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Abstract

This vignette provides an introduction to, and user-guide for, the coenocliner package
for R. coenocliner can be used to generated random count or occurrence data from param-
eterised species response curves. The classic Gaussian response and the generalised beta
response functions are provided and simulated count or occurrence data can be generated
via random draws from a number of probability distributions.

Keywords: coenocline simulation, R, ecology, species, Gaussian response, generalized beta
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1. Introduction

Coenoclines are, according to the Oxford Dictionary of Ecology (Allaby 1998), “gradients of
communities (e.g. in a transect from the summit to the base of a hill), reflecting the changing
importance, frequency, or other appropriate measure of different species populations”. In
much ecological research, and that of related fields, data on these coenoclines are collected
and analyzed in a variety of ways. When developing new statistical methods or when trying to
understand the behaviour of existing methods, we often resort to simulating data with known
pattern or structure and then torture whatever method is of interest with the simulated data
to tease out how well methods work or where they breakdown.

There’s a long history of using computers to simulate species abundance data along coenoclines
but until recently no R packages were available that performed coenocline simulation. Dave
Roberts’ coenoflex package was on CRAN for a while but the latest version was unstable and
removed from CRAN because of issues with the FORTRAN1. coenocliner was designed to fill
this gap.

coenocliner can simulate species abundance or occurrence data along one or two gradients
from either a Gaussian or generalised beta response model. Parameters for the response model
are supplied for each species and parameterised species repsonse curves along the gradients are
returned. Simulated abundance or occurrence data can be produced by sampling from one of
several error distributions which use the parameterised species response curves as the expected
count or probability of occurrence for the chosen error distribution. The error distributions
available in coenocliner are

1Dave has since fixed these issues but the updated package is not yet, as of August 2014, re-available from
CRAN.
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• Poisson

• Negative binomial

• Bernoulli (occurrence; Binomial with denominator m = 1)

• Binomial (counts with specified denominator m)

• Beta-binomial

• Zero-inflated Poisson (ZIP)

• Zero-inflated negative binomial (ZINB)

• Zero-inflated Binomial (ZIB)

• Zero-inflated Beta-Binomial (ZIBB)

This vignette provides a brief overview of the coenocliner package.

2. A brief overview of coenocliner

To begin, load coenocliner and check the start-up message to see if you are using the current
(0.2.2) release of the package

library("coenocliner")

## This is coenocliner 0.2-2

The main function in coenocliner is coenocline(), which provides a relatively simple interface
to coenocline simulation allowing flexible specification of gradient locations and response
model parameters for species. Gradient locations are specified via argument x, which can
be a single vector, or, in the case of two gradients, a matrix or a list containing vectors of
gradient values. The matrix version assumes the first gradient’s values are in the first column
and those for the second gradient in the second column

xy <- cbind(x = seq(from = 4, to = 7, length.out = 100),

y = seq(from = 1, to = 100, length.out = 100))

Similarly, for the list version, the first component contains the values for the first gradient
and the second component the values for the second gradient

xy <- list(x = seq(from = 4, to = 6, length.out = 100),

y = seq(from = 1, to = 100, length.out = 100))

The species response model used is indicated via the responseModel argument; available
options are "gaussian" and "beta" for the classic Gaussian response model and the generalise
beta response model respectively. Parameters are supplied to coenocline() via the params

argument. showParams() can be used list the parameters for the desired response model.
The parameters for the Gaussian response model are
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showParams("gaussian")

## Species response model: Gaussian

##

## Parameters:

## [1] opt tol h*

##

## Parameters marked with '*' are only supplied once

As indicated, some parameters are only supplied once per species, regardless of whether there
are one or two gradients. Hence for the Gaussian model, the parameter h is only supplied for
the first gradient even if two gradients are required.

Parameters are supplied as a matrix with named columns, or as a list with named components.
For example, for a Gaussian response for each of 3 species we could use either of the two forms

opt <- c(4,5,6)

tol <- rep(0.25, 3)

h <- c(10,20,30)

parm <- cbind(opt = opt, tol = tol, h = h) # matrix form

parl <- list(opt = opt, tol = tol, h = h) # list form

In the case of two gradients, a list with two components, one per gradient, is required. The
first component contains parameters for the first gradient, the second element contains those
for the second gradient. These components can be either a matrix or a list, as described
previously. For example a list with parameters supplied as matrices

opty <- c(25, 50, 75)

tol <- c(5, 10, 20)

pars <- list(px = parm,

py = cbind(opt = opty, tol = tol))

Note that parameter h is not specified in the second set as this parameter, the height of the
response curve at the gradient optima, applies globally — in the case of two gradients, h
refers to the height of the bell-shaped curve at the bivariate optimum.

Notice also how parameters are specified at the species level. To evaluate the response curve at
the supplied gradient locations each set of parameters needs to be repeated for each gradient
location. Thankfully coenocline() takes care of this detail for us.

Additional parameters that may be needed for the response model but which are not specified
at the species level are supplied as a list with named components to argument extraParams.
An example is the correlation between Gaussian response curves in case of two gradients.
This, unfortunately, means that a single correlation between response curves applies to all
species2, and is caused by a poor choice of implementation. Thankfully this is relatively easy
to fix, which will be done for version 0.3-0 along with a fix for a similar issue relating to the
statement of additional parameters for the error distribution used (see below).

2This is not strictly true as you can work out how the species parameters are replicated relative to gradient
values and hence pass a vector of the correct length with the species-specific values included. Study the outputs
from expand() when supplied gradient locations and parameters to work out how to specify extraParams

appropriately
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To simulate realistic count data we need to sample with error from the parameterised species
response curves. Which of the distributions (listed earlier) is used is specified via argument
countModel; available options are

## [1] "poisson" "negbin" "bernoulli" "binary"

## [5] "binomial" "betabinomial" "ZIP" "ZINB"

## [9] "ZIB" "ZIBB"

Some of these distributions (all bar "poisson" and "bernoulli") require additional argu-
ments, such as the α parameter for (one parameterisation of) the negative binomial distri-
bution. These arguments are supplied as a list with named components. Again, due to the
same implementation snafu as for extraParams, such parameters act globally for all species3.

The final argument is expectation, which defaults to FALSE. When set to TRUE, simulating
species counts or occurrences with error is skipped and the values of the parameterised re-
sponse curve evaluated at the gradient locations are returned. This option is handy if you
want to look at or plot the species response curves used in a simulation.

2.1. Example usage

In the next few sections the basic usage of coenocline() is illustrated.

Gaussian responses along a single gradient

This example, of multiple species responses along a single environmental gradient, illustrates
the simplest usage of coenocline(). The example uses a hypothetical pH gradient with
species optima drawn at random uniformally along the gradient. Species tolerances are the
same for all species. The maximum abundance of each species, h, is drawn from a lognormal
distribution with a mean of ~20 (e3). This simulation will be for a community of 20 species,
evaluated at 100 equally spaced locations. First we set up the parameters

set.seed(2)

M <- 20 # number of species

ming <- 3.5 # gradient minimum...

maxg <- 7 # ...and maximum

locs <- seq(ming, maxg, length = 100) # gradient locations

opt <- runif(M, min = ming, max = maxg) # species optima

tol <- rep(0.25, M) # species tolerances

h <- ceiling(rlnorm(M, meanlog = 3)) # max abundances

pars <- cbind(opt = opt, tol = tol, h = h) # put in a matrix

As a check, before simulating any count data, we can look at the coenocline implied by these
parameters by returning the expectations only from coenocline()

3Again, this is not strictly true as you can work out how the species parameters are replicated relative
to gradient values and hence pass a vector of the correct length with the species-specific values included.
Study the outputs from expand() when supplied gradient locations and parameters to work out how to specify
countParams appropriately
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mu <- coenocline(locs, responseModel = "gaussian", params = pars,

expectation = TRUE)

This returns a matrix of values obtained by evaluating each species response curve at the
supplied gradient locations. There is one column per species and one row per gradient location

class(mu)

## [1] "coenocline" "matrix"

dim(mu)

## [1] 100 20

mu

##

## Coenocline simulation of 20 species at 100 gradient locations

##

## Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9 Sp10 Sp11 Sp12

## 1 1.08785 0 0 0.50247 0 0 9.55419 0 0e+00 0 0 0.02607

## 2 1.55307 0 0 0.69384 0 0 12.21531 0 0e+00 0 0 0.04142

## 3 2.17335 0 0 0.93913 0 0 15.30840 0 0e+00 0 0 0.06450

## 4 2.98113 0 0 1.24597 0 0 18.80486 0 0e+00 0 0 0.09846

## 5 4.00819 0 0 1.62033 0 0 22.64256 0 0e+00 0 0 0.14732

## 6 5.28239 0 0 2.06545 0 0 26.72366 0 0e+00 0 0 0.21606

## 7 6.82382 0 0 2.58072 0 0 30.91585 0 0e+00 0 0 0.31061

## 8 8.64051 0 0 3.16069 0 0 35.05755 0 1e-05 0 0 0.43770

## 9 10.72424 0 0 3.79436 0 0 38.96699 0 2e-05 0 0 0.60456

## 10 13.04694 0 0 4.46488 0 0 42.45484 0 5e-05 0 0 0.81851

## : : : : : : : : : : : : :

##

## Counts for 8 species not shown.

## (Values very close to zero were zapped)

A quick way to visualise the parameterised species response is to use the plot() method

plot(mu, lty = "solid", type = "l", xlab = "pH", ylab = "Abundance")

The resultant plot is shown in Figure 1.

As this looks OK, we can simulate some count data. The simplest model for doing so is to
make random draws from a Poisson distribution with the mean, λ, for each species set to
value of the response curve evaluated at each gradient location. Hence the values in mu that
we just created can be thought of as the expected count per species at each of the gradient
locations we are interested in. To simulate Poisson count data, use expectation = FALSE or
remove this argument from the call. To be more explicit, we should also state countModel =

"poisson"4.

4countModel = "poisson" is the default so this can be excluded from the call.
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Figure 1: Gaussian species response curves along a hypothetical pH gradient

simp <- coenocline(locs, responseModel = "gaussian", params = pars,

countModel = "poisson")

Again, matplot is useful in visualizing the simulated data

plot(simp, lty = "solid", type = "p", pch = 1:10, cex = 0.8,

xlab = "pH", ylab = "Abundance")

The resultant plot is shown in Figure 2.

Whilst the simulated counts look reasonable and follow the response curves in Figure 1 there
is a problem; the variation around the expected curves is too small. This is due to the
error variance implied by the Poisson distribution encapsulating only that variance which
would arise due to repeated sampling at the gradient locations. Most species abundance data
exhibit much larger degrees of variation than that shown in Figure 2. A solution to this is to
sample from a distribution that incorporates additional variance or overdispersion. A natural
partner to the Poisson that includes overdispersion is the negative binomial. To simulate
count data using the negative binomial distribution we must alter countModel and supply
the overdispersion parameter α to use5 via countParams.

simnb <- coenocline(locs, responseModel = "gaussian", params = pars,

countModel = "negbin", countParams = list(alpha = 0.5))

Using plot it is apparent that the simluated species data are now far more relalistic (Figure 3)

5Recall that this is only easily specifiable globally in version 0.1-0 of coenocliner.
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Figure 2: Simulated species abundances with Poisson errors from Gaussian response curves
along a hypothetical pH gradient

plot(simnb, lty = "solid", type = "p", pch = 1:10, cex = 0.8,

xlab = "pH", ylab = "Abundance")

Generalised beta responses along a single gradient

In this example, I recreate figure 2 in Minchin (1987) and then simulate species abundances
from the species response curves. The species parameters for the generalised beta response
for the six species in Minchin (1987) are

A0 <- c(5,4,7,5,9,8) * 10 # max abundance

m <- c(25,85,10,60,45,60) # location on gradient of modal abundance

r <- c(3,3,4,4,6,5) * 10 # species range of occurence on gradient

alpha <- c(0.1,1,2,4,1.5,1) # shape parameter

gamma <- c(0.1,1,2,4,0.5,4) # shape parameter

locs <- 1:100 # gradient locations

pars <- list(m = m, r = r, alpha = alpha,

gamma = gamma, A0 = A0) # species parameters, in list form

To recreate figure 2 in Minchin (1987) evaluations at the chosen gradient locations, locs, of the
parameterised generalised beta are required and can be generated by passing coenocline()

the gradient locations and the chosen species parameters as before, choosing the generalised
beta response model and using expectation = TRUE

mu <- coenocline(locs, responseModel = "beta", params = pars, expectation = TRUE)

As before mu is a matrix with one column per species
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Figure 3: Simulated species abundance with negative binomial errors from Gaussian response
curves along a hypothetical pH gradient

mu

##

## Coenocline simulation of 6 species at 100 gradient locations

##

## Sp1 Sp2 Sp3 Sp4 Sp5 Sp6

## 1 0 0 44.52044 0 0.59129 0

## 2 0 0 49.39200 0 1.65820 0

## 3 0 0 53.90044 0 3.01993 0

## 4 0 0 57.96700 0 4.60853 0

## 5 0 0 61.52344 0 6.38285 0

## 6 0 0 64.51200 0 8.31384 0

## 7 0 0 66.88544 0 10.37918 0

## 8 0 0 68.60700 0 12.56073 0

## 9 0 0 69.65044 0 14.84318 0

## 10 0 0 70.00000 0 17.21326 0

## : : : : : : :

##

## (Values very close to zero were zapped)

and as such we can use matplot to draw the species responses

plot(mu, lty = "solid", type = "l", xlab = "Gradient", ylab = "Abundance")

Figure 4 is a good facsimile of figure 2 in Minchin (1987).

Gaussian response along two gradients

In this example I illustrate how to simulate species abundance in an environment comprising
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Figure 4: Generalised beta function species response curves along a hypothetical environmen-
tal gradient recreating Figure 2 in Minchin (1987).

two gradients. Parameters for the simulation are defined first, including the number of species
and samples required, followed by definitions of the gradient units and lengths, species optima,
and tolerances for each gradient, and the maximal abundance (h).

set.seed(10)

N <- 30 # number of samples

M <- 20 # number of species

## First gradient

ming1 <- 3.5 # 1st gradient minimum...

maxg1 <- 7 # ...and maximum

loc1 <- seq(ming1, maxg1, length = N) # 1st gradient locations

opt1 <- runif(M, min = ming1, max = maxg1) # species optima

tol1 <- rep(0.5, M) # species tolerances

h <- ceiling(rlnorm(M, meanlog = 3)) # max abundances

par1 <- cbind(opt = opt1, tol = tol1, h = h) # put in a matrix

## Second gradient

ming2 <- 1 # 2nd gradient minimum...

maxg2 <- 100 # ...and maximum

loc2 <- seq(ming2, maxg2, length = N) # 2nd gradient locations

opt2 <- runif(M, min = ming2, max = maxg2) # species optima

tol2 <- ceiling(runif(M, min = 5, max = 50)) # species tolerances

par2 <- cbind(opt = opt2, tol = tol2) # put in a matrix

## Last steps...

pars <- list(px = par1, py = par2) # put parameters into a list

locs <- expand.grid(x = loc1, y = loc2) # put gradient locations together

Notice how the parameter sets for each gradient are individual matrices which are combined
in a list, pars, ready for use. Also different this time is the expand.grid() call which is
used to generate all pairwise combinations of the locations on the two gradients. This has the
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effect of creating a coordinate pair on the two gradients at which we’ll evaluate the response
curves. In effect this creates a grid of points over the gradient space.

Having set up the parameters, the call to coenocline() is the same as before, except now
we specify a degree of correlation between the two gradients via extraParams = list(corr

= 0.5)

mu2d <- coenocline(locs, responseModel = "gaussian",

params = pars, extraParams = list(corr = 0.5),

expectation = TRUE)

mu2d now contains a matrix of expected species abundances, one column per species as before.
Because of the way the expand.grid() function works, the ordering of species abudances in
each column has the first gradient locations varying fastest — the locations on the first
gradient are repeated in order for each location on the second gradient

head(locs)

## x y

## 1 3.500000 1

## 2 3.620690 1

## 3 3.741379 1

## 4 3.862069 1

## 5 3.982759 1

## 6 4.103448 1

As a result, we can reshape the abundances for a single species into a matrix reflecting the
grid of locations over the gradient space via a simple matrix() call, setting the number of
columns in the resultant matrix equal to the number of gradient locations in the simulation.
Thankfully this is taken care of for you in the persp() method6. The method will draw
perspective plots for all species in the simulation; it is keft to the user to handle how these
should be displayed on the current graphics device. By way of illustration, I plot the expected
abundance for four of the species in mu2d

layout(matrix(1:4, ncol = 2))

op <- par(mar = rep(1, 4))

persp(mu2d, species = c(2, 8, 13, 19), ticktype = "detailed",

zlab = "Abundance")

par(op)

layout(1)

The selected species response curves are shown in Figure 5.

Simulated counts for each species can be produced by removing expectation = TRUE from
the call and choosing an error distribution to make random draws from. For example, for
negative binomial errors with dispersion α = 1 we can use

6The plot() methods for class "coenocline" will use the persp() if you try to plot an object with two
gradients.
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Figure 5: Bivariate Gaussian species responses for four selected species.
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Figure 6: Simulated counts using negative binomial errors from bivariate Gaussian species
responses for four selected species.

sim2d <- coenocline(locs, responseModel = "gaussian",

params = pars, extraParams = list(corr = 0.5),

countModel = "negbin", countParams = list(alpha = 1))

The resulting simulated counts for the same four selected species are shown in Figure 6, which
was generated using the code below

layout(matrix(1:4, ncol = 2))

op <- par(mar = rep(1, 4))

persp(sim2d, species = c(2, 8, 13, 19), ticktype = "detailed",

zlab = "Abundance")

par(op)

layout(1)

3. Future directions

coenocliner was designed to be quite modular and hence easy to add new species response
models or probability distributions from which to simulate count or abundance data. The
current release covers the main functionality envisaged when I started to develop coenocliner.
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Some fine-tuning and polishing of the functions is needed as are some methods such as plot

methods and nicer displays of the outputted species data such as row and column labels on
the resultant community matrices.

Beyond this, it would be useful to include options in other community simulator packages,
such as COMPAS, which include competition effects between species etc. Such modifcations
would occur after the simulated counts were generated and would act to modify those counts
in line with ecological theory.
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4. Appendix

4.1. Computational details

This vignette was created using the following R and add-on package versions

• R version 3.3.0 Patched (2016-05-12 r70603), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_CA.UTF-8, LC_NUMERIC=C, LC_TIME=en_CA.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_CA.UTF-8, LC_MESSAGES=en_CA.UTF-8,
LC_PAPER=en_CA.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_CA.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: coenocliner 0.2-2, knitr 1.13

• Loaded via a namespace (and not attached): evaluate 0.9, formatR 1.4, highr 0.6,
magrittr 1.5, stringi 1.0-1, stringr 1.0.0, tools 3.3.0
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