
cna: An R Package for Configurational Causal

Inference and Modeling

Michael Baumgartner

University of Bergen, Norway
Mathias Ambühl

Consult AG, Switzerland

Abstract

The R package cna provides comprehensive functionalities for causal inference and
modeling with Coincidence Analysis (CNA), which is a configurational comparative meth-
od of causal data analysis. In this vignette, we first review the theoretical and method-
ological foundation of CNA. Second, we introduce the data types processable by CNA,
the package’s core analytical functions with their arguments, and some auxiliary func-
tions for data simulations. Third, CNA’s output along with relevant fit parameters and
output attributes are discussed. Fourth, we provide guidance on how to interpret that
output and, in particular, on how to proceed in case of model ambiguities. Finally, some
considerations are offered on benchmarking the reliability of CNA.

Keywords: configurational comparative methods, set-theoretic methods, Coincidence Analysis,
Qualitative Comparative Analysis, INUS causation, Boolean causation.

1. Introduction

Since the mid-1980ies, different variants of configurational comparative methods (CCMs) have
gradually been added to the toolkit for causal data analysis in the social sciences. The most
prominent CCM is Qualitative Comparative Analysis (QCA) with its main variants crisp-
set QCA (csQCA) Ragin (1987), multi-value QCA (mvQCA) Cronqvist and Berg-Schlosser
(2009), and fuzzy-set QCA (fsQCA) Ragin (2008, 2009) (cf. also Thiem 2014 for an attempt
to unify these variants). Since its first introduction, QCA has gained considerable popularity
and has been applied in areas as diverse as social and political science, international rela-
tions, business administration, management, environmental science, evaluation science, and
public health (for an overview over corresponding publications and detailed references see the
bibliography section on the http://compasss.org website).

Coincidence Analysis (CNA) was added to the family of CCMs in Baumgartner (2009a; 2009b)
and substantively extended and reworked in Baumgartner and Ambühl (2018). There are two
key areas of difference between CNA and original variants of QCA, the algorithmic machinery
and the search target:

1. QCA (in its original form) builds causal models using Quine-McCluskey optimization
(QMC, Quine 1959; McCluskey 1965), which is an algorithm not designed for causal
inference and which, accordingly, gives rise to various problems when nonetheless im-
plemented for that purpose. For instance, data fragmentation forces QMC to draw on
counterfactual reasoning that goes beyond the data and sometimes requires assumptions

2 cna: Configurational Causal Inference and Modeling

contradicting the very causal structures under investigation (cf. Baumgartner 2015); or
QMC has built-in protocols for ambiguity reduction that are inadequate in the context
of causal discovery (cf. Baumgartner and Thiem 2017a). CNA, by contrast, is relying
on an algorithmic machinery that is tailor-made for causal inference and, consequently,
steers clear of the problems induced by QMC.

2. QCA searches for causal structures with single outcomes only; that is, it standardly
treats exactly one variable in processed data as endogenous. CNA, by contrast, can treat
any number of variables as endogenous and, hence, builds multi-outcome structures as
causal chains or common-cause structures.

In recent developments of QCA, these differences have been diminished. For instance, the
problems due to QMC have been alleviated by the development of an algorithm called en-
hanced QMC (eQMC, Duşa and Thiem 2015). The currently most dependable QCA program,
the QCApro package for R (Thiem 2018), implements eQMC in a way that avoids both re-
course to counterfactual reasoning and inadequate ambiguity reduction.1 Moreover, apart
from QCApro, also the QCA R package now provides functionalities for investigating the
causes of multiple outcomes (cf. also Thiem 2015). Still, no available QCA program follows
CNA in building causal models representing multi-outcome structures, in testing for structural
redundancies (section 5.5 below) that may arise when single-outcome models are combined
to multi-outcome ones, and in measuring the latter’s model fit.

Most importantly, substantial algorithmic differences remain between CNA and these latest
advancements of QCA. While QCA builds causal models from the top down by first identi-
fying maximal dependency structures and then gradually reducing them to minimal, that is,
redundancy-free ones, CNA (since Baumgartner and Ambühl 2018) uses a bottom-up approach
that progressively combines atomic structural components to complex but redundancy-free
structures. When applied to noise-free data, the two approaches yield the same results, but
when applied to noisy data, they tend to come apart. While the top-down approach runs a
risk of failing to eliminate all redundant elements from causal models and of abandoning an
analysis prematurely, the bottom-up approach is not affected by these problems.

In the broader methodological landscape, CCMs differ from other techniques as regression
analytical methods (RAMs) (e.g. Gelman and Hill 2007) or Bayes-nets methods (BNMs)
(e.g. Spirtes et al. 2000) in a number of respects. For instance, while RAMs and BNMs
search for causal dependencies among variables, CCMs search for causal dependencies among
concrete values of variables. More specifically, RAMs scrutinize covariation hypotheses as
“the more/less of X, the more/less of Y ” and BNMs analyze hypotheses about conditional
(in)dependencies as “X and Y can/cannot be rendered conditionally independent“. CCMs,
by contrast, study implication hypotheses as “X=χi is (non-redundantly) sufficient/necessary
for Y =γi”, where χi and γi are concrete values of X and Y . These types of hypotheses are
logically independent: certain values of X and Y may be implicationally dependent, while
X and Y themselves are covariationally or conditionally independent, or X and Y may be
covariationally and conditionally dependent, while none of their concrete values are implica-
tionally dependent (cf. Thiem and Baumgartner 2016; Thiem et al. 2016). Moreover, whereas

1The other available QCA R package—QCA (Duşa 2007)—also uses eQMC (among other algorithms) but,
unlike QCApro, still has default parameter settings that follow QMC’s (causally inadequate) protocol for
ambiguity reduction. All other QCA programs continue to rely on standard QMC: fs/QCA (Ragin 2014),
fuzzy (Longest and Vaisey 2008), Tosmana (Cronqvist 2011) and Kirq (Reichert and Rubinson 2014).

Michael Baumgartner, Mathias Ambühl 3

RAMs and BNMs quantify net effects and effect sizes,2 CCMs place a Boolean ordering on sets
of causes by grouping their elements conjunctively, disjunctively, and sequentially. In short,
RAMs, BNMs, and CCMs study different properties/aspects of causal structures: RAMs and
BNMs study statistical and probabilistic properties as characterized by statistical or proba-
bilistic theories of causation (Simon 1954; Suppes 1970), CCMs scrutinize Boolean properties
as described by regularity theories of causation (Mackie 1974).

The Boolean properties of causation encompass three complexity dimensions. The first is con-
junctivity: to bring about an effect, say, liberal democracy in early modern Europe (D=1),
different factors need to be instantiated (or not instantiated) jointly; for instance, according
to Downing’s (1992) theory of the origins of liberal democracy, a country must have a his-
tory of medieval constitutionalism (C=1) and absent military revolution (in the early modern
period) (R=0) (cf. Goertz 2006, 252-254). Only a coincident instantiation of the conjunc-
tion C=1 ∗ R=0 produces the effect D. Disjunctivity (or equifinality) is a second complexity
dimension: an effect can be brought about along alternative causal paths. Downing (1992,
78-79, 240) identifies four paths leading to R=0: a geography that deters invading armies
(G=1), commercial wealth (W =1), foreign resource mobilization (M=1), and foreign alliances
(A=1). Each condition in the disjunction G=1 + W =1 + M=1 + A=1 can bring about R=0 in-
dependently of the other conditions. The third complexity dimension is sequentiality: effects
tend to cause further effects, propagating causal influence along causal chains. In Downing’s
theory there are multiple chains, for instance, W =1 is causally relevant to R=0, which, in
turn, is causally relevant to D=1, or there is a chain from A=1 via R=0 to D=1. Overall, the
theory entails the following Boolean model (cf. Goertz 2006, 254), where “→” stands for the
Boolean operation of implication:

(G=1 + W =1 + M=1 + A=1 → R=0) ∗ (C=1 ∗ R=0 → D=1) (1)

The cna package is currently the only available software for configurational causal data anal-
ysis that builds complex models as (1). This vignette provides a detailed introduction to cna.
We first exhibit cna’s theoretical and methodological background. Second, we discuss the
main inputs of the package’s core function cna() along with numerous auxiliary functions
for data review and simulation. Third, the working of the algorithm implemented in cna() is
presented. Fourth, we explain cna()’s output along with relevant fit parameters and output
attributes. Fifth, we provide some guidance on how to interpret that output and, in particu-
lar, on how to proceed in case of model ambiguities. Finally, some considerations are offered
on benchmarking the reliability of cna().

2. CNA’s regularity theoretic background

Modern regularity theories of causation define causation in terms of Boolean difference-making
within a fixed causal context. To this end, they rely on the metaphysical background as-
sumption that causation ultimately is a deterministic dependence relation, meaning that the
indeterminism often encountered in ordinary data is due to our epistemic limitations and our
resulting inability to sufficiently control for confounding and noise. Against that metaphysical
background (not further discussed here), X=χi is more explicitly defined to be a regularity
theoretic cause of Y =γi if there exists a context F in which no alternative causes (i.e. no

2For effect size estimation using BNMs see, for example, the R package pcalg (Kalisch et al. 2012).

4 cna: Configurational Causal Inference and Modeling

causes not containing X=χi) of Y =γi are operative such that, in F , a change from X=χi to
X=χk, where χi 6= χk, is systematically associated with a change from Y =γi to Y =γk, where
γi 6= γk. If X=χi does not make a difference to Y =γi in any context F , X=χi is redundant to
account for Y =γi and, thus, no cause of Y =γi. The most influential theory defining causation
along these lines is Mackie’s (1974) INUS-theory. Refinements of it have been proposed by
Graßhoff and May (2001), Baumgartner (2008; 2013), and Baumgartner and Falk (2018).

To further clarify CNA’s regularity theoretic background, a number of preliminaries are re-
quired.

2.1. Factors and their values

As reflected in the types of hypotheses scrutinized by CNA, regularity theoretic causation
is a relation that holds between variables/factors taking on specific values. (We will use the
terms “variable” and “factor” interchangeably.) Factors represent categorical properties that
partition sets of units of observation (cases) either into two sets, in case of binary properties,
or into more than two (but finitely many) sets, in case of multi-value properties. Factors
representing binary properties can be crisp-set (cs) or fuzzy-set (fs); the former can take on
0 and 1 as possible values, whereas the latter can take on any (continuous) values from the
unit interval [0, 1]. Factors representing multi-value properties are called multi-value (mv)
factors; they can take on any of an open (but finite) number of possible values {0, 1, 2, . . . , n}.

Values of a cs or fs factor X can be interpreted as membership scores in the set of cases
exhibiting the property represented by X. A case of type X=1 is a full member of that
set, a case of type X=0 is a (full) non-member, and a case of type X=χi, 0 < χi < 1, is
a member to degree χi. An alternative interpretation, which lends itself particularly well
for causal modeling, is that “X=1” stands for the full presence of the property represented
by X, “X=0” for its full absence, and “X=χi” for its partial presence (to degree χi). By
contrast, the values of an mv factor X designate the particular way in which the property
represented by X is exemplified. For instance, if X represents the education of subjects,
X=2 may stand for “high school”, with X=1 (“no completed primary schooling”) and X=3
(“university”) designating other possible property exemplifications. Mv factors taking on one
of their possible values also define sets, but the values themselves must not be interpreted as
membership scores; rather they denote the relevant property exemplification.

As the explicit “Variable=value” notation yields convoluted syntactic expressions with in-
creasing model complexity, the cna package uses the following shorthand notation, which is
conventional in Boolean algebra: membership in a set is expressed by italicized upper case and
non-membership by lower case Roman letters. Hence, in case of cs and fs factors, we write
“X” for X=1 and “x” for X=0. It must be emphasized that, while this notation significantly
simplifies the syntax of Boolean models, it introduces a risk of misinterpretation, for it yields
that the factor X and its taking on the value 1 are both expressed by “X”. Disambiguation
must hence be facilitated by the concrete context in which “X” appears. Therefore, when-
ever we do not explicitly characterize italicized Roman letters as “factors”, we use them in
terms of the shorthand notation. In case of mv factors, value assignments to variables are
not abbreviated but always written out, using the “Variable=value” notation.

2.2. Boolean operations

Regularity theories spell out causation in terms of the Boolean operations of negation (¬X, or

Michael Baumgartner, Mathias Ambühl 5

Inputs Outputs

X Y ¬X X∗Y X + Y X → Y X ↔ Y

1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

Table 1: Classical Boolean operations applied to cs factors.

x), conjunction (X∗Y), disjunction (X +Y), implication (X → Y), and equivalence (X ↔ Y).
Negation is a unary truth function, the other operations are binary truth functions. That is,
they take one resp. two truth values as inputs and output a truth value. When applied to cs

factors, both their input and output set is {0, 1}. Negation is typically translated by “not”,
conjunction by “and”, disjunction by “or”, implication by “if . . . then”, and equivalence by “if
and only if (iff)”. Their classical definitions are given in Table 1.

These operations can be straightforwardly applied to mv factors as well, in which case they
amount to functions from the mv factors’ domain of values into the set {0, 1}. To illustrate,
assume that both X and Y are ternary factors with values from the domain {0, 1, 2}. The
negation of X=2, viz. ¬(X=2), then returns 1 iff X is not 2, meaning iff X is 0 or 1. X=2∗Y =0
yields 1 iff X is 2 and Y is 0. X=2 + Y =0 returns 1 iff X is 2 or Y is 0. X=2 → Y =0 yields
1 iff either X is not 2 or Y is 0. X=2 ↔ Y =0 issues 1 iff either X is 2 and Y is 0 or X is not
2 and Y is not 0.

For fs factors whose values are interpreted as membership scores in fuzzy sets, the classical
Boolean operations must be translated into fuzzy logic. There exist numerous systems of
fuzzy logic (for an overview cf. Hájek 1998), each of which comes with its own rendering
of Boolean operations. In the context of CCMs, the following fuzzy-logic renderings have
become standard: negation ¬X is translated in terms of 1 − X, conjunction X∗Y in terms
of the minimum membership score in X and Y , i.e., min(X, Y), disjunction X + Y in terms
of the maximum membership score in X and Y , i.e., max(X, Y), an implication X → Y is
taken to express that the membership score in X is smaller or equal to Y (X ≤ Y), and an
equivalence X ↔ Y that the membership scores in X and Y are equal (X = Y).

Based on the implication operator, the notions of sufficiency and necessity are defined, which
are the two Boolean dependencies exploited by regularity theories:

Sufficiency X is sufficient for Y iff X → Y (or equivalently: x + Y ; and colloquially: “if X

is given, then Y is given”);

Necessity X is necessary for Y iff Y → X (or equivalently: ¬X → ¬Y or y + X; and
colloquially: “if Y is given, then X is given”).

Analogously for more complex expressions:

• X=3 ∗Z=2 is sufficient for Y =4 iff X=3∗Z=2 → Y =4;

• X=3 + Z=2 is necessary for Y =4 iff Y =4 → X=3 + Z=2;

• X=3 + Z=2 is sufficient and necessary for Y =4 iff X=3 + Z=2 ↔ Y =4.

6 cna: Configurational Causal Inference and Modeling

2.3. Boolean causal models

Boolean dependencies of sufficiency and necessity amount to mere patterns of co-occurrence
of factor values; as such, they carry no causal connotations whatsoever. In fact, most Boolean
dependencies do not reflect causal dependencies. To mention just two well-rehearsed examples:
the sinking of a (properly functioning) barometer is sufficient for bad weather but it does not
cause the weather; or whenever the street is not wet, it does not rain, hence, wetness of
the street is necessary for rainfall but certainly not causally relevant for it. At the same
time, some dependencies of sufficiency and necessity are in fact due to underlying causal
dependencies: rainfall is sufficient for wet streets and also a cause thereof, or the presence of
oxygen is necessary for fires and also a cause thereof.

That means the crucial problem to be solved by a regularity theory is to filter out those
Boolean dependencies that are due to underlying causal dependencies and are, hence, amenable
to a causal interpretation. The main reason why most structures of Boolean dependen-
cies do not reflect causation is that they tend to contain different types of redundancies—
redundancies in sufficiency and necessity relations but also structural redundancies (section
5.5)—, whereas structures of causal dependencies do not feature redundant elements. Every
part of a causal structure makes a difference to the behavior of the factors in that struc-
ture in at least one context F . Accordingly, to filter out the causally interpretable Boolean
dependencies, regularity theories rely on a non-redundancy principle:

Non-redundancy (NR) A Boolean dependency structure is causally interpretable only if
it does not contain any redundant elements.

Applied to sufficient and necessary conditions, (NR) entails that whatever can be removed
from such conditions without affecting their sufficiency and necessity is not a difference-maker
and, hence, not a cause (Baumgartner 2015). Causes are elements of sufficient and necessary
conditions for which at least one causal context F exists in which they are indispensable
to account for a scrutinized outcome, because no alternative causes are operative in F . Or
in Mackie’s (1974, 62) words, causes are at least INUS conditions, viz. insufficient but non-
redundant parts of unnecessary but sufficient conditions.

Modern regularity theories formally cash this idea out on the basis of the notion of a minimal
theory, which essentially amounts to an expression of a Boolean dependency structure that is
rigorously freed of all redundancies. To do justice to the different types of redundancies that
Boolean dependency structures may be affected by, the complete definition of the notion of a
minimal theory is intricate and beyond the scope of this vignette (for the latest definition cf.
Baumgartner and Falk 2018). For our subsequent purposes, the following simplified definition
will suffice: an atomic minimal theory of an outcome Y is a minimally necessary disjunction
(in disjunctive normal form) of minimally sufficient conditions of Y .

Minimal sufficiency A conjunction Φ of coincidently instantiated factor values (e.g., X1
∗X2

∗

. . . ∗Xn) is a minimally sufficient condition of Y iff Φ → Y and there does not exist a
proper part Φ′ of Φ such that Φ′ → Y , where a proper part Φ′ of Φ is the result of
eliminating one or more conjuncts from Φ.

Minimal necessity A disjunction Ψ of minimally sufficient conditions (e.g., Φ1 + Φ2 + . . . +
Φn) is a minimally necessary condition of Y iff Y → Ψ and there does not exist a

Michael Baumgartner, Mathias Ambühl 7

proper part Ψ′ of Ψ such that Y → Ψ′, where a proper part Ψ′ of Ψ is the result of
eliminating one or more disjuncts from Ψ.

An atomic minimal theory of Y states an equivalence of the form Ψ ↔ Y . Atomic minimal
theories represent single-outcome structures. Conjunctions of atomic minimal theories that
are themselves redundancy-free represent multi-outcome structures and are called complex
minimal theories.

Minimal theories connect Boolean dependencies, which—by themselves—are purely functional
and non-causal, to causal dependencies: only those Boolean dependencies are causally inter-
pretable that appear in minimal theories. That does not mean that every minimal theory
inferred from a data set δ is guaranteed to express the δ-generating causal structure. As we
shall see below, it frequently happens that multiple minimal theories can be inferred from
δ, in which case only one of these theories may truthfully reflect the δ-generating structure.
Or, as shown in Baumgartner (2013, 93-95), if the analyzed set of factors is underspecified,
minimal theories may be unfaithful to the δ-generating structure. It does mean, though, that
minimal theories inferred from a data set δ express the empirical evidence on causal depen-
dencies contained in δ. In other words, the data from which a minimal theory Ψ ↔ Y has
been inferred contain evidence—although possibly indeterminate or fallacious evidence—for
the causal relevance of all factors in Ψ.

To further clarify the causal interpretation of minimal theories, consider the following complex
example:

(A∗b + a∗B ↔ C) ∗ (C∗f + D ↔ E) (2)

Functionally put, (2) claims that, in the analyzed data δ, the presence of A in conjunction
with the absence of B (i.e., b) as well as a in conjunction with B are two alternative minimally
sufficient conditions of C, and that C∗f and D are two alternative minimally sufficient condi-
tions of E. Moreover, both A∗b + a∗B and C∗f + D are claimed to be minimally necessary
for C and E in δ, respectively. Against the background of a regularity theory, these functional
relations entail the following causal claims:

1. the factor values listed on the left-hand sides of “↔” are causally relevant for the factor
values on the right-hand sides;

2. A and b are jointly relevant to C and located on a causal path that differs from the
path on which the jointly relevant a and B are located; C and f are jointly relevant to
E and located on a path that differs from D’s path;

3. there is a causal chain from A∗b and a∗B via C to E.

More generally put, minimal theories ascribe causal relevance to their constitutive factor
values, place them on the same or different paths to the outcomes, and order them sequentially.
That is, they render transparent the three Boolean complexity dimensions of causality—which
is why they are also referred to as Boolean causal models.

Two fundamentals of the interpretation of Boolean causal models must be emphasized. First,
ordinary Boolean models make claims about causal relevance but not about causal irrelevance.
With some additional constraints that are irrelevant for our current purposes (for details cf.
Baumgartner and Falk 2018), a regularity theory defines X1 to be a cause of an outcome Y iff
there exists a difference-making context F for X1 with respect to Y —meaning that in F (in

8 cna: Configurational Causal Inference and Modeling

which no alternative causes of Y are operative) X1
∗F and x1

∗F are systematically associated
with different Y -values. While establishing causal relevance merely requires demonstrating
the existence of at least one such difference-making context, establishing causal irrelevance
would require demonstrating the non-existence of such a context, which is impossible on
the basis of the non-exhaustive data samples that are typically analyzed in real-life studies.
Correspondingly, the fact that G does not appear in (2) does not imply G to be causally
irrelevant to C or E. The non-inclusion of G simply means that the data from which (2) has
been derived do not contain evidence for the causal relevance of G. However, future research
having access to additional data might reveal the existence of a difference-making context for
G and, hence, entail the causal relevance of G to C or E after all.

Second, as anticipated above, Boolean models are to be interpreted relative to the data set δ

from which they have been derived. They do not purport to reveal all Boolean properties of
the data-generating causal structure. That is, Boolean models typically are incomplete. They
only detail those causally relevant factor values along with those conjunctive, disjunctive,
and sequential groupings for which δ contains evidence. By extension, two different Boolean
models mi and mj derived from two different data sets δi and δj are in no disagreement if
the causal claims entailed by mi and mj stand in a subset relation.

In the CCM literature, yet another term that signifies essentially the same as minimal theory
or Boolean causal model has become customary: solution formula. There is only a slight
meaning difference. While the terms minimal theory and Boolean model refer to any expres-
sions of the form (Ψ1 ↔ Y1) ∗ . . . ∗ (Ψn ↔ Yn), solution formula refers, more precisely, only
to those expressions of this form that are output by a CCM. That is, if Ψ1 ↔ Y is issued by
CNA, it is also called an atomic solution formula (asf), whereas (Ψ1 ↔ Y) ∗ (Ψ2 ↔ Z) as
issued by CNA is called a complex solution formula (csf).

3. The input of CNA

The goal of CNA is thus to output all asf and csf that fit an input of configurational data
(relative to provided thresholds of model fit). The algorithm performing this task in the cna
package is implemented in the function cna(). Its most important arguments are:

cna(x, type, ordering = NULL, strict = FALSE, con = 1, cov = 1, con.msc = con,

notcols = NULL, maxstep = c(3, 3, 9), inus.only = FALSE, suff.only = FALSE,

what = if (suff.only) "m" else "ac", details = FALSE)

This section explains most of these inputs and introduces some auxiliary functions. The
arguments inus.only, what, and details will be discussed in section 5.

3.1. Data

Configurational data δ have the form of m × k matrices, where m is the number of units of
observation (cases) and k is the number of factors in δ. Data processed by CNA can either be
of type “crisp-set” (cs), “multi-value” (mv) or “fuzzy-set” (fs). Data that feature cs factors
only are cs. If the data contain at least one mv factor, they count as mv. Data featuring at
least one fs factor are fs.3 Examples of each data type are given in Table 2.

3Mixing mv and fs factors in one analysis is (currently) not supported.

Michael Baumgartner, Mathias Ambühl 9

A B C D

c1 0 0 0 0
c2 0 1 0 0
c3 1 1 0 0
c4 0 0 1 0
c5 1 0 0 1
c6 1 0 1 1
c7 0 1 1 1
c8 1 1 1 1

(a) cs data

A B C D

c1 1 3 3 1
c2 2 2 1 2
c3 2 1 2 2
c4 2 2 2 2
c5 3 3 3 2
c6 2 4 3 2
c7 1 3 3 3
c8 1 4 3 3

(b) mv data

A B C D E

c1 0.17 0.02 0.15 0.26 0.09
c2 0.97 0.23 0.73 0.08 0.10
c3 0.10 0.72 0.61 0.38 0.08
c4 0.64 0.73 0.82 0.12 0.66
c5 0.11 0.30 0.06 0.99 0.78
c6 0.69 0.23 0.91 0.98 0.84
c7 0.31 0.80 0.62 0.65 0.74
c8 0.65 0.87 0.92 0.82 0.85

(c) fs data

Table 2: Data types processable by CNA.

Data is given to the cna() function via the argument x, which is a data frame or an ob-
ject of class “truthTab” as output by the truthTab() function (see section 3.1.1 below).
The cna package contains a number of exemplary data sets from published CCM stud-
ies: d.autonomy, d.educate, d.irrigate, d.jobsecurity, d.minaret, d.pacts, d.pban,
d.performance, d.volatile, d.women. For details on their contents and sources, see the cna
reference manual. After having loaded the cna package, all of them are directly (i.e. without
separate loading) available for processing:

R> library(cna)

R> cna(d.educate)

R> cna(d.women)

If the data are not of type cs, cna() must be told explicitly what type of data x contains
using the type argument, which takes the values "mv" for mv data and "fs" for fs data.
The functions mvcna(x, ...) and fscna(x, ...) are available as shorthands for cna(x,

type = "mv", ...) and cna(x, type = "fs", ...), respectively.

R> cna(d.jobsecurity, type = "fs")

R> fscna(d.jobsecurity)

R> cna(d.pban, type = "mv")

R> mvcna(d.pban)

Truth tables

To facilitate the reviewing of data, the truthTab() function assembles cases with identical
configurations in a table called a truth table.4

truthTab(x, type = c("cs", "mv", "fs"), case.cutoff = 0)

4Note that a truth table is a very different type of object in the context of CNA than it is in the context of
QCA. While a QCA truth table indicates for every minterm (which is a configuration of all exogenous factors)
whether it is sufficient for the outcome, a CNA truth table is simply an integrated representation of the data
that lists all configurations exactly once. A CNA truth table does not express relations of sufficiency.

10 cna: Configurational Causal Inference and Modeling

The first input x is a data frame or matrix. The function then merges multiple rows of
x featuring the same configuration into one row, such that each row of the resulting table
corresponds to one determinate configuration of the factors in x. The number of occurrences
of a configuration and an enumeration of the cases instantiating it are saved as attributes “n”
and “cases”, respectively. When not applied to cs data, the data type must be specified with
the type argument. Alternatively, the shorthand functions cstt(x), mvtt(x) and fstt(x)

are available.

R> truthTab(d.women)

R> mvtt(d.pban)

Finally, truthTab() provides a numeric argument called case.cutoff, which allows for set-
ting a minimum frequency cutoff determining that configurations with less instances in the
data are not included in the truth table and the ensuing analysis. For instance, truthTab(x,

case.cutoff = 3) entails that configurations that are instantiated in less than 3 cases are
excluded.

Truth tables produced by truthTab() can be directly passed to cna(). Moreover, as truth
tables generated by truthTab are objects that are very particular to the cna package, the
function tt2df() is available to transform truth tables back into ordinary R data frames.

R> pact.tt <- truthTab(d.pacts, type = "fs", case.cutoff = 2)

R> tt2df(pact.tt)

Data simulations

The cna package provides extensive functionalities for data simulations—which, in turn, are
essential for inverse search trials benchmarking e.g. the correctness of CNA’s output (see
section 7). In a nutshell, the functions allCombs() and full.tt() generate the space of
all logically possible configurations over a given set of factors, selectCases() selects, from
this space, the configurations that are compatible with a data-generating causal structure,
which, in turn, can be randomly drawn by randomAsf() and randomCsf(), makeFuzzy()

introduces noise into that data, and some() randomly selects cases, for instance, to produce
data fragmentation.

More specifically, allCombs(x) takes an integer vector x as input and generates a data frame
of all possible value configurations of length(x) factors, the first factor having x[1] values,
the second x[2] values etc. The factors are labeled using capital letters in alphabetical order.
Analogously, but more flexibly, full.tt(x) generates a truthTab with all logically possible
value configurations of the factors defined in the input x, which can be a truthTab, a data
frame, an integer, a list specifying the factors’ value ranges, or a character vector featuring
all admissible factor values.

R> allCombs(c(2, 2, 2)) - 1

R> allCombs(c(3, 4, 5))

R> full.tt("A + B*c")

R> full.tt(6)

R> full.tt(list(A = 1:2, B = 0:1, C = 1:4))

Michael Baumgartner, Mathias Ambühl 11

The input of selectCases(cond, x) is a character string cond specifying a Boolean function,
which typically (but not necessarily) expresses a data-generating causal structure, as well as,
optionally, a data frame or truthTab x. If x is specified, the function selects the cases that
are compatible with cond from x; if x is not specified, it selects from full.tt(cond). It
is possible to randomly draw cond using randomAsf(x) or randomCsf(x), which generate
random atomic and complex solutions formulas, respectively, from a data frame or truthTab

x.

R> dat1 <- allCombs(c(2, 2, 2)) - 1

R> selectCases("A + B <-> C", dat1)

R> selectCases("(h*F + B*C*k + T*r <-> G)*(A*b + H*I*K <-> E)")

R> target <- randomCsf(full.tt(6))

R> selectCases(target)

The closely related function selectCases1(cond, x, con = 1, cov = 1) additionally al-
lows for providing consistency (con) and coverage (cov) thresholds (see section 3.2), such that
some cases that are incompatible with cond—viz. outliers—are also selected, as long as cond

still meets con and cov in the resulting data. Thereby, the existence of outliers is simulated.

R> dat2 <- full.tt(list(EN = 0:2, TE = 0:4, RU = 1:4))

R> selectCases1("EN=1*TE=3 + EN=2*TE=0 <-> RU=2", dat2, con = .75, cov = .75)

makeFuzzy(x, fuzzvalues = c(0, 0.05, 0.1)) generates fs data by simulating the ad-
dition of random noise from the uncontrolled causal background to a cs data frame x. In
addition to x, it takes as input a vector of fuzzvalues to be randomly added to the 0’s and
subtracted from the 1’s in x.

R> makeFuzzy(selectCases("Hunger + Heat <-> Run"),

+ fuzzvalues = seq(0, 0.4, 0.05))

Finally, some(x, n = 10, replace = TRUE) randomly selects n cases from a data frame or
truthTab x, with or without replacement. If x features all configurations that are compatible
with a data-generating structure and n < nrow(x), the data frame or truthTab issued by
some() is fragmented, meaning it does not contain all empirically possible configurations. For
example:

R> dat3 <- allCombs(c(3, 4, 5))

R> dat4 <- selectCases("A=1*B=3 + A=3 <-> C=2", mvtt(dat3))

R> some(dat4, n = 10, replace = FALSE)

3.2. Consistency and coverage

As real-life data tend to feature noise induced by unmeasured causes of endogenous factors,
strictly sufficient or necessary conditions for an outcome often do not exist. To approximate
the deterministic dependency structures that figure in the regularity theoretic definition of
causation, Ragin (2006) imported so-called consistency and coverage measures (with values
from the interval [0, 1]) into the QCA protocol. Both of these measures are also serviceable for

12 cna: Configurational Causal Inference and Modeling

the purposes of CNA. Informally put, consistency reflects the degree to which the behavior
of an outcome obeys a corresponding sufficiency or necessity relationship or a whole model,
whereas coverage reflects the degree to which a sufficiency or necessity relationship or a
whole model accounts for the behavior of the corresponding outcome. As the implication
operator underlying the notions of sufficiency and necessity is defined differently in classical
and in fuzzy logic, the two measures are defined differently for crisp-set and multi-value data
(which both have a classical footing), on the one hand, and fuzzy-set data, on the other.
Cs-consistency (concs) of X → Y is defined as the number of cases featuring X∗Y divided by
the number of cases featuring X, and cs-coverage (covcs) of X → Y amounts to the number
of cases featuring X∗Y divided by the number of cases featuring Y (where | . . . | represents
the cardinality of the set of cases instantiating the corresponding expression):

concs(X → Y) =
|X∗Y |

|X|
covcs(X → Y) =

|X∗Y |

|Y |

Fs-consistency (confs) and fs-coverage (covfs) of X → Y are defined as follows, where n is
the number of cases in the data:

confs(X → Y) =

∑n
i=1 min(Xi, Yi)

∑n
i=1 Xi

covfs(X → Y) =

∑n
i=1 min(Xi, Yi)

∑n
i=1 Yi

Although defined differently, the cs and fs variants of these measures are not logically inde-
pendent: concs and covcs are special cases of confs and covfs where all membership scores are
equal to 0 or 1. As the data type processed in a concrete analysis determines the appropriate
consistency and coverage measures, we will henceforth not explicitly distinguish between the
cs and fs measures.

Consistency and coverage thresholds can be given to the cna() function using the arguments
con.msc, con, and cov that take values from the interval [0, 1]. con.msc sets the consistency
threshold for minimally sufficient conditions (msc), con does the same for asf and csf, while
cov sets the coverage threshold for asf and csf (no coverage threshold is imposed on msc). As
illustrated on pp. 16-17 of the cna reference manual, setting different consistency thresholds
for msc and asf/csf can enhance the informativeness of cna()’s output in certain cases but
is non-standard. The standard setting is con = con.msc.

The default numeric value for all thresholds is 1, i.e. perfect consistency and coverage. Con-
trary to QCA, which often returns solutions that do not comply with the chosen consistency
threshold and which does not impose a coverage threshold at all, CNA uses consistency and
coverage as authoritative model building criteria such that, if they are not met, CNA abstains
from issuing solutions. That means, if the default thresholds are used, cna() will only output
perfectly consistent msc, asf, and csf and only perfectly covering asf and csf.

Frequently, though, the default thresholds will not yield any solution formulas—due to noise
and outliers. In such cases, con and cov may be gradually lowered (e.g. in steps of 0.1) until
cna() builds solution formulas. For example, by lowering con to 0.8 in a cs analysis, cna()

is given permission to treat X as sufficient for Y , even though in 20% of the cases X is not
associated with Y . Or by lowering cov to 0.8 in an fs analysis, cna() is allowed to treat X

as necessary for Y , even though the sum of the membership scores in Y over all cases in the
data exceeds the sum of the membership scores in min(X, Y) by 20%.

To illustrate, cna() does not build solutions for the d.jobsecurity data at the following con

and cov thresholds:

Michael Baumgartner, Mathias Ambühl 13

R> fscna(d.jobsecurity, con = 1, cov = .9)

R> fscna(d.jobsecurity, con = .9, cov = 1)

R> fscna(d.jobsecurity, con = .9, cov = .9)

But if con is lowered further, multiple equally well fitting solutions are issued (the function
csf() used below merely extracts the csf from a cna() solution object; see section 5):

R> ana.job.1 <- fscna(d.jobsecurity, con = .8, cov = .9)

R> printCols <- c("condition", "consistency", "coverage")

R> csf(ana.job.1)[printCols]

condition consistency coverage

1 S*R + C*L + C*l <-> JSR 0.804 0.910

2 C*L + C*l + c*R <-> JSR 0.808 0.902

3 S*R + C*V + s*C*v <-> JSR 0.825 0.914

4 c*R + C*V + s*C*v <-> JSR 0.822 0.912

5 S*R + C*L + s*C*r <-> JSR 0.804 0.910

Lowering con and cov must be done with great caution, for the lower these thresholds, the
higher the chance that causal fallacies are committed, i.e. that spurious associations are
mistaken for causal ones. Neither threshold should be lowered below 0.75. If cna() does
not find solutions at con = cov = .75, the corresponding data feature such a high degree of
noise that causal inferences become too hazardous (cf. Baumgartner and Ambühl 2018).

3.3. Ordering

CNA does not need to be told which factors in the analyzed data δ are endogenous (i.e.
effects) and which ones are exogenous (i.e. causes). It attempts to infer that from δ. But if
prior causal knowledge is available as to which factors can figure as effects and which ones
cannot, this information can be given to CNA via a causal ordering. A causal ordering is a
relation Xi ≺ Xj defined on the factors in δ entailing that Xj cannot be a cause of Xi (e.g.
because Xi is instantiated temporally before Xj). That is, an ordering excludes certain causal
dependencies but does not stipulate any. If an ordering is provided, CNA only searches for
Boolean models in accordance with the ordering; if no ordering is provided, CNA treats all
values of the factors in δ as potential outcomes and explores whether a causal model for them
can be inferred.

An ordering is given to cna() via the argument ordering, which takes as value a list of
character vectors specifying the causal ordering of the factors in x. For example, ordering =

list(c("A","B"),"C") determines that C is causally located after A and B (i.e. A, B ≺ C),
meaning that C is not a potential cause of A and B. The latter are located on the same
level of the ordering, for A and B are unrelated by ≺, whereas C is located on a level that
is downstream of the A, B-level. cna() then only checks whether values of A and B can be
modeled as causes of values of C; the test for a causal dependency in the upstream direction is
skipped. If the argument ordering is not specified, cna() searches for dependencies between
all factors in x. An ordering does not need to explicitly mention all factors in x. If only a
subset of the factors are included in the ordering, the non-included factors are entailed to be
causally before the included ones. Hence, ordering = list("C") means that C is causally
located after all other factors in x.

14 cna: Configurational Causal Inference and Modeling

Additionally, the logical argument strict is available. It determines whether the elements
of one level in an ordering can be causally related or not. For example, if ordering =

list(c("A","B"),"C") and strict = TRUE, then A and B are excluded to be causally re-
lated and cna() skips corresponding tests. By contrast, if ordering = list(c("A","B"),"C")

and strict = FALSE, then cna() also searches for dependencies among A and B.

Let us illustrate with the data set d.autonomy. Relative to the following function call, which
stipulates that AU cannot be a cause of EM, SP , and CO and that the latter factors are not
mutually causally related, cna() infers that SP is causally relevant to AU (i.e. SP ↔ AU):

R> dat.aut.1 <- d.autonomy[15:30, c("AU","EM","SP","CO")]

R> ana.aut.1 <- fscna(dat.aut.1, ordering = list(c("EM","SP","CO"), "AU"),

+ strict = TRUE, con = .91, cov = .91)

R> csf(ana.aut.1)[printCols]

condition consistency coverage

1 SP <-> AU 0.935 0.915

If we set strict to FALSE and, thereby, allow for causal dependencies among EM, SP , and
CO, it turns out that SP not only causes AU , but, on another causal path, also makes a
difference to EM :

R> ana.aut.2 <- fscna(dat.aut.1, ordering = list(c("EM","SP","CO"), "AU"),

+ strict = FALSE, con = .91, cov = .91)

R> csf(ana.aut.2)[printCols]

condition consistency coverage

1 (SP <-> AU)*(SP + CO <-> EM) 0.912 0.915

3.4. Maxstep

As anticipated in section 1 and as will be exhibited in more detail in section 4, cna() builds
minimally necessary disjunctions of minimally sufficient conditions (i.e. asf) from the bottom
up by gradually permutating and testing conjunctions and disjunctions of increasing complex-
ity for sufficiency and necessity. The combinatorial search space that this algorithm has to
scan depends on a variety of different aspects, for instance, on the number of factors in x, on
the number of values these factors can take, on the number and length of the msc recovered
in the first computational phase, etc. As the search space may be too large to be exhaustively
scanned in reasonable time, the argument maxstep allows for setting an upper bound for the
complexity of the generated asf. maxstep takes a vector of three integers c(i, j, k) as input,
entailing that the generated asf have maximally j disjuncts with maximally i conjuncts each
and a total of maximally k factors. The default is maxstep = c(3,3,9). The user can set it
to any complexity level if computational time is not an issue.

The maxstep argument is particularly relevant for the analysis of data featuring severe model
ambiguities. A telling case in point is the data set d.volatile. At the default maxstep,
cna() recovers 416 csf. By increasing maxstep, this number increases rapidly (from 2860 to
4264 to 30012 csf).

Michael Baumgartner, Mathias Ambühl 15

R> cna(d.volatile, ordering = list("VO2"))

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(4,3,10))

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(4,3,11))

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(4,4,11))

If the values of maxstep are further increased, the analysis will quickly fail to terminate in
reasonable time. When a complete analysis cannot be completed, cna() can be told to only
search for minimally sufficient conditions (msc) by setting the argument suff.only to its
non-default value TRUE. As the search for msc is the part of a CNA analysis that is least
computationally demanding, it will typically terminate quickly and, thus, shed some light on
the dependencies among the factors in x even when a complete analysis is infeasible.

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(8,10,40),

+ suff.only = TRUE)

While the maxstep argument is very valuable for controlling the search space in case of large
and ambiguous data sets, it also comes with a pitfall: it may happen that cna() fails to
find a model because of a maxstep that is too low. An example is d.women. At the default
maxstep, cna() does not build a solution, but if maxstep is increased, two solutions with
perfect consistency and coverage are found.

R> ana.wom.1 <- cna(d.women)

R> csf(ana.wom.1)[printCols]

[1] condition consistency coverage

<0 rows> (or 0-length row.names)

R> ana.wom.2 <- cna(d.women, maxstep = c(3,4,10))

R> csf(ana.wom.2)[printCols]

condition consistency coverage

1 WS + ES*WM + es*LP + QU*LP <-> WNP 1 1

2 WS + ES*WM + QU*LP + WM*LP <-> WNP 1 1

In sum, there are two possible reasons for why cna() fails to build a solution: (i) the chosen
maxstep is too low; (ii) the chosen con and/or cov values are too high, meaning the processed
data x are too noisy. Accordingly, in case of a null result, two paths should be explored (in
that order): (i) gradually increase maxstep; (ii) gradually lower con and cov, as described in
section 3.2 above.

3.5. Notcols

In classical Boolean logic, the law of Contraposition ensures that an expression of type Ψ ↔ Y

is equivalent to the expression that results from negating both sides of the double arrow:
¬Ψ ↔ ¬Y . Applied to the context of configurational causal modeling that entails that an
asf for Y can be transformed into an asf for the negation of Y , viz. y, based on logical
principles alone, i.e. without a separate data analysis. However, that transformability only

16 cna: Configurational Causal Inference and Modeling

holds for asf with perfect consistency and coverage (con = cov = 1) that are inferred from
exhaustive (non-fragmented) data (see section 5.3 for details on exhaustiveness). If an asf of
an outcome Y does not reach perfect consistency or coverage or is inferred from fragmented
data, identifying the causes of y requires a separate application of cna() explicitly targeting
the causes of the negated outcome.

To this end, the argument notcols allows for negating the values of factors in cs and fs

data (in case of mv data, cna() automatically searches for models of all possible values of
endogenous factors, thereby rendering notcols redundant). If notcols = "all", all factors
are negated, i.e. their membership scores i are replaced by 1−i. If notcols is given a character
vector of factors in the data, only the factors in that vector are negated. For example, notcols

= c("A", "B") determines that only factors A and B are negated.

When processing cs or fs data, CNA should first be applied to recover causal models for the
positive outcomes. If resulting asf and csf do not reach perfect consistency, coverage, and
exhaustiveness scores, a second CNA should be run negating the values of all factors that
have been modeled as outcomes in the first CNA. To illustrate, we revisit our analyses of
d.jobsecurity from section 3.2, which identified JSR as outcome, and of d.autonomy from
section 3.3, which identified AU and EM as outcomes.

R> fscna(d.jobsecurity, con = .8, cov = .9, notcols = "JSR")

R> fscna(dat.aut.1, ordering = list(c("EM","SP","CO"), "AU"),

+ strict = FALSE, con = .88, cov = .82, notcols = c("AU", "EM"))

4. The CNA algorithm

This section explains the working of the algorithm implemented in the cna() function. We
first provide an informal summary and then a detailed outline in four stages. The aim of
cna() is to find all msc, asf, and csf that meet con.msc, con and cov in the input data x in
accordance with ordering and maxstep. The algorithm starts with single factor values and
tests whether they meet con.msc; if that is not the case, it proceeds to test conjunctions of
two factor values, then to conjunctions of three, and so on. Whenever a conjunction meets
con.msc (and no proper part of it has previously been identified to meet con.msc), it is
automatically a minimally sufficient condition msc, and supersets of it do not need to be
tested any more. Then, it tests whether single msc meet con and cov; if not, it proceeds to
disjunctions of two, then to disjunctions of three, and so on. Whenever a disjunction meets
con and cov (and no proper part of it has previously been identified to meet con and cov),
it is automatically a minimally necessary disjunction of msc, and supersets of it do not need
to be tested any more. All and only those disjunctions of msc that meet both con and cov

are then issued as asf, which, finally, are concatenated to csf.

The cna() algorithm can be more specifically broken down into four stages.

Stage 1 On the basis of ordering, cna() first builds a set of potential outcomes
O = {Oh=ωf , . . . , Om=ωg} from the set of factors F = {O1, . . . , On} in x,5 where

5Note that if x is a data frame, cna() first transforms x into a truth table using truthTab(x), thereby
passing the argument type (and the two additional arguments rm.dup.factors and rm.const.factors) to the
truthTab() function.

Michael Baumgartner, Mathias Ambühl 17

1 ≤ h ≤ m ≤ n, and second assigns a set of potential cause factors COi
from F \ {Oi}

to every element Oi=ωk of O. If no ordering is provided, all value assignments to all
elements of F are treated as possible outcomes in case of mv data, whereas in case of
cs and fs data O is set to {O1=1, . . . , On=1}.

Stage 2 cna() attempts to build a set mscOi
=ωk

of minimally sufficient conditions that meet
con.msc for each Oi=ωk ∈ O. To this end, it first checks for each value assignment
Xh=χj of each element of COi

, such that Xh=χj has a membership score above 0.5 in
at least one case in x, whether the consistency of Xh=χj → Oi=ωk meets con.msc, i.e.
whether con(Xh=χj → Oi=ωk) ≥ con.msc. If, and only if, that is the case, Xh=χj

is put into the set mscOi
=ωk

. Next, cna() checks for each conjunction of two factor
values Xm=χj ∗ Xn=χl from COi

, such that Xm=χj ∗ Xn=χl has a membership score
above 0.5 in at least one case in x and no part of Xm=χj ∗ Xn=χl is already contained
in mscOi

=ωk
, whether con(Xm=χj ∗ Xn=χl → Oi=ωk) ≥ con.msc. If, and only if, that

is the case, Xm=χj ∗ Xn=χl is put into the set mscOi
=ωk

. Next, conjunctions of three
factor values with no parts already contained in mscOi

=ωk
are tested, then conjunctions

of four factor values, etc., until either all logically possible conjunctions of the elements
of COi

have been tested or maxstep is reached. Every non-empty mscOi
=ωk

is passed
on to the third stage.

Stage 3 cna() attempts to build a set asfOi
=ωk

of atomic solution formulas for every Oi=ωk ∈
O, which has a non-empty mscOi

=ωk
, by disjunctively concatenating the elements of

mscOi
=ωk

to minimally necessary conditions of Oi=ωk that meet con and cov. To
this end, it first checks for each single condition Φh ∈ mscOi

=ωk
whether con(Φh →

Oi=ωk) ≥ con and cov(Φh → Oi=ωk) ≥ cov. If, and only if, that is the case, Φh is
put into the set asfOi

=ωk
. Next, cna() checks for each disjunction of two conditions

Φm +Φn from mscOi
=ωk

, such that no part of Φm +Φn is already contained in asfOi
=ωk

,
whether con(Φm + Φn → Oi=ωk) ≥ con and cov(Φm + Φn → Oi=ωk) ≥ cov. If, and
only if, that is the case, Φm + Φn is put into the set asfOi

=ωk
. Next, disjunctions of

three conditions from mscOi
=ωk

with no parts already contained in asfOi
=ωk

are tested,
then disjunctions of four conditions, etc., until either all logically possible disjunctions
of the elements of mscOi

=ωk
have been tested or maxstep is reached. Every non-empty

asfOi
=ωk

is passed on to the fourth stage.

Stage 4 cna() attempts to build a set csfO of complex solution formulas encompassing all
elements of O. To this end, all logically possible conjunctions of exactly one element
from every non-empty asfOi

=ωk
are constructed. If there is only one non-empty set

asfOi
=ωk

, that is, if only one potential outcome can be modeled as an actual outcome,
the set of complex solution formulas csfO is identical to asfOi

=ωk
.

To illustrate, the following code chunk, first, simulates the data in Table 2c, p. 9, and second,
runs cna() on that data with con = .8 and cov = .9, with default maxstep, and without
ordering.

R> dat5 <- allCombs(c(2, 2, 2, 2, 2)) -1

R> dat6 <- selectCases("(A + B <-> C)*(A*B + D <-> E)", dat5)

R> set.seed(28)

R> tab2c <- makeFuzzy(tt2df(dat6), fuzzvalues = seq(0, 0.4, 0.01))

R> fscna(tab2c, con = .8, cov = .9, what = "mac")

18 cna: Configurational Causal Inference and Modeling

Table 2c contains data of type fs, meaning that the values in the data matrix are interpreted
as membership scores in fuzzy sets. As is customary for this data type, we use uppercase
letters for membership in a set and lowercase letters for non-membership. In the absence of
an ordering, the set of potential outcomes is determined to be O = {A, B, C, D, E} in stage
1, that is, the presence of each factor in Table 2c is treated as a potential outcome. Moreover,
all other factors are potential cause factors of every element of O, hence, CA = {B, C, D, E},
CB = {A, C, D, E}, CC = {A, B, D, E}, CD = {A, B, C, E}, and CE = {A, B, C, D}.

In stage 2, cna() succeeds in building non-empty sets of minimally sufficient conditions for
all elements of O: mscA = {b∗C, d∗E}, mscB = {a∗C, A∗E, d∗E}, mscC = {A, B, d∗E},
mscD = {E, a∗C}, mscE = {D, A∗B}. But only the elements of mscC and mscE can
be disjunctively combined to atomic solution formulas that meet cov in stage 3: asfC =
{A + B ↔ C} and asfE = {D + A∗B ↔ E}. For the other three factors in O, the coverage
threshold of 0.9 cannot be satisfied. cna() therefore abstains from issuing asf for A, B and
D.

Finally, stage 4 conjunctively concatenates the asf in asfC and asfE to the csf in the set
csfO, which constitutes cna()’s final output for Table 2c:

(A + B ↔ C) ∗ (D + A∗B ↔ E) con = 0.808; cov = 0.925 (3)

5. The output of CNA

5.1. Customizing the output

The default output of cna() first lists the provided ordering, second, the asf that were
recovered in accordance with the ordering, and third, the csf. For asf and csf, three attributes
are standardly computed: consistency, coverage, and complexity. Consistency and coverage,
have been explained in section 3.2 above; the complexity score simply amounts to the number
of factors on the left-hand sides of "→" or "↔" in asf and csf.

cna() can compute a number of additional solution attributes, all of which will be explained
below: inus, exhaustiveness, and faithfulness for both asf and csf, as well as coherence

and redundant for csf. These attributes are accessible via the details argument, which can
be given the values TRUE/FALSE, for computing all/none of the additional attributes, or a
character vector specifying the specific attributes to be computed: for example, details =

c("inus", "exhaustiveness")—the strings can also be abbreviated, e.g. "i" for "inus",
"f" for "faithfulness", etc.

R> cna(d.educate, details = TRUE)

R> cna(d.educate, details = c("i", "e", "r"))

The output of the cna() function can be further customized through the argument what

that controls which solution items to print. It can be given a character string specifying
the requested solution items: "t" stands for the truth table, "m" for minimally sufficient
conditions (msc), "a" for asf, "c" for csf, and "all" for all solution items.

R> cna(d.educate, what = "tm")

R> cna(d.educate, what = "mac")

R> cna(d.educate, what = "all")

Michael Baumgartner, Mathias Ambühl 19

As shown in section 3.4, it can happen that many asf and csf fit the data equally well. cna()

standardly only returns 5 solution items of each type. All msc, asf and csf can be recovered
using the functions msc(x), asf(x), and csf(x), where x is a solution object generated by
cna().

R> vol1 <- cna(d.volatile, ordering = list("VO2"))

R> msc(vol1)

R> asf(vol1)

R> csf(vol1)

5.2. INUS vs. non-INUS solutions

Regularity theories of causation as Mackie’s (1974) INUS-theory have been developed for
strictly Boolean discovery contexts, meaning for noise-free (i.e. deterministic) data that fea-
ture perfectly sufficient and necessary conditions. In such contexts, some Boolean expres-
sions can be identified as non-minimal (i.e. as featuring redundant elements) on mere logical
grounds, that is, independently of data. For instance, in an expression as

A + a∗B ↔ C (4)

a in the second disjunct is redundant, for (4) is logically equivalent to A + B ↔ C. These
two formulas state exactly the same. Under no conceivable circumstances could a as contained
in (4) ever make a difference to C. To see this, note that a necessary condition for a∗B to be
a complex cause of C is that there exists a context F such that C is only instantiated when
both a and B are given. That means that, in F , C is not instantiated if B is given but a is
not, which, in turn, means that C is not instantiated if B is given and A (viz. not-a) is given.
But such an F cannot possibly exist, for A itself is sufficient for C according to (4). It follows
that in every context where B is instantiated, a change from A to a is not associated with a
change in C (which takes the value 1 throughout the change in the factor A), meaning that
a cannot possibly make a difference to C and, hence, cannot be a cause of C, subject to a
regularity theory of causation. That is, (4) can be identified as non-minimal independently
of all data. (4) is not a well-formed causal model. It is not a minimal theory—not an INUS
solution.

Correspondingly, the solution attribute inus indicates whether an asf or csf is an INUS
solution.

When CNA is applied to noise-free data, it will never build a solution that is not INUS. This
can be illustrated by simulating noise-free data on the non-INUS solution in (4); cna() will
always, i.e. upon an open number of re-runs of the following code chunk, return A + B ↔ C,
regardless of selectCases1("A + a*B <-> C", ...).

R> dat.inu.1 <- allCombs(c(2, 2, 2)) -1

R> dat.inu.2 <- some(dat.inu.1, 40, replace = TRUE)

R> dat.inu.3 <- selectCases1("A + a*B <-> C", con = 1, cov = 1, dat.inu.2)

R> printCols <- c("condition", "consistency", "coverage", "complexity",

+ "inus")

R> asf(cna(dat.inu.3, con = 1, cov = 1, details = "inus"))[printCols]

20 cna: Configurational Causal Inference and Modeling

condition consistency coverage complexity inus

1 A + B <-> C 1 1 2 TRUE

But, as indicated in section 3.2, in real-life discovery contexts, especially in observational
studies, deterministic dependencies are the exception rather than the norm. Ordinary (ob-
servational) data are noisy, meaning that causes tend to be combined both with the presence
and the absence of outcomes. In such discovery contexts, which can be simulated by lowering
con and cov in selectCases1(), it is no longer guaranteed that only INUS solutions are
returned.

R> set.seed(4)

R> dat.inu.4 <- some(dat.inu.1, 40, replace = TRUE)

R> dat.inu.5 <- selectCases1("A + a*B <-> C", con = .8, cov = .8, dat.inu.4)

R> asf(cna(dat.inu.5, con = .8, cov = .8, details = "inus"))[printCols]

condition consistency coverage complexity inus

1 A + B <-> C 0.81 0.81 2 TRUE

In scenarios where con and cov are below 1 it can happen that a is needed to lift the con-
sistency of B above the chosen thresholds. In such a case, a can indeed be argued to make
a difference to C: only in conjunction with a does B reach the con threshold; and this holds
notwithstanding the fact that A itself also meets con. Or put differently, when con is below 1,
there exist cases where A is instantiated and C is not, which, in turn, yields that it becomes
possible for a change from A to a, while B is constantly instantiated, to be associated with a
change in C, meaning that a can turn out to be a difference-maker for C.

That factors may count as difference-makers for outcomes in noisy contexts, which could not
make a difference to these outcomes in noise-free contexts, is a phenomenon that not only
occurs in simulated but also in real-life data, for instance, in d.jobsecurity:

R> ana.job.3 <- fscna(d.jobsecurity, con = .8, cov = .9, details = "inus")

R> asf(ana.job.3)[printCols]

condition consistency coverage complexity inus

1 S*R + C*L + C*l <-> JSR 0.804 0.910 6 FALSE

2 C*L + C*l + c*R <-> JSR 0.808 0.902 6 FALSE

3 S*R + C*V + s*C*v <-> JSR 0.825 0.914 7 FALSE

4 c*R + C*V + s*C*v <-> JSR 0.822 0.912 7 FALSE

5 S*R + C*L + s*C*r <-> JSR 0.804 0.910 7 TRUE

The first non-INUS asf in ana.job.3 is logically reducible to the INUS solution S∗R + C ↔
JSR, the second is reducible to C + R ↔ JSR, while in the third and fourth non-INUS
asf, v is logically redundant in the last disjunct s∗C∗v.

If cna() returns non-INUS solutions, the crucial follow-up question is whether the indeter-
minism in the data is due to insufficient control of background influences (i.e. to noise) or to
the inherent indeterministic nature of the physical processes themselves (as can e.g. be found
in the domain of quantum mechanics, cf. Albert 1992). If (and only if) the former is the case

Michael Baumgartner, Mathias Ambühl 21

and, hence, the scrutinized causal structure can be assumed to be of deterministic nature, the
difference-making relations stipulated by non-INUS solutions should be disregarded as being
mere artifacts of the noise in the data, meaning that they would disappear if the correspond-
ing causal structure were investigated under less noisy discovery circumstances. In that case
(which typically obtains in macro domains), the logical argument inus.only should be set to
its non-default value TRUE in the cna() function such that non-INUS solutions are not built
to being with:

R> ana.job.4 <- fscna(d.jobsecurity, con = .8, cov = .9, details = "inus",

+ inus.only = TRUE, what = "a")

R> asf(ana.job.4)[printCols]

condition consistency coverage complexity inus

1 S*R + C*L + s*C*r <-> JSR 0.804 0.91 7 TRUE

The function behind the solution attribute inus is also available as stand-alone function
is.inus(). Logical redundancies as contained in non-INUS solutions can be eliminated by
means of the function minimalize() (see the cna reference manual for details).

5.3. Exhaustiveness and faithfulness

Exhaustiveness and faithfulness are two measures of model fit that quantify the degree of
correspondence between the configurations that are, in principle, compatible with a solution
and the configurations actually contained in the data from which that solution is derived.
Exhaustiveness is high when all or most configurations compatible with a solution are in the
data. More specifically, it amounts to the ratio of the number of configurations in the data that
are compatible with a solution to the number of configurations in total that are compatible
with a solution. To illustrate, consider d.educate, which contains all configurations that are
compatible with the two csf issued by cna():

R> printCols <- c("condition", "consistency", "coverage", "exhaustiveness")

R> csf(cna(d.educate, details = "exhaust"))[printCols]

condition consistency coverage exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1

If, say, the first configuration in d.educate (viz. U∗D∗L∗G∗E) is not observed or removed—
as in d.educate[-1,]—, cna() still builds the same solutions (with perfect consistency and
coverage). In that case, however, the resulting csf are not exhaustively represented in the
data, for one configuration that is compatible with both csf is not contained in the data.

R> csf(cna(d.educate[-1,], details = "exhaust"))[printCols]

condition consistency coverage exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 0.875

2 (U + D + G <-> E)*(U + D <-> L) 1 1 0.875

22 cna: Configurational Causal Inference and Modeling

In a sense, faithfulness is the complement of exhaustiveness. It is high when no or only few
configurations that are incompatible with a solution are in the data. More specifically, faith-
fulness amounts to the ratio of the number of configurations in the data that are compatible
with a solution to the total number of configurations in the data. The two csf resulting from
d.educate also reach perfect faithfulness:

R> printCols <- c("condition", "consistency", "coverage", "faithfulness")

R> csf(cna(d.educate, details = "faithful"))[printCols]

condition consistency coverage faithfulness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1

If we add a configuration that is not compatible with these csf, say, U∗D∗l∗G∗e and lower the
consistency threshold, the same solutions along with two others result—this time, however,
with non-perfect faithfulness scores.

R> csf(cna(rbind(d.educate,c(1,1,0,1,0)), con = .8, details = "f"))[printCols]

condition consistency coverage faithfulness

1 (L + G <-> E)*(E <-> L) 0.857 1 0.778

2 (L + G <-> E)*(U + D <-> L) 0.857 1 0.889

3 (U + D + G <-> E)*(E <-> L) 0.857 1 0.778

4 (U + D + G <-> E)*(U + D <-> L) 0.857 1 0.889

If both exhaustiveness and faithfulness are high, the configurations in the data are all and
only the configurations that are compatible with the solution. Low exhaustiveness and/or
faithfulness, by contrast, means that the data do not contain many configurations compatible
with the solution and/or the data contain many configurations not compatible with the so-
lution. In general, solutions with higher exhaustiveness and faithfulness scores are preferable
over solutions with lower scores.

5.4. Coherence

Coherence is a measure for model fit that is custom-built for csf. It measures the degree to
which the asf combined in a csf cohere, that is, are instantiated together in the data rather
than independently of one another. Coherence is intended to capture the following intuition.
Suppose a csf entails that A is a sufficient cause of B, which, in turn, is entailed to be a
sufficient cause of C. Corresponding data δ should be such that the A − B link of that causal
chain and the B − C link are either both instantiated or both not instantiated in the cases
recored in δ. By contrast, a case in δ such that, say, only the A − B link is instantiated but
the B −C link is not, pulls down the coherence of that csf. The more such non-cohering cases
are contained in δ, the lower the overall coherence score of the csf.

Coherence is more specifically defined as the ratio of the number of cases satisfying all asf
contained in a csf to the number of cases satisfying at least one asf in the csf. More formally,
let a csf contain asf1, asf2, . . . , asfn, coherence then amounts to (where | . . . | represents the

Michael Baumgartner, Mathias Ambühl 23

cardinality of the set of cases instantiating the corresponding expression):

|asf1
∗asf2

∗ . . . ∗asfn|

|asf1 + asf2 + . . . + asfn|

To illustrate, we add a case of type U∗d∗L∗g∗e to d.educate. When applied to the resulting
data (d.edu.exp1), cna() issues four csf.

R> d.edu.exp1 <- rbind(d.educate, c(1,0,1,0,0))

R> printCols <- c("condition", "consistency", "coverage", "coherence")

R> csf(cna(d.edu.exp1, con = .8, details = "cohere"))[printCols]

condition consistency coverage coherence

1 (L + G <-> E)*(U + D <-> L) 0.875 1 0.889

2 (L + G <-> E)*(U + E <-> L) 0.875 1 0.778

3 (U + D + G <-> E)*(U + D <-> L) 0.875 1 0.889

4 (U + D + G <-> E)*(U + E <-> L) 0.875 1 0.778

In the added case, none of these four csf cohere, as only one of their component asf is
instantiated. Moreover, for the second and the fourth csf there is yet another non-cohering
case in d.edu.exp1 (case #7).

Coherence is an additional parameter of model fit that allows for selecting among multi-
ple solutions: the higher the coherence score of a csf, the better the overall model fit. In
d.edu.exp1, thus, the first and the third csf are preferable over the other solutions subject
to their superior coherence.

5.5. Structural redundancies

The last cna() solution attribute that requires explanation is redundant, which identifies csf
containing so-called structural redundancies. It is not only possible that Boolean expressions
describing the behavior of single endogenous factors contain redundant proper parts, but
such expressions can themselves—as a whole—be redundant in superordinate structures, in
violation of (NR). More concretely, when asf are conjunctively concatenated to csf, it can
happen that the resulting conjunction of asf contains a structural redundancy because it is
logically equivalent to a proper part of itself. For a detailed discussion of this problem see
Baumgartner and Falk (2018).

The problem is best introduced with an example. Consider the following causal model:

(A∗B + C ↔ D) ∗ (a + c ↔ E) (5)

(5) represents a causal structure such that A∗B and C are the two alternative causes of D

and a and c are the two alternative causes of E. That is, factors A and C are positively
relevant to D and negatively relevant to E. A possible interpretation of these factors might
be the following. Suppose a city has two power stations: a wind farm and a nuclear plant.
Let A express that the wind farm is operational and C that the nuclear plant is operational
and let operationality be sufficient for a nuclear plant to produce electricity, while a wind
farm produces electricity provided it is operational and there is wind (B). Hence, the wind

24 cna: Configurational Causal Inference and Modeling

farm being operational while it is windy or the nuclear plant being operational (A∗B + C)
are two alternative causes of the city being power supplied (D). Whereas the wind farm or
the nuclear plant not being operational (a + c) are two alternative causes of an alarm being
triggered (E).

The following data frame (dat.redun) contains all and only the configurations that are com-
patible with (5):

R> (dat.redun <- tt2df(selectCases("(A*B + C <-> D)*(a + c <-> E)")))

A B C D E

2 0 1 1 1 1

4 0 0 1 1 1

5 1 1 0 1 1

14 0 1 0 0 1

15 1 0 0 0 1

16 0 0 0 0 1

17 1 1 1 1 0

19 1 0 1 1 0

The problem now is that dat.redun does not only entail the two asf contained in (5), viz.
(6) and (7), but also a third one, viz. (8):

A∗B + C ↔ D (6)

a + c ↔ E (7)

a∗D + e ↔ C (8)

That means the behavior of factor C, which is exogenous in the data-generating structure
(5), can be expressed as a redundancy-free Boolean function of its two effects D and E. (8),
hence, amounts to an upstream (or backtracking) asf, which, obviously, must not be causally
interpreted. Indeed, when (8) is embedded in the superordinate dependency structure (9) that
results from a conjunctive concatenation of all asf that follow from dat.redun, it turns out
that (8) is redundant. The reason is that (9) has a proper part which is logically equivalent
to (9), namely (5).

(A∗B + C ↔ D) ∗ (a + c ↔ E) ∗ (a∗D + e ↔ C) (9)

(9) and (5) state exactly the same about the behavior of the factors in dat.redun, meaning
that (8) makes no difference to that behavior over and above (6) and (7). By contrast,
neither (6) nor (7) can be eliminated from (9) such that the remaining expression is logically
equivalent to (9). Both of these downstream asf make their own distinctive difference to
the behavior of the factors in dat.redun. The upstream asf (8), however, is a structural
redundancy in (9). It must not be causally interpreted due to a violation of (NR).

Accordingly, the cna() function tests all csf for structural redundancies. If a csf contains
a structurally redundant asf, the solution attribute redundant is TRUE. To illustrate with
dat.redun:

R> ana.redun <- cna(dat.redun, details = TRUE)

R> printCols <- c("condition", "consistency", "coverage", "exhaustiveness",

Michael Baumgartner, Mathias Ambühl 25

+ "faithfulness", "redundant")

R> csf(ana.redun)[printCols]

condition consistency coverage

1 (e + a*D <-> C)*(C + A*B <-> D)*(a + c <-> E) 1 1

exhaustiveness faithfulness redundant

1 1 1 TRUE

Csf with redundant = TRUE must never be causally interpreted; rather, they must be further
processed with the function minimalizeCsf(x), whose input x is a solution object generated
by cna(). minimalizeCsf() reduces the csf contained in x by recursively testing their
component asf for redundancy and eliminating the redundant ones. The function outputs
all redundancy-free csf that are logically equivalent to the csf in x, that is, it builds the csf
from x that satisfy (NR) and, thus, represent well-formed causal structures.

R> minimalizeCsf(ana.redun)

Object of class 'minimalizeCsf' containing 1 solution(s)

=== Solution 1 ===

Condition:

(C+A*B<->D)*(a+c<->E)

outcome con cov n.asf

1 D,E 1 1 2

redundant parts:

(e+a*D<->C)

The function behind the solution attribute redundant is also available as stand-alone function
redundant() (see the cna reference manual for details).

6. Interpreting the output

The ultimate output of cna() and, if applicable, minimalizeCsf() is a set of csf. The causal
inferences that are warranted based on the data input x relative to the chosen con and cov

thresholds and the provided ordering and maxstep have to be read off that issued csf set.
This section explains this final interpretative step of a CNA analysis.

There are three possible types of outputs:

1. a csf set with no element (and, correspondingly, no asf);

2. a csf set with exactly one element (and, correspondingly, exactly one asf for each
endogenous factor);

3. a csf set with more than one element (and, correspondingly, more than one asf for at
least one endogenous factor).

26 cna: Configurational Causal Inference and Modeling

6.1. No solution

As indicated in section 3.4, a null result can have two sources: either the data are too noisy
to render the chosen con and cov thresholds satisfiable or the selected maxstep is too low. If
increasing the maxstep does not induce cna() to build solutions at the chosen con and cov

thresholds, the latter should be gradually lowered. If no solutions are recovered at con = cov

= .75, the data are too noisy to warrant reliable causal inferences. Users are then advised
to go back to the data and follow standard guidelines (known from other methodological
frameworks) to improve data quality, e.g. by integrating further relevant factors into the
analysis, enhancing the control of unmeasured causes, expanding the population of cases
or disregarding inhomogeneous cases, correcting for measurement error, supplying missing
values, etc.

It must be emphasized again (see section 2.3) that, under normal circumstances, an empty csf
set does not warrant the conclusion that the factors contained in the data input x are causally
irrelevant to one another. The inference to causal irrelevance is much more demanding than
the inference to causal relevance. While the latter inference merely requires evidence for the
existence of at least one difference-making context, the former inference requires evidence for
the non-existence of such a context. A null result only furnishes evidence for causal irrelevance
if there are independent reasons to assume that all potentially relevant factors are measured
in x and that x exhausts the space of empirically possible configurations.

6.2. A unique solution

That cna() (or minimalizeCsf()) outputs a csf set with exactly one element amounts to
the optimal completion of a CNA analysis. It means that the data input x contains sufficient
evidence for a determinate causal inference. The factor values on the left-hand sides of “↔”
in the asf constituting that csf can be interpreted as causes of the factor values on the right-
hand sides. Moreover, their conjunctive, disjunctive, and sequential groupings reflect the
Boolean properties of the data-generating causal structure.

Plainly, as with any other method of causal inference, the reliability of CNA’s causal conclu-
sions essentially hinges on the quality of the processed data. If the data are free of deficiencies
as confounding, measurement error, fragmentation etc., a unique solution is guaranteed to
correctly reflect the data-generating structure. With increasing data deficiencies, the (induc-
tive) risk of committing causal fallacies inevitably increases as well. For details on the degree
to which the reliability of CNA’s causal conclusions decreases with increasing data deficiencies
see Baumgartner and Ambühl (2018).

6.3. Multiple solutions

If cna() (or minimalizeCsf()) outputs a csf set with more than one element, the processed
data underdetermine their own causal modeling. That means the evidence contained in
the data is insufficient to determine which of the issued solutions corresponds to the data-
generating causal structure. An output set of multiple solutions {csf1, csf2, ..., csfn} is to be
interpreted disjunctively: the data-generating causal structure is

csf1 OR csf2 OR ... OR csfn

but, based on the evidence contained in the data, it is ambiguous which disjunct is actually
operative.

Michael Baumgartner, Mathias Ambühl 27

That empirical data underdetermine their own causal modeling is a very common phenomenon
in all methodological traditions (Simon 1954; Spirtes et al. 2000, 59-72; Kalisch et al. 2012;
Eberhardt 2013; Baumgartner and Thiem 2017a). But while some methods are designed to
automatically generate all fitting models, e.g. Bayes nets methods and CCMs, other methods
require their users to manually vary the available model building parameters in order to
generate the whole space of fitting models, e.g. regression analytic methods. Whereas model
ambiguities are a thoroughly investigated topic in certain traditions, e.g. Bayes nets methods,
they are only beginning to be studied in the literature on CCMs, in particular on QCA. There
is still an unfortunate practice of model-underreporting in QCA studies. In fact, most QCA
software regularly fails to find all data-fitting models. The only currently available QCA
program that recovers the whole model space by default is QCApro (Thiem 2018).

CNA—on a par with any other method—cannot disambiguate what is empirically underde-
termined. Rather, it draws those and only those causal conclusions for which the data de facto
contain evidence. In cases of empirical underdetermination it therefore renders transparent
all data-fitting models and leaves the disambiguation up to the analyst.

That cna() issues multiple solutions for some data input x does not necessarily mean that x

is deficient. In fact, even data that is ideal by all quality standards of configurational causal
modeling can give rise to model ambiguities. The following simulates a case in point:

R> dat7 <- selectCases("a*B + A*b + B*C <-> D")

R> printCols <- c("condition", "consistency", "coverage", "inus",

+ "exhaustiveness")

R> csf(cna(dat7, details = c("exhaust", "inus")))[printCols]

condition consistency coverage inus exhaustiveness

1 a*B + A*b + A*C <-> D 1 1 TRUE 1

2 a*B + A*b + B*C <-> D 1 1 TRUE 1

dat7 induces perfect consistency and coverage scores and is free of data fragmentation; it
contains all and only the configurations that are compatible with the target structure, which
accordingly is exhaustively and faithfully reflected in dat7. Nonetheless, two csf can be
inferred. The causal structures expressed by these two csf generate the exact same configu-
rational data, meaning they are configurationally indistinguishable.

Although, a unique solution is more determinate and, thus, preferable to multiple solutions,
the fact that cna() generates multiple equally data-fitting models is not generally an unin-
formative result. In the above example, both resulting csf feature a∗B + A∗b. That is, the
data contain enough evidence to establish the joint relevance of a∗B and of A∗b for D (on
alternative paths). What is more, it can be conclusively inferred that D has a further complex
cause, viz. either A∗C or B∗C. It is merely an open question which of these candidate causes
is actually operative.

That different model candidates have some msc in common is a frequent phenomenon. Here’s
a real-life example, where two alternative causes, viz. C=1 + F =2, are present in all solutions:

R> csf(mvcna(d.pban, cov = .95, maxstep = c(4,5,12)))["condition"]

condition

1 C=1 + F=2 + C=0*F=1 + C=2*V=0 <-> PB=1

28 cna: Configurational Causal Inference and Modeling

2 C=1 + F=2 + C=0*T=2 + C=2*V=0 <-> PB=1

3 C=1 + F=2 + C=2*F=0 + C=0*F=1 + F=1*V=0 <-> PB=1

4 C=1 + F=2 + C=2*F=0 + C=0*T=2 + F=1*V=0 <-> PB=1

5 C=1 + F=2 + C=0*F=1 + C=2*T=1 + T=2*V=0 <-> PB=1

6 C=1 + F=2 + C=0*F=1 + T=1*V=0 + T=2*V=0 <-> PB=1

7 C=1 + F=2 + C=0*T=2 + C=2*T=1 + T=2*V=0 <-> PB=1

8 C=1 + F=2 + C=0*T=2 + T=1*V=0 + T=2*V=0 <-> PB=1

Such commonalities can be reported as conclusive results.

Moreover, even though multiple solutions do not permit pinpointing the causal structure
behind an outcome, they nonetheless allow for constraining the range of possibilities. In a
context where the causes of some outcome are unknown it amounts to a significant gain of
scientific insight when a study can show that the structure behind that outcome has one of a
small number of possible forms, even if it cannot determine which one exactly.

However, the larger the amount of data-fitting solutions and the lower the amount of com-
monalities among them, the lower the overall informativeness of a cna() output. Indeed, the
ambiguity ratio in configurational causal modeling can reach dimensions where nothing at all
can be concluded about the data-generating structure any more. Hence, a highly ambiguous
result is on a par with a null result. A telling example of this sort is d.volatile which was
discussed in section 3.4 above (cf. also Baumgartner and Thiem 2017a).

As the problem of model ambiguities is still underinvestigated in the CCM literature, there
do not yet exit explicit guidelines for how to proceed in cases of ambiguities. The model fit
scores and solution attributes reported in the output of cna() often provide some leverage to
narrow down the space of model candidates. For instance, if, in a particular discovery context,
there is reason to assume that data have been exhaustively collected, to the effect that all
configurations that are compatible with an investigated causal structure are contained in the
data, the model space may be restricted to csf with a high score on exhaustiveness. By way
of example, for d.pacts a total of 240 csf are built at con = cov = .8:

R> ana.pact.1 <- fscna(d.pacts, ordering = list("PACT"), con = .8, cov = .8,

+ maxstep = c(4,4,12), details = TRUE)

R> csf.pact.1 <- csf(ana.pact.1, Inf)

R> length(csf.pact.1$condition)

[1] 240

If only csf with exhaustiveness == 1 are considered, the amount of candidate csf is divided
in half:

R> csf.pact.1.ex <- subset(csf.pact.1, exhaustiveness==1)

R> length(csf.pact.1.ex$condition)

[1] 115

To further reduce the model space, coherence may be brought to bear as well. The higher
the coherence of a csf, the higher its overall model fit. In the above example, if a coherence
score of at least 0.85 is imposed, the 115 candidate csf can be reduced to 2:

Michael Baumgartner, Mathias Ambühl 29

R> csf.pact.1.ex.co <- subset(csf.pact.1.ex, coherence >= 0.85)

R> length(csf.pact.1.ex.co$condition)

[1] 2

If the whole analysis is moreover run with a restriction to INUS solutions, the initial ambiguity
with 240 csf can be resolved completely, with only one csf satisfying all of exhaustiveness

== 1, coherence >= 0.85, and inus = TRUE:

R> ana.pact.2 <- fscna(d.pacts, ordering = list("PACT"), con = .8, cov = .8,

+ maxstep = c(4,4,12), details = TRUE, inus.only = TRUE)

R> csf.pact.2 <- csf(ana.pact.2, Inf)

R> csf.pact.2.inus.ex.co <- subset(csf.pact.2,

+ exhaustiveness==1 & coherence >= 0.85)

R> csf.pact.2.inus.ex.co

outcome condition consistency coverage

2 E,PACT (w + p <-> E)*(E + P <-> PACT) 0.844 0.835

complexity inus exhaustiveness faithfulness coherence redundant

2 4 TRUE 1 0.615 0.854 FALSE

Clearly though, the fit parameters and solution attributes provided by cna() will not always
provide a basis for ambiguity reduction. The evidence contained in analyzed data may simply
be insufficient to draw determinate causal conclusions. Maybe background theories or case
knowledge can be brought to bear to select among the model candidates (see section 6.4).
Nevertheless, the most important course of action in the face of ambiguities is to render them
transparent. By default, readers of CCM publications should be presented with all data-fitting
models and if space constraints do not permit so, readers must at least be informed about
the degree of ambiguity. Full transparency with respect to model ambiguities, first, allows
readers to determine for themselves how much confidence to have in the conclusions drawn
in a study, and second, paves the way for follow-up studies that are purposefully designed to
resolve previously encountered ambiguities.

6.4. “Back to the cases”

When CCMs are applied to small- or intermediate-N data, researchers may be familiar with
some or all of the cases in their data. For instance, they may know that in a particular case
certain causes of an outcome are operative while others are not. Or they may know why
certain cases are outliers or why others feature an outcome but none of the potential causes.
A proper interpretation of the cna() output may therefore require that the performance of
the obtained models be assessed on the case level and against the background of the available
case knowledge.

The function that facilitates the evaluation of recovered msc, asf, and csf on the case level is
condition(x, tt, type). Its first input is a character vector x specifying Boolean expres-
sions—typically asf or csf —and its second input a truth table tt. In case of cs or mv

data, the output of condition() then highlights in which cases x is instantiated, whereas for

30 cna: Configurational Causal Inference and Modeling

fs data, the output lists relevant membership scores in exogenous and endogenous factors.
Moreover, if x is an asf or csf, condition() issues their consistency and coverage scores.

Instead of a truth table, it is also possible to give condition() a data frame as second input.
In this case, the data type must be specified using the type argument. To abbreviate the
specification of the data type, the functions cscond(x, tt), mvcond(x, tt), and fscond(x,

tt) are available as shorthands.

To illustrate, we re-analyse d.autonomy:

R> dat.aut.2 <- d.autonomy[15:30, c("AU","EM","SP","CO","RE","DE")]

R> ana.aut.3 <- fscna(dat.aut.2, con = .91, cov = .91,

+ ordering = list(c("RE", "DE","SP","CO"),"EM","AU"),

+ strict = TRUE)

R> fscond(csf(ana.aut.3)$condition, dat.aut.2)

That function call returns a list of three tables, each corresponding to one of the three csf
contained in ana.aut.3 and breaking down the relevant csf to the case level by contrasting
the membership scores in the left-hand and right-hand sides of the component asf. A case
with a higher left-hand score is one that pulls down consistency, whereas a case with a higher
right-hand score pulls down coverage. For each csf, condition() moreover returns overall
consistency and coverage scores as well as consistency and coverage scores for the component
asf.

The three csf in ana.aut.3 differ only in regard to their component asf for outcome AU . The
function group.by.outcome(condlst), which takes an output object condlst of condition()

as input, lets us more specifically compare these different asf with respect to how they fare
on the case level.

R> group.by.outcome(fscond(asf(ana.aut.3)$condition, dat.aut.2))$AU

SP EM*RE+re*DE EM*RE+CO*DE AU | n.obs

ENacg1 1.0 1.0 1.0 1.0 | 1

ENacg2 0.6 0.4 0.4 0.4 | 1

ENacg3 0.8 0.6 0.9 0.8 | 1

ENacg4 0.6 1.0 1.0 1.0 | 1

ENacg5 0.4 0.4 0.4 0.4 | 1

ENacg6 0.6 0.7 0.7 0.6 | 1

ENacg7 1.0 0.8 0.8 1.0 | 1

ENacg8 1.0 1.0 1.0 1.0 | 1

ENacto1 0.4 0.4 0.6 0.4 | 1

ENacto2 0.4 0.4 0.4 0.4 | 1

ENacosa1 0.4 0.4 0.2 0.4 | 1

ENacosa2 0.4 0.4 0.4 0.2 | 1

ENacosa3 0.4 0.4 0.4 0.6 | 1

ENacat1 0.4 0.4 0.4 0.2 | 1

ENacat2 0.4 0.4 0.4 0.6 | 1

ENacat3 0.4 0.6 0.4 0.4 | 1

The first three columns of that table list the membership scores of each case in the left-
hand sides of the asf, and the fourth column reports the membership scores in AU . The

Michael Baumgartner, Mathias Ambühl 31

table shows that the first asf (SP ↔ AU) outperforms the other asf in cases ENacg3/6/7,
ENacto1, ENacosa1, and ENacat3, while it is outperformed by another asf in cases ENacg2
and ENacg4. In all other cases, the three solution candidates fare equally. If prior knowledge is
available about some of these cases, this information can help to choose among the candidates.
For instance, if it is known that in case ENacg7, no other relevant factors are operative than
the ones contained in dat.aut.2, it follows that ENacg7’s full membership in AU must be
brought about by SP—which, in turn, disqualifies the other solutions. By contrast, if the
absence of other relevant factors can be assumed for case ENacg4, the asf featuring SP as
cause of AU is disqualified.

7. Benchmarking

Benchmarking the reliability of a method of causal inference is an essential element of method
development and validation. In a nutshell, it amounts to testing to what degree the bench-
marked method recovers the true data-generating structure ∆ or proper substructures of ∆
from data of varying quality. As ∆ is not normally known in real-life discovery contexts, the
reliability of a method cannot be assessed by applying it to real-life data. Instead, reliability
benchmarking is done in so-called inverse searches, which reverse the order of causal discovery
as it is commonly conducted in scientific practice. An inverse search comprises three steps:

(1) a data-generating causal structure ∆ is presupposed/drawn (as ground truth),

(2) artificial data δ is simulated from ∆, possibly featuring various deficiencies (e.g. noise,
fragmentation, measurement error etc.),

(3) δ is processed by the tested method in order to check whether its output meets the
tested reliability benchmark (e.g. whether the output is true of or identical to ∆).

A benchmark test can measure various properties of a method’s output, for instance, whether
it is correct or complete or to what degree it is informative or ambiguous, etc. As real-life
configurational data tend to be fragmented, meaning that only a proper subset of all empiri-
cally possible configurations are actually contained in the data, configurational comparative
methods like CNA typically do not infer the complete ∆ from a real-life δ but only proper
substructures thereof (see section 2.3). Accordingly, the core reliability benchmark for CNA
should not be completeness but correctness.

Spelling out what exactly correctness amounts to requires two preliminary qualifications.
First, CNA cannot be expected to draw a causal inference from any δ. For instance, if δ

is too noisy, consistency or coverage thresholds cannot be met, which will, in turn, induce
CNA to abstain from issuing any models (see section 3.2). Abstaining from drawing a causal
inference from data of insufficient quality is not a defective but a correct response. Hence, an
empty solution set is to be counted as correct. Second, as indicated in section 6.3, whenever
there exist multiple models that fit δ equally well, CNA will output all of them. The set
of issued models csf = {csf1, csf2, ..., csfn} is to be interpreted in terms of a disjunction—
which, as a whole, is true of ∆ iff at least one disjunct csfi ∈ csf is true of ∆. In sum, CNA’s
output is correct iff, whenever CNA infers a set csf from δ, at least one csfi ∈ csf is true of
∆ (Baumgartner and Thiem 2017b). In other words, CNA’s output is correct iff it does not
commit a causal fallacy.

32 cna: Configurational Causal Inference and Modeling

The cna package provides all the functionalities necessary to conduct inverse searches that
are tailor-made to benchmark the correctness of the output of the cna() function. The
functions randomAsf() and randomCsf() can be used to draw a data-generating structure ∆
in step (1). randomAsf(x) generates a structure with a single outcome (i.e. a random asf)
and randomCsf(x) an acyclic multi-outcome structure (i.e. a random csf), where x is a data
frame or truthTab defining the factors and their possible values from which the structures
are drawn. The function selectCases(), which has already been discussed in section 3.1.2,
can be employed to simulate data δ in the course of step (2). Finally, is.submodel() is
serviceable to determining whether the output inferred from δ by cna() is true of ∆.

is.submodel(x, y) takes a character vector of asf or csf as first input and tests whether the
elements of that vector are submodels of y, which, in turn, is a character string of length 1
representing the target asf or csf (i.e. ∆). x being a submodel of y means that all the causal
claims entailed by x are also entailed by y, which is the case if a causal interpretation of x

entails conjunctive and disjunctive causal relevance relations that are all likewise entailed by
a causal interpretation of y. More specifically, x is a submodel of y iff the following conditions
are satisfied (cf. Baumgartner and Thiem 2017b or Baumgartner and Ambühl 2018, online
appendix):

(i) all factor values causally relevant according to x are also causally relevant according to
y,

(ii) all factor values contained in two different disjuncts in x are also contained in two
different disjuncts in y,

(iii) all factor values contained in the same conjunct in x are also contained in the same
conjunct in y,

(iv) if x is a csf with more than one asf, (i) to (iii) are satisfied for all asf in x.

Against that background, the following might be a core of a correctness benchmark test that
simulates multi-value data with 20% missing observations and 5% random noise, and that
runs cna() at the lower consistency and coverage bound of 0.75 without giving the algorithm
any prior causal information in an ordering.

R> # Draw the ground truth.

R> fullData <- mvtt(allCombs(c(4,4,4,4,4)))

R> groundTruth <- randomCsf(fullData, n.asf = 2, compl = 2:3)

R> # Generate the complete data.

R> x <- tt2df(selectCases(groundTruth, fullData))

R> # Introduce fragmentation.

R> x <- x[-sample(1:nrow(x), nrow(x)*0.2),]

R> # Introduce random noise.

R> x <- rbind(tt2df(fullData[sample(1:nrow(fullData), nrow(x)*0.05),]), x)

R> # Run CNA without an ordering.

R> csfs <- csf(mvcna(x, con = .75, cov = .75, maxstep = c(3, 3, 12)))

R> min.csfs <- if(nrow(csfs)>0) {

+ as.vector(minimalizeCsf(csfs$condition, mvtt(x))$condition)

+ } else {NA}

R> # Check whether no causal fallacy (no false positive) is returned.

Michael Baumgartner, Mathias Ambühl 33

R> if(length(min.csfs)==1 && is.na(min.csfs)) {

+ TRUE } else {any(is.submodel(min.csfs, groundTruth))}

Every re-run of this code chunk generates a different ground truth and different data; in some
runs CNA passes the test, in others it does not. To determine CNA’s correctness ratio under
these test conditions, the above core must be embedded in a suitable test loop. To estimate
CNA’s overall correctness ratio, the test conditions should be systematically varied by, for
instance, varying the complexity of the ground truth, the degree of fragmentation and noise,
the consistency and coverage thresholds, or by supplying CNA with more or less prior causal
information via an ordering. For single-outcome structures (asf), benchmark tests with some
of this variation have been conducted in Baumgartner and Ambühl (2018).

8. Summary

This vignette introduced the theoretical foundations as well as the main functions of the cna R

package for configurational causal inference and modeling with Coincidence Analysis (CNA).
Moreover, we explained how to interpret the output of CNA, provided some guidance for how
to use various model fit parameters for the purpose of ambiguity reduction, and supplied a
template for correctness benchmarking.

CNA is currently the only CCM that builds multi-outcome models and, hence, uncovers all
Boolean dimensions of causality: conjunctivity, disjunctivity, and sequentiality. Moreover, it
builds causal models on the basis of a bottom-up algorithm that is unique among CCMs and
gives CNA an edge over CCMs building models from the top down not only with respect to
multi- but also single-outcome structures. Overall, CNA constitutes a powerful methodolog-
ical alternative for researchers interested in the Boolean dimensions of causality, and the cna
package makes that inferential power available to end-users.

Acknowledgments

We are grateful to Alrik Thiem for helpful comments on an earlier draft of this vignette, and we
thank the Toppforsk-program of the Bergen Research Foundation and the University of Bergen
(grant nr. 811886) and the Swiss National Science Foundation (grant nr. PP00P1_144736/1)
for generous support of this research.

References

Albert DZ (1992). Quantum Mechanics and Experience. Harvard University Press, Cam-
bridge.

Baumgartner M (2008). “Regularity theories reassessed.” Philosophia, 36, 327–354.

Baumgartner M (2009a). “Inferring causal complexity.” Sociological Methods & Research, 38,
71–101.

Baumgartner M (2009b). “Uncovering deterministic causal structures: A Boolean approach.”
Synthese, 170, 71–96.

34 cna: Configurational Causal Inference and Modeling

Baumgartner M (2013). “A regularity theoretic approach to actual causation.” Erkenntnis,
78, 85–109.

Baumgartner M (2015). “Parsimony and causality.” Quality & Quantity, 49, 839–856.

Baumgartner M, Ambühl M (2018). “Causal modeling with multi-value and fuzzy-set Coin-
cidence Analysis.” Political Science Research and Methods. Doi: 10.1017/psrm.2018.45.

Baumgartner M, Falk C (2018). “Boolean difference-making: A modern regularity theory
of causation.” PhilSci Archive. URL http://philsci-archive.pitt.edu/id/eprint/

14876.

Baumgartner M, Thiem A (2017a). “Model ambiguities in configurational comparative re-
search.” Sociological Methods & Research, 46(4), 954–987.

Baumgartner M, Thiem A (2017b). “Often trusted but never (properly) tested: Eval-
uating Qualitative Comparative Analysis.” Sociological Methods & Research. Doi:
10.1177/0049124117701487.

Cronqvist L (2011). Tosmana: Tool for Small-N Analysis, version 1.3.2.0 [computer program].
University of Trier, Trier.

Cronqvist L, Berg-Schlosser D (2009). “Multi-value QCA (mvQCA).” In B Rihoux, CC Ragin
(eds.), Configurational Comparative Methods: Qualitative Comparative Analysis (QCA)
and Related Techniques, pp. 69–86. Sage Publications, London.

Downing BM (1992). The Military Revolution and Political Change: Origins of Democracy
and Autocracy in Early Modern Europe. Princeton University Press, N.J.

Duşa A (2007). “User manual for the QCA(GUI) package in R.” Journal of Business Research,
60(5), 576–586.

Duşa A, Thiem A (2015). “Enhancing the minimization of Boolean and multivalue output
functions with eQMC.” Journal of Mathematical Sociology, 39(2), 92–108.

Eberhardt F (2013). “Experimental indistinguishability of causal structures.” Philosophy of
Science, 80(5), 684–696.

Gelman A, Hill J (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press, Cambridge.

Goertz G (2006). Social Science Concepts: A User’s Guide. Princeton University Press,
Princeton.

Graßhoff G, May M (2001). “Causal regularities.” In W Spohn, M Ledwig, M Esfeld (eds.),
Current Issues in Causation, pp. 85–114. Mentis, Paderborn.

Hájek P (1998). Metamatematics of Fuzzy Logic. Kluwer, Dordrecht.

Kalisch M, Maechler M, Colombo D, Maathuis MH, Buehlmann P (2012). “Causal inference
using graphical models with the R package pcalg.” Journal of Statistical Software, 47(11),
1–26.

Michael Baumgartner, Mathias Ambühl 35

Longest KC, Vaisey S (2008). “fuzzy: A program for performing Qualitative Comparative
Analyses (QCA) in Stata.” Stata Journal, 8(1), 79–104.

Mackie JL (1974). The Cement of the Universe: A Study of Causation. Clarendon Press,
Oxford.

McCluskey EJ (1965). Introduction to the Theory of Switching Circuits. Princeton University
Press, Princeton.

Quine WvO (1959). “On cores and prime implicants of truth functions.” The American
Mathematical Monthly, 66(9), 755–760.

Ragin CC (1987). The Comparative Method. University of California Press, Berkeley.

Ragin CC (2006). “Set relations in social research: Evaluating their consistency and coverage.”
Political Analysis, 14(3), 291–310.

Ragin CC (2008). Redesigning Social Inquiry: Fuzzy Sets and Beyond. University of Chicago
Press, Chicago.

Ragin CC (2009). “Qualitative Comparative Analysis using fuzzy sets (fsQCA).” In B Rihoux,
CC Ragin (eds.), Configurational Comparative Methods: Qualitative Comparative Analysis
(QCA) and Related Techniques, pp. 87–121. Sage, Thousand Oaks.

Ragin CC (2014). “Comment: Lucas and Szatrowski in critical perspective.” Sociological
Methodology, 44(1), 80–94.

Reichert C, Rubinson C (2014). Kirq. version 2.1.12, Houston: University of Houston-
Downtown.

Simon HA (1954). “Spurious correlation: A causal interpretation.” Journal of the American
Statistical Association, 49(267), 467–479.

Spirtes P, Glymour C, Scheines R (2000). Causation, Prediction, and Search. 2 edition. MIT
Press, Cambridge.

Suppes P (1970). A Probabilistic Theory of Causality. North Holland, Amsterdam.

Thiem A (2014). “Unifying configurational comparative methods: Generalized-set Qualitative
Comparative Analysis.” Sociological Methods & Research, 43(2), 313–337.

Thiem A (2015). “Using Qualitative Comparative Analysis for identifying causal chains in
configurational data: A methodological commentary on Baumgartner and Epple.” Socio-
logical Methods & Research, 44(4), 723–736.

Thiem A (2018). QCApro: Advanced functionality for performing and evaluating Qualitative
Comparative Analysis. R Package Version 1.1-2. URL http://www.alrik-thiem.net/

software/.

Thiem A, Baumgartner M (2016). “Modeling causal irrelevance in evaluations of con-
figurational comparative methods.” Sociological Methodology, 46, 345–357. Doi:
10.1177/0081175016654736.

36 cna: Configurational Causal Inference and Modeling

Thiem A, Baumgartner M, Bol D (2016). “Still lost in translation! A correction of three mis-
understandings between configurational comparativists and regressional analysts.” Com-
parative Political Studies, 49, 742–774.

Affiliation:

Michael Baumgartner
University of Bergen
Department of Philosophy
Postboks 7805
5020 Bergen
Norway
E-mail: michael.baumgartner@uib.no

URL: http://people.uib.no/mba110/

Mathias Ambühl
Consult AG Statistical Services
Tramstrasse 10
8050 Zürich
E-mail: mathias.ambuehl@consultag.ch

	Introduction
	CNA's regularity theoretic background
	Factors and their values
	Boolean operations
	Boolean causal models

	The input of CNA
	Data
	Truth tables
	Data simulations

	Consistency and coverage
	Ordering
	Maxstep
	Notcols

	The CNA algorithm
	The output of CNA
	Customizing the output
	INUS vs. non-INUS solutions
	Exhaustiveness
	Coherence
	Structural redundancies

	Interpreting the output
	No solution
	A unique solution
	Multiple solutions
	"Back to the cases"

	Benchmarking
	Summary

