
Package ‘cnaOpt’
December 9, 2019

Title Optimizing Consistency and Coverage in Configurational Causal
Modeling

Version 0.1.1
Date 2019-12-09
Description This is an add-on to the 'cna' package <https://CRAN.R-project.org/package=cna> com-

prising various functions for optimizing consistency and coverage scores of models of configura-
tional comparative methods as Coincidence Analysis (CNA) and Qualitative Comparative Analy-
sis (QCA). The function conCovOpt() calculates con-cov optima, selectMax() selects con-
cov maxima among the con-cov optima, DNFbuild() can be used to build models actually reach-
ing those optima, and findOutcomes() identifies those factor values in ana-
lyzed data that can be modeled as outcomes. For a theoretical introduction to these func-
tions see <https://people.uib.no/mba110/docs/ConCovOpt.pdf>.

Depends R (>= 3.4.0), cna (>= 2.2.2)
Imports Rcpp, matrixStats, ggplot2, dplyr, stats, utils
LinkingTo Rcpp
License GPL (>= 2)
Encoding UTF-8
LazyData true
NeedsCompilation yes
Author Mathias Ambuehl [aut, cre, cph],

Michael Baumgartner [aut, cph]
Maintainer Mathias Ambuehl <mathias.ambuehl@consultag.ch>
Repository CRAN
Date/Publication 2019-12-09 09:50:02 UTC

R topics documented:
cnaOpt . 2
conCovOpt . 3
findOutcomes . 6
reprodAssign . 7
rreduce_ereduce . 9
selectMax . 11

1

2 cnaOpt

Index 14

cnaOpt Find atomic solution formulas with optimal consistency and coverage

Description

cnaOpt attempts to find atomic solution formulas (asfs) for a given outcome (inferred from crisp-
set, "cs", or multi-value, "mv", data) that are optimal with respect to consistency and coverage.

Usage

cnaOpt(x, outcome, ..., crit = quote(con * cov), cond = quote(TRUE))

Arguments

x A data.frame or truthTab of type "cs" or "mv"; if x is of type "mv", x must
be a truthTab.

outcome A character string specifying one outcome, i.e. one factor in x.

... Additional arguments passed to truthTab, for instance type, rm.dup.factors,
rm.dup.factors, or case.cutoff.

crit, cond A quoted expression specifying additional criteria for selecting optimal solu-
tions, passed to selectMax.

Details

cnaOpt infers causal models (atomic solution formulas, asf) for the outcome from data x that are
optimal with respect to the optimality criterion crit and complying with conditions cond. Data x
may be crisp-set ("cs") or multi-value ("mv"), but not fuzzy-set ("fs"). The function first calculates
consistency and coverage optima (con-cov optima) for x, then selects the optimum that is best
according to crit and cond, builds the canonical disjunctive normal form (DNF) realizing the best
optimum and, finally, generates all minimal forms of that canonical DNF.

Roughly speaking, running cnaOpt amounts to sequentially executing truthTab, conCovOpt, selectMax,
DNFbuild and condTbl.

Value

cnaOpt returns a data.frame with additional class "condTbl". See the "Value" section in ?condTbl
for details.

See Also

cna, conCovOpt

conCovOpt 3

Examples

Example 1: Real-life crisp-set data, d.educate.
(res_opt1 <- cnaOpt(d.educate, "E"))

Using the pipe operator (%>%), the steps processed by cnaOpt in the
call above can be reproduced as follows:
library(dplyr)
conCovOpt(d.educate, "E") %>% selectMax %>% DNFbuild("E", reduce = "ereduce") %>%

paste("<-> E") %>% condTbl(d.educate)

Example 2: Simulated crisp-set data.
dat1 <- data.frame(

A = c(1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0),
B = c(0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0),
C = c(0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0),
D = c(1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1),
E = c(1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1),
F = c(0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1)

)

(res_opt2 <- cnaOpt(dat1, "E"))

Change the optimality criterion.
cnaOpt(dat1, "E", crit = quote(pmin(con, cov)))
Impose an additional condition.
cnaOpt(dat1, "E", cond = quote(con >= 0.9))

Example 3: All logically possible configurations.
(res_opt3 <- cnaOpt(full.tt(4), "D")) # All combinations are equally bad.

Example 4: Real-life multi-value data, d.pban.
cnaOpt(mvtt(d.pban), outcome = "PB=1")
cnaOpt(mvtt(d.pban), outcome = "PB=1", crit = quote(pmin(con, cov)))
cnaOpt(mvtt(d.pban), outcome = "PB=1", cond = quote(con > 0.93))
cnaOpt(mvtt(d.pban), outcome = "PB=0")
cnaOpt(mvtt(d.pban), outcome = "PB=0", cond = quote(con > 0.93))
cnaOpt(d.pban, type = "mv", outcome = "F=2")
cnaOpt(d.pban, type = "mv", outcome = "F=2", cond = quote(con > 0.75))

conCovOpt Find consistency and coverage optima for configurational data

Description

conCovOpt issues pairs of optimal consistency and coverage scores that atomic solution formulas
(asf) of an outcome inferred from configurational data can possibly reach.

4 conCovOpt

Usage

conCovOpt(x, outcome = NULL,
type = if (inherits(x, "truthTab")) attr(x, "type") else "cs",
maxCombs = 1e+07, approx = FALSE, allConCov = FALSE)

S3 method for class 'conCovOpt'
print(x, ...)
S3 method for class 'conCovOpt'
plot(x, con = 1, cov = 1, ...)

Arguments

x A data.frame or truthTab. In the print- and plot-method: The output of
conCovOpt.

outcome A character vector of one or several factors in x.

type A character string specifying the data type; one of "cs", "mv", "fs". Must be
specified if the data type is not "cs".

maxCombs Maximal number of combinations that will be tested for optimality.

approx Logical; if TRUE, an exhaustive search is only approximated; if FALSE, an
exhaustive search is conducted.

allConCov Logical; if TRUE, all possible con-cov scores are stored as attribute "allCon-
Cov"; if FALSE, only the optimal con-cov scores are stored.

con, cov Numeric scalars between 0 and 1 indicating consistency and coverage thresholds
marking the area of "good" models in a square drawn in the plot. Points within
the square correspond to models reaching these thresholds.

... Currently not used.

Details

Prior to actual CNA or QCA analyses, conCovOpt calculates consistency and coverage optima for
models (i.e. atomic solution formulas, asf) of an outcome inferred from data x.

An ordered pair (con, cov) of consistency and coverage scores is a con-cov optimum for outcome
Y=k in data x iff it is not excluded (on principled grounds) for an asf of Y=k inferred from x to
reach (con, cov) but excluded to score better on one element of the pair and at least as well on the
other.

conCovOpt calculates con-cov optima by executing the following steps:

1. if x is a data frame, aggregate x in a truthTab,

2. build exo-groups with constant values in all factors other than the outcome,

3. assign output values to each exo-group that reproduce the behavior of outcome as closely as
possible,

4. calculate con-cov scores for each assignment resulting in step 3,

5. eliminate all non-optimal scores.

conCovOpt 5

In case of "cs" and "mv" data, at least one actual model (asf) inferrable from x and reaching an
optimum’s consistency and coverage scores is guaranteed to exist for every con-cov optimum. The
function DNFbuild can be used to build these optimal models. The same does not hold for "fs"
data. In case of "fs" data, it merely holds that the existence of a model reaching an optimum’s
consistency and coverage scores cannot be excluded prior to an actual application of cna.

Value

An object of class ’conCovOpt’. The exo-groups resulting from step 2 are stored as attribute
"exoGroups", the lists of output values resulting from step 3 are stored as attribute "reprodList"
(reproduction list), and all possible con-cov scores are stored as attribute "allConCov".

See Also

truthTab, selectMax, DNFbuild

Examples

(cco.irrigate <- conCovOpt(d.irrigate))
conCovOpt(d.irrigate, outcome = c("R","W"))
Plot method.
plot(cco.irrigate)
plot(cco.irrigate, con = .8, cov = .8)

dat1 <- d.autonomy[15:30, c("EM","SP","CO","AU")]
(cco1 <- conCovOpt(dat1, type = "fs", outcome = "AU"))

print(cco1, digits = 3, row.names = TRUE)
plot(cco1)

Exo-groups (configurations with constant values in all factors other than the outcome).
attr(cco1$A, "exoGroups")

Rep-list (list of values optimally reproducing the outcome).
attr(cco1$A, "reprodList")

allConCov (add all possible con-cov scores, not just optimal ones).
cco1_acc <- conCovOpt(dat1, type = "fs", outcome="AU", allConCov = TRUE)
attr(cco1_acc$A, "allConCov")
If the allConCov table has been built, it is passed to the output of selectMax().
sm1 <- selectMax(cco1_acc)
attr(sm1$A, "allConCov")

dat2 <- d.pacts
Maximal number of combinations exceeds maxCombs.
(cco2 <- conCovOpt(dat2, type = "fs", outcome = "PACT")) # Generates a warning
Increase maxCombs.
(cco2_full <- try(conCovOpt(dat2, type = "fs", outcome = "PACT",

maxCombs=1e+08))) # Takes long or fails due to memory shortage
Approximate an exhaustive search.

6 findOutcomes

(cco2_approx <- conCovOpt(dat2, type = "fs", outcome = "PACT", approx = TRUE))

findOutcomes Identify the factors that can possibly be modeled as outcomes prior to
running CNA

Description

Prior to running CNA (or any other configurational comparative method), findOutcomes identi-
fies those factors in data x that can be modeled as outcomes relative to specified consistency and
coverage thresholds con and cov.

Usage

findOutcomes(x, con = 1, cov = 1, ...)

Arguments

x A data.frame or truthTab; if x is of type multi-value ("mv") or fuzzy-set
("fs"), x must be a truthTab.

con, cov Numeric scalars between 0 and 1 specifying consistency and coverage thresh-
olds.

... Additional arguments passed to truthTab, for instance type, rm.dup.factors,
rm.dup.factors, or case.cutoff.

Details

findOutcomes first runs conCovOpt to find the con-cov optima for all factors in x and then ap-
plies selectMax to select those factors with con-cov optima meeting the consistency and coverage
thresholds specified in con and cov.

In case of "cs" and "mv" data, an actual model (asf) meeting the specified con and cov thresholds is
guaranteed to exist for every factor value with an entry TRUE in the outcome column. The function
DNFbuild can be used to build these models. The same does not hold for "fs" data. In case of "fs"
data, an entry TRUE in the outcome column simply means that the existence of a model reaching the
specified con and cov thresholds cannot be excluded prior to an actual application of cna.

Value

A data.frame.

See Also

conCovOpt, selectMax, selectCases, DNFbuild, full.tt

reprodAssign 7

Examples

CS data
findOutcomes(d.educate)
findOutcomes(d.educate, con = 0.75, cov = 0.75)

A causal chain.
target1 <- "(A + B <-> C)*(C + D <-> E)"
dat1 <- selectCases(target1, full.tt(target1))
findOutcomes(dat1)

A causal cycle.
target2 <- "(A + Y1 <-> B)*(B + Y2 <-> A)*(A + Y3 <-> C)"
dat2 <- selectCases(target2, full.tt(target2))
findOutcomes(dat2)

MV data
findOutcomes(mvtt(d.pban)) # no possible outcomes at con = cov = 1
findOutcomes(mvtt(d.pban), con = 0.8)
findOutcomes(d.pban, type = "mv", con = 0.8, cov= 0.8)

FS data
findOutcomes(fstt(d.jobsecurity)) # no possible outcomes at con = cov = 1
findOutcomes(d.jobsecurity, type = "fs", con = 0.86)

reprodAssign Build disjunctive normal forms realizing con-cov optima

Description

reprodAssign generates the output values of a disjunctive normal form (DNF) reaching a con-cov
optimum. DNFbuild builds a DNF realizing a targeted con-cov optimum; it only works for crisp-set
and multi-value data.

Usage

reprodAssign(x, outcome, id = xi$id)
DNFbuild(x, outcome, reduce = c("rreduce", "ereduce", "none"), id = xi$id)

Arguments

x An object produced by selectMax.

outcome A character string specifying one outcome in attr(x,"truthTab").

id An integer referring to the identifier of the targeted con-cov optimum.

8 reprodAssign

reduce A character string: if "rreduce" or "ereduce", the canonical DNF realizing
the con-cov optimum is freed of redundancies using rreduce or ereduce, re-
spectively; if "none", the unreduced canonical DNF is returned. reduce=TRUE
is interpreted as "rreduce", reduce=FALSE and reduce=NULL as "none".

Details

An atomic CNA model (asf) accounts for the behavior of the outcome in terms of a redundancy-free
DNF. reprodAssign generates the output values such a DNF has to return in order to reach a con-
cov optimum stored in an object of class ’selectMax’. If the data stored in attr(x,"truthTab")
is of type "cs" or "mv", DNFbuild builds a concrete DNF realizing the targeted con-cov optimum.
(For data of type "fs" an error is returned.) If reduce = "rreduce" (default), one (randomly se-
lected) redundancy-free DNF is built using rreduce; if reduce = "ereduce", all redundancy-free
DNFs are built using ereduce; if reduce = "none", the non-reduced canonical DNF is returned.
The argument id allows for selecting a targeted con-cov optimum via its identifier (see examples
below).

Value

reprodAssign: A vector of scores. DNFbuild: A Boolean formula in disjunctive normal form
(DNF).

See Also

conCovOpt, selectMax, condTbl, reprodAssign

Examples

CS data, d.educate
cco1 <- conCovOpt(d.educate)
best1 <- selectMax(cco1)
reprodAssign(best1, outcome = "E")
DNFbuild(best1, outcome = "E")
DNFbuild(best1, outcome = "E", reduce = FALSE) # canonical DNF
DNFbuild(best1, outcome = "E", reduce = "ereduce") # all redundancy-free DNFs
DNFbuild(best1, outcome = "E", reduce = "rreduce") # one redundancy-free DNF
DNFbuild(best1, outcome = "E", reduce = "none") # canonical DNF

Simulated mv data
datMV <- data.frame(
A = c(3,2,1,1,2,3,2,2,2,1,1,2,3,2,2,2,1,2,3,3,3,1,1,1,3,1,2,1,2,3,3,2,2,2,1,2,2,3,2,1,2,1,3,3),
B = c(1,2,3,2,1,1,2,1,2,2,3,1,1,1,2,3,1,3,3,3,1,1,3,2,2,1,1,3,3,2,3,1,2,1,2,2,1,1,2,2,3,3,3,3),
C = c(1,3,3,3,1,1,1,2,2,3,3,1,1,2,2,2,3,1,1,2,1,2,2,3,3,1,2,2,2,3,2,1,1,2,2,2,1,1,1,2,2,1,1,2),
D = c(3,1,2,2,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,1,1,1,1,1,2,2,2,2,2,3,1,1,1,1,1,2,2,2,2,2,3,3,3),
E = c(3,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3)

)

Apply conCovOpt and selectMax.
cco2 <- conCovOpt(mvtt(datMV))
best2 <- selectMax(cco2)

rreduce_ereduce 9

Apply DNFbuild to build one redundancy-free DNF reaching best2.
(formula1 <- DNFbuild(best2, outcome = "D=3"))
formula1 reaches the con-cov score stored in best2 for outcome "D=3".
condTbl(paste0(formula1, "<-> D=3"), mvtt(datMV))
Build all redundancy-free DNFs reaching best2.
DNFbuild(best2, outcome = "D=3", reduce = "ereduce")
Any factor value in datMV can be treated as outcome.
(formula2 <- DNFbuild(best2, outcome = "E=3"))
condTbl(paste0(formula2, "<-> E=3"), mvtt(datMV))
Any con-cov optimum in cco2 can be targeted via its identifier.
(formula3 <- DNFbuild(best2, outcome = "E=3", id = 508))
condTbl(paste0(formula3, "<-> E=3"), mvtt(datMV))

Simulated fs data
datFS <- data.frame(

A = c(.73, .85, .94, .36, .73, .79, .39, .82, .15, .12, .67, .27, .3),
B = c(.21, .03, .91, .64, .39, .12, .06, .7, .73, .15, .88, .73, .36),
C = c(.61, 0, .61, 1, .94, .15, .88, .27, .12, .12, .27, .15, .15),
D = c(.64, .67, .3, .06, .33, .03, .76, .94, .67, .76, .18, .27, .36),
E = c(.91, .94, .67, .85, .73, .79, .24, .09, .03, .21, .33, .36, .27)

)

Apply conCovOpt and selectMax.
cco3 <- conCovOpt(datFS, outcome = "E", type = "fs", allConCov = TRUE)
best3 <- selectMax(cco3)

Apply reprodAssign.
reprodAssign(best3, outcome = "E")
Select a con-cov optimum in cco3 via its identifier.
reprodAssign(best3, outcome = "E", id = 252)

DNFbuild does not work for fs data; it generates an error.
try(DNFbuild(best3, outcome = "E"))

rreduce_ereduce Eliminate redundancies from disjunctive normal forms (DNF)

Description

ereduce and rreduce implement different algorithmic approaches to eliminate redundancies from
disjunctive normal forms (DNF), i.e. disjunctions of conjunctions of literals. If there are several
minimal DNF, ereduce will return them all, while rreduce selects one at random.

Usage

ereduce(cond, x = full.tt(cond), full = !missing(x), simplify2constant = TRUE)
rreduce(cond, x = full.tt(cond), full = !missing(x), verbose = FALSE, maxiter = 1000,

simplify2constant = TRUE)

10 rreduce_ereduce

Arguments

cond A character string specifying a disjunctive normal form; can be either crisp-set
or multi-value.

x A truthTab or data.frame; can be either crisp-set or multi-value.

full Logical; if TRUE (the default), redundancies are eliminated relative to full.tt(x),
otherwise relative to x.

simplify2constant

Logical; if TRUE (the default), a tautologous or contradictory cond is reduced to
a constant "1" or "0", respectively. If FALSE, a minimal tautology or contradic-
tion, i.e. "A+a" or "A*a", will result.

verbose Logical; if TRUE, the reduction process will be traced in the console.

maxiter Maximal number of iterations.

Details

ereduce and rreduce eliminate conjuncts and disjuncts from a DNF cond as long as the consis-
tency and coverage of cond in data x does not change, that is, as long as the result of condition(cond,x)
remains the same. The only required argument is cond. If x is not provided, redundancies are elim-
inated relative to full.tt(cond). If x is provided and full = TRUE, redundancies are eliminated
relative to full.tt(x). If x is provided and full = FALSE, redundancies are eliminated relative to
x.

While ereduce generates all redundancy-free forms of cond, rreduce only returns one randomly
chosen one. rreduce is faster than ereduce, but often incomplete. ereduce, in a nutshell, searches
for minimal hitting sets in cond preventing cond from being false in data x.

Value

Redundancy-free disjunctive normal form (DNF).

See Also

full.tt, conCovOpt, DNFbuild.

Examples

Logical redundancies.
cond1 <- "A*b + a*B + A*C + B*C"
ereduce(cond1)
rreduce(cond1)
cond2 <- "A*b + a*B + A*B + a*b"
ereduce(cond2)
ereduce(cond2, simplify2constant = FALSE)

Redundancy elimination relative to simulated cs data.
dat1 <- data.frame(

A = c(0, 0, 0, 0, 1, 1, 0, 1),
B = c(0, 1, 0, 1, 1, 0, 0, 0),

selectMax 11

C = c(1, 1, 0, 1, 1, 0, 1, 1),
D = c(0, 0, 0, 0, 0, 1, 1, 1))

cco1 <- conCovOpt(dat1, "D")
best1 <- selectMax(cco1)
formula1 <- DNFbuild(best1, outcome = "D", reduce = FALSE)
ereduce
ereduce(formula1, dat1, full = FALSE)
rreduce
rreduce(formula1, dat1, full = FALSE)
rreduce(formula1, dat1, full = FALSE, verbose = TRUE)

Redundancy elimination relative to simulated mv data.
dat2 <- data.frame(
A = c(3,2,1,1,2,3,2,2,2,1,1,2,3,2,2,2,1,2,3,3,3,1,1,1,3,1,2,1,2,3,3,2,2,2,1,2,2,3,2,1,2,1,3,3),
B = c(1,2,3,2,1,1,2,1,2,2,3,1,1,1,2,3,1,3,3,3,1,1,3,2,2,1,1,3,3,2,3,1,2,1,2,2,1,1,2,2,3,3,3,3),
C = c(1,3,3,3,1,1,1,2,2,3,3,1,1,2,2,2,3,1,1,2,1,2,2,3,3,1,2,2,2,3,2,1,1,2,2,2,1,1,1,2,2,1,1,2),
D = c(3,1,2,2,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,1,1,1,1,1,2,2,2,2,2,3,1,1,1,1,1,2,2,2,2,2,3,3,3),
E = c(3,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3)

)
cco2 <- conCovOpt(dat2, "D=3", type="mv")
best2 <- selectMax(cco2)
formula2 <- DNFbuild(best2, outcome = "D=3", reduce = FALSE)
ereduce
ereduce(formula2, mvtt(dat2), full = FALSE)
rreduce
rreduce(formula2, mvtt(dat2), full = FALSE)

Any Boolean expressions.
cond <- "!(A*B*C)*!(a*b*c)" # or "A + B*!(D + e) <-> C"
x <- selectCases(cond)
cond <- cna:::getCond(x) # Returns a DNF equivalent to cond, but with many redundancies.
ereduce(cond)
rreduce(cond)

selectMax Select the con-cov optimum from a ’conCovOpt’ object that is best
according to a specified optimality criterion

Description

selectMax selects a con-cov optimum from a ’conCovOpt’ object that is best according to some
specified optimality criterion. multipleMax checks a ’selectMax’ object for multiple solutions
with identical values in the optimality criterion.

Usage

selectMax(x, crit = quote(con * cov), cond = quote(TRUE))
multipleMax(x, outcome)

12 selectMax

Arguments

x In selectMax: an object output by conCovOpt. In multipleMax: an object
output by selectMax.

crit A quoted expression specifying the optimality criterion (see examples).

cond A quoted expression specifying additional constraints imposed on the optimality
criterion (see examples).

outcome A character string specifying a single outcome in the original data.

Details

While conCovOpt identifies all con-cov optima in an analyzed data set, selectMax selects one con-
cov optimum from a ’conCovOpt’ object that is best according to the optimality criterion specified
in the argument crit. The default is to select a con-cov maximum: An ordered pair (con, cov)
of consistency and coverage scores is a con-cov maximum for outcome Y=k in data δ iff (con,
cov) is a con-cov optimum for Y=k in δ with highest product of consistency and coverage (con-cov
product). However, the argument crit allows for specifying any other optimality criterion, e.g.
pmin(con,cov),pmax(con,cov), etc. If the ’conCovOpt’ object contains multiple outcomes, the
selection of a best con-cov optimum is done separately for each outcome.

Whereas selectMax selects only one con-cov optimum satisfying crit, multipleMax selects all
elements in an allConCov list contained in the ’conCovOpt’ object reaching identical scores on the
optimality criterion. It is executed for one outcome only (see the examples below).

Via the column id in the output of selectMax it is possible to select one among many equally good
maxima, for instance, by means of reprodAssign (see the examples below).

Value

selectMax returns an object of class ’selectMax’.

multipleMax returns a data.frame.

See Also

conCovOpt, reprodAssign

See also examples in conCovOpt.

Examples

dat1 <- d.autonomy[15:30, c("EM","SP","CO","AU")]
(cco1 <- conCovOpt(dat1, type = "fs", outcome = "AU"))
selectMax(cco1)
selectMax(cco1, cond = quote(con > 0.95))
selectMax(cco1, cond = quote(cov > 0.98))
selectMax(cco1, crit = quote(pmin(con, cov)))
selectMax(cco1, crit = quote(pmax(con, cov)), cond = quote(cov > 0.9))

Multiple equally good maxima.
(cco2 <- conCovOpt(dat1, type = "fs", outcome = "AU", allConCov = TRUE))
(sm2 <- selectMax(cco2, cond = quote(con > 0.93)))

selectMax 13

multipleMax(sm2, "AU")
Each maximum corresponds to a different rep-assignment, which can be selected
using the id argument.
reprodAssign(sm2, "AU", id = 10)
reprodAssign(sm2, "AU", id = 11)
reprodAssign(sm2, "AU", id = 13)

Index

cna, 2, 5, 6
cnaOpt, 2
conCovOpt, 2, 3, 6, 8, 10, 12
condTbl, 2, 8

data.frame, 2, 4, 6
DNFbuild, 2, 5, 6, 10
DNFbuild (reprodAssign), 7

ereduce, 8
ereduce (rreduce_ereduce), 9

findOutcomes, 6
full.tt, 6, 10

multipleMax (selectMax), 11

plot.conCovOpt (conCovOpt), 3
print.conCovOpt (conCovOpt), 3

reprodAssign, 7, 8, 12
rreduce, 8
rreduce (rreduce_ereduce), 9
rreduce_ereduce, 9

selectCases, 6
selectMax, 2, 5–8, 11

truthTab, 2, 4–6

14

	cnaOpt
	conCovOpt
	findOutcomes
	reprodAssign
	rreduce_ereduce
	selectMax
	Index

