
Running Coalescent Analyses With

coalescentMCMC

Emmanuel Paradis

March 3, 2015

Coalescent analyses have emerged in the recent years as a powerful approach to
investigate the demography of populations using genetic data. The coalescent
is a random process describing the coalescent times of a genealogy with respect
to population size and mutation rate. In the majority of cases, the genealogy of
individuals within a population is unknown. So a coalescent analysis typically
integrates over the “likely” genealogies to make inference on the dynamics of
the population. This uses computer-intensive methods such as Monte Carlo
simulations of Markov chains. Besides, if priors are defined on the distributions
of the parameters, Bayesian inference can be done. Several methods have been
proposed for such integrations, although currently there is no consensus on
which method is the best, or which ones are the most appropriate in some
circumstances [1].

coalescentMCMC aims to provide a general framework to run coalescent anal-
yses. In its current version, the package provides a simple MCMC algorithm
based on Hastings’s ratio.

coalescentMCMC has three main groups of functions that have different roles:

� the function coalescentMCMC itself which runs the chain;

� some functions doing operations on tree which are called by the previous
one to move from one tree to another;

� some functions to infer demography from genealogies under various coa-
lescent models which are typically used to analyse the output of a chain
run.

The motivating idea behind coalescentMCMC is that the user can have full
control over the analysis. The options of the main function are:

> library(coalescentMCMC)

> args(coalescentMCMC)

function (x, ntrees = 3000, burnin = 1000, frequency = 1, tree0 = NULL,

model = NULL, printevery = 100)

NULL

where ntrees are the number of trees to output, burnin is the number of trees
discarded before output of trees starts, frequency is the sampling frequency
of trees, and tree0 is the initial tree (if not provided, a UPGMA tree from a

1

JC69-based distance matrix is used). model is either NULL in which case Θ is
assumed to be constant, or "time" in which case a model where Θ follows an
exponential growth is used.1 Finally, printevery is an integer controlling the
print frequency of the progress of the chain.

The current implementation uses only neighborhood rearrangement as pro-
posed in [2] calling the function NeighborhoodRearrangement at each step of
the chain. This can modified by using other functions described in ?treeOper-

ators.
Let us now consider a very simple analysis with the woodmouse data avail-

able in ape. For the purpose of this vignette, we run a very light analysis in
order to produce small outputs in a reasonable time.

> data(woodmouse)

> out <- coalescentMCMC(woodmouse, ntrees = 300, burnin = 100)

Running the Markov chain:

Number of trees to output: 300

Burn-in period: 100

Sampling frequency: 1

Number of generations to run: 400

Generation Nb of accepted trees

400 62

Done.

The output object is of class "coda", so we can visualise it with the package
of the same name (which has already been loaded):

> plot(out)

1Other models will be implemented later. See the vignette “CoalescentModels”.

2

0 100 200 300 400

−
19

30
−

19
00

−
18

70

Iterations

Trace of logLik

−1940 −1900

0.
00

0.
02

0.
04

Density of logLik

N = 400 Bandwidth = 2.309

0 100 200 300 400

0.
03

5
0.

04
5

Iterations

Trace of theta

0.030 0.040 0.050

0
50

10
0

15
0

Density of theta

N = 400 Bandwidth = 0.0008044

The log-likelihood was relatively stable between −1870 and −1880. The trees
are stored in a special place of the memory (an environment in R’s jargon) from
where they can be retrieved with a specific function:

> TR <- getMCMCtrees()

> TR

300 phylogenetic trees

Note that the trees generated during the burn-in period are not output, but the
corresponding values of log-likelihood and Θ are. Hence out has 400 rows.

> dim(out)

[1] 400 2

> colnames(out)

[1] "logLik" "theta"

We now run a model of time-dependent coalescent where Θ follows an expo-
nential change through time:

3

> out2 <- coalescentMCMC(woodmouse, ntrees = 300, burnin = 100, model = "time")

Running the Markov chain:

Number of trees to output: 300

Burn-in period: 100

Sampling frequency: 1

Number of generations to run: 400

Generation Nb of accepted trees

400 54

Done.

> plot(out2)

0 100 200 300 400

−
19

30
−

18
90

Iterations

Trace of logLik

−1940 −1920 −1900 −1880 −1860

0.
00

0.
03

Density of logLik

N = 400 Bandwidth = 2.359

0 100 200 300 400

0.
03

4
0.

04
2

Iterations

Trace of theta0

0.035 0.040 0.045

0
10

0
20

0

Density of theta0

N = 400 Bandwidth = 0.0006136

0 100 200 300 400

0.
0

0.
4

0.
8

Iterations

Trace of rho Density of rho

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

The change in log-likelihood along the chain is similar to what was observed
above. The object out2 has now three columns:

> dim(out2)

[1] 400 3

> colnames(out2)

[1] "logLik" "theta0" "rho"

4

If we try to extract the trees as previously done and R is running in interactive
mode, we will be asked which list of trees to extract:

> getMCMCtrees()

Several lists of MCMC trees are stored:

1 : TREES_001

2 : TREES_002

Return which number?

It is also possible to extract the trees of a specific chain with its number, which
is useful when the R code is not run interactively (such as this vignette):

> TR2 <- getMCMCtrees(2)

The parameters of the MCMC runs are stored separately and can be ex-
tracted with:

> getMCMCstats()

MCMC chain summaries (chains as columns):

001 002

Number of trees output 300 300

Burn-in period 100 100

Sampling frequency 1 1

Number of generations 400 400

Nb of accepted moves 50 60

We can now compare both coalescent models: the two hypotheses under
consideration are:

� H0: Θ is constant;

� H1: Θ changes through time following an exponential model.

We need to calculate the likelihood under both hypotheses. This can be done
with functions provided in coalescentMCMC (see ?dcoal). We use the last 100
trees of each chain.2 Because we are using a list of trees (which is a vector) and
also a vector of estimates of Θ, we use here the function mapply. For clarity, we
extract the trees and the values of Θ̂ that we need:

> tr <- TR[201:300]

> THETA <- out[301:400, 2]

> logLik0 <- mapply(dcoal, phy = tr, theta = THETA, log = TRUE)

> summary(logLik0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

72.06 73.18 73.68 73.54 73.99 74.70

2These calculations are quite fast, even with 1000 trees, but we use here a subset of the
trees to illustrate how we select some of them which might be useful when running longer
Markov chains.

5

We can now repeat this operation for the second model:

> tr2 <- TR2[201:300]

> THETA0 <- out2[301:400, 2]

> RHO <- out2[301:400, 3]

> logLik1 <- mapply(dcoal.time, phy = tr2, theta = THETA0, rho = RHO, log = TRUE)

> summary(logLik1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

72.84 74.17 74.63 74.55 74.93 77.09

A conditional histogram shows the two distributions:

> library(lattice)

> print(histogram(~c(logLik0, logLik1) | gl(2, 100, labels = c("H0", "H1"))))

c(logLik0, logLik1)

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

72 73 74 75 76 77

H0

72 73 74 75 76 77

H1

Since the increase in log-likelihood for the second model is about 8, the LRT com-
paring both models is χ2

1 ≈ 16 which is highly significant (P ≈ 6 × 10−5). This
suggests that the population of woodmice (Apodemus sylvaticus) from where
these sequences have been sampled has expanded (reminding that in coales-
cent models the time scale is reversed so a negative value of ρ means that the
population has expanded).

6

We can also compare both models with the deviance information criterion
(DIC) developed by Spiegelhalter et al. [3]. These authors defined this informa-
tion criterion as DIC = D̄−D(Θ̄), where D̄ is the deviance3 averaged over the
chain, and D(Θ̄) is the deviance for the mean (or estimates) of the parameters.
We first produce estimates of the parameters with their means:

> (MLE0 <- colMeans(out[301:400, 2, drop = FALSE]))

theta

0.04274699

> (MLE1 <- colMeans(out2[301:400, 2:3]))

theta0 rho

0.0396134 0.9400073

We then calculate the second term, D(Θ̄), using these estimates and averaging
the deviance values over the trees:

> D2.0 <- -2 * mean(mapply(dcoal, phy = tr, theta = MLE0, log = TRUE)) + 2

> D2.1 <- -2 * mean(mapply(dcoal.time, phy = tr2, theta = MLE1[1],

+ rho = MLE1[2], log = TRUE)) + 4

The values of DIC for both models can now be calculated simply:

> mean(-2 * logLik0 + 2) - D2.0

[1] -0.03350816

> mean(-2 * logLik1 + 4) - D2.1

[1] -0.03877519

Like for other information criteria (AIC, BIC, . . .) the model with the smallest
value of DIC should be preferred: this is here the time-dependent model.

We can represent the temporal variation in Θ predicted by this model (re-
member that the time scale is the one of molecular change):

> x <- seq(0, 0.01, 0.0001)

> y <- MLE1["theta0"] * exp(MLE1["rho"] * x)

> plot(-x, y, "l", xlab = "Time", ylab = expression(Theta))

3The deviance is defined as D = −2 logL + 2k, with L the likelihood and k the number of
estimated parameters.

7

−0.010 −0.008 −0.006 −0.004 −0.002 0.000

0.
03

96
0.

03
97

0.
03

98
0.

03
99

0.
04

00

Time

Θ

Other things that could be done with simple R commands include:

� Compute confidence intervals around Θ̂0 and ρ̂ (alternatively, posterior
distributions of these parameters if a Bayesian sampling is done);

� Re-run the chain(s) with different initial trees, for instance to run branch-
ing chains taking a tree from TR or TR2.

� Use other other models of time-dependent coalescent (see the other vi-
gnette in this package).

References

[1] J. Felsenstein. Trees of genes in populations. In O. Gascuel and M. Steel,
editors, Reconstructing Evolution: New Mathematical and Computational
Advances, pages 3–29. Oxford University Press, Oxford, 2007.

[2] M. K. Kuhner, J. Yamato, and J. Felsenstein. Estimating effective popula-
tion size and mutation rate from sequence data using Metropolis-Hastings
sampling. Genetics, 140:1421–1430, 1995.

[3] D. J. Spiegelhalter, N. G. Best, B. R. Carlin, and A. van der Linde. Bayesian
measures of model complexity and fit. 64(4):583–616, 2002.

8

