Likelihood Function of Time-Dependent Coalescent Models

Emmanuel Paradis

March 3, 2015

Coalescent models describe the distribution of ancestry in a population under some assumptions on the variation in the parameter $\Theta=2 N \nu$, with N the number of alleles in the population and ν the neutral mutation rate. The present document gives the likelihood function, and some computational details, for several models with Θ varying through time. These models are available in coalescentMCMC as R functions (see below).

The general mathematical framework has been given by Griffiths \& Tavaré [1]. If Θ is constant, the probability of observing the coalescent times t_{1}, \ldots, t_{n} is:

$$
\prod_{i=2}^{n}\binom{i}{2} \frac{1}{\Theta} \exp \left[-2\binom{i}{2} \frac{t_{i}-t_{i-1}}{\Theta}\right]
$$

where $t_{1}=0$ is the present time and $t_{n}=T_{\text {MRCA. }}{ }^{1}$ The general formula for $\Theta(t)$ varying through time is:

$$
\begin{equation*}
\prod_{i=2}^{n}\binom{i}{2} \frac{1}{\Theta\left(t_{i}\right)} \exp \left[-2\binom{i}{2} \int_{t_{i-1}}^{t_{i}} \frac{1}{\Theta(u)} \mathrm{d} u\right] \tag{1}
\end{equation*}
$$

Four specific temporal models are considered below. The time to the most recent ancestor, denoted as T_{MRCA}, is assumed to be known-this assumption could be relaxed though this is not considered here.

1 Models

The exponential growth model assumes $\Theta(t)=\Theta_{0} e^{\rho t}$, with Θ_{0} is the value of Θ at present and ρ is the population growth rate [2]. Because of the exponential function, Θ may reach very high (or low) values. To avoid this, the linear model formulated as $\Theta(t)=\Theta_{0}+t\left(\Theta_{T_{\text {MRCA }}}-\Theta_{0}\right) / T_{\text {MRCA }}$. This model, like the previous one, has two free parameters: Θ_{0} and $\Theta_{T_{\text {MRCA }}}$.

The third model (step model) assumes two constant values of Θ before and after a point in time denoted as τ :

$$
\Theta(t)= \begin{cases}\Theta_{0} & t \leq \tau \\ \Theta_{1} & t>\tau\end{cases}
$$

[^0]The last model (exponential double growth model) assumes that the population experienced two different phases of exponential growth:

$$
\Theta(t)= \begin{cases}\Theta_{0} e^{\rho_{1} t} & t \leq \tau \\ \Theta(\tau) e^{\rho_{2}(t-\tau)}=\Theta_{0} e^{\rho_{2} t+\left(\rho_{1}-\rho_{2}\right) \tau} & t \geq \tau\end{cases}
$$

which reduces to the first model if $\rho_{1}=\rho_{2}$. These two last models have three free parameters.

1.1 Constant- Θ Model

The log-likelihood is:

$$
\ln L=\sum_{i=2}^{n} \ln \binom{i}{2}-\ln \Theta-2\binom{i}{2} \frac{t_{i}-t_{i-1}}{\Theta} .
$$

Its partial derivative with respect to Θ is:

$$
\frac{\partial \ln L}{\partial \Theta}=\sum_{i=2}^{n}-\frac{1}{\Theta}+2\binom{i}{2} \frac{t_{i}-t_{i-1}}{\Theta^{2}}
$$

which, after setting $\partial \ln L / \partial \Theta=0$ can be solved to find the maximum likelihood estimator (MLE):

$$
\widehat{\Theta}=\frac{2}{n-1} \sum_{i=2}^{n}\binom{i}{2}\left(t_{i}-t_{i-1}\right) .
$$

Under the normal approximation of the likelihood function, the variance of $\hat{\Theta}$ is calculated through the second derivative of $\ln L$:

$$
\frac{\partial^{2} \ln L}{\partial \Theta^{2}}=\sum_{i=2}^{n} \frac{1}{\Theta^{2}}-4 \times\binom{ i}{2} \frac{t_{i}-t_{i-1}}{\Theta^{3}}
$$

and:

$$
\widehat{\operatorname{var}}(\widehat{\Theta})=-\left[\frac{n-1}{\widehat{\Theta}^{2}}-\frac{4}{\widehat{\Theta}^{3}} \sum_{i=2}^{n}\binom{i}{2}\left(t_{i}-t_{i-1}\right)\right]^{-1} .
$$

This estimator is implemented in pegas with the function theta.tree.

1.2 Exponential Growth Model

The integral in equation (1) is:

$$
\int_{t_{i-1}}^{t_{i}} \frac{1}{\Theta(u)} \mathrm{d} u=-\frac{1}{\rho \Theta_{0}}\left(e^{-\rho t_{i}}-e^{-\rho t_{i-1}}\right),
$$

leading to the log-likelihood:

$$
\ln L=\sum_{i=2}^{n} \ln \binom{i}{2}-\ln \Theta_{0}-\rho t_{i}+2\binom{i}{2} \frac{1}{\rho \Theta_{0}}\left(e^{-\rho t_{i}}-e^{-\rho t_{i-1}}\right)
$$

with its first partial derivatives being:

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \Theta_{0}}=\sum_{i=2}^{n}-\frac{1}{\Theta_{0}}-2\binom{i}{2} \frac{1}{\rho \Theta_{0}^{2}}\left(e^{-\rho t_{i}}-e^{-\rho t_{i-1}}\right) \\
& \frac{\partial \ln L}{\partial \rho}=\sum_{i=2}^{n}-t_{i}+2\binom{i}{2} \frac{1}{\Theta_{0}}\left[-\frac{1}{\rho^{2}}\left(e^{-\rho t_{i}}-e^{-\rho t_{i-1}}\right)+\frac{1}{\rho}\left(-t_{i} e^{-\rho t_{i}}+t_{i-1} e^{-\rho t_{i-1}}\right)\right] .
\end{aligned}
$$

These cannot be solved analytically to find the MLEs $\widehat{\Theta}_{0}$ and $\hat{\rho}$ but they may be used to speed-up an optimization procedure with analytical gradients.

1.3 Linear Growth Model

Let $\kappa=\left(\Theta_{T_{\text {MRCA }}}-\Theta_{0}\right) / T_{\text {MRCA }}$, so $\Theta(t)=\Theta_{0}+\kappa t$. The integral in equation (1) is:

$$
\begin{aligned}
\int_{t_{i-1}}^{t_{i}} \frac{1}{\Theta(u)} \mathrm{d} u & =\frac{\ln \left(\Theta_{0}+\kappa t_{i}\right)}{\kappa}-\frac{\ln \left(\Theta_{0}+\kappa t_{i-1}\right)}{\kappa} \\
& =\frac{1}{\kappa} \ln \frac{\Theta_{0}+\kappa t_{i}}{\Theta_{0}+\kappa t_{i-1}}
\end{aligned}
$$

The log-likelihood is thus:

$$
\ln L=\sum_{i=2}^{n} \ln \binom{i}{2}-\ln \left(\Theta_{0}+\kappa t_{i}\right)-2\binom{i}{2} \frac{1}{\kappa} \ln \frac{\Theta_{0}+\kappa t_{i}}{\Theta_{0}+\kappa t_{i-1}}
$$

The partial derivatives can be calculated analytically.

1.4 Step Model

It is easier to calculate the integral in equation 1 with the difference:

$$
\begin{equation*}
\int_{t_{i-1}}^{t_{i}} \frac{1}{\Theta(u)} \mathrm{d} u=\int_{0}^{t_{i}} \frac{1}{\Theta(u)} \mathrm{d} u-\int_{0}^{t_{i-1}} \frac{1}{\Theta(u)} \mathrm{d} u \tag{2}
\end{equation*}
$$

The integral from the origin is:

$$
\int_{0}^{t} \frac{1}{\Theta(u)} \mathrm{d} u=\left\{\begin{array}{cl}
\frac{t}{\Theta_{0}} & t \leq \tau \\
\frac{\tau}{\Theta_{0}}+\frac{t-\tau}{\Theta_{1}} & t>\tau
\end{array}\right.
$$

This is then plugged into equation 1 with a simple Dirac delta function.

1.5 Exponential Double Growth Model

In this model the inverse of $\Theta(t)$ is:

$$
\frac{1}{\Theta(t)}= \begin{cases}\frac{e^{-\rho_{1} t}}{\Theta_{0}} & t \leq \tau \\ \frac{e^{-\rho_{2} t-\left(\rho_{1}-\rho_{2}\right) \tau}}{\Theta_{0}} & t \geq \tau\end{cases}
$$

Again, it is easier to calculate the integral in equation (1) with equation (2). The integral from the origin is:

$$
\int_{0}^{t} \frac{1}{\Theta(u)} \mathrm{d} u= \begin{cases}-\frac{1}{\rho_{1} \Theta_{0}}\left(e^{-\rho_{1} t}-1\right) & t \leq \tau \\ -\frac{1}{\rho_{1} \Theta_{0}}\left(e^{-\rho_{1} \tau}-1\right)-\frac{1}{\rho_{2} \Theta_{0}}\left[e^{-\rho_{2} t-\left(\rho_{1}-\rho_{2}\right) \tau}-e^{-\rho_{1} \tau}\right] & t \geq \tau\end{cases}
$$

This is then plugged into equation (1) with a simple Dirac delta function.

2 Simulation of Coalescent Times

It is generally possible to simulate coalescent times from a time-dependent model by rescaling a set of coalescent times simulated with constant Θ, denoted as t, with:

$$
t^{\prime}=\frac{\int_{0}^{t} \Theta(u) \mathrm{d} u}{\Theta(0)}
$$

This gives for the exponential growth model [2]:

$$
t^{\prime}=\frac{e^{\rho t}-1}{\rho}
$$

for the linear growth model:

$$
t^{\prime}=t+t^{2}\left(\Theta_{T_{\mathrm{MRCA}}} / \Theta_{0}-1\right) / T_{\mathrm{MRCA}},
$$

for the step model:

$$
t^{\prime}=\tau+(t-\tau) \Theta_{1} / \Theta_{0} \quad \text { if } t>\tau
$$

and for the exponential double growth model:

$$
t^{\prime}= \begin{cases}\frac{e^{\rho_{1} t}-1}{\rho_{1}} & t \leq \tau \\ \frac{e^{\rho_{1} \tau}-1}{\rho_{1}}+\frac{e^{\rho_{2} t+\left(\rho_{1}-\rho_{2}\right) \tau}-e^{\rho_{1} \tau}}{\rho_{2}} & t \geq \tau\end{cases}
$$

3 Implementation in coalescentMCMC

Five functions are available in coalescentMCMC which compute the likelihood of the constant $-\Theta$ model as well as the four above ones:

```
dcoal(phy, theta, log = FALSE)
dcoal.time(phy, theta0, rho, log = FALSE)
dcoal.linear(phy, theta0, thetaT, TMRCA, log = FALSE)
dcoal.step(phy, theta0, theta1, tau, log = FALSE)
dcoal.time2(phy, theta0, rho1, rho2, tau, log = FALSE)
```

The two arguments common to all functions are:
phy: a tree as an object of class "phylo";
log: a logical value, if TRUE the values are returned log-transformed which is recommended for computing log-likelihoods.

The other arguments are the parameters of the models.

References

[1] R. C. Griffiths and S. Tavaré. Sampling theory for neutral alleles in a varying environment. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 344:403-410, 1994.
[2] M. K. Kuhner, J. Yamato, and J. Felsenstein. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics, 149:429434, 1998.

[^0]: ${ }^{1}$ Note that $2\binom{i}{2}=i(i-1)$ which is easier to calculate.

