further be used to transform x using its
(grouped) product.

fprod 79

Usage
fprod(x, ...)
Default S3 method:

fprod(x, g = NULL, w = NULL, TRA
use.g.names = TRUE, ...)

NULL, na.rm = TRUE,

S3 method for class 'matrix'
fprod(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'

fprod(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'grouped_df'
fprod(x, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, ...)
Arguments
X a numeric vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.
w a numeric vector of (non-negative) weights, may contain missing values.
TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" |2 - "replace” | 3-"-"14-"+"15-"/"16-"%"17-"+"18-"*"19
-"%%" 110 - "-%%". See TRA.
na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.
use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and (default) grouped tibbles.
drop matrix and data.frame method: drop dimensions and return an atomic vector if

g = NULL and TRA = NULL.

keep.group_vars
grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain product of weighting variable after com-
putation (if contained in grouped_df).

arguments to be passed to or from other methods.

Details

Non-grouped product computations internally utilize long-doubles in C++, for additional numeric
precision.

80 fprod

Missing-value removal as controlled by the na.rm argument is done very efficiently by simply skip-
ping them in the computation (thus setting na.rm = FALSE on data with no missing values doesn’t
give extra speed). Large performance gains can nevertheless be achieved in the presence of miss-
ing values if na.rm = FALSE, since then the corresponding computation is terminated once a NA is
encountered and NA is returned (unlike base: : prod which just runs through without any checks).

This all seamlessly generalizes to grouped computations, which are performed in a single pass
(without splitting the data) and therefore extremely fast.

The weighted product is computed as prod(x * w). If na.rm = TRUE, missing values will be re-
moved from both x and wi.e. utilizing only x[complete.cases(x,w)] and wLcomplete.cases(x,w)].

When applied to data frame’s with groups or drop = FALSE, fprod preserves all column attributes
(such as variable labels) but does not distinguish between classed and unclassed objects. The at-
tributes of the data frame itself are also preserved.

Value

The product of x, grouped by g, or (if TRA is used) x transformed by its product, grouped by g.

See Also

fsum, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg
fprod(mpg) # Simple product
fprod(mpg, w = mtcars$hp) # Weighted product
fprod(mpg, TRA = "/") # Simple transformation: Divide by product
fprod(mpg, mtcars$cyl) # Grouped product
fprod(mpg, mtcars$cyl, mtcars$hp) # Weighted grouped product
fprod(mpg, mtcars[c(2,8:9)1) # More groups. ..

#

g <- GRP(mtcars, ~ cyl + vs + am) Precomputing groups gives more speed !!
fprod(mpg, g)
fprod(mpg, g, TRA = "/") # Groupwise divide by product

data.frame method

fprod(mtcars)

fprod(mtcars, TRA = "/")

fprod(mtcars, g)

fprod(mtcars, g, use.g.names = FALSE) # No row-names generated

matrix method

m <- gM(mtcars)
fprod(m)

fprod(m, TRA = "/")
fprod(m, g) # etc...

method for grouped tibbles - for use with dplyr
library(dplyr)
mtcars %>% group_by(cyl,vs,am) %>% fprod(hp) # Weighted grouped product

fscale 81

mtcars %>% fgroup_by(cyl,vs,am) %>% fprod(hp) # Equivalent but faster
mtcars %>% fgroup_by(cyl,vs,am) %>% fprod(TRA = "/")
mtcars %>% fgroup_by(cyl,vs,am) %>% fselect(mpg) %>% fprod

fscale Fast (Grouped, Weighted) Scaling and Centering of Matrix-like Ob-
jects

Description

fscale is a generic function to efficiently standardize (scale and center) data. STD is a wrapper
around fscale representing the ’standardization operator’, with more options than fscale when
applied to matrices and data frames. Standardization can be simple or groupwise, ordinary or
weighted.

Note: For centering without scaling see fwithin/W.

Usage

fscale(x, ...)
STD(x, ...)

Default S3 method:

fscale(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, sd =1, ...)
Default S3 method:
STD(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, sd =1, ...)

S3 method for class 'matrix'
fscale(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, sd =1, ...)
S3 method for class 'matrix'
STD(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, sd =1,
stub = "STD."”, ...)

S3 method for class 'data.frame'
fscale(x, g = NULL, w = NULL, na.rm = TRUE, mean = @, sd =1, ...)
S3 method for class 'data.frame'
STD(x, by = NULL, w = NULL, cols = is.numeric, na.rm = TRUE,
mean = @, sd = 1, stub = "STD."”, keep.by = TRUE, keep.w = TRUE, ...)

Methods for compatibility with plm:

S3 method for class 'pseries'

fscale(x, effect = 1L, w = NULL, na.rm = TRUE, mean = @, sd =1, ...)
S3 method for class 'pseries'
STD(x, effect = 1L, w = NULL, na.rm = TRUE, mean = @, sd =1, ...)

S3 method for class 'pdata.frame'
fscale(x, effect = 1L, w = NULL, na.rm = TRUE, mean = @, sd =1, ...)

82

fscale

S3 method for class 'pdata.frame'
STD(x, effect = 1L, w = NULL, cols = is.numeric, na.rm = TRUE,

mean

@, sd = 1, stub = "STD.", keep.ids = TRUE, keep.w = TRUE, ...)

Methods for compatibility with dplyr:

S3 method for class 'grouped_df'

fscale(x, w = NULL, na.rm = TRUE, mean = @, sd = 1
keep.group_vars = TRUE, keep.w = TRUE, ...)

’

S3 method for class 'grouped_df'
STD(x, w = NULL, na.rm = TRUE, mean = @, sd = 1,
stub = "STD.", keep.group_vars = TRUE, keep.w = TRUE, ...)

Arguments

X

by

cols

na.rm

effect

stub

mean

sd

anumeric vector, matrix, data.frame, panel-series (plm: : pseries), panel-data.frame
(plm: :pdata.frame) or grouped tibble (dplyr: : grouped_df).

a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

STD data.frame method: Same as g, but also allows one- or two-sided formulas
i.e. ~ groupl or varl + var2 ~ groupl + group2. See Examples.

data.frame method: Select columns to scale using a function, column names or
indices. Default: All numeric variables. Note: cols is ignored if a two-sided
formula is passed to by.

a numeric vector of (non-negative) weights. STD data frame and pdata.frame
methods also allow a one-sided formula i.e. ~weightcol. The grouped_df
(dplyr) method supports lazy-evaluation. See Examples.

logical. skip missing values in x or w when computing means and sd’s.

plm methods: Select which panel identifier should be used as grouping variable.
1L means first variable in the plm: : index, 2L the second etc. if more than one
integer is supplied, the corresponding index-variables are interacted.

a prefix or stub to rename all transformed columns. FALSE will not rename
columns.

the mean to center on (default is 0). If mean = FALSE, no centering will be per-
formed. In that case the scaling is mean-preserving. A numeric value differ-
ent from O (i.e. mean =5) will be added to the data after subtracting out the
mean(s), such that the data will have a mean of 5. A special option when per-
forming grouped scaling and centering is mean = "overall.mean”. In that case
the overall mean of the data will be added after subtracting out group means.

the standard deviation to scale the data to (default is 1). A numeric value dif-
ferent from O (i.e. sd = 3) will scale the data to have a standard deviation of
3. A special option when performing grouped scaling is sd = "within.sd". In
that case the within standard deviation (= the standard deviation of the group-
centered series) will be calculated and applied to each group. The results is
that the variance of the data within each group is harmonized without forcing a
certain variance (such as 1).

fscale 83

keep.by, keep.ids, keep.group_vars
data.frame, pdata.frame and grouped_df methods: Logical. Retain grouping /
panel-identifier columns in the output. For STD.data. frame this only works if
grouping variables were passed in a formula.

keep.w data.frame, pdata.frame and grouped_df methods: Logical. Retain column con-
taining the weights in the output. Only works if w is passed as formula / lazy-
expression.

arguments to be passed to or from other methods.

Details

If g = NULL, fscale by default (column-wise) subtracts the mean or weighted mean (if w is supplied)
from all data points in x, and then divides this difference by the standard deviation or frequency-
weighted standard deviation (if w is supplied). The result is that all columns in x will have mean 0
and standard deviation 1. Alternatively, data can be scaled to have a mean of mean and a standard
deviation of sd. If mean = FALSE the data is only scaled (not centered) such that the mean of the
data is preserved.

Means and standard deviations are computed using Welford’s numerically stable online algorithm.

With groups supplied to g, this standardizing becomes groupwise, so that in each group (in each
column) the data points will have mean mean and standard deviation sd. Naturally if mean = FALSE
then each group is just scaled and the mean is preserved. For centering without scaling see fwithin.

If na.rm = FALSE and a NA or NaN is encountered, the mean and sd for that group will be NA, and all
data points belonging to that group will also be NA in the output.

If na. rm = TRUE, means and sd’s are computed (column-wise) on the available data points, and also
the weight vector can have missing values. In that case (w also has missing values), the weighted
mean an sd are computed on (column-wise) complete.cases(x,w), and x is scaled using these
statistics. Note that fscale will not insert a missing value in x if the weight for that value is
missing, rather, that value will be scaled using a weighted mean and standard-deviated computed
without itself! (The intention here is that a few (randomly) missing weights shouldn’t break the
computation when na.rm = TRUE, but it is not meant for weight vectors with many missing values.
If you don’t like this behavior, you should prepare your data using x[is.na(w),] <-NA, or impute
your weight vector for non-missing x).

Special options for grouped scaling are mean = "overall.mean” and sd = "within.sd". The for-
mer group-centers vectors on the overall mean of the data (see fwithin for more details) and
the latter scales the data in each group to have the within-group standard deviation (= the stan-
dard deviation of the group-centered data). Thus scaling a grouped vector with options mean =
"overall.mean” and sd = "within.sd” amounts to removing all differences in the mean and
standard deviations between these groups. In weighted computations, mean = "overall.mean”
will subtract weighted group-means from the data and add the overall weighted mean of the data,
whereas sd = "within.sd" will compute the weighted within- standard deviation and apply it to
each group.

Value

x standardized (mean = mean, standard deviation = sd), grouped by g/by, weighted with w. See
Details.

84 fsubset

See Also

fwithin/W, Fast Statistical Functions, TRA, Data Transformations, Collapse Overview

Examples
Simple Scaling & Centering / Standardizing
fscale(mtcars) # Doesn't rename columns
STD(mtcars) # By default adds a prefix
gsu(STD(mtcars)) # See that is works
gsu(STD(mtcars, mean = 5, sd = 3)) # Assigning a mean of 5 and a standard deviation of 3

FALSE)) # No centering: Scaling is mean-preserving

gsu(STD(mtcars, mean

Panel-Data

head(fscale(get_vars(wlddev,9:12), wlddev$iso3c)) # Standardizing 4 series within each country
head(STD(wlddev, ~iso3c, cols = 9:12)) # Same thing using STD, id's added

pwcor (fscale(get_vars(wlddev,9:12), wlddev$iso3c)) # Correlaing panel-series after standardizing

fmean(get_vars(wlddev, 9:12)) # This calculates the overall means
fsd(fwithin(get_vars(wlddev, 9:12), wlddev$iso3c)) # This calculates the within standard deviations
gsu(fscale(get_vars(wlddev, 9:12), wlddev$iso3c, # This group-centers on the overall mean and

mean = "overall.mean”, sd = "within.sd"), # group-scales to the within standard deviation

by = wlddev$iso3c) # -> data harmonized in the first 2 moments

Using plm

pwlddev <- plm::pdata.frame(wlddev, index = c("”iso3c”,"year"))

head (STD(pwlddev)) # Standardizing all numeric variables by country
head(STD(pwlddev, effect = 2L)) # Standardizing all numeric variables by year

Weighted Standardizing

weights = abs(rnorm(nrow(wlddev)))
head(fscale(get_vars(wlddev,9:12), wlddev$iso3c, weights))
head(STD(wlddev, ~iso3c, weights, 9:12))

Using dplyr

library(dplyr)

wlddev %>% group_by(iso3c) %>% select(PCGDP,LIFEEX) %>% STD

wlddev %>% group_by(iso3c) %>% select(PCGDP,LIFEEX) %>% STD(weights) # weighted standardizing
wlddev %>% group_by(iso3c) %>% select(PCGDP,LIFEEX,0DA) %>% STD(ODA) # weighting by ODA ->

..keeps the weight column unless keep.w = FALSE

fsubset Fast Subsetting

Description

fsubset returns subsets of vectors, matrices or data frames which meet conditions. It is pro-
grammed very efficiently and uses C source code from the dara.table package. Especially for
data.frame’s it is significantly (4-5 times) faster than base::subset (or dplyr::filter). The
methods also provide more functionality compared to base: : subset. The function ss provides a
significantly faster alternative to [.data. frame.

fsubset

Usage

fsubset(x,
sbt(x, ...)

85

Shortcut for fsubset

Default S3 method:
fsubset(x, subset, ...)

S3 method for class 'matrix'
fsubset(x, subset, ..., drop = FALSE)

S3 method for class 'data.frame'
fsubset(x, subset, ...)

Fast subsetting data.frames (replaces ‘[‘)

ss(data, i, j)

Arguments

X
data

subset

drop

Details

object to be subsetted.
a data.frame.

logical expression indicating elements or rows to keep: missing values are taken
as false. The default and matrix methods only support logical vectors or row-
indices (or a character vector of rownames if the matrix has rownames; the
data.frame method also supports logical vectors or row-indices).

For the matrix data.frame method: multiple comma-separated expressions indi-
cating columns to select. Otherwise: further arguments to be passed to or from
other methods.

passed on to [indexing operator. Only available for the matrix method.
positive or negative row-indices or a logical vector to subset the rows of data.

a vector or column names, positive or negative indices or a suitable logical vector
to subset the columns of data. Note: Negative indices are converted to positive
ones using j <-seq_along(data)[j].

fsubset is a generic function, with methods supplied for matrices, data frames and vectors (includ-
ing lists). It represents an improvement in both speed and functionality over base: : subset. The
non-generic function ss is an improvement of [.data. frame. For subsetting columns alone, please
see selecting and replacing columns.

For ordinary vectors, the result is .Call(C_subsetVector,x, subset), where C_subsetVector is
an internal function in the data.table package. The subset can be integer or logical. Appropriate
errors are delivered for wrong use.

For matrices the implementation is all base-R but slightly more efficient and more versatile than
base: :subset.matrix. Thus it is possible to subset matrix rows using logical or integer vectors,
or character vectors matching rownames. The drop argument is passed on to the indexing method

for matrices.

86 fsum

For both matrices and data frames, the . . . argument can be used to subset columns, and is evaluated
in a non-standard way. Thus it can support vectors of column names, indices or logical vectors, but
also multiple comma separated column names passed without quotes, each of which may also be
replaced by a sequence of columns i.e. col1:coln (see examples).

For data frames, the subset argument is also evaluated in a non-standard way. Thus next to vec-

tor of row-indices or logical vectors, it supports logical expressions of the form col2 > 5 & col2 <
col3 etc. (see examples). The data frame method uses C_subsetDT, an internal C function from the
data.table package to subset data.frames, hence it is significantly faster than base: : subset.data. frame.
If fast data frame subsetting is required but no non-standard evaluation, the function ss is slightly
simpler and faster.

Factors may have empty levels after subsetting; unused levels are not automatically removed. See
droplevels for a way to drop all unused levels from a data frame.

Value
An object similar to x containing just the selected elements (for a vector), rows and columns (for a
matrix or data frame).

See Also

fselect, get_vars, ftransform, Data Frame Manipulation, Collapse Overview

Examples

fsubset(airquality, Temp > 80, Ozone, Temp)

fsubset(airquality, Day == 1, -Temp)

fsubset(airquality, Day == 1, -(Day:Temp))

fsubset(airquality, Day == 1, Ozone:Wind)

fsubset(airquality, Day == 1 & !is.na(Ozone), Ozone:Wind, Month)

fsubset(airquality, 1:10, 2:3)

ss(airquality, 1:10, 2:3) # Slightly faster !
fsum Fast (Grouped, Weighted) Sum for Matrix-Like Objects
Description

fsum is a generic function that computes the (column-wise) sum of all values in x, (optionally)
grouped by g and/or weighted by w (i.e. to calculate survey totals). The TRA argument can further
be used to transform x using its (grouped, weighted) sum.

Usage
fsum(x, ...)

Default S3 method:
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,

fsum 87

use.g.names = TRUE, ...)

S3 method for class 'matrix'

fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'data.frame’
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'grouped_df'
fsum(x, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, ...)
Arguments
X a numeric vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.
w a numeric vector of (non-negative) weights, may contain missing values.
TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-
place_fill" |2 - "replace" | 3-"-"14-"-+"15-"/"16-"%"17-"+"18-"*"19
-"%%" 110 - "-%%". See TRA.
na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.
use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and (default) grouped tibbles.
drop matrix and data.frame method: drop dimensions and return an atomic vector if

g = NULL and TRA = NULL.

keep.group_vars
grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain summed weighting variable after compu-
tation (if contained in grouped_df).

arguments to be passed to or from other methods.

Details

Missing-value removal as controlled by the na. rm argument is done very efficiently by simply skip-
ping them in the computation (thus setting na.rm = FALSE on data with no missing values doesn’t
give extra speed). Large performance gains can nevertheless be achieved in the presence of miss-
ing values if na.rm = FALSE, since then the corresponding computation is terminated once a NA is
encountered and NA is returned (unlike base: : sum which just runs through without any checks).

The weighted sum (i.e. survey total) is computed as sum(x * w). If na.rm = TRUE, missing values
will be removed from both x and wi.e. utilizing only x[complete.cases(x,w)] and wlcomplete.cases(x,w)].

88 fsum

This all seamlessly generalizes to grouped computations, which are performed in a single pass
(without splitting the data) and therefore extremely fast. See Benchmark and Examples below.

When applied to data frame’s with groups or drop = FALSE, fsum preserves all column attributes
(such as variable labels) but does not distinguish between classed and unclassed objects. The at-
tributes of the data frame itself are also preserved.

Value
The (w weighted) sum of x, grouped by g, or (if TRA is used) x transformed by its sum, grouped by
g

See Also

fprod, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg

fsum(mpg) # Simple sum

fsum(mpg, w = mtcars$hp) # Weighted sum (total): Weighted by hp
fsum(mpg, TRA = "%") # Simple transformation: obtain percentages of mpg
fsum(mpg, mtcars$cyl) # Grouped sum

fsum(mpg, mtcars$cyl, mtcars$hp) # Weighted grouped sum (total)

fsum(mpg, mtcars[c(2,8:9)1) # More groups...

g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !!

fsum(mpg,)
fmean(mpg, g) == fsum(mpg, g) / fNobs(mpg, g)
fsum(mpg, g, TRA = "%") # Percentages by group

data.frame method
fsum(mtcars)

fsum(mtcars, TRA = "%")
fsum(mtcars, g)
fsum(mtcars, g, TRA = "%")

matrix method
m <- gM(mtcars)

fsum(m)
fsum(m, TRA = "%")
fsum(m, g)

fsum(m, g, TRA = "%")

method for grouped tibbles - for use with dplyr

library(dplyr)

mtcars %>% group_by(cyl,vs,am) %>% fsum(hp) # Weighted grouped sum (total)
mtcars %>% fgroup_by(cyl,vs,am) %>% fsum(hp) # Equivalent but faster !!
mtcars %>% fgroup_by(cyl,vs,am) %>% fsum(TRA = "%")

mtcars %>% fgroup_by(cyl,vs,am) %>% fselect(mpg) %>% fsum

ftransform 89

Benchmark

Let's run some benchmarks and compare fsum against data.table and base::rowsum
Starting with small data

mtcDT <- gDT(mtcars)

f <- gF(mtcars$cyl)

library(microbenchmark)
microbenchmark(mtcDT[, lapply(.SD, sum), by = f1],

rowsum(mtcDT, f, reorder = FALSE),

fsum(mtcDT, f, na.rm = FALSE), unit = "relative")
My results:

expr min 1q mean median uq max neval cld
mtcDTL, lapply(.SD, sum), by = f1 145.436928 123.542134 88.681111 98.336378 71.880479 85.217726 100
rowsum(mtcDT, f, reorder = FALSE) 2.833333 2.798203 2.489064 2.937889 2.425724 2.181173 100 b
fsum(mtcDT, f, na.rm = FALSE) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100 a

Now larger data
tdata <- gDT(replicate(100, rnorm(1e5), simplify = FALSE)) # 100 columns with 100.000 obs
f <- gF (sample.int(1e4, 1e5, TRUE)) # A factor with 10.000 groups

microbenchmark(tdatal, lapply(.SD, sum), by = f],

rowsum(tdata, f, reorder = FALSE),

fsum(tdata, f, na.rm = FALSE), unit = "relative”)
My results:

expr min 1q mean median uq max neval cld
tdatal, lapply(.SD, sum), by = f] 2.646992 2.975489 2.834771 3.081313 3.120070 1.2766475 100 c
rowsum(tdata, f, reorder = FALSE) 1.747567 1.753313 1.629036 1.758043 1.839348 0.2720937 100 b
fsum(tdata, f, na.rm = FALSE) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 100 a

ftransform Fast Transform and Compute Columns on a Data Frame

Description

ftransformis a much faster update of base: : transform for data frames. It returns the data frame
with new columns computed and/or existing columns modified or deleted. settransform does all
of that by reference i.e. it modifies the data frame in the global environment. fcompute can be used
to compute new columns from the columns in a data frame and returns only the computed columns.

Usage
Modify and return 'data.frame'
ftransform(X, ...)
tfm(X, ...) # Shortcut for ftransform

Modify 'data.frame' by reference

90

ftransform

settransform(X, ...)
settfm(X, ...) # Shortcut for settransform

Compute and return new 'data.frame' from existing one

fcompute(X, ...)
Arguments
X a data.frame.

further arguments of the form column = value. The value can be a combination
of other columns, a scalar value, or NULL, which deletes column.

Details

The ... arguments to ftransform are tagged vector expressions, which are evaluated in the data
frame X. The tags are matched against names(X), and for those that match, the value replace the
corresponding variable in X, and the others are appended to X. It is also possible to delete columns
by assigning NULL to them, i.e. ftransform(data, column = NULL) removes column from the data.

The function settransformdoes all of that by reference, but uses base-R’s copy-on modify seman-
tics, which is equivalent to replacing the data with <- (thus it is still memory efficient but the data
will have a different memory address after each call of settransform).

Finally, the function fcompute functions just like ftransform, but returns only the changed / com-
puted columns without modifying or appending the data in X.

Value

The modified data.frame X, or, for fcompute, a new data.frame with the columns computed on X.
All attributes of X are preserved.

See Also

with, within, Data Frame Manipulation, Collapse Overview

Examples

ftransform modifies and returns a data.frame

ftransform(airquality, Ozone = -Ozone)

ftransform(airquality, new = -Ozone, Temp = (Temp-32)/1.8)
ftransform(airquality, new = -Ozone, new2 = 1, Temp = NULL) # Deleting Temp
ftransform(airquality, Ozone = NULL, Temp = NULL) # Deleting columns

settransform modifies a data.frame in the global environment
airquality_c <- airquality

settransform(airquality_c, Ratio = Ozone / Temp, Ozone = NULL, Temp = NULL)
head(airquality_c)

rm(airquality_c)

fcompute only returns the modified / computed data
fcompute(airquality, Ozone = -0Ozone)
fcompute(airquality, new = -Ozone, Temp = (Temp-32)/1.8)

fvar, fsd 91

fcompute(airquality, new = -Ozone, new2 = 1)

fvar, fsd Fast (Grouped, Weighted) Variance and Standard Deviation for
Matrix-Like Objects

Description

fvar and fsd are generic functions that compute the (column-wise) variance and standard deviation
of x, (optionally) grouped by g and/or frequency-weighted by w. The TRA argument can further be
used to transform x using its (grouped, weighted) variance/sd.

Usage

fvar(x, ...)
fsd(x, ...)

Default S3 method:

fvar(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, stable.algo = TRUE, ...)

Default S3 method:

fsd(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, stable.algo = TRUE, ...)

S3 method for class 'matrix'

fvar(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, stable.algo = TRUE, ...)

S3 method for class 'matrix'

fsd(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, stable.algo = TRUE, ...)

S3 method for class 'data.frame'

fvar(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, stable.algo = TRUE, ...)

S3 method for class 'data.frame'

fsd(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = TRUE, drop = TRUE, stable.algo = TRUE, ...)

S3 method for class 'grouped_df'

fvar(x, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE,
stable.algo = TRUE, ...)

S3 method for class 'grouped_df'

fsd(x, w = NULL, TRA = NULL, na.rm = TRUE,
use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE,
stable.algo = TRUE, ...)

92 fvar, fsd

Arguments
X a numeric vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.
w a numeric vector of (non-negative) weights, may contain missing values.
TRA an integer or quoted operator indicating the transformation to perform: 1 - "re-

place_fill" |2 - "replace" |3 -"-" 14 -"-+"|5-"/"16-"%" |7 -"+"18-"*"19
-"%%" 110 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and grouped tibbles.

drop matrix and data.frame method: drop dimensions and return an atomic vector if

g = NULL and TRA = NULL.
keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain summed weighting variable after compu-
tation (if contained in grouped_df).

stable.algo logical. TRUE (default) use Welford’s numerically stable online algorithm. FALSE
implements a faster but numerically unstable one-pass method. See Details.

arguments to be passed to or from other methods.

Details

Welford’s online algorithm used by default to compute the variance is well described here (the
section Weighted incremental algorithm also shows how the weighted variance is obtained by this
algorithm).

If stable.algo = FALSE, the variance is computed in one-pass as (sum(x*2)-n*mean(x)*2)/(n-1),
where sum(x*2) is the sum of squares from which the expected sum of squares nxmean(x)*2 is
subtracted, normalized by n-1 (Bessel’s correction). This is numerically unstable if sum(x*2)
and n*mean(x) 2 are large numbers very close together, which will be the case for large n, large
x-values and small variances (catastrophic cancellation occurs, leading to a loss of numeric preci-
sion). Numeric precision is however still maximized through the internal use of long doubles in
C++, and the fast algorithm can be up to 4-times faster compared to Welford’s method.

The weighted variance is computed with frequency weights as (sum(x*2*w)-sum(w)*weighted.mean(x,w)*2)/(sum(w)-1
If na. rm = TRUE, missing values will be removed from both x and wi.e. utilizing only x[complete.cases(x,w)]
and w[complete.cases(x,w)].

Missing-value removal as controlled by the na.rm argument is done very efficiently by simply
skipping the values (thus setting na.rm = FALSE on data with no missing values doesn’t give extra
speed). Large performance gains can nevertheless be achieved in the presence of missing values if
na.rm = FALSE, since then the corresponding computation is terminated once a NA is encountered
and NA is returned.

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

fvar, fsd 93

This all seamlessly generalizes to grouped computations, which are performed in a single pass
(without splitting the data) and therefore extremely fast.

When applied to data frame’s with groups or drop = FALSE, fvar/fsd preserves all column at-
tributes (such as variable labels) but does not distinguish between classed and unclassed object
(thus applying fvar/fsd to a factor column will give a "'malformed factor’ error, and applying it to
a date variable will give an error or a pretty weird date). The attributes of the data. frame itself are
also preserved.

Value
fvar returns the variance of x, grouped by g, or (if TRA is used) x transformed by its variance,
grouped by g. fsd computes the standard deviation of x in like manor.

See Also

Fast Statistical Functions, Collapse Overview

Examples

default vector method

fvar(mtcars$mpg) # Simple variance (all examples also hold for fvar!)
fsd(mtcars$mpg) # Simple standard deviation

fsd(mtcars$mpg, w = mtcars$hp) # Weighted sd: Weighted by hp
fsd(mtcars$mpg, TRA = "/") # Simple transformation: scaling (See also ?fscale)
fsd(mtcars$mpg, mtcars$cyl) # Grouped sd

fsd(mtcars$mpg, mtcars$cyl, mtcars$hp) # Grouped weighted sd

fsd(mtcars$mpg, mtcars$cyl, TRA = "/") # Scaling by group

fsd(mtcars$mpg, mtcars$cyl, mtcars$hp, "/") # Group-scaling using weighted group sds

data.frame method

fsd(iris) # This works, although 'Species' is a factor variable
fsd(mtcars, drop = FALSE) # This works, all columns are numeric variables
fsd(iris[-5], iris[5]) # By Species: iris[5] is still a list, and thus passed to GRP()
fsd(iris[-5], iris[[51]) # Same thing much faster: fsd recognizes 'Species' is a factor

fsd(iris[-5]1, iris[[5]], TRA = "/") # Data scaled by species (see also fscale)

matrix method

m <- gM(mtcars)

fsd(m)

fsd(m, mtcars$cyl) # etc...

method for grouped tibbles - for use with dplyr:

library(dplyr)

mtcars %>% group_by(cyl,vs,am) %>% fsd

mtcars %>% group_by(cyl,vs,am) %>% fsd(keep.group_vars = FALSE) # remove grouping columns
mtcars %>% group_by(cyl,vs,am) %>% fsd(hp) # Weighted by hp

mtcars %>% group_by(cyl,vs,am) %>% fsd(hp, "/") # Weighted scaling transformation

94

GGDC10S

GGDC10S Groningen Growth and Development Centre 10-Sector Database

Description

The GGDC 10-Sector Database provides a long-run internationally comparable dataset on sectoral
productivity performance in Africa, Asia, and Latin America. Variables covered in the data set are
annual series of value added (in local currency), and persons employed for 10 broad sectors.

Usage

data(”GGDC10S")

Format

So

A data frame with 5027 observations on the following 16 variables.

Country char: Country (43 countries)

Regioncode char: ISO3 Region code

Region char: Region (6 World Regions)

Variable char: Variable (Value Added or Employment)
Year num: Year (67 Years, 1947-2013)

AGR num: Agriculture

MIN num: Mining

MAN num: Manufacturing

PU num: Utilities

CON num: Construction

WRT num: Trade, restaurants and hotels

TRA num: Transport, storage and communication

FIRE num: Finance, insurance, real estate and business services
GOV num: Government services

OTH num: Community, social and personal services

SUM num: Summation of sector GDP

urce

https://www.rug.nl/ggdc/productivity/10-sector/

References

Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). "Patterns of Structural Change in Developing
Countries." . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development.
(pp- 65-83). Routledge.

https://www.rug.nl/ggdc/productivity/10-sector/

GGDC10S 95

See Also

wlddev, Collapse Overview

Examples

namlab(GGDC10S, class = TRUE)
gsu(GGDC10S, ~ Variable, ~ Variable + Country, vlabels = TRUE)

Not run:
library(data. table)
library(ggplot2)

World Regions Structural Change Plot

dat <- GGDC10S

fselect(dat, AGR:0TH) <- replace_outliers(dapply(fselect(dat, AGR:0TH), **x*, 1 / dat$SUM),
@, NA, "min")

dat$Variable <- recode_char(dat$Variable, VA = "Value Added Share"”, EMP = "Employment Share")

dat <- collap(dat, ~ Variable + Region + Year, cols = 6:15)

dat <- melt(gDT(dat), 1:3, variable.name = "Sector”, na.rm = TRUE)

ggplot(aes(x = Year, y = value, fill = Sector), data = dat) +
geom_area(position = "fill"”, alpha = ©.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) + facet_grid(Variable ~ Region, scales = "free_x") +
scale_fill_manual(values = sub("#QQFF66FF", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0))+
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = @, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey30"”, fill = "grey30"))

A function to plot the structural change of an arbitrary country

plotGGDC <- function(ctry) {

dat <- fsubset(GGDC10S, Country == ctry, Variable, Year, AGR:SUM)

fselect(dat, AGR:0TH) <- replace_outliers(dapply(fselect(dat, AGR:0TH), ***, 1 / dat$SUM),
0, NA, "min")

dat$SUM <- NULL

dat$Variable <- recode_char(dat$Variable, VA = "Value Added Share”, EMP = "Employment Share")

dat <- melt(gDT(dat), 1:2, variable.name = "Sector”, na.rm = TRUE)

ggplot(aes(x = Year, y = value, fill = Sector), data = dat) +
geom_area(position = "fill"”, alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) + facet_wrap(~ Variable) +
scale_fill_manual(values = sub("#0QFF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0)) +
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(@, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = @, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey20"”, fill = "grey20"),
strip.text = element_text(face = "bold"))

96

plotGGDC("BWA")

End(Not run)

groupid

groupid

Generate Run-Length Type Group-ld

Description

groupid is an enhanced version of data.table::rleid for atomic vectors. It generates a run-
length type group-id where consecutive identical values are assigned the same integer. It is a gen-
eralization as it can be applied to unordered vectors, generate group id’s starting from an arbitrary
value, and skip missing values.

Usage

groupid(x, o =

Arguments

X

o

start

na.skip

check.o

Value

NULL, start = 1L, na.skip = FALSE, check.o = TRUE)

a atomic vector of any type. Attributes are not considered.

an (optional) integer ordering vector specifying the order by which to pass
through x.

integer. The starting value of the resulting group-id. Default is starting from 1.
For C++ programmers, starting from O could be a better choice.

logical. Skip missing valuesi.e. if TRUE something like groupid(c(”a",NA,"a"))
gives c(1,NA, 1) whereas FALSE gives c(1,2, 3).

logical. Programmers option: FALSE prevents checking that each element of o
is in the range [1,length(x)], it only checks the length of o. This gives some
extra speed, but will terminate R if any element of o is too large or too small.

An integer vector of class ’qG’. See qG.

See Also

seqid, qG, Fast (Ordered) Grouping, Collapse Overview

GRP 97

Examples

groupid(airquality$Month)
groupid(airquality$Month, start = @)
groupid(wlddev$country)

Same thing since country is alphabetically ordered: (groupid is faster..)
all.equal(groupid(wlddev$country), gG(wlddev$country, na.exclude = FALSE))

When data is unordered, group-id can be generated through an ordering..
uo <- order(rnorm(fnrow(airquality)))

monthuo <- airquality$Month[uo]

o <- order(monthuo)

groupid(monthuo, o)

identical(groupid(monthuo, o)[o], unattrib(groupid(airquality$Month)))

GRP Fast Grouping / collapse Grouping Objects

Description

GRP performs fast, ordered and unordered, groupings of vectors and data.frames (or lists of vectors)
using radixorderv. The output is a list-like object of class ’GRP’ which can be printed, plotted
and used as an efficient input to all of collapse’s fast functions, operators, as well as collap, BY and
TRA.

fgroup_by is similar to dplyr: :group_by but faster. It creates a ’grouped_df’, but with a "GRP’
object attached - for faster dplyr-like programming with collapse’s fast functions.

There are also several conversion methods to convert to and from ’GRP’ objects. The most impor-
tant of these is GRP. grouped_df, which returns a ’"GRP’ object from a ’grouped_df’ created with
fgroup_by or dplyr::group_by.

Usage
GRP(X, ...)
Default S3 method:
GRP(X, by = NULL, sort = TRUE, decreasing = FALSE, na.last = TRUE,

return.groups = TRUE, return.order = FALSE, ...)

S3 method for class 'factor'

GRP(X, ...)

S3 method for class 'qG'

GRP(X, ...)

S3 method for class 'pseries'
GRP(X, effect = 1L, ...)

S3 method for class 'pdata.frame'
GRP(X, effect = 1L, ...)

S3 method for class 'grouped_df'

98 GRP

GRP(X, ...)

Identify, get group names, and convert GRP object to factor
is.GRP(x)

group_names.GRP(x, force.char = TRUE)

as.factor.GRP(x, ordered = FALSE)

Fast version of dplyr::group_by for use with fast functions, see details
fgroup_by(X, ..., sort = TRUE, decreasing = FALSE, na.last = TRUE, return.order = FALSE)

This gets grouping columns from a grouped_df created with dplyr::group_by or fgroup_by
fgroup_vars(X, return = "data")

S3 method for class 'GRP'
print(x, n =6, ...)

S3 method for class 'GRP'

plot(x, breaks = "auto”, type = "s", horizontal = FALSE, ...)
Arguments
X a vector, list of columns or data.frame (default method), or a classed object
(conversion/extractor methods).
X a GRP object.
by if X is a data.frame or list, by can indicate columns to use for the grouping (by

default all columns are used). Columns must be passed using a vector of column
names, indices, or using a one-sided formula i.e. ~ coll + col2.

sort logical. This argument only affects character vectors / columns passed. If FALSE,
these are not ordered but simply grouped in the order of first appearance of
unique elements. This provides a slight performance gain if only grouping but
not alphabetic ordering is required (argument passed to radixorderv).

ordered logical. TRUE adds a class "ordered’ i.e. generates an ordered factor.

decreasing logical. Should the sort order be increasing or decreasing? Can be a vec-
tor of length equal to the number of arguments in X / by (argument passed to
radixorderv).

na.last logical. if missing values are encountered in grouping vector/columns, assign

them to the last group (argument passed to radixorderv).
return.groups logical. include the unique groups in the created ’GRP’ object.
return.order logical. include the output from radixorderv in the created ’"GRP’ object.

force.char logical. Always output group names as character vector, even if a single numeric
vector was passed to GRP.default.

effect plm methods: Select which panel identifier should be used as grouping variable.
1L means first variable in the plm: : index, 2L the second etc.. More than one
variable can be supplied.

return an integer or string specifying what fgroup_vars should return. The options
are:

GRP 99

Int. String Description
1 "data" full grouping columns (default)
2 "unique" unique rows of grouping columns
3 "names" names of grouping columns
4 "indices" integer indices of grouping columns
5 "named_indices" named integer indices of grouping columns
6 "logical" logical selection vector of grouping columns
7 "named_logical" named logical selection vector of grouping columns
n integer. Number of groups to print out.
breaks integer. Number of breaks in the histogram of group-sizes.
type linetype for plot.
horizontal logical. TRUE arranges plots next to each other, instead of above each other.

for fgroup_by: unquoted comma-separated column names of grouping columns.
Otherwise: arguments to be passed to or from other methods.

Details

GRP is a central function in the collapse package because it provides the key inputs to facilitate
easy and efficient groupwise-programming at the C/C++ level: Information about (1) the number of
groups (2) an integer group-id indicating which values / rows belong to which group and (3) infor-
mation about the size of each group. Provided with these informations, collapse’s Fast Statistical
Functions pre-allocate intermediate and result vectors of the right sizes and (in most cases) perform
grouped statistical computations in a single pass through the data.

The sorting and ordering functionality for GRP only affects (2), that is groups receive different
integer-id’s depending on whether the groups are sorted sort = TRUE, and in which order (argument
decreasing). This in-turn changes the order of values/rows in the output of collapse functions.
Note that sort = FALSE is only effective on character vectors. Numeric grouping vectors will always
produce ordered groupings.

Next to group, there is the function fgroup_by as a significantly faster alternative to dplyr: : group_by.
It creates a grouped tibble by attaching a ’GRP’ object to a data frame. collapse functions with a
grouped_df method applied to that data frame will yield grouped computations. Note that fgroup_by
can only be used in combination with collapse functions, not with dplyr verbs such as summarize

or mutate.

GRP is an S3 generic function with one default method supporting vector and list input and several
conversion methods:

The conversion of factors to ’GRP’ objects by GRP. factor involves obtaining the number of groups
calling ng <-flevels(f) and then computing the count of each level using tabulate(f,ng). The
integer group-id (2) is already given by the factor itself after removing the levels and class attributes
and replacing any missing values with ng + 1L. The levels are put in a list and moved to position (4)
in the "GRP’ object, which is reserved for the unique groups. Going from factor to ’GRP’ object
thus only requires a tabulation of the levels, whereas creating a factor from a ’GRP’ object using
as.factor.GRP does not involve any computations, but may involve interactions if multiple group-
ing columns were used (which are then interacted to produce unique factor levels) or as. character
conversions if the grouping column(s) were numeric (which are potentially expensive).

100 GRP

The method GRP. grouped_df takes the ’groups’ attribute from a grouped tibble and converts it to
a ’GRP’ object. If the grouped tibble was generated using fgroup_by, all work is done already. If
it was created using dplyr: :group_by, a C++ routine is called to efficiently convert the grouping
object.

Note: For faster factor generation and a factor-light class ’qG’ which avoids the coercion of factor
levels to character also see gF and qG.

Value

A list-like object of class ‘GRP’ containing information about the number of groups, the observa-
tions (rows) belonging to each group, the size of each group, the unique group names / definitions,
whether the groups are ordered or not and (optionally) the ordering vector used to perform the
ordering. The object is structured as follows:

List-index Element-name Content type Content description
[N.groups integer(1) Number of Groups
[[2]] group.id integer (NROW(X)) An integer group-identifier
[[3]] group.sizes integer(N.groups) Vector of group sizes
[[41] groups unique(X) or NULL Unique groups (same format as input, sorted if sort -
[[51] group.vars character The names of the grouping variables
(611 ordered logical(2) [1]- TRUE if sort = TRUE, [2]- TRUE if X already sor
[[711 order integer (NROW(X)) or NULL Ordering vector from radixorderv or NULL if returr
[[8]] call call The GRP () call, obtained from match.call()

See Also

gF, qG, finteraction, Collapse Overview

Examples

default method

GRP(mtcars$cyl)

GRP(mtcars, ~ cyl + vs + am) # or GRP(mtcars, c("cyl”,"vs","am")) or GRP(mtcars, c(2,8:9))
g <- GRP(mtcars, ~ cyl + vs + am) # saving the object

plot(g) # plotting it
group_names.GRP(g) # retain group names
fsum(mtcars, g) # compute the sum of mtcars, grouped by variables cyl, vs and am.

convert factor to GRP object
GRP(iris$Species)

dplyr integration

library(dplyr)

mtcars %>% group_by(cyl,vs,am) %>% GRP # get GRP object from a dplyr grouped tibble
mtcars %>% group_by(cyl,vs,am) %>% fmean # grouped mean using dplyr grouping

mtcars %>% fgroup_by(cyl,vs,am) %>% fmean # faster alternative with collapse grouping

is.regular-is.unlistable 101

is.regular-is.unlistable
Regular Objects and Unlistable Lists

Description

A regular R object is an R object that is either atomic or a list - checked with is.regular. A
(nested) list composed of regular objects at each level is unlistable - checked with is.unlistable.

Usage

is.regular(x)
is.unlistable(l)

Arguments
X a R object.
1 a list.
Details

is.regular is simply defined as is.atomic(x) || is.list(x). is.unlistable is defined as
all(unlist(rapply2d(l,is.regular),use.names = FALSE)). It could of course also be defined
as all(rapply(l,is.atomic)), but the above is a lot more efficient if 1 contains data. frame’s.

Value

logical (1) - TRUE or FALSE.

See Also

ldepth, has_elem, List Processing, Collapse Overview

Examples

is.regular(list(1,2))

is.regular(2)

is.regular(a ~ ¢)

1 <- list(1, 2, list(3, 4, "b", FALSE))
is.regular(l)

is.unlistable(l)

1 <- list(1, 2, list(3, 4, "b", FALSE, e ~ b))
is.regular(l)

is.unlistable(l)

102 Idepth

ldepth Determine the Depth / Level of Nesting of a List

Description

ldepth provides the depth of a list or list-like structure.

Usage

ldepth(1l, DF.as.list = TRUE)

Arguments

1 a list.

DF.as.list treat data.frame’s as sub-lists?
Details

The depth or level or nesting of a list or list-like structure (i.e. a classed object) is found by recursing
down to the bottom of the list and adding an integer count of 1 for each level passed. For example
the depth of a data.frame is 1. If a data.frame has list-columns, the depth is 2. However for
reasons of efficiency, if 1 is not a data. frame and DF.as.list = TRUE, data. frame’s found inside
1 will not be checked for list column’s but assumed to have a depth of 1.

Value

A single integer indicating the depth of the list.

See Also

is.unlistable, has_elem, List Processing, Collapse Overview

Examples

1 = list(1, 2)

ldepth(1)

1 = list(1, 2, mtcars)

ldepth(1)

ldepth(l, DF.as.list = FALSE)

1 = list(1, 2, list(4, 5, list(6, mtcars)))
ldepth(1)

ldepth(l, DF.as.list = FALSE)

psacf 103

psacf Auto- and Cross- Covariance and -Correlation Function Estimation
for Panel-Series

Description

psacf, pspacf and psccf compute (and by default plot) estimates of the auto-, partial auto- and
cross- correlation or covariance functions for panel-vectors and plm: : pseries. They are analogues
to stats::acf, stats: :pacf and stats: : ccf.

Usage

psacf(x, ...)
pspacf(x, ...)
psccf(x, y, ...)

Default S3 method:
psacf(x, g, t = NULL, lag.max = NULL, type = c("correlation”, "covariance”,"partial”),

plot = TRUE, gscale = TRUE, ...)
Default S3 method:
pspacf(x, g, t = NULL, lag.max = NULL, plot = TRUE, gscale = TRUE, ...)

Default S3 method:
psccf(x, y, g, t = NULL, lag.max = NULL, type = c(”"correlation”, "covariance"),
plot = TRUE, gscale = TRUE, ...)

S3 method for class 'pseries'

psacf(x, lag.max = NULL, type = c("correlation”, "covariance","partial”),
plot = TRUE, gscale = TRUE, ...)

S3 method for class 'pseries'

pspacf(x, lag.max = NULL, plot = TRUE, gscale = TRUE, ...)

S3 method for class 'pseries'

psccf(x, y, lag.max = NULL, type = c("correlation”, "covariance"),
plot = TRUE, gscale = TRUE, ...)

S3 method for class 'data.frame'
psacf(x, by, t = NULL, cols = is.numeric, lag.max = NULL,
type = c("correlation”, "covariance”,"partial”), plot = TRUE, gscale = TRUE, ...)
S3 method for class 'data.frame'
pspacf(x, by, t = NULL, cols = is.numeric, lag.max = NULL,
plot = TRUE, gscale = TRUE, ...)

S3 method for class 'pdata.frame'
psacf(x, cols = is.numeric, lag.max = NULL,
type = c("correlation”, "covariance”,"partial”), plot = TRUE, gscale = TRUE, ...)
S3 method for class 'pdata.frame'
pspacf(x, cols = is.numeric, lag.max = NULL, plot = TRUE, gscale = TRUE, ...)

104 psacf

Arguments

X,y a numeric vector, panel-series (plm: : pseries), data.frame or panel-data-frame
(plm: :pdata.frame).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group X, y.

by data frame method: Same input as g, but also allows one- or two-sided formulas
using the variables in x, i.e. ~ idvar or var1 + var2 ~ idvar1 + idvar2.

t same input as g, to indicate the time-variable. For secure computations on un-
ordered panel-vectors. Data frame method also takes one-sided formula i.e.
~time.

cols data.frame method: Select columns using a function, column names or indices.
Note: cols is ignored if a two-sided formula is passed to by.

lag.max maximum lag at which to calculate the acf. Default is 2xsqrt(length(x)/ng)
where ng is the number of groups in the panel-series / supplied to g.

type character string giving the type of acf to be computed. Allowed values are "cor-
relation” (the default), "covariance" or "partial".

plot logical. If TRUE (the default) the acf is plotted.

gscale logical. Do a groupwise scaling / standardization of x, y (using collapse: : fscale
and the groups supplied to g) before computing panel-autocovariances / correla-
tions.
further arguments to be passed to stats:::plot.acf.

Details

If gscale = TRUE data are standardized within each group (using collapse: : fscale) such that the
group-mean is 0 and the group-standard deviation is 1. This is strongly recommended for most
panels to get rid of individual-specific heterogeneity which would corrupt the ACF computations.

After scaling, psacf, pspacf and psccf compute the ACF/CCF by creating a matrix of panel-
lags of the series using collapse::flag and then correlating this matrix with the series (x,y)
using stats::cor and pairwise-complete observations. This may require a lot of memory on
large data, but is done because passing a sequence of lags to collapse::flag and thus calling
collapse::flag and stats: :cor one time is much faster than calling them lag.max times. The
partial ACF is computed from the ACF in the same way as in stats: :pacf.

Value

An object of class "acf", see 7stats::acf. The result is returned invisibly if plot is TRUE.

Note

For plm: :pseries and plm: :pdata.frame, the first index variable is taken to be the group-id and
the second the time variable. If more than 2 index variables are attached to plm: :pseries, the last
one is taken as the time variable and the others are taken as group-id’s and interacted.

The pdata.frame method only works for properly subsetted objects of class *pdata.frame’. A list
of ’pseries” won’t work.

psmat 105

See Also

Time-Series and Panel-Series, Collapse Overview

Examples

World Development Panel Data

head(wlddev) # see also help(wlddev)
psacf(wlddev$PCGDP, wlddev$country, wlddev$year) # ACF of GDP per Capita
psacf(wlddev, PCGDP ~ country, ~year) # Same using data.frame method
psacf(wlddev$PCGDP, wlddev$country) # The Data is sorted, can omit t
pspacf(wlddev$PCGDP, wlddev$country) # Partial ACF
psccf(wlddev$PCGDP, wlddev$LIFEEX, wlddev$country) # CCF with Life-Expectancy at Birth
psacf(wlddev, PCGDP + LIFEEX + ODA ~ country, ~year) # ACF and CCF of GDP, LIFEEX and ODA
psacf(wlddev, ~ country, ~year, c(9:10,12)) # Same, using cols argument
pspacf(wlddev, ~ country, ~year, c(9:10,12)) # Partial ACF

Using plm:
pwlddev <- plm::pdata.frame(wlddev, index = c("country"”,"year"))# Creating a Panel-Data Frame

PCGDP <- pwlddev$PCGDP # Panel-Series of GDP per Capita
LIFEEX <- pwlddev$LIFEEX # Panel-Series of Life Expectancy
psacf (PCGDP) # Same as above, more parsimonious
pspacf (PCGDP)

psccf (PCGDP, LIFEEX)
psacf(pwlddev[c(9:10,12)]1)
pspacf (pwlddev[c(9:10,12)1)

psmat Matrix / Array from Panel-Series

Description
psmat efficiently expands a panel-vector or plm: : pseries into a matrix. If a data frame or plm: :pdata. frame
is passed, psmat returns (default) a 3D array or a list of such matrices.

Usage

psmat(x, ...)

Default S3 method:
psmat(x, g, t = NULL, transpose = FALSE, ...)

S3 method for class 'pseries'
psmat(x, transpose = FALSE, ...)

S3 method for class 'data.frame'
psmat(x, by, t = NULL, cols = NULL, transpose = FALSE, array = TRUE, ...)

106 psmat

S3 method for class 'pdata.frame'

psmat(x, cols = NULL, transpose = FALSE, array = TRUE, ...)

S3 method for class 'psmat'

plot(x, legend = FALSE, colours = legend, labs = NULL, ...)

Arguments

X a vector, panel-series (plm: : pseries), data.frame or panel-data.frame (plm: : pdata. frame).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of vec-
tors / factors (internally converted to a GRP object) used to group x. If the panel
is balanced an integer indicating the number of groups can also be supplied. See
Examples.

by data frame method: Same input as g, but also allows one- or two-sided formulas
using the variables in x, i.e. ~ idvar or var1 + var2 ~ idvar1 + idvar2.

t same inputs as g, to indicate the time-variable or second identifier(s). g and t
together should fully identify the panel. If t = NULL, the data is assumed sorted
and seq_col is used to generate rownames.

cols data.frame method: Select columns using a function, column names or indices.
Note: cols is ignored if a two-sided formula is passed to by.

transpose logical. TRUE generates the matrix such that g/by -> columns,t -> rows. De-
fault is g/by -> rows, t -> columns.

array data.frame / pdata.frame methods: logical. TRUE returns a 3D array (if just
one column is selected a matrix is returned). Otherwise always return a list of
matrices.
arguments to be passed to or from other methods, or for the plot method addi-
tional arguments passed to ts.plot.

legend logical. Automatically create a legend of panel-groups.

colours logical. Automatically colour by panel-groups.

labs provide a character-vector of variable labels / series titles when plotting an array.

Details

For plm: :pseries, the first index variable is taken to be the group-id and the second the time
variable. If more than 2 index variables are attached to plm: :pseries, the last one is taken as the
time variable and the others are taken as group-id’s and interacted.

Value

a matrix or 3D array containing the data in x, where by default the rows constitute the groups-ids
(g/by) and the columns the time variable or individual ids (t). 3D arrays contain the variables in the
3rd dimension. The objects have a class *psmat’, and also a ’transpose’ attribute indicating whether
transpose = TRUE or transpose = FALSE.

pwecor, pwcov, pwNobs 107

Note

The pdata.frame method only works for properly subsetted objects of class "pdata.frame’. A list
of ’pseries’ won’t work. There also exist simple aperm and [(subset) methods for ’psmat’ objects.
These differ from the default methods only by keeping the class and the "transpose’ attribute.

See Also

Time-Series and Panel-Series, Collapse Overview

Examples
World Development Panel Data
head(wlddev) # View data
gsu(wlddev, pid = ~ iso3c, cols = 9:12, vlabels = TRUE) # Sumarizing data
str(psmat(wlddev$PCGDP, wlddev$iso3c, wlddev$year)) # Generating matrix of GDP
r <- psmat(wlddev, PCGDP ~ iso3c, ~ year) # Same thing using data.frame method
plot(r, main = vlabels(wlddev)[9], xlab = "Year") # Plot the matrix
str(r) # See srructure
str(psmat(wlddev$PCGDP, wlddev$iso3c)) # The Data is sorted, could omit t
str(psmat(wlddev$PCGDP, 216)) # This panel is also balanced, so

..indicating the number of groups would be sufficient to obtain a matrix

ar <- psmat(wlddev, ~ iso3c, ~ year, 9:12) # Get array of transposed matrices
str(ar)

plot(ar)

plot(ar, legend = TRUE)

plot(psmat(collap(wlddev, ~regiontyear, cols = 9:12), # More legible and fancy plot

~region, ~year), legend = TRUE,
labs = vlabels(wlddev)[9:12])

psml <- psmat(wlddev, ~ iso3c, ~ year, 9:12, array = FALSE) # This gives list of ps-matrices
head(unlist2d(psml, "Variable”, "Country”, id.factor = TRUE)) # Using unlist2d, can generate DF

Using plm simplifies things
pwlddev <- plm::pdata.frame(wlddev, index = c("iso3c"”,"year")) # Creating a Panel-Data Frame

PCGDP <- pwlddev$PCGDP # A panel-Series of GDP per Capita
psmat (PCGDP) # Same as above, more parsimonious
plot(psmat(PCGDP))

plot(psmat(pwlddev[9:12]))

plot(psmat(G(pwlddev[9:12]1))) # Here plotting panel- growth rates

pwcor, pwcov, pwNobs Pairwise Correlations, Covariances and Observation Count

Description

Computes pairwise Pearsons correlations, covariances and observation counts. Pairwise correla-
tions and covariances can be computed together with observation counts and p-values, and output

108 pwecor, pwcov, pwNobs
as 3D array (default) or list of matrices. For an equivalent and faster implementation of pwcor see
Hmisc: :rcorr (written in Fortran). A major feature of pwcor and pwcov is their sophisticated print
method.

Usage
pwcor(X, ..., N = FALSE, P = FALSE, array = TRUE, use = "pairwise.complete.obs")
pwcov(X, ..., N = FALSE, P = FALSE, array = TRUE, use = "pairwise.complete.obs")
pwNobs (X)

S3 method for class 'pwcor'

print(x, digits = 2L, sig.level = 0.05, show = c("all”,"lower.tri"”,"upper.tri”),
spacing = 1L, ...)

S3 method for class 'pwcov'

print(x, digits = 2L, sig.level = 0.05, show = c("all”,"lower.tri"”,"upper.tri”),
spacing = 1L, ...)

Arguments
X a matrix or data.frame, for pwcor and pwcov all columns must be numeric.

X an object of class 'pwcor’ / ’pwcov’.

N logical. TRUE also computes pairwise observation counts.

P logical. TRUE also computes pairwise p-values (same as cor. test).

array logical. If N=TRUE or P =TRUE, TRUE (default) returns output as 3D array
whereas FALSE returns a list of matrices.

use argument passed to cor / cov.

digits integer. The number of digits to round to in print.

sig.level numeric. P-value threshold below which a '*' is displayed above significant
coefficients if P = TRUE.

show character. The part of the correlation / covariance matrix to display.

spacing integer. Controls the spacing between different reported quantities in the print-
out of the matrix: 0 - compressed, 1 - single space, 2 - double space.
other arguments passed to cor or cov. Only sensible if P = FALSE.

Value
a numeric matrix, 3D array or list of matrices of the computed statistics. For pwcor and pwcov the
object has a class ’pwcor’ and *pwcov’, respectively.

See Also

gsu, Collapse Overview

gF 109

Examples

mna <- na_insert(mtcars)

pwcor (mna)

pwcov(mna)

pwNobs (mna)

pwcor(mna, N = TRUE)

pwcor(mna, P = TRUE)

pwcor(mna, N = TRUE, P = TRUE)

aperm(pwcor(mna, N = TRUE, P = TRUE))

print(pwcor(mna, N = TRUE, P = TRUE), digits = 3, sig.level = 0.01, show = "lower.tri")
pwcor(mna, N = TRUE, P = TRUE, array = FALSE)

print(pwcor(mna, N = TRUE, P = TRUE, array = FALSE), show = "lower.tri")

qF Fast Factor Generation and Vector Grouping

Description
gF, shorthand for ’quick-factor’ implements very fast (ordered) factor generation from atomic vec-
tors using either radix ordering or index hashing.

qG, shorthand for ’quick-group’, generates a kind of factor-light without the levels attribute but
instead an attribute providing the number of levels. Optionally the levels / groups can be attached,
but without converting them to character. Objects have a class 'qG’.

finteraction generates a factor by interacting multiple vectors or factors. In that process missing
values are always replaced with a level and unused levels are always dropped.
Usage

gF(x, ordered = FALSE, na.exclude = TRUE, sort = TRUE,
method = c("auto”, "radix"”, "hash"))

qG(x, ordered = FALSE, na.exclude = TRUE, sort = TRUE,
return.groups = FALSE, method = c("auto”, "radix", "hash"))

is.qG(x)
finteraction(..., ordered = FALSE, sort = TRUE)
Arguments
X a atomic vector, factor or quick-group.
ordered logical. Adds a class "ordered’.
na.exclude logical. TRUE preserves missing values (i.e. NA level is generated).
sort logical. TRUE sorts the levels.

method an integer or character string specifying the method of computation:

110 gF

Int. String Description

1 "auto" automatic selection: hash for character, logical or if length(x) < 500, else radix.
2 "radix" use radix ordering to generate factors. See Details.

3 "hash" use index hashing to generate factors. See Details.

return.groups logical. TRUE returns the unique elements / groups / levels of x in an attribute
called "groups’. Unlike gF, they are not converted to character.

multiple atomic vectors or factors, or a single list of equal-length vectors or
factors. See Details.

Details

These functions are quite important. Whenever a vector is passed to a collapse function such as
fmean(mtcars,mtcars$cyl), is is grouped using gF or qG.

gF is a combination of as. factor and factor. Applying it to a vector i.e. qF (x) gives the same re-

sultas as.factor(x). gF (x,ordered = TRUE) generates and ordered factor (same as factor (x,ordered
=TRUE)), and gF (x,na.exclude = FALSE) generates a level for missing values (same as factor (x, exclude
= NULL)). An important addition is that gF (x, na.exclude = FALSE) also adds a class ’na.included’.

This prevents collapse functions from checking missing values in the factor, and is thus computa-

tionally more efficient. Thus factors used in grouped operations should always be generated using

gF (x,na.exclude = FALSE). Setting sort = FALSE gathers the levels in a random order (unless

method = "radix” and x is numeric, in which case the levels are always sorted). This can provide

a speed improvement for non-numeric x.

There are two methods of computation: radix ordering and index hashing. Radix ordering is
done through combining the functions radixorder and groupid. It is generally faster than in-
dex hashing for large numeric data (although there are exceptions). Index hashing is done using
Rcpp: :sugar: :sort_unique and Rcpp: :sugar: :match. It is generally faster for character data.
For logical data, a super fast one-pass method was written which is subsumed in the hash method.
Regarding speed: In general gF is around 5x faster than as. factor on character data and about 30x
faster on numeric data. Automatic method dispatch typically does a good job delivering optimal
performance.

gG is in the first place a programmers function. It generates a factor-"light’ consisting of only an
integer grouping vector and an attribute providing the number of groups. It is faster and more
memory efficient than GRP for grouping atomic vectors, which is the main reason it exists. The
fact that it (optionally) returns the unique groups / levels without converting them to character is an
added bonus (this also provides a small performance gain compared to gF).

finteraction is simply a wrapper around as. factor.GRP(GRP.default(X, sort = TRUE)), where
X is replaced by the arguments in ’... " combined in a list. See GRP for computational details. In
general: All vectors, factors, or lists of vectors / factors passed can be interacted. Interactions
always create a level for missing values and always drop any unused levels.

Value

gF returns an (ordered) factor. qG returns an object of class ’qG’: an integer grouping vector with an
attribute "N.groups’ indicating the number of groups, and, if return.groups = TRUE, an attribute
’groups’ containing the vector of unique groups / elements in x corresponding to the integer-id.

gsu 111

Note

Neither gF nor qG can reorder groups / factor levels. These objects can however be converted into
one another using qF/qG, and it is also possible to add a class "ordered’ (ordered = TRUE) and to
create am extra level / integer for missing values (na.exclude = FALSE).

See Also
groupid, GRP, Fast (Ordered) Grouping, Collapse Overview

Examples
cylF <- gF(mtcars$cyl) # Factor from atomic vector
cylG <- gG(mtcars$cyl) # Quick-group from atomic vector
cylG # See the simple structure of this object

cf <- gF(wlddev$country) # Bigger data
cf2 <- gF(wlddev$country, na.exclude = FALSE) # With na.included class
dat <- num_vars(wlddev)

cf2 is faster in grouped operations because no missing value check is performed
library(microbenchmark)

microbenchmark(fmax(dat, cf), fmax(dat, cf2))

finteraction(mtcars$cyl, mtcars$vs) # Interacting two variables (can be factors)

finteraction(mtcars) # A more crude example...
gsu Fast (Grouped, Weighted) Summary Statistics for Cross-Sectional and
Panel-Data
Description

gsu, shorthand for quick-summary, is an extremely fast summary command inspired by the (xt)summarize
command in the STATA statistical software.

It computes a set of 7 statistics (nobs, mean, sd, min, max, skewness and kurtosis) using a numer-
ically stable one-pass method generalized from Welford’s Algorithm. Statistics can be computed
weighted, by groups, and also within-and between entities (for panel-data, see Details).

Usage
Default S3 method:

gsu(x, g = NULL, pid = NULL, w = NULL, higher = FALSE, array = TRUE, ...)
S3 method for class 'matrix'
gsu(x, g = NULL, pid = NULL, w = NULL, higher = FALSE, array = TRUE, ...)

S3 method for class 'data.frame'

112 gsu

gsu(x, by = NULL, pid = NULL, w = NULL, cols = NULL,
higher = FALSE, array = TRUE, vlabels = FALSE,...)

Methods for compatibility with plm:

S3 method for class 'pseries'
gsu(x, g = NULL, w = NULL, effect = 1L, higher = FALSE, array = TRUE, ...)

S3 method for class 'pdata.frame'
gsu(x, by = NULL, w = NULL, cols = NULL, effect = 1L,
higher = FALSE, array = TRUE, vlabels = FALSE, ...)

S3 method for class 'qsu'
print(x, digits = 2, nonsci.digits = 9, na.print = "-",
return = FALSE, print.gap = 2, ...)

Arguments

X a numeric vector, matrix, data.frame, panel-series (plm: :pseries) or panel-
data.frame (plm: :pdata.frame)

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

by (p)data.frame method: Same as g, but also allows one- or two-sided formulas
i.e. ~ groupl + group2 or var1 + var2 ~ groupl + group2. See Examples.

pid same input as g/by: Specify a panel-identifier to also compute statistics on
between- and within- transformed data. data. frame method also supports one-
or two-sided formulas. Transformations are taken independently from grouping
with g/by (grouped statistics are computed on the transformed data). However,
passing any LHS variables to pid will overwrite any LHS variables passed to by.

w a vector of (non-negative) weights. Adding weights will compute the weighted
mean, sd, skewness and kurtosis, and transform the data using weighted individ-
ual means if pid is used.

cols select columns to summarize using column names, indices or a function (i.e.
is.numeric). Two-sided formulas passed to by or pid overwrite cols.

higher logical. Add higher moments (skewness and kurtosis).

array logical. If computations have more than 2 dimensions (up to a maximum of

4D: variables, statistics, groups and panel-decomposition) output to array, else
output (nested) list of matrices.

vlabels logical. Use variable labels in the summary. See vlabels.

effect plm methods: Select which panel identifier should be used for between and
within transformations of the data. 1L means first variable in the plm: : index,
2L the second etc.. More than one variable can be supplied.

arguments to be passed to or from other methods.

digits the number of digits to print after the comma/dot.

gsu 113

nonsci.digits the number of digits to print before resorting to scientific notation (default is to
print out numbers with up to 9 digits and print larger numbers scientifically).

na.print character string to substitute for missing values.

return logical. Don’t print but instead return the formatted object.

print.gap integer. Spacing between printed columns. Passed to print.default.
Details

The algorithm used to compute statistics is well described here (see sections Welford’s online algo-
rithm, Weighted incremental algorithm and Higher-order statistics. Skewness and kurtosis are cal-
culated as described in Higher-order statistics and are mathematically identical to those imple-
mented in the moments package. Just note that qsu computes the kurtosis (like momens: :kurtosis),
not the excess-kurtosis (= kurtosis - 3) defined in Higher-order statistics. The Weighted incre-
mental algorithm described can easily be generalized to higher-order statistics).

Grouped computations specified with g/by are carried out extremely efficiently as in fsum (in a
single pass, without splitting the data).

If pid is used, gsu performs a panel-decomposition of each variable and computes 3 sets of statis-
tics: Statistics computed on the *Overall’ (raw) data, statistics computed on the *Between’ - trans-
formed (pid - averaged) data, and statistics computed on the *Within’ - transformed (pid - demeaned)
data.

More formally, let x (bold) be a panel vector of data for N individuals indexed by i, recorded for
T periods, indexed by t. xit then denotes a single data-point belonging to individual i in time-
period t (t/T must not represent time). Then xi. denotes the average of all values for individual i
(averaged over t), and by extension xN. is the vector (length N) of such averages for all individuals.
If no groups are supplied to g/by, the 'Between’ statistics are computed on xN., the vector of
individual averages. (This means that for a non-balanced panel or in the presence of missing values,
the *Overall’ mean computed on x can be slightly different than the ’Between’ mean computed on
xN.). If groups are supplied to g/by, xN. is expanded to the vector xi. (length N x T) by replacing
each value xit in x with xi., while preserving missing values in x. Grouped Between-statistics
are then computed on xi ., with the only difference that the number ob observations (’Between-N’)
reported for each group is the number of distinct non-missing values of xi. in each group (not the
total number of non-missing values of xi. in each group, which is already reported in ’Overall-N”).

’Within’ statistics are always computed on the vector x - xi. + x. ., where x. . is simply the *Over-
all’ mean computed from x, which is added back to preserve the level of the data. The *Within’
mean computed on this data will always be identical to the *Overall’ mean. In the summary output,
gsu reports not 'N’, which would be identical to the *Overall-N’, but "T’, the average number of
time-periods of data available for each individual obtained as *T” = *Overall-N / 'Between-N’. See
Examples.

Apart from 'N/T° and the extrema, the standard-deviations (’SD’) computed on between- and
within- transformed data are extremely valuable because they indicate how much of the varia-
tion in a panel-variable is between-individuals and how much of the variation is within-individuals
(over time). At the extremes, variables that have common values across individuals (such as the
time-variable ’t’ in a balanced panel), can readily be identified as individual-invariant because the
’Between-SD’ on this variable is 0 and the *Within-SD’ is equal to the *Overall-SD’. Analogous,
time-invariant individual characteristics (such as the individual-id ’i’) have a 0 *Within-SD’ and a
’Between-SD’ equal to the *Overall-SD’.

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

114 gsu

gsu comes with it’s own print method which by default writes out up to 9 digits at 2 decimal places.
Larger numbers are printed in scientific format. for numbers between 7 and 9 digits, a comma °, is
placed after the 6th digit to designate the millions. Missing values are printed using ’-’.

Value
A matrix, array or list of matrices of summary statistics. All matrices and arrays have a class ’qsu’
and a class table’ attached, responding i.e. to print.qsu and aperm. table...

Note

If weights w are used together with pid, transformed data is computed using weighted individual
means i.e. weighted xi. and weighted x. .. Weighted statistics are subsequently computed on this
weighted-transformed data.

See Also

descr, pwcor, Fast Statistical Functions, Collapse Overview

Examples

World Development Panel Data
Simple Summaries -------------------—---—-

gsu(wlddev) # Simple summary
gsu(wlddev, vlabels = TRUE) # Display variable labels
gsu(wlddev, higher = TRUE) # Add skewness and kurtosis

Grouped Summaries ------------------—---—-

gsu(wlddev, ~ region, vlabels = TRUE) # Statistics by World Bank Region
gsu(wlddev, PCGDP + LIFEEX ~ income) # Summarize GDP per Capita and Life Expectancy by
stats <- gsu(wlddev, ~ region + income, # World Bank Income Level

cols = 9:10, higher = TRUE) # Same variables, by both region and income
aperm(stats) # A different perspective on the same stats

Panel-Data Summaries -------------------—-

gsu(wlddev, pid = ~ iso3c, vlabels = TRUE) # Adding between and within countries statistics

-> They show amongst other things that year and decade are individual-invariant,

that we have GINI-data on only 161 countries, with only 8.42 observations per country on average,
and that GDP, LIFEEX and GINI vary more between-countries, but ODA received varies more within

countries over time.

Using plm:

pwlddev <- plm::pdata.frame(wlddev, # Creating a Panel-Data Frame frame from this data
index = c("iso3c","year"))

gsu(pwlddev) # Summary for pdata.frame -> gsu(wlddev, pid = ~ iso3c)

gsu(pwlddev$PCGDP) # Default summary for Panel-Series (class pseries)

gsu(G(pwlddev$PCGDP)) # Summarizing GDP growth, see also ?G

Grouped Panel-Data Summaries -------------
gsu(wlddev, ~ region, ~ iso3c, cols = 9:12) # Panel-Statistics by region
psr <- gsu(pwlddev, ~ region, cols = 9:12) # Same on plm pdata.frame

radixorder 115

psr # -> Gives a 4D array

print.qsu(psr[,"N/T",,1) # Checking out the number of observations:

In North america we only have 3 countries, for the GINI we only have 3.91 observations on average
for 45 Sub-Saharan-African countries, etc...

print.qsu(psr[,"SD",,1) # Considering only standard deviations

-> In all regions variations in inequality (GINI) between countries are greater than variations
in inequality within countries. The opposite is true for Life-Expectancy in all regions apart

from Europe, etc...

psrl <- gsu(wlddev, ~ region, ~ iso3c, # Same, but output as nested list
cols = 9:12, array = FALSE)
psrl # We can use unlist2d to create a tidy data.frame
head(unlist2d(psrl, c("Variable"”,"Trans"),
row.names = "Region”))

Weighted Summaries -----------------—---—-
n <- nrow(wlddev)

weights <- abs(rnorm(n)) # Generate random weights
gsu(wlddev, w = weights, higher = TRUE) # Computed weighted mean, SD, skewness and kurtosis
weightsNA <- weights # Weights may contain missing values... inserting 1000

weightsNA[sample.int(n, 1000)] <- NA
gsu(wlddev, w = weightsNA, higher = TRUE) # But now these values are removed from all variables

Grouped and panel-summaries can also be weighted in the same manor

radixorder Fast Radix-Based Ordering
Description
A slight modification of base: :order(...,method = "radix") that is more programmer friendly

and, importantly, provides features for ordered grouping of data (similar to data. table: : : forderv
which has more or less the same source code). radixorderv is a programmers version directly
supporting vector and list input. Apart from added grouping features, the source code and standard

functionality is identical to base: :order(...,method = "radix").
Usage
radixorder(..., na.last = TRUE, decreasing = FALSE, starts = FALSE,

group.sizes = FALSE, sort = TRUE)

radixorderv(x, na.last = TRUE, decreasing = FALSE, starts = FALSE,
group.sizes = FALSE, sort = TRUE)

Arguments
comma-separated atomic vectors to order.
X an atomic vector or list of atomic vectors such as a data frame.
na.last for controlling the treatment of NAs. If TRUE, missing values in the data are

put last; if FALSE, they are put first; if NA, they are removed.

116

decreasing

starts

group.sizes

sort

Value

radixorder

logical. Should the sort order be increasing or decreasing? Can be a vector of
length equal to the number of arguments in .../ x.

logical. TRUE returns an attribute ’starts’ containing the first element of each new
group i.e. the row denoting the start of each new group if the data were sorted
using the computed ordering vector. See Examples.

logical. TRUE returns an attribute ’group.sizes’ containing sizes of each group
in the same order as groups are encountered if the data were sorted using the
computed ordering vector. See Examples.

logical. This argument only affects character vectors / columns passed. If FALSE,
these are not ordered but simply grouped in the order of first appearance of
unique elements. This provides a slight performance gain if only grouping but
not alphabetic ordering is required.

An integer ordering vector, with attributes if starts = TRUE or group.sizes = TRUE. The attributes
are ’starts’ giving a vector of group starts in the ordered data, ’group.sizes’ giving the vector of
group sizes, and always included an attribute 'maxgrpn’ providing the size of the largest group, and
an attribute ’sorted’ indicating whether the input data was already sorted.

See Also

Fast (Ordered) Grouping, Collapse Overview

Examples

radixorder (mtcars$mpg)
mtcars[radixorder(mtcars$mpg), 1
radixorder(mtcars$cyl, mtcars$vs)

o <- radixorder(mtcars$cyl, mtcars$vs, starts = TRUE)
st <- attr(o, "starts")

mtcars[o,]

mtcars[o[st], c("cyl”, "vs")] # Unique groups

Note that if attr(o, "sorted”) == TRUE, then all(o[st] == st)
radixorder(rep(1:3, each = 3), starts = TRUE)

Group sizes

radixorder(mtcars$cyl, mtcars$vs, group.sizes = TRUE)

Both

radixorder(mtcars$cyl, mtcars$vs, starts = TRUE, group.sizes = TRUE)

rapply2d 117

rapply2d Recursively Apply a Function to a List of Data Objects

Description

rapply2d is a recursive version of lapply with two key differences to rapply: (1) Data frames are
considered as final objects, not as (sub-)lists, and (2) the result is never simplified / unlisted.

Usage
rapply2d(1l, FUN, ...)
Arguments
1 a list.
FUN a function that can be applied to all elements in 1.
additional elements passed to FUN.
Value

A list of the same structure as 1, where FUN was applied to all elements.

See Also

unlist2d, List Processing, Collapse Overview

Examples

1 <- list(mtcars, list(mtcars, as.matrix(mtcars)))
rapply2d(l, fmean)
unlist2d(rapply2d(l, fmean))

select-replace-vars Fast Select, Replace or Add Data Frame Columns

Description

Efficiently select and replace (or add) a subset of columns from (to) a data frame. This can be done
by data type, or using expressions, column names, indices, logical vectors, selector functions or
regular expressions matching column names.

118 select-replace-vars

Usage
Select and replace variables, analgous to dplyr::select but significantly faster
fselect(x, ..., return = "data")
fselect(x, ...) <- value
slt(x, ..., return = "data") # Shortcut for fselect
slt(x, ...) <- value # Shortcut for fselect<-

Select and replace columns by names, indices, logical vectors,
regular expressions or using functions to identify columns

get_vars(x, vars, return = "data",
regex = FALSE, ...)
get_vars(x, vars, regex = FALSE, ...) <- value
gv(x, vars, return = "data”, # Shortcut for get_vars
regex = FALSE, ...)
gv(x, vars, regex = FALSE, ...) <- value # Shortcut for get_vars<-

Add columns at any position within a data.frame

add_vars(x, ..., pos = "end")

add_vars(x, pos = "end") <- value
av(x, ..., pos = "end") # Shortcut for add_vars
av(x, pos = "end"”) <- value # Shortcut for add_vars<-

Select and replace columns by data type

num_vars(x, return = "data")

num_vars(x) <- value
nv(x, return = "data") # Shortcut for num_vars
nv(x) <- value # Shortcut for num_vars<-

cat_vars(x, return = "data") # Categorical variables, see is.categorical

cat_vars(x) <- value

char_vars(x, return = "data")

char_vars(x) <- value

fact_vars(x, return = "data")

fact_vars(x) <- value

logi_vars(x, return = "data")

logi_vars(x) <- value

Date_vars(x, return = "data") # See is.Date

Date_vars(x) <- value

Arguments
X a data.frame
value a data.frame or list of columns whose dimensions exactly match those of the

extracted subset of x. If only 1 variable is in the subset of x, value can also be
an atomic vector or matrix, provided that NROW(value) == nrow(x).

select-replace-vars 119

vars a vector of column names, indices (can be negative), a suitable logical vector,
a vector of regular expressions matching column names (if regex = TRUE). It is
also possible to pass a function returning TRUE or FALSE when applied to the
columns of x.

return an integer or string specifying what the selector function should return. The
options are:
Int. String Description
1 "data" subset of data.frame (default)
2 "names" column names
3 "indices" column indices
4 "named_indices" named column indices
5 "logical" logical selection vector
6 "named_logical" named logical vector

Note: replacement functions only replace data, However column names are re-
placed together with the data.

regex logical. TRUE will do regular expression search on the column names of x using
a (vector of) regular expression(s) passed to vars. Matching is done using grep.

pos the position where columns are added in the data.frame. "end” (default) will
append the data.frame at the end (right) side. "front" will add columns in front
(left). Alternatively one can pass a vector of positions (matching length(value)
if value is a list). In that case the other columns will be shifted around the new
ones while maintaining their order.

for fselect: column names and expressions. for get_vars: further arguments
passed to grep, if regex = TRUE. For add_vars: Same as value. A single argu-
ment passed may also be a vector or matrix, multiple arguments must each be a
list (they are combined using c(. . .)).

Details

get_vars(<-) is around 2x faster than ‘[.data.frame" and 8x faster than ‘[<-.data.frame", so

the common operation datal[cols] <-someFUN(data[cols]) can be made 10x more efficient (ab-

stracting from computations performed by someFUN) using get_vars(data,cols) <-someFUN(get_vars(data,cols))
or the shorthand gv(data, cols) <-someFUN(gv(data,cols)).

Similarly type-wise operations like datal[sapply(data,is.numeric)] ordatalsapply(data,is.numeric)]
<-value are facilitated and more efficient using num_vars(data) and num_vars(data) <-value
or the shortcuts nv and nv<- etc.

fselect provides an efficient alternative to dplyr::select, allowing the selection of variables
based on expressions evaluated within the data.frame, see Examples. It is about 100x faster than
dplyr::select but also more simple as it does not provide special methods for grouped tibbles.

Finally, add_vars(datal,data2,data3, ...) isalot faster than cbind(datal,data2,data3,...),
and preserves the attributes of data1l (i.e. it is like adding columns to data1). The replacement func-
tion add_vars(data) <-someFUN(get_vars(data,cols)) efficiently appends data with com-
puted columns. The pos argument allows adding columns at positions other than the end (right)
of the data frame, see Examples.

120 select-replace-vars

All functions introduced here perform their operations class-independent. They all basically work
like this: (1) save the attributes of x, (2) unclass x, (3) subset, replace or append x as a list, (4)
modify the "names" component of the attributes of x accordingly and (5) efficiently attach the
attributes again to the result from step (3). Thus they can freely be applied to data.table’s, grouped
tibbles, panel-data frames and other classes and will return an object of exactly the same class and
the same attributes.

Note

When lists of unequal-length columns are offered as replacements this yields a malformed data.frame
(which will also print a warning in the console i.e. you will notice that). The functions here only
check the length of the first column, which is one of the reasons why they are so fast.

See Also

fsubset, ftransform, Data Frame Manipulation, Collapse Overview

Examples

Wold Development Data

head(fselect(wlddev, country, year, PCGDP)) # Fast dplyr-like selecting
head(fselect(wlddev, -country, -year, -PCGDP))

head(fselect(wlddev, country, year, PCGDP:0DA))

head(fselect(wlddev, -(PCGDP:0DA)))

fselect(wlddev, country, year, PCGDP:0DA) <- NULL # Efficient deleting
head(wlddev)

rm(wlddev)

head(num_vars(wlddev)) # Select numeric variables
head(cat_vars(wlddev)) # Select categorical (non-numeric) vars
head(get_vars(wlddev, is.categorical)) # Same thing

num_vars(wlddev) <- num_vars(wlddev) # Replace Numeric Variables by themselves

get_vars(wlddev,is.numeric) <- get_vars(wlddev,is.numeric) # Same thing

head(get_vars(wlddev, 9:12)) # Select columns 9 through 12, 2x faster
head(get_vars(wlddev, -(9:12))) # All except columns 9 through 12
head(get_vars(wlddev, c("PCGDP","LIFEEX","GINI","ODA"))) # Select using column names
head(get_vars(wlddev, "[[:upper:]]", regex = TRUE)) # Same thing: match upper-case var. names
get_vars(wlddev, 9:12) <- get_vars(wlddev, 9:12) # 9x faster wlddev[9:12] <- wlddev[9:12]
add_vars(wlddev) <- STD(gv(wlddev,9:12), wlddev$iso3c) # Add Standardized columns 9 through 12
head(wlddev) # gv and av are shortcuts
get_vars(wlddev, 13:16) <- NULL # Efficient Deleting added columns again
av(wlddev, "front"”) <- STD(gv(wlddev,9:12), wlddev$iso3c) # Again adding in Front
head(wlddev)

get_vars(wlddev, 1:4) <- NULL # Deleting

av(wlddev,c(10,12,14,16)) <- W(wlddev,~iso3c, cols = 9:12, # Adding next to original variables
keep.by = FALSE)

head(wlddev)

get_vars(wlddev, c(10,12,14,16)) <- NULL # Deleting

seqid

121

seqid

Generate Group-1d from Integer Sequences

Description

seqid can be used to group sequences of integers in a vector, e.g. seqid(c(1:3,5:7)) becomes
c(rep(1,3),rep(2,3)). It also supports increments > 1, unordered sequences, and missing values

in the sequence.

Some applications are to facilitate identification of, and grouped operations on, (irregular) time-

series and panels.

Usage

seqid(x, o = NULL, del = 1L, start = 1L, na.skip = FALSE,

skip.seq

Arguments

X

del

start

na.skip

skip.seq

check.o

Details

= FALSE, check.o = TRUE)

a factor or integer vector. Numeric vectors will be converted to integer i.e.
rounded.

an (optional) integer ordering vector specifying the order by which to pass
through x.

integer. The integer deliminating two consecutive points in a sequence. del
=1 means seqid tracks sequences of the form c(1,2,3,..), del = 2 tracks
sequences c(1,3,5,..) etc.

integer. The starting value of the resulting sequence id. Default is starting from
1. For C++ programmers, starting from O could be a better choice.

logical. Skip missing values in the sequence. The default behavior is skip-
ping such that seqid(c(1,NA,2)) is regarded as one sequence and coded as
c(1,NA,).

logical. If na.skip = TRUE, this changes the behavior such that missing values
are viewed as part of the sequence, i.e. seqid(c(1,NA,3)) is regarded as one
sequence and coded as c(1,NA,1).

logical. Programmers option: FALSE prevents checking that each element of o
is in the range [1,length(x)], it only checks the length of o. This gives some
extra speed, but will terminate R if any element of o is too large or too small.

seqid was created primarily to deal with problems of computing lagged values, differences and
growth rates on irregularly spaced time-series and panels (#26). flag, fdiff and fgrowth do not
natively support such panels because they do not pre-compute an ordering of the data but directly

https://github.com/SebKrantz/collapse/issues/26

122 seqid

compute the ordering from the supplied id and time variables while providing errors for gaps and
repeated time values. see flag for computational details.

However fortunately any irregular time-series or panel-series can be expressed as a regular panel-
series with a group-id created such that the time-periods within each group are consecutive.

A simple solution to applying existing functionality (flag, fdiff and fgrowth) to irregular time-
series and panels is thus to create a group-id that fully identifies the data together with the time vari-
able. seqid makes this very easy: For an irregular panel with some arbitrary gaps or repeated values

in the time variable, an appropriate id variable can be generated using settransform(data, newid

= seqid(time,radixorder(id,time))). Lags can then be computed using L (data,1,~newid, ~time)
etc. This way collapse maintains a balance between offering very fast computations on 99% of time
series and panels (which may be unbalanced but where observations for each entity are consecutive

in time), and flexibility of application.

In general, for any regularly spaced panel the identity given by identical (groupid(id,order(id,time)),seqid(time,or
should hold.

I note that regularly spaced panels with gaps in time (such as a panel-survey) can be handled either
by seqid(...,del = gap) or, in most cases, simply by converting the time variable to factor using
gF, which will make observations consecutive.

There are potentially other more analytical applications for seqid...

For the opposite operation of creating a new time-variable that is consecutive in each group, see
data.table::rowid.

Value

An integer vector of class ’qG’. See qG.

See Also

groupid, G, Fast (Ordered) Grouping, Collapse Overview

Examples

This creates an irregularly spaced panel, with a gap in time for id = 2
data <- data.frame(id = rep(1:3, each = 4),
time = c(1:4, 1:2, 4:5, 1:4),
value = rnorm(12))
data
Not run:
Gaps in time error
L(data, 1, value ~ id, ~time)

End(Not run)

Generating new id variable (here seqid(time) would suffice as data is sorted)
settransform(data, newid = seqid(time, order(id, time)))

data

Lag the panel
L(data, 1, value ~ newid, ~time)

A different solution: Simply creating a consecutive time variable

TRA 123

settransform(data, newtime = data.table::rowid(id))
data
L(data, 1, value ~ id, ~newtime)

With sorted data we could of course also omit the time variable alltogether...
L(data, 1, value ~ id)

TRA Transform Data by (Grouped) Replacing or Sweeping out Statistics

Description

TRA is an S3 generic that efficiently transforms data by either (column-wise) replacing data values
with supplied statistics or sweeping the statistics out of the data. TRA supports grouped sweeping
and replacing operations, and is thus a generalization of sweep.

Usage
TRA(x, STATS, FUN = "-" ...)

Default S3 method:
TRA(x, STATS, FUN = "-", g = NULL, ...)

S3 method for class 'matrix'
TRA(x, STATS, FUN = "-" g = NULL, ...)

S3 method for class 'data.frame'
TRA(x, STATS, FUN = "-" g = NULL, ...)

S3 method for class 'grouped_df'

TRA(x, STATS, FUN = "-" keep.group_vars = TRUE, ...)

Arguments
X a atomic vector, matrix, data frame or grouped tibble (dplyr: : grouped_df).
STATS a matching set of summary statistics computed on x. If g = NULL (no groups), all

methods support an atomic vector of statistics of length NCOL (x). The matrix
and data.frame methods also support a 1-row matrix or 1-row data.frame/list,
respectively. If groups are supplied to g, STATS needs to be of the same type
as x and of appropriate dimensions (such that NCOL (x) == NCOL (STATS) and
NROW(STATS) matches the number of groups supplied to g i.e. the number of
levels if g is a factor, with the first row of STATS corresponding to the first level
of getc...)

FUN an integer or character string indicating the operation to perform. There are 10
supported operations:

124 TRA

Int. String Description
1 "replace_fill" replace and overwrite missing values
2 "replace” replace but preserve missing values
3 " subtract (i.e. center)
4 " subtract group-statistics but add group-frequency weighted average of group statistics (i.e. center
5 " divide (i.e. scale, but also changes mean. fscale can scale and keep mean)
6 "%" compute percentages (i.e. divide and multiply by 100)
7 " add
8 o multiply
9 "% %" modulus (i.e. remainder from division by STATS)
10 "-%%" subtract modulus (i.e. floor data by STATS)
g a factor, GRP object, atomic vector (internally converted to ordered factor) or a

list of vectors / factors (internally converted to a GRP object) used to group x.
Number of groups must match rows of STATS. See STATS and Details.

keep.group_vars

grouped_df method: Logical. Remove grouping variables after computation. In
contrast to the other methods, TRA. grouped_df matches column names exactly,
thus STATS can be any subset of aggregated columns in x in any order, with
or without grouping columns. TRA. grouped_df will transform the columns in x
with their aggregated versions matched from STATS (ignoring grouping columns
found in x or STATS and columns in x not found in STATS), and return x again. If
keep.group_vars = FALSE, x is returned again without grouping columns. See
Details and Examples.

arguments to be passed to or from other methods.

Details

Without groups (g = NULL), TRA is nothing more than a column based version of base: : sweep,
albeit 4-times more efficient on matrices and many times more efficient on data frames. TRA always
preserves all attributes of x.

With groups passed to g, TRA expects (and checks for) a set of statistics such that NRNOW(STATS)
equals the number of groups. If this condition is satisfied, TRA will assume that the first row of
STATS is the set of statistics computed on the first group of g, the second row on the second group
etc. and do groupwise replacing or sweeping out accordingly.

For example Letx = c(1.2,4.6,2.5,9.1,8.7,3.3), gis an integer vector in 3 groups g = c(1,3,3,2,1,2)

and STATS = fmean(x,g) =c(4.95,6.20,3.55). Then out = TRA(x, fmean(x,g),"-",g) =c(-3.75,1.05,-1.05,2.90,
(same as fmean(x,g,TRA="-")) does the equivalent to the following for-loop: for(i in 1:6)

out[i] =x[i] -fmean(x,g)[glil].

Correct computation requires that g as used in fmean and g passed to TRA are exactly the same
vector. Using g =¢(1,3,3,2,1,2) for fmean and g =c(3,1,1,2,3,2) for TRA will not give the
right result. The safest way of programming with TRA is thus to repeatedly employ the same factor
or GRP object for all grouped computations. Atomic vectors passed to g will be converted to ordered
factors (see gF) and lists will be converted to ordered GRP objects. This is also done by all Fast
Statistical Functions and by default by BY, thus together with these functions, TRA can also safely
be used with atomic- or list-groups. Problems may arise if other functions internally convert atomic

TRA 125

vectors or lists to groups in a non-sorted way. Note: as.factor conversions are ok as this also
involves sorting.

If x is a grouped tibble (grouped_df), TRA matches the columns of x and STATS and also checks
for grouping columns in x and STATS. TRA. grouped_df will then only transform those columns in
x for which matching counterparts were found in STATS, exempting grouping columns, and returns
x again (with columns in the same order). If keep.group_vars = FALSE, the grouping columns are
dropped after computation, however the "groups" attribute is not dropped (it can be removed using
dplyr: :ungroup()).

Value

x with columns replaced or swept out using STATS, grouped by g.

Note

I have tried to make TRA as redundant as possible by adding a TRA-argument to all Fast Statistical
Functions (ensuring that the exact same grouping vector is used for aggregation and transformation),
and by creating the fbetween / B (between-transformation) and fwithin / W (within-transform) as
well as fscale / STD functions for frequent scaling, centering and averaging tasks.

See Also

sweep, Fast Statistical Functions, Data Transformations, Collapse Overview

Examples
v <- iris$Sepal.Length # A numeric vector
f <- iris$Species # A factor
dat <- num_vars(iris) # Numeric columns
m <- gM(dat) # Matrix of numeric data
head(TRA(v, fmean(v))) # Simple centering [same as fmean(v, TRA = "-") or W(v)]
head(TRA(m, fmean(m))) # [same as sweep(m, 2, fmean(m)), fmean(m, TRA = "=-") or W(m)]
head(TRA(dat, fmean(dat))) # [same as fmean(dat, TRA = "-") or W(dat)]

head(TRA(v, fmean(v), "replace”)) # Simple replacing [same as fmean(v, TRA = "replace”) or B(v)]
head(TRA(m, fmean(m), "replace”)) # [same as sweep(m, 2, fmean(m)), fmean(m, TRA = 1L) or B(m)]
head(TRA(dat, fmean(dat), "replace”)) # [same as fmean(dat, TRA = "replace”) or B(dat)]
head(TRA(m, fsd(m), "/")) # Simple scaling... [same as fsd(m, TRA = "/")]...

Note: All grouped examples also apply for v and dat...

head(TRA(m, fmean(m, f), "-", f)) # Centering [same as fmean(m, f, TRA ="-") or W(m,)]
head(TRA(m, fmean(m, f), "replace”, f)) # Replacing [same fmean(m, f, TRA = "replace”) or B(m, f)]
head(TRA(m, fsd(m,), "/", f)) # Scaling [same as fsd(m, f, TRA = "/")]
head(TRA(m, fmean(m, f), "-+", f)) # Centering on the overall mean ...

[same as fmean(m, f, TRA = "-+") or

W(m, f, mean = "overall.mean")]
head(TRA(TRA(m, fmean(m, f), "-", f), # Also the same thing done manually !!

fmean(m), "+"))

grouped tibble method

126

library(dplyr)

unlist2d

iris %>% group_by(Species) %>% TRA(fmean(.))

iris %>% group_by(Species) %>% fmean(TRA = "-") # Same thing

iris %>% group_by(Species) %>% TRA(fmean(.)[c(2,4)]) # Only transforming 2 columns
iris %>% group_by(Species) %>% TRA(fmean(.)[c(2,4)], # Dropping species column

keep.group_vars = FALSE)

unlist2d

Recursive Row-Binding / Unlisting in 2D - to Data Frame

Description

unlist2d efficiently unlists lists of regular R objects (objects built up from atomic elements)
and creates a data frame representation of the list. It is a full 2-dimensional generalization of
base: :unlist, butis best understood and used as a recursive generalization of do.call(rbind,1),
for lists of vectors, data frames, arrays or heterogeneous objects (i.e. unlisting happens via recursive
flattening and intelligent row-binding of objects, see Details and Examples).

Usage

unlist2d(l, idcols
id.factor

Arguments

1

idcols

row.names

recursive

id.factor

DT

Details

".id", row.names = FALSE, recursive = TRUE,
FALSE, DT = FALSE)

a unlistable list (with atomic elements in all final nodes, see is.unlistable).

a character stub or a vector of names for id-columns automatically added - one
for each level of nesting in 1. By default the stub is ".1id", so columns will
be of the form ".id.1",".id.2", etc... . if idcols = TRUE, the stub is also
setto ”.id". If idcols = FALSE, id-columns are omitted. The content of the id
columns are the list names, or (if missing) integers for the list elements. Missing
elements in asymmetric nested structures are filled up with NA. See Examples.

TRUE extracts row names from all the objects in 1 (where available) and adds
them to the output in a column named "row.names”. Alternatively, a column
name i.e. row.names = "file"” can be supplied.

if FALSE, only process the lowest (deepest) level of 1.

if TRUE and idcols != FALSE, create id columns as ordered factors instead of
character or integer vectors. This is useful if id’s are used for further analysis
e.g. as inputs to ggplot2.

if TRUE, return a data.table, not a data frame.

The data frame representation created by unlist2d is built as follows:

* Recurse down to the lowest level of the list-tree, data frames are exempted and treated as a
final elements.

unlist2d 127

* Check out the objects, if they are vectors, matrices or arrays convert them to data frame (in
the case of atomic vectors each element becomes a column).

* Row-bind these data frame’s using data.table’s rbindlist function. Columns are matched by
name. If the number of columns differ, fill empty spaces with NA’s. If idcols != FALSE, cre-
ate a id-columns on the left, filled with the object names or indices (if unnamed). If row. names
= TRUE, store row-names of the objects (if available) in a separate column.

* Move up to the next higher level of the list-tree and repeat: Convert atomic objects to data
frame and row-bind while matching all columns and filling unmatched ones with NA’s. Create
another id-column for each level of nesting passed through. If the list-tree is asymmetric, fill
empty spaces in lower-level id columns with NA’s.

The result of this iterative procedure is a single data frame containing on the left side id-columns
for each level of nesting (from higher to lower level), followed by a column containing all the
row.names of the objects if row.names = TRUE, followed by the object columns, matched at each
level of recursion. Optimal results are of course obtained with symmetric lists of arrays, matrices or
data frames, which unlist2d nicely converts to a beautiful data frame ready for plotting or further
analysis. See examples below.

Value

A data frame or (if DT = TRUE) a data.table.

Note

For lists of data frames unlist2d works just like data. table: :rbindlist (1, use.names = TRUE,fill
=TRUE, idcol = ".id") (also the same speed), however for lists of lists unlist2d does not produce
the same output as data.table::rbindlist.

See Also

rapply2d, List Processing, Collapse Overview

Examples

basic examples:
1 <- list(mtcars, list(mtcars, mtcars))
unlist2d(1)
unlist2d(rapply2d(l, fmean))
1 = list(a = gM(mtcars[1:8]),
b = list(c = mtcars[4:11], d = list(e = mtcars[2:10], f = mtcars)))
unlist2d(1l, row.names = TRUE)
unlist2d(rapply2d(l, fmean))
unlist2d(rapply2d(l, fmean), recursive = FALSE)

Groningen Growth and Development Center 10-Sector Database
head(GGDC10S) # See ?GGDC10S
namlab(GGDC10S, class = TRUE)

Panel-Summarize this data by Variable (Emloyment and Value Added)
1 <- gsu(GGDC1@S, by = ~ Variable, # Output as list (instead of 4D array)
pid = ~ Variable + Country,

128 varying

cols = 6:16, array = FALSE)
str(l) # A list of 2-levels with matrices of statistics
head(unlist2d(1l)) # Default output, missing the variables (row-names)
head(unlist2d(l, row.names = TRUE)) # Here we go, but this is still not very nice
head(unlist2d(1l, idcols = c("Sector”,"Trans"”), # Now this is looking pretty good
row.names = "Variable"))

dat <- unlist2d(l, c("Sector”,"Trans"), # Id-columns can also be generated as ordered factors
"Variable"”, id.factor = TRUE)
str(dat)

Split this sectoral data, first by Variable (Emloyment and Value Added), then by Country
sdat <- rapply2d(split(GGDC1@S[c(1,6:16)], GGDC1@S$Variable), function(x) split(x[-1]1,x[[1]1]1))

Compute pairwise correlations between sectors and recombine:
dat <- unlist2d(rapply2d(sdat, pwcor),
idcols = c("Variable"”,"Country”),
row.names = "Sector")
head(dat)
plot(hclust(as.dist(1-pwcor(dat[-(1:3)]1)))) # Using corrs. as distance metric to cluster sectors

Together with other functions like psmat, unlist2d can also effectively help reshape data:
head(unlist2d(psmat(subset(GGDC10@S, Variable == "VA"), ~Country, ~Year, cols = 6:16, array = FALSE),
idcols = "Sector”, row.names = "Country”))

varying Fast Check of Variation in Data

Description
varying is a generic function that (column-wise) checks for variation in the values of x, (optionally)
within the groups g (i.e. a panel-identifier).

Usage
varying(x, ...)

Default S3 method:
varying(x, g = NULL, any_group = TRUE, use.g.names = TRUE, ...)

S3 method for class 'matrix'
varying(x, g = NULL, any_group = TRUE, use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
varying(x, by = NULL, cols = NULL, any_group = TRUE, use.g.names = TRUE, drop = TRUE, ...)

Methods for compatibility with plm:

varying 129

S3 method for class 'pseries'
varying(x, effect = 1L, any_group = TRUE, use.g.names = TRUE, ...)

S3 method for class 'pdata.frame'

varying(x, effect = 1L, cols = NULL, any_group = TRUE, use.g.names = TRUE,
drop = TRUE, ...)

Methods for compatibility with dplyr:

S3 method for class 'grouped_df'
varying(x, any_group = TRUE, use.g.names = FALSE, drop = TRUE,

keep.group_vars = TRUE, ...)
Arguments

X a vector, matrix, data.frame or grouped tibble (dplyr: : grouped_df).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

by same as g, but also allows one- or two-sided formulas i.e. ~ group1 + group2 or
varl +var2 ~ groupl + group2. See Examples

any_group logical. If !is.null(g), FALSE will check and report variation in all groups,
whereas the default TRUE only checks if there is variation within any group. See
Examples.

cols select columns using column names, indices or a function (i.e. is.numeric).
Two-sided formulas passed to by overwrite cols.

use.g.names make group-names and add to the result as names (vector method) or row-names
(matrix and data.frame method). No row-names are generated for data.tables
and (default) grouped tibbles.

drop matrix and data.frame methods: drop dimensions and return an atomic vector if
the result is 1-dimensional.

effect plm methods: Select which panel identifier should be used for between and

within transformations of the data. 1L means first variable in the plm: : index,
2L the second etc.. Index variables can also be called by name. More than one
variable can be supplied.

keep.group_vars
grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

arguments to be passed to or from other methods.

Details

Without groups passed to g, varying simply checks if there is any variation in the columns of x
and returns TRUE for each column where this is the case and FALSE otherwise. A set of data points
is defined as varying if it contains at least 2 distinct non-missing values (such that a non-0 standard
deviation can be computed on numeric data). varying checks for variation in both numeric and
non-numeric data.

130 wilddev

If groups are supplied to g (or alternatively a grouped_df to x), varying can operate in one of 2
modes:

 If any_group = TRUE (the default), varying checks each column for variation in any of the
groups defined by g, and returns TRUE if such within-variation was detected and FALSE other-
wise. Thus only one logical value is returned for each column and the computation on each
column is terminated as soon as any variation within any group was found.

* If any_group = FALSE, varying runs through the entire data checking each group for variation
and returns, for each column in x, a logical vector reporting the variation check for all groups.
If a group contains only missing values, a NA is returned for that group.
Value
A logical vector or (if !is.null(g) and any_group = FALSE), a matrix or data.frame of logical
vectors indicating whether the data vary (over the dimension supplied by g).
See Also

Data Transformations, Collapse Overview

Examples

Checks overall variation in all columns
varying(wlddev)

Checks whether data are time-variant i.e. vary within country
varying(wlddev, wlddev$country)

Same as above but done for each country individually, countries wothout data are coded NA
varying(wlddev, wlddev$country, any_group = FALSE)

wlddev World Development Dataset

Description

This dataset contains 4 indicators from the World Bank’s World Development Indicators (WDI)
database: (1) GDP per capita, (2) Life expectancy at birth, (3) GINI index and (4) Net ODA re-
ceived. The panel-data is balanced and covers 216 present and historic countries from 1960-2018
(World Bank aggregates and regional entities are excluded).

Apart from the indicators the data contains a number of identifiers (character country name, factor
ISO3 country code, World Bank region and income level, numeric year and decade) and 2 generated
variables: A logical variable indicating whether the country is an OECD member, and a fictitious
variable stating the date the data was recorded. These variables were added so that all common data-
types are represented in this dataset, making it an ideal test-dataset for certain collapse functions.

Usage
data("wlddev")

wlddev 131

Format

A data frame with 12744 observations on the following 12 variables. All variables are labelled e.g.
have a ’label’ attribute.

country chr Country Name

iso3c fct Country Code

date date Date Recorded (Fictitious)

year num Year

decade num Decade

region fct World Bank Region

income fct World Bank Income Level

OECD log Is OECD Member Country?

PCGDP num GDP per capita (constant 2010 US$)
LIFEEX num Life expectancy at birth, total (years)
GINI num GINI index (World Bank estimate)

ODA num Net ODA received (constant 2015 US$)

Source

https://data.worldbank.org/. Search vlabels(wlddev)[9:12] to find the right series.

See Also

GGDC10S, Collapse Overview
Examples
data(wlddev)

Panel-summarizing the 4 series
gsu(wlddev, pid = ~iso3c, cols = 9:12, vlabels = TRUE)

By Region
gsu(wlddev, by = ~region, cols = 9:12, vlabels = TRUE)

Panel-summary by region
gsu(wlddev, by = ~region, pid = ~iso3c, cols = 9:12, vlabels = TRUE)

Pairwise correlations: Ovarall
print(pwcor(get_vars(wlddev, 9:12), N = TRUE, P = TRUE), show = "lower.tri")

Pairwise correlations: Between Countries
print(pwcor(fmean(get_vars(wlddev, 9:12), wlddev$iso3c), N = TRUE, P = TRUE), show = "lower.tri")

Pairwise correlations: Within Countries
print(pwcor(fwithin(get_vars(wlddev, 9:12), wlddev$iso3c), N = TRUE, P = TRUE), show = "lower.tri")

https://data.worldbank.org/

Index

+Topic array
psmat, 105

xTopic attribute
AA2-small-helpers, 23

xTopic datasets
GGDC10S, 94
wlddev, 130

*Topic documentation
A@-collapse-documentation, 8
Al-fast-statistical-functions, 10
A2-fast-grouping, 12
A3-data-frame-manipulation, 14
A4-quick-conversion, 15
A6-data-transformations, 16
A7-time-series-panel-series, 18
A8-list-processing, 19
A9-summary-statistics, 20
AAl-recode-replace, 21
AA2-small-helpers, 23
collapse-depreciated, 33
collapse-options, 34

*Topic htest
fFtest, 52

*Topic list
A8-list-processing, 19
extract-list, 38
is.regular-is.unlistable, 101
ldepth, 102
rapply2d, 117
unlist2d, 126

+Topic manip
Al-fast-statistical-functions, 10
A2-fast-grouping, 12
A3-data-frame-manipulation, 14
Ad4-quick-conversion, 15
A6-data-transformations, 16
A7-time-series-panel-series, 18
A8-list-processing, 19
A9-summary-statistics, 20

AA1-recode-replace, 21
BY, 25
collap, 28
collapse-depreciated, 33
collapse-package, 3
dapply, 34
extract-list, 38
fbetween, fwithin, 41
fdiff, 45
ffirst, flast, 50
fgrowth, 54
fHDbetween, fHDwithin, 57
flag, 61
fmean, 65
fmedian, 68
fmin, fmax, 70
fmode, 72
fNdistinct, 75
fNobs, 77
fprod, 78
fscale, 81
fsubset, 84
fsum, 86
ftransform, 89
fvar, fsd, 91
groupid, 96
GRP, 97
psacf, 103
psmat, 105
gF, 109
radixorder, 115
rapply2d, 117
select-replace-vars, 117
seqid, 121
TRA, 123
unlist2d, 126
varying, 128

*Topic misc
AA2-small-helpers, 23

132

INDEX

xTopic multivariate
fHDbetween, fHDwithin, 57
pwcor, pwcov, pwNobs, 107
+Topic package
collapse-package, 3
*Topic ts
A7-time-series-panel-series, 18
fdiff, 45
fgrowth, 54
flag, 61
psacf, 103
psmat, 105
seqid, 121
*Topic univar
Al-fast-statistical-functions, 10
descr, 36
ffirst, flast, 50
fmean, 65
fmedian, 68
fmin, fmax, 70
fmode, 72
fNdistinct, 75
fNobs, 77
fprod, 78
fsum, 86
fvar, fsd, 91
gsu, 111
+Topic utilities
AA2-small-helpers, 23
.COLLAPSE_ALL
(A0-collapse-documentation), 8
.COLLAPSE_DATA
(A@-collapse-documentation), 8
.COLLAPSE_GENERIC
(A@-collapse-documentation), 8
.COLLAPSE_TOPICS
(A@-collapse-documentation), 8
.FAST_FUN
(A1-fast-statistical-functions),
10
.FAST_STAT_FUN
(A1-fast-statistical-functions),
10
.OPERATOR_FUN
(A6-data-transformations), 16
[.psmat (psmat), 105
%!in% (AA2-small-helpers), 23

A@-collapse-documentation, 8

133

Al-fast-statistical-functions, 10
A2-fast-grouping, 12
A3-data-frame-manipulation, 14
Ad-quick-conversion, 15
A5-advanced-aggregation (collap), 28
A6-data-transformations, 16
A7-time-series-panel-series, 18
A8-list-processing, 19
A9-summary-statistics, 20
AA1-recode-replace, 21
AA2-small-helpers, 23
add_stub (AA2-small-helpers), 23
add_vars, 9, 14
add_vars (select-replace-vars), 117
add_vars<- (select-replace-vars), 117
Advanced Data Aggregation, 9
all_identical (AA2-small-helpers), 23
all_obj_equal (AA2-small-helpers), 23
aperm.psmat (psmat), 105
as.character, 99
as.character_factor
(A4-quick-conversion), 15
as.data.frame.descr (descr), 36
as.factor.GRP, 9
as.factor.GRP (GRP), 97
as.numeric_factor
(Ad-quick-conversion), 15
atomic_elem, 9, 19, 20
atomic_elem (extract-list), 38
atomic_elem<- (extract-list), 38
av (select-replace-vars), 117
av<- (select-replace-vars), 117

B (fbetween, fwithin), 41
BY, 9, 15, 17, 18, 25, 30, 31, 36, 97, 124

cat_vars, 9, 14

cat_vars (select-replace-vars), 117
cat_vars<- (select-replace-vars), 117
char_vars, 9, 14

char_vars (select-replace-vars), 117
char_vars<- (select-replace-vars), 117
ckmatch (AA2-small-helpers), 23
collap, 17, 18, 27, 28, 36, 97

collapg (collap), 28

collapse, 9

collapse (collapse-package), 3
Collapse Documentation & Overview, 4

134

Collapse Overview, 4, 11, 14-16, 18-21, 23,
25,27,31, 34, 36, 38, 40, 44, 48, 51,
53,56,61,64,67,69,72,74,76,78,
80, 84, 86, 88, 90, 93, 95, 96,
100-102, 105, 107, 108, 111, 114,
116, 117,120, 122,125,127, 130,
131

collapse-depreciated, 33

collapse-documentation
(A0-collapse-documentation), 8

collapse-options, 34

collapse-package, 3, 10

collapv (collap), 28

cor, 108

cor.test, 108

cov, 108

D, 18

D (fdiff), 45

dapply, 9, 15, 16, 18, 27, 34

Data Frame Manipulation, 86, 90, 120

Data Transformations, 9-11, 19, 27, 36, 44,
53,61,84, 125, 130

Date, 37

Date_vars, 9, 14

Date_vars (select-replace-vars), 117

Date_vars<- (select-replace-vars), 117

descr, 9, 20, 21, 36, 114

Dlog, 18

Dlog (fdiff), 45

documentation, 4

droplevels, 86

extract-list, 38

F, 18

F (flag), 61

fact_vars, 9, 14

fact_vars (select-replace-vars), 117

fact_vars<- (select-replace-vars), 117

Fast (Ordered) Grouping, 9,96, 111,116,
122

Fast Data Frame Manipulation, 9

Fast Statistical Function, 30

Fast Statistical Functions, 9, 14, 17, 18,
21,27, 28, 30, 31, 34, 36, 38,41, 51,
61,67,69,72,74,76,78, 80, 84, 88,
93,99, 114, 124, 125

fbetween (fbetween, fwithin), 41

INDEX

fbetween / B, 125

fbetween, fwithin, 41
fbetween/B, 9, 10, 17, 18
fbetween/B and fwithin/W, 61
fcompute, 9, 14, 15

fcompute (ftransform), 89
fdiff, 18, 45, 55
fdiff/D/Dlog, 9, 10, 17, 18, 56, 64
fdim (AA2-small-helpers), 23
ffirst, 9, 10

ffirst (ffirst, flast), 50
ffirst, flast, 50
fFtest, 9,17, 18,52, 61
fgroup_by, 9, 13

fgroup_by (GRP), 97
fgroup_vars, 9

fgroup_vars (GRP), 97
fgrowth, 18, 54
fgrowth/G, 9, 10, 17, 18, 48, 64
fHDbetween (fHDbetween, fHDwithin), 57
fHDbetween, fHDwithin, 57
fHDbetween/HDB, 9, 10, 17, 18
fHDbetween/HDB and fHDwithin/HDW, 44, 53
fHDwithin, 17, 52

fHDwithin (fHDbetween, fHDwithin), 57
fHDwithin/HDW, 9, 10, 17, 18
finteraction, 9, 13, 14, 100
finteraction (gF), 109

flag, 18,47, 55, 61, 122
flag/L/F, 9, 10, 17, 18,48, 56
flast, 9, 10

flast (ffirst, flast), 50
fmax, 9, 10

fmax (fmin, fmax), 70
fmean, 9-11, 65, 69, 74
fmedian, 9, 10, 67, 68, 74
fmin, 9, 10

fmin (fmin, fmax), 70

fmin, fmax, 70
fmode, 9-11, 67, 69, 72

fncol (AA2-small-helpers), 23
fNdistinct, 9, 10, 37,75, 78
fnlevels (AA2-small-helpers), 23
fNobs, 9-11, 76,77

fnrow (AA2-small-helpers), 23
fprod, 9-11, 78, 88
fscale, 81, 124

fscale / STD, 125

INDEX

fscale/STD, 9, 10, 17, 18,44, 61

fsd, 9-11

fsd (fvar, fsd), 91
fselect, 9, 14, 86

fselect (select-replace-vars), 117
fselect<- (select-replace-vars), 117
fsubset, /4, 84, 120

fsubset/ss, 9

fsum, 9-11, 80, 86
ftransform, 9, 14, 15, 86, 89, 120
funique (AA2-small-helpers), 23
fvar, 9-11

fvar (fvar, fsd), 91

fvar, fsd, 91

fwithin, 83

fwithin (fbetween, fwithin), 41
fwithin / W, 125
fwithin/W, 9, 10,17, 18, 81, 84

G, 18

G (fgrowth), 54

get_elem, 9, 19, 20

get_elem (extract-list), 38

get_vars, 9, 14, 86

get_vars (select-replace-vars), 117

get_vars<- (select-replace-vars), 117

GGDC10S, 9,94, 131

Global Options, 9

grep, 119

grepl, 21, 22, 34

group_names.GRP, 9

group_names.GRP (GRP), 97

groupid, 9, 13, 14,96, 110, 111, 122

GRP, 9,11, 13, 16, 26, 29,42, 46, 51,55, 63
64,66,68,71,73,75,77,79,82, 92,
97,104, 110-112, 124

gv (select-replace-vars), 117

gv<- (select-replace-vars), 117

has_elem, 9, 19, 20, 101, 102
has_elem (extract-1list), 38
HDB (fHDbetween, fHDwithin), 57
HDW (fHDbetween, fHDwithin), 57

irreg_elem, 9, 19, 20

irreg_elem (extract-list), 38
is.categorical, 29

is.categorical (AA2-small-helpers), 23
is.Date (AA2-small-helpers), 23

135

is.GRP, 9

is.GRP (GRP), 97

is.qG, 9

is.qG (gF), 109

is.regular, 9, 19, 20, 38, 40

is.regular (is.regular-is.unlistable),
101

is.regular-is.unlistable, 101

is.unlistable, 9, 19, 20, 38, 102, 126

is.unlistable
(is.regular-is.unlistable), 101

L, 18

L (flag), 61

ldepth, 9, 19, 20, 101, 102

List Processing, 9,40, 101, 102, 117, 127
list_elem, 9, 19, 20
list_elem(extract-list), 38
list_elem<- (extract-list), 38
logi_vars, 9, 14

logi_vars (select-replace-vars), 117
logi_vars<- (select-replace-vars), 117

mctl, 35
mctl (A4-quick-conversion), 15
mrtl, 35
mrtl (A4-quick-conversion), 15

na_insert (AA2-small-helpers), 23
na_omit (AA2-small-helpers), 23

na_rm (AA2-small-helpers), 23

namlab (AA2-small-helpers), 23
num_vars, 9, 14

num_vars (select-replace-vars), 117
num_vars<- (select-replace-vars), 117
nv (select-replace-vars), 117

nv<- (select-replace-vars), 117

plot.GRP (GRP), 97

plot.psmat (psmat), 105

print.descr (descr), 36

print.GRP (GRP), 97

print.pwcor (pwcor, pwcov, pwNobs), 107
print.pwcov (pwcor, pwcov, pwNobs), 107
print.qsu(qgsu), 111

psacf, 9, 18, 19, 103

psccf, 9, 18, 19

psccf (psacf), 103

psmat, 9, 18, 19, 105

136

pspacf, 9, 18, 19

pspacf (psacf), 103

pwcor, 9,21, 38, 114

pwcor (pwcor, pwcov, pwNobs), 107
pwcor, pwcov, pwNobs, 107
pwcov, 9, 21

pwcov (pwcor, pwcov, pwNobs), 107
pwNobs, 9, 21

pwNobs (pwcor, pwcov, pwNobs), 107

qDF, 29, 37

gDF (A4-quick-conversion), 15
gDT (A4-quick-conversion), 15
qF, 9, 13, 15, 26, 100, 109, 122, 124
qG, 9, 13, 64, 96, 100, 122

qG (gF), 109

gM (Ad-quick-conversion), 15
gsu, 9, 10, 20, 21, 37, 38, 108, 111
gsu.default, 37
quantile, 26, 37

Quick Data Conversion, 9, 15

radixorder, 9, 12, 13,110, 115

radixorderv, 9, 13, 97, 98

radixorderv (radixorder), 115

rapply, 117

rapply2d, 9, 19, 20, 117, 127

Recode (collapse-depreciated), 33

Recode and Replace Values, 9

Recode Replace, 34

recode_char, 33

recode_char (AA1-recode-replace), 21

recode_num, 33

recode_num (AAT1-recode-replace), 21

reg_elem, 9, 19, 20

reg_elem (extract-1list), 38

replace_Inf, 33

replace_Inf (AA1-recode-replace), 21

replace_NA (AA1-recode-replace), 21

replace_non_finite
(collapse-depreciated), 33

replace_outliers (AA1-recode-replace),
21

rm_stub (AA2-small-helpers), 23

sbt (fsubset), 84
select-replace-vars, 117

selecting and replacing columns, 85
seq_col (AA2-small-helpers), 23

INDEX

seq_row (AA2-small-helpers), 23
seqid, 9, 13, 14,47, 64, 96, 121
setColnames (AA2-small-helpers), 23
setDimnames (AA2-small-helpers), 23
setRownames (AA2-small-helpers), 23
settfm (ftransform), 89
settransform, 9, 14, 15
settransform (ftransform), 89

slt (select-replace-vars), 117
slt<- (select-replace-vars), 117
Small (Helper) Functions, 9, 23

ss, 14, 86

ss (fsubset), 84

STD (fscale), 81

Summary Statistics, 9
sweep, 123, 125

table, 37

tfm (ftransform), 89

Time-Series and Panel-Series, 9-11, 17,
18, 48, 56, 64, 105, 107

TRA, 9, 11,17, 18,44, 50, 51, 61, 65-80, 84,
86-88, 91-93, 97, 123

unattrib (AA2-small-helpers), 23
unlist2d, 9, 20, 117, 126

varying, 9, 21, 128

vclasses (AA2-small-helpers), 23
vlabels, 112

vlabels (AA2-small-helpers), 23
vlabels<- (AA2-small-helpers), 23
vtypes (AA2-small-helpers), 23

W (fbetween, fwithin), 41
with, 90

within, 90
wlddev, 9, 95, 130

	collapse-package
	A0-collapse-documentation
	A1-fast-statistical-functions
	A2-fast-grouping
	A3-data-frame-manipulation
	A4-quick-conversion
	A6-data-transformations
	A7-time-series-panel-series
	A8-list-processing
	A9-summary-statistics
	AA1-recode-replace
	AA2-small-helpers
	BY
	collap
	collapse-depreciated
	collapse-options
	dapply
	descr
	extract-list
	fbetween, fwithin
	fdiff
	ffirst, flast
	fFtest
	fgrowth
	fHDbetween, fHDwithin
	flag
	fmean
	fmedian
	fmin, fmax
	fmode
	fNdistinct
	fNobs
	fprod
	fscale
	fsubset
	fsum
	ftransform
	fvar, fsd
	GGDC10S
	groupid
	GRP
	is.regular-is.unlistable
	ldepth
	psacf
	psmat
	pwcor, pwcov, pwNobs
	qF
	qsu
	radixorder
	rapply2d
	select-replace-vars
	seqid
	TRA
	unlist2d
	varying
	wlddev
	Index

