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cna-package cna: A Package for Causal Modeling with Coincidence Analysis

Description

Coincidence Analysis (CNA) is a configurational comparative method of causal data analysis that
was first introduced for crisp-set (i.e. binary) data in Baumgartner (2009a, 2009b, 2013) and gen-
eralized for multi-value and fuzzy-set data in Baumgartner and Ambuehl (2018). The cna package
reflects and implements the method’s latest stage of development.

CNA is related to Qualitative Comparative Analysis (QCA) (Ragin 1987, 2008). Like QCA, CNA
processes configurational data, i.e. data consisting of observed cases featuring different factor con-
figurations, it searches for redundancy-free sufficient and necessary conditions of causally modeled
outcomes, it places a Boolean ordering on causally relevant factor values (instead of e.g. quantify-
ing net effects and effect sizes in the vein of regression analysis), and it draws on the same regularity
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theoretic notion of causation as QCA, i.e. the notion first introduced by Mackie (1974). Contrary
to QCA, however, CNA is custom-built to treat multiple factors as outcomes, and it does not gen-
erate causal models from the top down by first building maximal Boolean dependency structures
and then gradually eliminating redundant elements (using e.g. Quine-McCluskey optimization; cf.
McCluskey 1965); rather, CNA builds causal models from the bottom up by gradually combining
single factor values to complex dependency structures until the requested thresholds of model fit
are met, such that the resulting models are automatically redundancy-free. As a consequence of
these differences, CNA can identify common-cause and causal-chain structures and it can avoid the
task of redundancy elimination (which creates various problems for QCA). Moreover, the algorithm
does not require an input identifying the endogenous factors; it can infer that from the data. Finally,
data fragmentation (limited diversity) does not force CNA to resort to counterfactual reasoning.

The new functionalities provided by version 2.2 of the cna package include functions for evalu-
ating and benchmarking CNA’s output. The functions randomAsf() and randomCsf() draw data-
generating structures with one and multiple outcomes, respectively, as a basis for inverse searches.
By means of is.submodel(), the CNA output can be scanned for correctness-preserving models.
Moreover, is.inus() determines whether a solution is an INUS model, minimalize() brings non-INUS
models into INUS form, and cyclic() checks whether causal models contain cyclic substructures,
i.e. feedback loops. The package vignette, which presents the theoretical background of CNA and
introduces to causal modeling with cna, has been updated accordingly. In particular, a section on
correctness benchmarking has been added.
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Package: cna
Type: Package
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Date: 2020-05-13
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allCombs Generate all logically possible value configurations of a given set of
factors

Description

The function allCombs generates a data frame of all possible value configurations of length(x)
factors, the first factor having x[1] values, the second x[2] values etc. The factors are labeled using
capital letters.

Usage

allCombs(x)

Arguments

x Integer vector with values >0

Details

In combination with selectCases and makeFuzzy, allCombs is useful for simulating data, which
are needed for inverse search trials benchmarking the output of cna. In a nutshell, allCombs
generates the space of all logically possible configurations of the factors in an analyzed factor
set, selectCases selects those configurations from this space that are compatible with a given
data-generating causal structure (i.e. the ground truth, which can be randomly generated using
randomConds), makeFuzzy introduces noise into that data, and is.submodel checks whether the
models returned by cna are true of the ground truth.

The cna package provides another function to the same effect, full.tt, which is more flexible than
allCombs.
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Value

A data frame.

See Also

selectCases, makeFuzzy, is.submodel, randomConds, full.tt

Examples

# Generate all logically possible configurations of 5 dichotomous factors named "A", "B",
# "C", "D", and "E".
allCombs(c(2, 2, 2, 2, 2)) - 1
# allCombs(c(2, 2, 2, 2, 2)) generates the value space for values 1 and 2, but as it is
# conventional to use values 0 and 1 for Boolean factors, 1 must be subtracted from
# every value output by allCombs(c(2, 2, 2, 2, 2)) to yield a Boolean data frame.

# Generate all logically possible configurations of 5 multi-value factors named "A", "B",
# "C", "D", and "E", such that A can take on 3 values {1,2,3}, B 4 values {1,2,3,4},
# C 3 values etc.
dat0 <- allCombs(c(3, 4, 3, 5, 3))
head(dat0)
nrow(dat0) # = 3*4*3*5*3

# Generate all configurations of 5 dichotomous factors that are compatible with the causal
# chain (A*b + a*B <-> C)*(C*d + c*D <-> E).
dat1 <- allCombs(c(2, 2, 2, 2, 2)) - 1
(dat2 <- selectCases("(A*b + a*B <-> C)*(C*d + c*D <-> E)", dat1))

# Generate all configurations of 5 multi-value factors that are compatible with the causal
# chain (A=2*B=1 + A=3*B=3 <-> C=1)*(C=1*D=2 + C=4*D=4 <-> E=3).
dat1 <- allCombs(c(3, 3, 4, 4, 3))
dat2 <- selectCases("(A=2*B=1 + A=3*B=3 <-> C=1)*(C=1*D=2 + C=4*D=4 <-> E=3)", dat1,

type = "mv")
nrow(dat1)
nrow(dat2)

# Generate all configurations of 5 fuzzy-set factors that are compatible with the causal
# structure A*b + C*D <-> E, such that con = .8 and cov = .8.
dat1 <- allCombs(c(2, 2, 2, 2, 2)) - 1
dat2 <- makeFuzzy(dat1, fuzzvalues = seq(0, 0.45, 0.01))
(dat3 <- selectCases1("A*b + C*D <-> E", con = .8, cov = .8, dat2))

# Inverse search for the data generating causal structure A*b + a*B + C*D <-> E from
# fuzzy-set data with non-perfect consistency and coverage scores.
set.seed(3)
groundTruth <- "A*b + a*B + C*D <-> E"
dat1 <- allCombs(c(2, 2, 2, 2, 2)) - 1
dat2 <- makeFuzzy(dat1, fuzzvalues = 0:4/10)
dat3 <- selectCases1(groundTruth, con = .8, cov = .8, dat2)
ana1 <- fscna(dat3, ordering = list("E"), strict = TRUE, con = .8, cov = .8)
any(is.submodel(asf(ana1)$condition, groundTruth))



6 cna

cna Perform Coincidence Analysis

Description

The cna function performs Coincidence Analysis to identify atomic solution formulas (asf) consist-
ing of minimally necessary disjunctions of minimally sufficient conditions of all outcomes in the
data and combines the recovered asf to complex solution formulas (csf) representing multi-outcome
structures, e.g. common-cause and/or causal-chain structures.

Usage

cna(x, type, ordering = NULL, strict = FALSE, con = 1, cov = 1, con.msc = con,
notcols = NULL, rm.const.factors = TRUE, rm.dup.factors = TRUE,
maxstep = c(3, 3, 9), inus.only = FALSE, only.minimal.msc = TRUE,
only.minimal.asf = TRUE, maxSol = 1e6, suff.only = FALSE,
what = if (suff.only) "m" else "ac", cutoff = 0.5,
border = c("down", "up", "drop"), details = FALSE)

cscna(...)
mvcna(...)
fscna(...)

## S3 method for class 'cna'
print(x, what = x$what, digits = 3, nsolutions = 5,

details = x$details, show.cases = NULL, ...)

Arguments

x Data frame or truthTab (as output by truthTab).

type Character vector specifying the type of x: "cs" (crisp-set), "mv" (multi-value),
or "fs" (fuzzy-set).

ordering List of character vectors specifying the causal ordering of the factors in x.

strict Logical; if TRUE, factors on the same level of the causal ordering are not potential
causes of each other; if FALSE, factors on the same level are potential causes of
each other.

con Numeric scalar between 0 and 1 to set the minimum consistency threshold ev-
ery minimally sufficient condition (msc), atomic solution formula (asf), and
complex solution formula (csf) must satisfy. (See also the argument con.msc
below).

cov Numeric scalar between 0 and 1 to set the minimum coverage threshold every
asf and csf must satisfy.

con.msc Numeric scalar between 0 and 1 to set the minimum consistency threshold every
msc must satisfy. Allows for imposing a consistency threshold on msc that
differs from the value con imposes on asf and csf. Defaults to con.
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maxstep Vector of three integers; the first specifies the maximum number of conjuncts in
each disjunct of an asf, the second specifies the maximum number of disjuncts
in an asf, the third specifies the maximum complexity of an asf. The complexity
of an asf is the total number of exogenous factors in the asf.

inus.only Logical; if TRUE, only disjunctive normal forms that are free of logical redun-
dancies are retained as asf (see also is.inus). Defaults to FALSE.

only.minimal.msc

Logical; if TRUE (the default), only minimal conjunctions are retained as msc. If
FALSE, sufficient conjunctions are not required to be minimal, in which case the
number of msc will usually be much greater.

only.minimal.asf

Logical; if TRUE (the default), only minimal disjunctions are retained as asf. If
FALSE, necessary disjunctions are not required to be minimal, in which case the
number of asf will usually be much greater.

maxSol Maximum number of asf calculated.

suff.only Logical; if TRUE, the function only searches for msc and does not search for asf
and csf.

notcols Character vector of factors to be negated in x. If notcols = "all", all factors in
x are negated.

rm.const.factors, rm.dup.factors

Logical; if TRUE (default), factors with constant values are removed and all but
the first of a set of duplicated factors are removed. These parameters are passed
to truthTab.

what Character string specifying what to print; "t" for the truth table, "m" for msc,
"a" for asf, "c" for csf, and "all" for all. Defaults to "ac" if suff.only = F,
and to "m" otherwise.

cutoff Minimum membership score required for a factor to count as instantiated in the
data and to be integrated in the analysis. Value in the unit interval (0,1). The
default cutoff is 0.5. Only meaningful if type="fs".

border Character vector specifying whether factors with membership scores equal to
cutoff are rounded up ("up"), rounded down ("down") or dropped from the
analysis ("drop"). Only meaningful if type="fs".

details Either TRUE/FALSE, or a character vector with possible elements "inus",
"exhaustiveness", "faithfulness", "coherence", "redundant". The strings
can also be abbreviated, e.g. "i" for "inus", "e" or "exh" for "exhaustiveness",
etc.

digits Number of digits to print in consistency, coverage, exhaustiveness, faithfulness,
and coherence scores.

nsolutions Maximum number of msc, asf, and csf to print. Alternatively, nsolutions =
"all" will print all solutions.

show.cases Logical; if TRUE, the truthTab’s attribute “cases” is printed. See print.truthTab

... In cscna, mvcna, fscna: any formal argument of cna except type. In print.cna:
arguments passed to other print-methods.
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Details

The first input x of the cna function is a data frame or a truthTab. To ensure that no misinterpre-
tations of returned asf and csf can occur, users are advised to use only upper case letters as factor
(column) names. Column names may contain numbers, but the first sign in a column name must be
a letter. Only ASCII signs should be used for column and row names.

cna must be told what type of data x contains, unless x is a truthTab. In the latter case, the type of
x is already defined. Data that feature factors taking values 1 or 0 only are called crisp-set, in which
case the type argument takes its default value "cs". If the data contain at least one factor that takes
more than two values, e.g. {1,2,3}, the data count as multi-value, which is indicated by type = "mv".
Data featuring at least one factor taking real values from the interval [0,1] count as fuzzy-set, which
is specified by type = "fs". (Note that mixing multi-value and fuzzy-set factors in one analysis is
not (currently) supported). To abbreviate the specification of the data type using the type argument,
the functions cscna(x,...), mvcna(x,...), and fscna(x,...) are available as shorthands for
cna(x,type = "cs",...), cna(x,type = "mv",...), and cna(x,type = "fs",...), respectively.

A data frame or truthTab x with a corresponding type specification is the only mandatory input
of the cna function. If no causal ordering is provided (see below), all factor values in x are treated
as potential outcomes; more specifically, in case of "cs" and "fs" data, cna tests for all factors
whether their presence (i.e. them taking the value 1) can be modeled as an outcome, and in case
of "mv" data, cna tests for all factors whether any of their possible values can be modeled as an
outcome. That is done by, first, identifying all minimally sufficient conditions (msc) that meet
the threshold given by con.msc (resp. con, if con.msc = con) for each factor in x. Then, cna
disjunctively combines these msc to minimally necessary conditions that meet the threshold given
by cov such that the whole disjunction meets the threshold given by con. The resulting expressions
are the atomic solution formulas (asf) for every factor value that can be modeled as outcome. The
default value for con.msc, con, and cov is 1.

[Consistency and coverage measures have originally been introduced into the QCA protocol by
Ragin (2006). Informally put, consistency reproduces the degree to which the behavior of an out-
come obeys a corresponding sufficiency or necessity relationship or a whole causal model, whereas
coverage reproduces the degree to which a sufficiency or necessity relationship or a whole model
accounts for the behavior of the corresponding outcome. For details see the cna package vignette
or Ragin (2006).]

cna builds msc and asf from the bottom up. That is, in a first phase, cna checks whether single
factor values A, b, C, (where "A" stands for "A=1" and "b" for "B=0") or D=3, E=2, etc. (whose
membership scores, in case of "fs" data, meet cutoff in at least one case) are sufficient for an
outcome (where a factor value counts as sufficient iff it meets the threshold given by con.msc).
Next, conjuncts of two factor values A*b, A*C, D=3*E=2 etc. (whose membership scores, in case
of "fs" data, meet cutoff in at least one case) are tested for sufficiency. Then, conjuncts of three
factors, and so on. Whenever a conjunction (or a single factor value) is found to be sufficient,
all supersets of that conjunction contain redundancies and are, thus, not considered for the further
analysis. The result of that first phase is a set of msc for every outcome. To recover certain target
structures in cases of noisy data, it may be useful to allow cna to also consider sufficient conditions
for further analysis that are not minimal. This can be accomplished by setting only.minimal.msc to
FALSE. A concrete example illustrating the utility of only.minimal.msc is provided in the example
section below. (The ordinary user is advised not to change the default value of this argument.)

In the next phase, minimally necessary disjunctions are built for each outcome by first testing
whether single msc are necessary, then disjunctions of two msc, then of three, etc. (where a disjunc-
tion of msc counts as necessary iff it meets the threshold given by cov). Whenever a disjunction of
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msc (or a single msc) is found to be necessary, all supersets of that disjunction contain redundancies
and are, thus, excluded from the further analysis. Finally, all and only those disjunctions of msc
that meet both cov and con are issued as redundancy-free asf. To recover certain target structures in
cases of noisy data, it may be useful to allow cna to also consider necessary conditions for further
analysis that are not minimal. This can be accomplished by setting only.minimal.asf to FALSE,
in which case all disjunctions of msc reaching the con and cov thresholds will be returned. (The
ordinary user is advised not to change the default value of this argument.)

As the combinatorial search space for asf is potentially too large to be exhaustively scanned in
reasonable time, the argument maxstep allows for setting an upper bound for the complexity of
the generated asf. maxstep takes a vector of three integers c(i,j,k) as input, entailing that the
generated asf have maximally j disjuncts with maximally i conjuncts each and a total of maximally
k factor values (k is the maximal complexity). The default is maxstep = c(3,3,9).

Note that the default con and cov thresholds of 1 will often not yield any asf because real-life
data tend to feature noise due to uncontrolled background influences. In such cases, users should
gradually lower con and cov (e.g. in steps of 0.05) until cna finds solution formulas. con and
cov should only be lowered below 0.75 with great caution. If thresholds of 0.75 do not result in
solutions, the corresponding data feature such a high degree of noise that there is a severe risk of
causal fallacies.

If cna finds asf, it combines them to complex solution formulas (csf). Asf with identical outcomes
are not combined, for they do not represent a complex causal structure but model ambiguities with
respect to one outcome. Asf with different outcomes can be concatenated to csf using two different
signs: "*" and ",". If asf1 and asf2 have at least one factor in common, they are combined to "asf1
* asf2"; if they have no common factor, they are combined to "asf1, asf2". That is, csf with "*"
as main operator represent cohering complex causal structures and the degree of coherence in the
analyzed data is issued as coherence score (cf. coherence). Csf with "," as main operator represent
non-cohering structures. For instance, the two asf (D + U <-> L) and (G + L <-> E) can be combined
to the cohering csf "(D + U <-> L) * (G + L <-> E)", which represents a causal chain from D + U
via L to E, whereas (D + U <-> L) and (G + F <-> E) yield the non-cohering csf "(D + U <-> L),
(G + F <-> E)".

The default output of cna lists asf and csf with consistency, coverage, and complexity scores. But
cna can calculate a number of further solution attributes: inus, exhaustiveness, faithfulness,
coherence, and redundant, all of which are recovered by setting details to its non-default value
TRUE. These attributes require explication (see also the package vignette).

complexity: Complexity corresponds to the number of exogenous factors in a solution. inus: The
theory of causation underlying cna is called INUS-theory (Mackie 1974, ch. 3; Baumgartner 2008).
Very roughly, it says that X is causally relevant to Y iff X is contained in a minimally necessary
disjunction of minimally sufficient conditions of Y. It was originally designed for noise-free data
that can be modeled with con = cov = 1. It turns out, however, that at consistency and coverage
scores below 1 expressions can count as minimally necessary disjunctions of minimally sufficient
conditions that, according to classical Boolean logic, could not possibly count as such at con = cov
= 1. inus thus indicates whether or not a solution counts as an INUS solution relative to the strict
criteria imposed by the INUS-theory for the case of con = cov = 1. If the user is only interested in
INUS solutions, the argument inus.only is available; if inus.only = TRUE, only INUS solutions
are built. The function behind the inus.only argument is also available as standalone function
is.inus.

Exhaustiveness and faithfulness are two measures of model fit that quantify the degree of corre-
spondence between the configurations that are, in principle, compatible with a solution and the



10 cna

configurations contained in the data from which that solution is derived. Roughly, exhaustiveness
is high when all or most configurations compatible with a solution are in the data, whereas faithful-
ness is high when no or only few configurations that are incompatible with a solution are in the data.
More specifically, exhaustiveness amounts to the ratio of the number of configurations in the data
that are compatible with a solution to the number of configurations in total that are compatible with
a solution. faithfulness amounts to the ratio of the number of configurations in the data that are
compatible with a solution to the total number of configurations in the data. High exhaustiveness
and faithfulness means that the configurations in the data are all and only the configurations that are
compatible with the solution. Low exhaustiveness and/or faithfulness means that the data do not
contain all configurations compatible with the solution and/or the data contain many configurations
not compatible with the solution. In general, solutions with higher exhaustiveness and faithful-
ness scores are preferable over solutions with lower scores because they are better supported by the
evidence in the data.

For details on coherence scores see coherence. Finally, redundant, which is only attributed to
csf, determines whether a csf contains structurally redundant proper parts. That is the case if the csf
has a proper part that is logically equivalent with the whole csf (cf. Baumgartner and Falk 2018). A
csf with redundant = TRUE should not be causally interpreted. Rather, it must be further processed
by minimalizeCsf, which eliminates redundancies from csf. The function identifying structural
redundancies is also available as standalone function redundant.

cna does not need to be told which factor(s) are endogenous, it can infer that from the data. Still,
when prior causal knowledge about an investigated process is available, cna can be prohibited from
treating certain factors as potential causes of other factors by means of the argument ordering.
If specified, that argument defines a causal ordering for the factors in x. For example, ordering
= list(c("A", "B"),"C") determines that C is causally located after A and B, meaning that C
is not a potential cause of A and B. In consequence, cna only checks whether values of A and B
can be modeled as causes of values of C; the test for a causal dependency in the other direction is
skipped. If the argument ordering is not specified or if it is given the NULL value (which is the
argument’s default value), cna searches for dependencies between all factors in x. An ordering
does not need to explicitly mention all factors in an analyzed data frame. If only a subset of the
factors are included in the ordering, the non-included factors are entailed to be causally before the
included ones. Hence, ordering = list("C"), for instance, means that C is causally located after
all other factors in the data, meaning that C is the ultimate outcome of the structure under scrutiny.

The argument strict determines whether the elements of one level in an ordering can be causally
related or not. For example, if ordering = list(c("A","B"),"C") and strict = TRUE, then A
and B—which are on the same level of the ordering—are excluded to be causally related and
cna skips corresponding tests. By contrast, if ordering = list(c("A","B"),"C") and strict
= FALSE, then cna also searches for dependencies among A and B. The default is strict = FALSE.
If the user knows prior to the analysis that the data contain exactly one endogenous factor E and
that the remaining exogenous factors are mutually causally independent, the appropriate function
call should feature cna(...,ordering = list("E"),strict = TRUE,...).

The argument notcols is used to calculate asf and csf for negative outcomes in data of type "cs"
and "fs" (in "mv" data notcols has no meaningful interpretation and, correspondingly, issues an
error message). If notcols = "all", all factors in x are negated, i.e. their membership scores i
are replaced by 1-i. If notcols is given a character vector of factors in x, only the factors in that
vector are negated. For example, notcols = c("A","B") determines that only factors A and B are
negated. The default is no negations, i.e. notcols = NULL.

suff.only is applicable whenever a complete cna analysis cannot be performed for reasons of
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computational complexity. In such a case, suff.only = TRUE forces cna to stop the analysis after
the identification of msc, which will normally yield results even in cases when a complete analysis
does not terminate. In that manner, it is possible to shed at least some light on the dependencies
among the factors in x, in spite of an incomputable solution space.

rm.const.factors and rm.dup.factors are used to determine the handling of constant factors,
i.e. factors with constant values in all cases (rows) in x, and of duplicated factors, i.e. factors that
take identical value distributions in all cases in x. If rm.const.factors = TRUE, which is the default
value, constant factors are removed from the data prior to the analysis, and if rm.dup.factors =
TRUE (the default) all but the first of a set of duplicated factors are removed. From the perspective
of configurational causal modeling, factors with constant values in all cases can neither be modeled
as causes nor as outcomes; therefore, they can be removed prior to the analysis. Factors that take
identical values in all cases cannot be distinguished configurationally, meaning they are one and the
same factor as far as configurational causal modeling is concerned. Therefore, only one factor of a
set of duplicated factors is standardly retained by cna.

The argument what can be specified both for the cna and the print function. It regulates what
items of the output of cna are printed. If what is given the value “t”, the truth table is printed; if it
is given an “m”, the msc are printed; if it is given an “a”, the asf are printed; if it is given a “c”, the
csf are printed. what = "all" or what = "tmac" determine that all output items are printed. Note
that what has no effect on the computations that will be performed when executing cna; it only
determines how the result will be printed. The default output of cna is what = "ac". It first returns
the implemented ordering. Second, the asf and, third, the csf are reported. If csf are the same as asf,
this is indicated by "Same as asf". In case of suff.only = TRUE, what defaults to "m".

cna only includes factor configurations in the analysis that are actually instantiated in the data. The
argument cutoff determines the minimum membership score required for a factor or a combination
of factors to count as instantiated. It takes values in the unit interval [0,1] with a default of 0.5.
border specifies whether factor combinations with membership scores equal to cutoff are rounded
up (border = "up"), rounded down (border = "down"), which is the default, or dropped from the
analysis (border = "drop").

The arguments digits, nsolutions, and show.cases apply to the print function, which takes an
object of class “cna” as first input. digits determines how many digits of consistency, coverage,
coherence, exhaustiveness, and faithfulness scores are printed, while nsolutions fixes the number
of conditions and solutions to print. nsolutions applies separately to minimally sufficient condi-
tions, atomic solution formulas, and complex solution formulas. nsolutions = "all" recovers all
minimally sufficient conditions, atomic and complex solution formulas. show.cases is applicable
if the what argument is given the value “t”. In that case, show.cases = TRUE yields a truth table
featuring a “cases” column, which assigns cases to configurations.

The option “spaces” controls how the conditions are rendered. The current setting is queried by
typing getOption("spaces"). The option specifies characters that will be printed with a space
before and after them. The default is c("<->","->","+"). A more compact output is obtained
with option(spaces = NULL).

Value

cna returns an object of class “cna”, which amounts to a list with the following components:

call: the executed function call
x: the processed data frame or truth table
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ordering: the implemented ordering
truthTab: the object of class “truthTab”, as input to cna

truthTab_out: the object of class “truthTab”, after modification according to notcols
solution: the solution object, which itself is composed of lists exhibiting msc, asf, and csf for

all factors in x
what: the values given to the what argument

details: the calculated solution attributes

Contributors

Epple, Ruedi: development, testing
Thiem, Alrik: testing

Note

In the first example described below (in Examples), the two resulting complex solution formulas
represent a common cause structure and a causal chain, respectively. The common cause structure
is graphically depicted in figure (a) below, the causal chain in figure (b).
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See Also

truthTab, condition, condTbl, selectCases, makeFuzzy, some, coherence, minimalizeCsf,
randomConds, is.submodel, is.inus, redundant, full.tt, d.educate, d.women, d.pban, d.autonomy

Examples

# Ideal crisp-set data from Baumgartner (2009a) on education levels in western democracies
#---------------------------------------------------------------------------------------
# Exhaustive CNA without constraints on the search space; print atomic and complex
# solution formulas (default output).
cna.educate <- cna(d.educate)
cna.educate
# The two resulting complex solution formulas represent a common cause structure
# and a causal chain, respectively. The common cause structure is graphically depicted
# in (Note, figure (a)), the causal chain in (Note, figure (b)).

# Print only complex solution formulas.
print(cna.educate, what = "c")

# Print only atomic solution formulas.
print(cna.educate, what = "a")

# Print only minimally sufficient conditions.
print(cna.educate, what = "m")

# Print only the truth table.
print(cna.educate, what = "t")

# CNA with negations of the factors E and L.
cna(d.educate, notcols = c("E","L"))

# CNA with negations of all factors.
cna(d.educate, notcols = "all")

# Print msc, asf, and csf with all solution attributes.
cna(d.educate, what = "mac", details = TRUE)

# Add only the non-standard solution attributes "inus" and "faithfulness".
cna(d.educate, details = c("i", "f"))

# Print solutions without spaces before and after "+".
options(spaces = c("<->", "->" ))
cna(d.educate, details = c("i", "f"))

# Print solutions with spaces before and after "*".
options(spaces = c("<->", "->", "*" ))
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cna(d.educate, details = c("i", "f"))

# Restore the default of the option "spaces".
options(spaces = c("<->", "->", "+"))

# Crisp-set data from Krook (2010) on representation of women in western-democratic parliaments
# -------------------------------------------------------------------------------------------
# This example shows that CNA can infer which factors are causes and which ones
# are effects from the data. Without being told which factor is the outcome,
# CNA reproduces the original QCA of Krook (2010).
ana1 <- cna(d.women, maxstep = c(3, 4, 9), details = c("e", "f"))
ana1

# The two resulting asf only reach an exhaustiveness score of 0.438, meaning that
# not all configurations that are compatible with the asf are contained in the data
# "d.women". Here is how to extract the configurations that are compatible with
# the first asf but are not contained in "d.women":
library(dplyr)
setdiff(tt2df(selectCases(asf(ana1)$condition[1], full.tt(d.women))),

d.women)

# Highly ambiguous crisp-set data from Wollebaek (2010) on very high volatility of
# grassroots associations in Norway
# --------------------------------------------------------------------------------
# csCNA with ordering from Wollebaek (2010) [Beware: due to massive ambiguities, this analysis
# will take about 20 seconds to compute.]
cna(d.volatile, ordering = list("VO2"), maxstep = c(6, 6, 16))

# Using suff.only, CNA can be forced to abandon the analysis after minimization of sufficient
# conditions. [This analysis terminates quickly.]
cna(d.volatile, ordering = list("VO2"), maxstep = c(6, 6, 16), suff.only = TRUE)

# Similarly, by using the default maxstep, CNA can be forced to only search for asf and csf
# with reduced complexity. [This analysis also terminates quickly.]
cna(d.volatile, ordering = list("VO2"))

# Multi-value data from Hartmann & Kemmerzell (2010) on party bans in Africa
# ---------------------------------------------------------------------------
# mvCNA with causal ordering that corresponds to the ordering in Hartmann & Kemmerzell
# (2010); coverage cutoff at 0.95 (consistency cutoff at 1), maxstep at (6, 6, 10).
cna.pban <- mvcna(d.pban, ordering = list(c("C","F","T","V"),"PB"), cov = .95,

maxstep = c(6, 6, 10), what = "all")
cna.pban

# The previous function call yields a total of 14 asf and csf, only 5 of which are
# printed in the default output. Here is how to extract all 14 asf and csf.
asf(cna.pban)
csf(cna.pban)

# [Note that all of these 14 causal models reach considerably better consistency and
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# coverage scores than the one model Hartmann & Kemmerzell (2010) present in their paper,
# which they generated using the TOSMANA software, version 1.3:
# T=0 + T=1 + C=2 + T=1*V=0 + T=2*V=0 <-> PB=1
mvcond("T=0 + T=1 + C=2 + T=1*V=0 + T=2*V=0 <-> PB = 1", d.pban)

# That is, not only does TOSMANA fail to recover model ambiguities in this case, it
# also issues a model whose fit is significantly below the models this data set would
# warrant.]

# Extract all minimally sufficient conditions.
msc(cna.pban)

# Alternatively, all msc, asf, and csf can be recovered by means of the nsolutions
# argument of the print function.
print(cna.pban, nsolutions = "all")

# Print the truth table with the "cases" column.
print(cna.pban, what = "t", show.cases = TRUE)

# Build solution formulas with maximally 4 disjuncts.
mvcna(d.pban, ordering = list(c("C","F","T","V"),"PB"), cov = .95, maxstep = c(4, 4, 10))

# Only print 2 digits of consistency and coverage scores.
print(cna.pban, digits = 2)

# Build all but print only two msc for each factor and two asf and csf.
print(mvcna(d.pban, ordering = list(c("C","F","T","V"),"PB"), cov = .95,

maxstep = c(6, 6, 10), what = "all"), nsolutions = 2)

# Lowering the consistency instead of the coverage threshold yields further models with
# excellent fit scores; print only asf.
mvcna(d.pban, ordering = list(c("C","F","T","V"),"PB"), con = .93, what = "a",

maxstep = c(6, 6, 10))

# Importing an ordering from prior causal knowledge is unnecessary for d.pban. PB
# is the only factor in that data that could possibly be an outcome.
mvcna(d.pban, cov = .95, maxstep = c(6, 6, 10))

# Fuzzy-set data from Basurto (2013) on autonomy of biodiversity institutions in Costa Rica
# ---------------------------------------------------------------------------------------
# Basurto investigates two outcomes: emergence of local autonomy and endurance thereof. The
# data for the first outcome is contained in rows 1-14 of d.autonomy, the data for the second
# outcome in rows 15-30. For each outcome, the author distinguishes between local ("EM",
# "SP", "CO"), national ("CI", "PO") and international ("RE", "CN", "DE") conditions. Here,
# we first apply fsCNA to replicate the analysis for the local conditions of the endurance of
# local autonomy.
dat1 <- d.autonomy[15:30, c("AU","EM","SP","CO")]
fscna(dat1, ordering = list("AU"), strict = TRUE, con = .9, cov = .9)

# The fsCNA model has significantly better consistency (and equal coverage) scores than the
# model presented by Basurto (p. 580): SP*EM + CO <-> AU, which he generated using the
# fs/QCA software.
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fscond("SP*EM + CO <-> AU", dat1) # both EM and CO are redundant to account for AU

# If we allow for dependencies among the conditions by setting strict = FALSE, CNA reveals
# that SP is a common cause of both AU and EM:
fscna(dat1, ordering = list("AU"), strict = FALSE, con = .9, cov = .9)

# Here is the analysis for the international conditions of autonomy endurance, which
# yields the same model presented by Basurto (plus one model Basurto does not mention):
dat2 <- d.autonomy[15:30, c("AU","RE", "CN", "DE")]
fscna(dat2, ordering = list("AU"), con = .9, con.msc = .85, cov = .85)

# But there are other models (here printed with all solution attributes)
# that fare equally well.
fscna(dat2, ordering = list("AU"), con = .85, cov = .9, details = TRUE)

# Finally, here is an analysis of the whole data set, showing that across the whole period
# 1986-2006, the best causal model of local autonomy (AU) renders that outcome dependent
# only on local direct spending (SP):
fscna(d.autonomy, ordering = list("AU"), strict = TRUE, con = .85, cov = .9,

maxstep = c(5, 5, 11), details = TRUE)

# Only build INUS solutions.
asf(fscna(d.autonomy, ordering = list("AU"), strict = TRUE, con = .85, cov = .9,

maxstep = c(5, 5, 11), details = TRUE, inus.only = TRUE))

# Highly ambiguous artificial data to illustrate exhaustiveness
# -------------------------------------------------------------
mycond <- "(D + C*f <-> A)*(C*d + c*D <-> B)*(B*d + D*f <-> C)*(c*B + B*f <-> E)"
dat1 <- selectCases(mycond)
ana1 <- cna(dat1, details = TRUE)
# There are almost 2M csf. This is how to build the first 360 of them:
csf360 <- csf(ana1, 360)
# Most of these csf are compatible with more configurations than are contained in
# dat1. Only 32 of csf360 are perfectly exhaustive (i.e. all compatible
# configurations are contained in dat1):
subset(csf360, exhaustiveness == 1)

# Eliminate structural redundancies.
minimalizeCsf(subset(csf360, exhaustiveness == 1)$condition, dat1)

# Inverse search trials to assess the correctness of cna
# ------------------------------------------------------
# 1. Ideal mv data, i.e. perfect consistencies and coverages, without data fragmentation.
# Define the target and generate data on the target.
target <- "(A=1*B=2 + A=4*B=3 <-> C=1)*(C=4*D=1 + C=2*D=4 <-> E=4)"
dat1 <- allCombs(c(4, 4, 4, 4, 4))
dat2 <- selectCases(target, dat1, type = "mv")
# Analyze the simulated data with cna.
test1 <- mvcna(dat2)
# Eliminate possible structural redundancies.
test1 <- minimalizeCsf(test1)
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# Check whether a correctness-preserving submodel of the target is among the
# returned solutions.
is.submodel(test1$condition, target)

# Same test as above with data fragmentation, i.e. with non-ideal data:
# only 100 of 472 observable configurations are actually
# observed. [Repeated runs will generate different data.]
dat3 <- some(dat2, n = 100, replace = TRUE)
test2 <- mvcna(dat3)
test2 <- minimalizeCsf(test2, 50)
is.submodel(test2$condition, target)

# 2. Fs data with imperfect consistencies (con = 0.8) and coverages (cov = 0.8);
# about 150 cases (depending on the seed). Randomly generated target asf.
# [Repeated runs will generate different targets and data.]
target <- randomAsf(full.tt(5), compl = c(2,3))
outcome <- as.vector(sapply(cna:::extract_asf(target), cna:::rhs))
# Simulate the data with con = cov = 0.8.
dat1 <- allCombs(c(2, 2, 2, 2, 2)) - 1
dat2 <- some(truthTab(dat1), n = 200, replace = TRUE)
dat3 <- makeFuzzy(tt2df(dat2), fuzzvalues = seq(0, 0.45, 0.01))
dat4 <- selectCases1(target, con = .8, cov = .8, type = "fs", dat3)
# Analyze the simulated data with cna.
test3 <- fscna(dat4, ordering = list(outcome), strict = TRUE, con = .8, cov = .8)
# Check whether a correctness-preserving submodel of the target is among the
# returned solutions.
is.submodel(asf(test3)$condition, target)

# Same test as above with data fragmentation: only 80 of about 150 possible
# cases are actually observed. [Repeated runs will generate different data.]
dat5 <- some(dat4, n = 80, replace = TRUE)
fscna(dat5, ordering = list(outcome), strict = TRUE, con = .8, cov = .8)
test4 <- fscna(dat5, ordering = list(outcome), strict = TRUE, con = .8, cov = .8)
is.submodel(asf(test4)$condition, target)

# Illustration of only.minimal.msc = FALSE
# ----------------------------------------
# Simulate noisy data on the causal structure "a*B*d + A*c*D <-> E"
set.seed(1324557857)
mydata <- allCombs(rep(2, 5)) - 1
dat <- makeFuzzy(mydata, fuzzvalues = seq(0, 0.5, 0.01))
dat <- tt2df(selectCases1("a*B*d + A*c*D <-> E", con = .8, cov = .8, dat))

# In dat, "a*B*d + A*c*D <-> E" has the following con and cov scores:
as.condTbl(fscond("a*B*d + A*c*D <-> E", dat))

# The standard algorithm of cna will, however, not find this structure with
# con = cov = 0.8 because one of the disjuncts (a*B*d) does not meet the con
# threshold:
as.condTbl(fscond(c("a*B*d <-> E", "A*c*D <-> E"), dat))
fscna(dat, ordering=list("E"), strict = TRUE, con = .8, cov = .8)
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# With the argument con.msc we can lower the con threshold for msc, but this does not
# recover "a*B*d + A*c*D <-> E" either:
cna2 <- fscna(dat, ordering=list("E"), strict = TRUE, con = .8, cov = .8, con.msc = .7)
cna2
msc(cna2)

# The reason is that "a*B -> E" and "c*D -> E" now also meet the con.msc threshold and,
# therefore, neither "a*B*d -> E" nor "A*c*D -> E" are contained in the msc---
# because of violated minimality. In a situation like this, lifting the minimality
# requirement via only.minimal.msc = FALSE allows cna to find the intended target:
fscna(dat, ordering=list("E"), strict=TRUE, con = .8, cov = .8, con.msc = .7,

only.minimal.msc = FALSE)

coherence Calculate the coherence of complex solution formulas

Description

Calculates the coherence measure of complex solution formulas (csf).

Usage

coherence(cond, tt, type)

Arguments

cond Character vector specifying an asf or csf.

tt Data frame or truthTab.

type Character vector specifying the type of tt: "cs" (crisp-set), "mv" (multi-value),
or "fs" (fuzzy-set). Defaults to the type of tt, if tt is a truthTab or to "cs"
otherwise.

Details

Coherence is a measure for model fit that is custom-built for complex solution formulas (csf). It
measures the degree to which the atomic solution formulas (asf) combined in a csf cohere, i.e. are
instantiated together in tt rather than independently of one another. More concretely, coherence is
the ratio of the number of cases satisfying all asf contained in a csf to the number of cases satisfying
at least one asf in the csf. For example, if the csf contains the three asf asf1, asf2, asf3, coherence
amounts to | asf1 * asf2 * asf3 | / | asf1 + asf2 + asf3 |, where |...| expresses the cardinality of the
set of cases instantiating the corresponding expression. For asf, coherence returns 1. For boolean
conditions (see condition), the coherence measure is not defined and coherence hence retuns
NA. For multiple csf that do not have a factor in common, coherence returns the minimum of the
separate coherence scores.

Value

Numeric vector of coherence values.
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See Also

cna, condition, selectCases, allCombs, full.tt, condTbl

Examples

# Perfect coherence.
dat1 <- selectCases("(A*b <-> C)*(C+D <-> E)")
coherence("(A*b <-> C)*(C + D <-> E)", dat1)
csf(cna(dat1, details = "c"))

# Non-perfect coherence.
dat2 <- selectCases("(a*B <-> C)*(C + D<->E)*(F*g <-> H)")
dat3 <- rbind(tt2df(dat2), c(0,1,0,1,1,1,0,1))
coherence("(a*B <-> C)*(C + D <-> E)*(F*g <-> H)", dat3)
csf(cna(dat3, con=.88, details = "c"))

condition Uncover relevant properties of msc, asf, and csf in a data frame or
truthTab

Description

The condition function provides assistance to inspect the properties of msc, asf, and csf (as re-
turned by cna) in a data frame or truthTab, but also of any other Boolean function. condition
reveals which configurations and cases instantiate a given msc, asf, or csf and lists consistency and
coverage scores.

Usage

condition(x, ...)

## Default S3 method:
condition(x, tt, type, add.data = FALSE,

force.bool = FALSE, rm.parentheses = FALSE, ...)
## S3 method for class 'condTbl'
condition(x, tt, ...)
cscond(...)
mvcond(...)
fscond(...)

## S3 method for class 'condList'
print(x, ...)
## S3 method for class 'condList'
summary(object, ...)

## S3 method for class 'cond'
print(x, digits = 3, print.table = TRUE,

show.cases = NULL, add.data = NULL, ...)



20 condition

group.by.outcome(condlst, cases = TRUE)

Arguments

x Character vector specifying a Boolean expression as "A + B*C -> D", where "A","B","C","D"
are column names in tt.

tt Data frame or truthTab (see truthTab).

type Character vector specifying the type of tt: "cs" (crisp-set), "mv" (multi-value),
or "fs" (fuzzy-set). Defaults to the type of tt, if tt is a truthTab or to "cs"
otherwise.

add.data Logical; if TRUE, tt is attached to the output. Alternatively, the tt can be speci-
fied as the add.data argument in print.cond.

force.bool Logical; if TRUE, x is interpreted as a mere Boolean function, not as a causal
model.

rm.parentheses Logical; if TRUE, parantheses around x are removed prior to evaluation.

digits Number of digits to print in consistency and coverage scores.

print.table Logical; if TRUE, the table assigning configurations and cases to conditions is
printed.

show.cases In print.cond: logical; if TRUE, the attribute “cases” of the truthTab is printed.
Same default behavior as in print.truthTab.

object Object of class “condList”, as returned by condition.

condlst List of objects, each of them of class “cond”, as returned by condition.

cases Logical; if TRUE, the returned data frame has a column named “cases”.

... In cscond, mvcond, fscond: any formal argument of condition except type.

Details

Depending on the processed data frame or truthTab, the solutions output by cna are often ambigu-
ous; that is, it can happen that many solution formulas fit the data equally well. In such cases, the
data alone are insufficient to single out one solution. While cna simply lists the possible solutions,
the condition function is intended to provide assistance in comparing different minimally suffi-
cient conditions (msc), atomic solution formulas (asf), and complex solution formulas (csf) in order
to have a better basis for selecting among them.

Most importantly, the output of the condition function highlights in which configurations and
cases in the data an msc, asf, and csf is instantiated. Thus, if the user has independent causal knowl-
edge about particular configurations or cases, the information received from condition may be
helpful in selecting the solutions that are consistent with that knowledge. Moreover, the condition
function allows for directly contrasting consistency and coverage scores or frequencies of different
conditions contained in returned asf.

The condition function is independent of cna. That is, any msc, asf, or csf—irrespective of
whether they are output by cna—can be given as input to condition. Even Boolean expressions
that do not have the syntax of CNA solution formulas can be passed to condition.

The first required input x of condition is a character vector consisting of Boolean formulas com-
posed of factor names that are column names of tt, which is the second required input. tt can be
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a truthTab or a data frame. In the latter case, condition must be told what type of data tt con-
tains, and the data frame will be converted to a truthTab. Data that feature factors taking values
1 or 0 only are called crisp-set, in which case the type argument takes its default value "cs". If
the data contain at least one factor that takes more than two values, e.g. {1,2,3}, the data count
as multi-value, which is indicated by type = "mv". Data featuring at least one factor taking real
values from the interval [0,1] count as fuzzy-set, which is specified by type = "fs". To abbrevi-
ate the specification of the data type, the functions cscond(x,tt,...), mvcond(x,tt,...), and
fscond(x,tt,...) are available as shorthands for condition(x,tt,type = "cs",...), condition(x,tt,type
= "mv",...), and condition(x,tt,type = "fs",...), respectively.

Conjunction can be expressed by “*” or “&”, disjunction by “+” or “|”, negation can be expressed
by “-” or “!” or, in case of crisp-set or fuzzy-set data, by changing upper case into lower case letters
and vice versa, implication by “->”, and equivalence by “<->”. Examples are

• A*b -> C,A+b*c+!(C+D),A*B*C + -(E*!B),C -> A*B + a*b

• (A=2*B=4 + A=3*B=1 <-> C=2)*(C=2*D=3 + C=1*D=4 <-> E=3)

• (A=2*B=4*!(A=3*B=1)) | !(C=2|D=4)*(C=2*D=3 + C=1*D=4 <-> E=3)

Three types of conditions are distinguished:

• The type boolean comprises Boolean expressions that do not have the syntactic form of causal
models, meaning the corresponding character strings in the argument x do not have an “->”
or “<->” as main operator. Examples: "A*B + C" or "-(A*B + -(C+d))". The expression is
evaluated and written into a data frame with one column. Frequency is attached to this data
frame as an attribute.

• The type atomic comprises expressions that have the syntactic form of atomic causal mod-
els, i.e. asf, meaning the corresponding character strings in the argument x have an “->” or
“<->” as main operator. Examples: "A*B + C -> D" or "A*B + C <-> D". The expressions on
both sides of “->” and “<->” are evaluated and written into a data frame with two columns.
Consistency and coverage are attached to these data frames as attributes.

• The type complex represents complex causal models, i.e. csf. Example:
"(A*B + a*b <-> C)*(C*d + c*D <-> E)". Each component must be a causal model of type
atomic. These components are evaluated separately and the results stored in a list. Consistency
and coverage of the complex expression are then attached to this list.

The types of the character strings in the input x are automatically discerned and thus do not need be
specified by the user.

If force.bool = TRUE, expressions with “->” or “<->” are treated as type boolean, i.e. only their
frequencies are calculated. Enclosing a character string representing a causal model in parentheses
has the same effect as specifying force.bool = TRUE. rm.parentheses = TRUE removes parenthe-
ses around the expression prior to evaluation, and thus has the reverse effect of setting force.bool
= TRUE.

If add.data = TRUE, tt is appended to the output such as to facilitate the analysis and evaluation of
a model on the case level.

The digits argument of the print function determines how many digits of consistency and cov-
erage scores are printed. If print.table = FALSE, the table assigning conditions to configura-
tions and cases is omitted, i.e. only frequencies or consistency and coverage scores are returned.
row.names = TRUE also lists the row names in tt. If rows in a tt are instantiated by many cases,
those cases are not printed by default. They can be recovered by show.cases = TRUE.
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group.by.outcome takes a condlist as input, i.e. a list of “cond” objects, as it is returned by
condition, and combines the entries in that lists into a data frame with a larger number of columns.
The additional attributes (consistencies etc.) are thereby removed.

Value

condition returns a list of objects, each of them corresponding to one element of the input vector x.
The list has a class attribute “condList”, the list elements (i.e., the individual conditions) are of class
“cond” and have a more specific class label “booleanCond”, “atomicCond” or “complexCond”,
according to the condition type. The components of class “booleanCond” or “atomicCond” are
amended data frames, those of class “complexCond” are lists of amended data frames.

group.by.outcome returns a list of data frames, one data frame for each factor appearing as an
outcome in condlst.

print and summary methods

print.condList essentially executes print.cond successively for each list element/condition.
All arguments in print.condList are thereby passed to print.cond, i.e. digits, print.table,
show.cases, add.data can also be specified when printing the complete list of conditions.

The summary method for class “condList” is identical to printing with print.table = FALSE.

The option “spaces” controls how the conditions are rendered in certain contexts. The current
setting is queried by typing getOption("spaces"). The option specifies characters that will be
printed with a space before and after them. The default is c("<->","->","+"). A more compact
output is obtained with option(spaces = NULL).

References

Emmenegger, Patrick. 2011. “Job Security Regulations in Western Democracies: A Fuzzy Set
Analysis.” European Journal of Political Research 50(3):336-64.

Lam, Wai Fung, and Elinor Ostrom. 2010. “Analyzing the Dynamic Complexity of Development
Interventions: Lessons from an Irrigation Experiment in Nepal.” Policy Sciences 43 (2):1-25.

Ragin, Charles. 2008. Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago, IL: University
of Chicago Press.

See Also

cna, truthTab, condTbl, d.irrigate

Examples

# Crisp-set data from Lam and Ostrom (2010) on the impact of development interventions
# ------------------------------------------------------------------------------------
# Build a truth table for d.irrigate.
irrigate.tt <- truthTab(d.irrigate)

# Any Boolean functions involving the factors "A", "R", "F", "L", "C", "W" in d.irrigate
# can be tested by condition.
condition("A*r + L*C", irrigate.tt)
condition(c("A*r + !(L*C)", "A*-(L | -F)", "C -> A*R + C*l"), irrigate.tt)
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condition(c("A*r + L*C -> W", "!(A*L*R -> W)", "(A*R + C*l <-> F)*(W*a -> F)"),
irrigate.tt)

# Group expressions with "->" by outcome.
irrigate.con <- condition(c("A*r + L*C -> W", "A*L*R -> W", "A*R + C*l -> F", "W*a -> F"),

irrigate.tt)
group.by.outcome(irrigate.con)

# Pass minimally sufficient conditions inferred by cna to condition.
irrigate.cna1 <- cna(d.irrigate, ordering = list(c("A","R","L"),c("F","C"),"W"), con = .9)
condition(msc(irrigate.cna1)$condition, irrigate.tt)

# Pass atomic solution formulas inferred by cna to condition.
irrigate.cna1 <- cna(d.irrigate, ordering = list(c("A","R","L"),c("F","C"),"W"), con = .9)
condition(asf(irrigate.cna1)$condition, irrigate.tt)

# Group by outcome.
irrigate.cna1.msc <- condition(msc(irrigate.cna1)$condition, irrigate.tt)
group.by.outcome(irrigate.cna1.msc)

irrigate.cna2 <- cna(d.irrigate, con = .9)
irrigate.cna2a.asf <- condition(asf(irrigate.cna2)$condition, irrigate.tt)
group.by.outcome(irrigate.cna2a.asf)

# Add data.
(irrigate.cna2b.asf <- condition(asf(irrigate.cna2)$condition, irrigate.tt,

add.data = TRUE))

# No spaces before and after "+".
options(spaces = c("<->", "->" ))
irrigate.cna2b.asf

# No spaces at all.
options(spaces = NULL)
irrigate.cna2b.asf

# Restore the default spacing.
options(spaces = c("<->", "->", "+"))

# Print only consistency and coverage scores.
print(irrigate.cna2a.asf, print.table = FALSE)
summary(irrigate.cna2a.asf)

# Print only 2 digits of consistency and coverage scores.
print(irrigate.cna2b.asf, digits = 2)

# Instead of a truth table as output by truthTab, it is also possible to provide a data
# frame as second input.
condition("A*r + L*C", d.irrigate, type = "cs")
condition(c("A*r + L*C", "A*L -> F", "C -> A*R + C*l"), d.irrigate, type = "cs")
condition(c("A*r + L*C -> W", "A*L*R -> W", "A*R + C*l -> F", "W*a -> F"), d.irrigate,

type = "cs")
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# Fuzzy-set data from Emmenegger (2011) on the causes of high job security regulations
# ------------------------------------------------------------------------------------
# Compare the CNA solutions for outcome JSR to the solution presented by Emmenegger
# S*R*v + S*L*R*P + S*C*R*P + C*L*P*v -> JSR (p. 349), which he generated by fsQCA as
# implemented in the fs/QCA software, version 2.5.
jobsecurity.cna <- fscna(d.jobsecurity, ordering=list("JSR"), strict = TRUE, con = .97,

cov= .77, maxstep = c(4, 4, 15))
compare.sol <- fscond(c(asf(jobsecurity.cna)$condition, "S*R*v + S*L*R*P + S*C*R*P +

C*L*P*v -> JSR"), d.jobsecurity)
summary(compare.sol)
print(compare.sol, add.data = d.jobsecurity)
group.by.outcome(compare.sol)

# There exist even more high quality solutions for JSR.
jobsecurity.cna2 <- fscna(d.jobsecurity, ordering=list("JSR"), strict = TRUE, con = .95,

cov= .8, maxstep = c(4, 4, 15))
compare.sol2 <- fscond(c(asf(jobsecurity.cna2)$condition, "S*R*v + S*L*R*P + S*C*R*P +

C*L*P*v -> JSR"), d.jobsecurity)
summary(compare.sol2)
group.by.outcome(compare.sol2)

# Simulate multi-value data
# -------------------------
library(dplyr)
# Define the data generating structure.
groundTruth <- "(A=2*B=1 + A=3*B=3 <-> C=1)*(C=1*D=2 + C=2*D=3 <-> E=3)"
# Generate ideal data on groundTruth.
fullData <- allCombs(c(3, 3, 2, 3, 3))
idealData <- tt2df(selectCases(groundTruth, fullData, type = "mv"))
# Randomly add 15% inconsistent cases.
inconsistentCases <- setdiff(fullData, idealData)
realData <- rbind(idealData, inconsistentCases[sample(1:nrow(inconsistentCases),

nrow(idealData)*0.15), ])
# Determine model fit of groundTruth and its submodels.
condition(groundTruth, realData, type = "mv")
mvcond(groundTruth, realData)
mvcond("A=2*B=1 + A=3*B=3 <-> C=1", realData)
mvcond("A=2*B=1 + A=3*B=3 <-> C=1", realData, force.bool = TRUE)
mvcond("(C=1*D=2 + C=2*D=3 <-> E=3)", realData)
mvcond("(C=1*D=2 + C=2*D=3 <-> E=3)", realData, rm.parentheses = TRUE)
mvcond("(C=1*D=2 +!(C=2*D=3 + A=1*B=1) <-> E=3)", realData)
# Manually calculate unique coverages, i.e. the ratio of an outcome's instances
# covered by individual msc alone (for details on unique coverage cf.
# Ragin 2008:63-68).
summary(mvcond("A=2*B=1 * -(A=3*B=3) <-> C=1", realData)) # unique coverage of A=2*B=1
summary(mvcond("-(A=2*B=1) * A=3*B=3 <-> C=1", realData)) # unique coverage of A=3*B=3

condTbl Extract conditions and solutions from an object of class “cna”
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Description

Given a solution object x produced by cna, msc(x) extracts all minimally sufficient conditions,
asf(x) all atomic solution formulas, and csf(x,n) extracts at least n complex solution formulas.
All solution attributes (details) that are saved in x are recovered as well. The three functions
return a data frame with the additional class attribute condTbl.

as.condTbl reshapes the output produced by condition in such a way as to make it identical to
the output returned by msc, asf, and csf.

condTbl executes condition and returns a concise summary table featuring consistencies and cov-
erages.

Usage

msc(x, details = x$details)
asf(x, details = x$details, warn_details = TRUE)
csf(x, n = 20, tt = x$truthTab, details = x$details,

asfx = asf(x, details, warn_details = FALSE))

## S3 method for class 'condTbl'
print(x, digits = 3, quote = FALSE, row.names = TRUE, ...)

condTbl(...)
as.condTbl(x, ...)

Arguments

x Object of class “cna”. In as.condTbl, x is a list of evaluated conditions as
returned by condition.

details Either TRUE/FALSE or a character vector specifying which solution attributes to
print (see cna). Note that msc and asf can only display attributes that are saved
in x, i.e. those that have been requested in the details argument within the call
of cna.

warn_details Logical; if TRUE, a warning is issued when some attribute requested in details
is not available in x (parameter for internal use).

n The minimal number of csf to be calculated.

tt A truthTab.

asfx Object of class “condTbl” resulting from asf.

digits Number of digits to print in consistency, coverage, exhaustiveness, faithfulness,
and coherence scores.

quote, row.names

As in print.data.frame.

... All arguments in condTbl are passed on to condition.

Details

Depending on the processed data, the solutions output by cna are often ambiguous, to the effect
that many atomic and complex solutions fit the data equally well. To facilitate the inspection of
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the cna output, however, the latter standardly returns only 5 minimally sufficient conditions and 5
atomic and complex solution formulas for each outcome. msc can be used to extract all minimally
sufficient conditions from an object x of class “cna”, asf to extract all atomic solution formulas,
and csf to extract at least n complex solution formulas from x. All solution attributes (details)
that are saved in x are recovered as well. The outputs of msc, asf, and csf can be further processed
by the condition function.

The argument digits applies to the print function. It determines how many digits of consistency,
coverage, exhaustiveness, faithfulness, and coherence scores are printed. The default value is 3.

The function as.condTbl takes a list of objects of class “cond” that are returned by the condition
function as input, and reshapes these objects in such a way as to make them identical to the output
returned by msc, asf, and csf.

condTbl(...) is identical with as.condTbl(condition(...)).

Value

msc, asf, csf, and as.condTbl return objects of class “condTbl”, a data.frame which features
the following components:

outcome: the outcomes
condition: the relevant conditions or solutions

consistency: the consistency scores
coverage: the coverage scores

complexity: the complexity scores
inus: whether the solutions are inus

exhaustiveness: the exhaustiveness scores
faithfulness: the faithfulness scores

coherence: the coherence scores
redundant: whether the csf contain redundant proper parts

The latter five measures are optional and will be appended to the table according to the setting of
the argument details.

References

Lam, Wai Fung, and Elinor Ostrom. 2010. “Analyzing the Dynamic Complexity of Development
Interventions: Lessons from an Irrigation Experiment in Nepal.” Policy Sciences 43 (2):1-25.

See Also

cna, truthTab, condition, minimalizeCsf, d.irrigate

Examples

# Crisp-set data from Lam and Ostrom (2010) on the impact of development interventions
# ------------------------------------------------------------------------------------
# CNA with causal ordering that corresponds to the ordering in Lam & Ostrom (2010); coverage
# cut-off at 0.9 (consistency cut-off at 1).
cna.irrigate <- cna(d.irrigate, ordering = list(c("A","R","F","L","C"),"W"), cov = .9,

maxstep = c(4, 4, 12), details = TRUE)
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cna.irrigate

# The previous function call yields a total of 12 complex solution formulas, only
# 5 of which are returned in the default output.
# Here is how to extract all 12 complex solution formulas along with all
# solution attributes.
csf(cna.irrigate)
# With only the standard attributes plus exhaustiveness and faithfulness.
csf(cna.irrigate, details = c("e", "f"))

# Extract all atomic solution formulas.
asf(cna.irrigate)

# Extract all minimally sufficient conditions.
msc(cna.irrigate)

# Extract only the conditions (solutions).
csf(cna.irrigate)$condition
asf(cna.irrigate)$condition
msc(cna.irrigate)$condition

# A CNA of d.irrigate without a presupposed ordering is even more ambiguous.
cna2.irrigate <- cna(d.irrigate, cov = .9, maxstep = c(4,4,12), details = TRUE)

# To speed up the construction of complex solution formulas, first extract atomic solutions
# and then pass these asf to csf.
cna2.irrigate.asf <- asf(cna2.irrigate)
# By default, at least 20 csf are generated.
csf(cna2.irrigate, asfx = cna2.irrigate.asf, details = FALSE)
# Generate the first 191 csf.
csf(cna2.irrigate, asfx = cna2.irrigate.asf, 191, details = FALSE)
# Also extract exhaustiveness scores.
csf(cna2.irrigate, asfx = cna2.irrigate.asf, 191, details = "e")
# Generate all 684 csf.
csf(cna2.irrigate, asfx = cna2.irrigate.asf, 684)

# Return solution attributes with 5 digits.
print(cna2.irrigate.asf, digits = 5)

# Another example to the same effect.
print(csf(cna(d.irrigate, ordering = list(c("A","R","F","L","C"),"W"),

maxstep = c(4, 4, 12), cov = 0.9)), digits = 5)

# Feed the outputs of msc, asf, and csf into the condition function to further inspect the
# properties of minimally sufficient conditions and atomic and complex solution formulas.
condition(msc(cna.irrigate)$condition, d.irrigate)
condition(asf(cna.irrigate)$condition, d.irrigate)
condition(csf(cna.irrigate)$condition, d.irrigate)

# Reshape the output of the condition function in such a way as to make it identical to the
# output returned by msc, asf, and csf.
as.condTbl(condition(msc(cna.irrigate)$condition, d.irrigate))
as.condTbl(condition(asf(cna.irrigate)$condition, d.irrigate))
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as.condTbl(condition(csf(cna.irrigate)$condition, d.irrigate))

condTbl(csf(cna.irrigate)$condition, d.irrigate) # Same as preceding line

cyclic Detect cyclic substructures in complex solution formulas (csf)

Description

Given a character vector x specifying complex solution formula(s) (csf), cyclic(x) checks whether
x contains cyclic substructures. The function can be used, for instance, to filter cyclic causal models
out of cna solution objects (e.g. in order to reduce ambiguities).

Usage

cyclic(x, cycle.type = c("factor", "value"), use.names = TRUE, verbose = FALSE)

Arguments

x Character vector specifying one or several csf.

cycle.type Character string specifying what type of cycles to be detected: "factor" (the
default) or "value".

use.names Logical; if TRUE, names are added to the result (see examples).

verbose Logical; if TRUE, the checked causal paths are printed to the console.

Details

Detecting causal cycles is one of the most challenging tasks in causal data analysis—in all method-
ological traditions. In a nutshell, the reason is that factors in a cyclic structure are so highly inter-
dependent that, even under optimal discovery conditions, the diversity of (observational) data tends
to be too limited to draw informative conclusions about the data-generating structure. In conse-
quence, various methods (most notably, Bayes nets methods, cf. Spirtes et al. 2000) assume that
data-generating structures are acyclic.

cna outputs cyclic complex solutions formulas (csf) if they fit the data. Typically, however, the
causal modeling of configurational data that can be modeled in terms of cycles is massively am-
biguous. Therefore, if there are independent reasons to assume that the data are not generated by
a cyclic structure, the function cyclic can be used to reduce the ambiguities in a cna output by
filtering out all csf with cyclic substructures.

A causal structure has a cyclic substructure if, and only if, it contains a directed causal path from
at least one cause back to itself. A regularity theory of causation in the vein of Mackie (1974)
spells this criterion out as follows: a csf x has a cyclic substructure if, and only if, x contains
a sequence <Z1, Z2,..., Zn> every element of which is an INUS condition of its successor and
Z1=Zn. Accordingly, the function cyclic searches for sequences <Z1, Z2,..., Zn> of factors or
factor values in a csf x such that (i) every Zi is contained in the antecedent (i.e. the left-hand side of
"<->") of and atomic solution formula (asf) of Zi+1 in x, and (ii) Zn is identical to Z1. The function
returns TRUE if, and only if, at least one such sequence (i.e. directed causal path) is found in x.
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The cycle.type argument controls whether the sequence <Z1, Z2,..., Zn> is composed of factors
(cycle.type = "factor") or factor values (cycle.type = "value"). To illustrate, if cycle.type
= "factor", the following csf is considered cyclic: (A + B <-> C)*(c + D <-> A). The factor A
(with value 1) appears in the antecedent of an asf of C (with value 1), and the factor C (with value
0) appears in the antecedent of an asf of A (with value 1). But if cycle.type = "value", that same
csf does not pass as cyclic. Although the factor value 1 of A appears in the antecedent of an asf of
the factor value 1 of C, that same value of C does not appear in the antecedent of an asf of A; rather,
the value 0 of C appears in the antecedent of A.

If verbose = TRUE, the sequences (paths) tested for cyclicity are output to the console. Note that the
search for cycles is stopped as soon as one cyclic sequence (path) has been detected. Accordingly,
not all sequences (paths) contained in x may be output to the console.

Value

A logical vector: TRUE for a csf with at least one cyclic substructure, FALSE for a csf without any
cyclic substructures.

References

Mackie, John L. 1974. The Cement of the Universe: A Study of Causation. Oxford: Oxford
University Press.

Spirtes, Peter, Clark Glymour, and Richard Scheines. 2000. Causation, Prediction, and Search
(second ed.). Cambridge MA: MIT Press.

Examples

# cna infers two csf from the d.educate data, neither of which has a cyclic
# substructure.
cnaedu <- cna(d.educate)
cyclic(csf(cnaedu)$condition)

# At con = .82 and cov = .82, cna infers 605 csf from the d.jobsecurity data, all
# of which are cyclic.
cnajob <- fscna(d.jobsecurity, con = 0.82, cov = 0.82)
cyclic(csf(cnajob)$condition) # first 20 csf
any(!cyclic(csf(cnajob, Inf)$condition)) # No acyclic csf!

# At con = .82 and cov = .82, cna infers 126 csf for the d.pacts data, some
# of which are cyclic, others are acyclic. If there are independent
# reasons to assume acyclicity, here is how to extract all acyclic csf.
cnapacts <- fscna(d.pacts, con = .82, cov = .82, inus.only = TRUE)
subset(csf(cnapacts, Inf), !cyclic(csf(cnapacts, Inf)$condition))

# With verbose = TRUE, the tested sequences (causal paths) are printed.
cyclic("(L=1 + G=1 <-> E=2)*(U=5 + D=3 <-> L=1)*(E=2*G=4 <-> D=3)", verbose = TRUE)
cyclic("(e*G + F*D + E*c*g*f <-> A)*(d + f*e + c*a <-> B)*(A*e + G*a*f <-> C)", verbose = TRUE)

# Argument cycle.type = "factor" or "value".
cyclic("(A*b + C -> D)*(d + E <-> A)")
cyclic("(A*b + C -> D)*(d + E <-> A)", cycle.type = "value")
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cyclic("(L=1 + G=1 <-> E=2)*(U=5 + D=3 <-> L=2)*(E=2 + G=3 <-> D=3)")
cyclic("(L=1 + G=1 <-> E=2)*(U=5 + D=3 <-> L=2)*(E=2 + G=3 <-> D=3)", cycle.type = "v")

cyclic("a <-> A")
cyclic("a <-> A", cycle.type = "v")

sol1 <- "(A*X1 + Y1 <-> B)*(b*X2 + Y2 <-> C)*(C*X3 + Y3 <-> A)"
cyclic(sol1)
cyclic(sol1, cycle.type = "value")

sol2 <- "(A*X1 + Y1 <-> B)*(B*X2 + Y2 <-> C)*(C*X3 + Y3 <-> A)"
cyclic(sol2)
cyclic(sol2, cycle.type = "value")

# Argument use.names.
cyclic("a*b + C -> A", use.names = FALSE)

# More examples.
cyclic("(L + G <-> E)*(U + D <-> L)*(A <-> U)")
cyclic("(L + G <-> E)*(U + D <-> L)*(A <-> U)*(B <-> G)")
cyclic("(L + G <-> E)*(U + D <-> L)*(A <-> U)*(B <-> G)*(L <-> G)")
cyclic("(L + G <-> E)*(U + D <-> L)*(A <-> U)*(B <-> G)*(L <-> C)")
cyclic("(D -> A)*(A -> B)*(A -> C)*(B -> C)")

cyclic("(B + d*f <-> A)*(E + F*g <-> B)*(G*e + D*A <-> C)")
cyclic("(B*E + d*f <-> A)*(A + E*g + f <-> B)*(G*e + D*A <-> C)")
cyclic("(B + d*f <-> A)*(C + F*g <-> B)*(G*e + D*A <-> C)")
cyclic("(e*G + F*D + E*c*g*f <-> A)*(d + f*e + c*a <-> B)*(A*e + G*a*f <-> C)")
cyclic("(e*G + F*D + E*c*g*f <-> A)*(d + f*e + c*a <-> B)*(A*e + G*a*f <-> C)",

verbose = TRUE)

d.autonomy Emergence and endurance of autonomy of biodiversity institutions in
Costa Rica

Description

This dataset is from Basurto (2013), who analyzes the causes of the emergence and endurance of
autonomy among local institutions for biodiversity conservation in Costa Rica between 1986 and
2006.

Usage

d.autonomy

Format

The data frame contains 30 rows (cases), which are divided in two halfs: rows 1 to 14 comprise
data on the emergence of local autonomy between 1986 and 1998, rows 15 to 30 comprise data on
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the endurance of local autonomy between 1998 and 2006. The data has the following 9 columns
featuring fuzzy-set factors:
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[ , 1] AU local autonomy (ultimate outcome)
[ , 2] EM local communal involvement through direct employment
[ , 3] SP local direct spending
[ , 4] CO co-management with local or regional stakeholders
[ , 5] CI degree of influence of national civil service policies
[ , 6] PO national participation in policy-making
[ , 7] RE research-oriented partnerships
[ , 8] CN conservation-oriented partnerships
[ , 9] DE direct support by development organizations

Contributors

Thiem, Alrik: collection, documentation

Source

Basurto, Xavier. 2013. “Linking Multi-Level Governance to Local Common-Pool Resource Theory
using Fuzzy-Set Qualitative Comparative Analysis: Insights from Twenty Years of Biodiversity
Conservation in Costa Rica.” Global Environmental Change 23 (3):573-87.

d.educate Artifical data on education levels and left-party strength

Description

This artifical dataset of macrosociological factors on high levels of education is from Baumgartner
(2009).

Usage

d.educate

Format

The data frame contains 8 rows (cases) and the following 5 columns featuring Boolean factors
taking values 1 and 0 only:

[ , 1] U existence of strong unions
[ , 2] D high level of disparity
[ , 3] L existence of strong left parties
[ , 4] G high gross national product
[ , 5] E high level of education

Source

Baumgartner, Michael. 2009. “Inferring Causal Complexity.” Sociological Methods & Research
38(1):71-101.
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d.irrigate Data on the impact of development interventions on water adequacy
in Nepal

Description

This dataset is from Lam and Ostrom (2010), who analyze the effects of an irrigation experiment in
Nepal.

Usage

d.irrigate

Format

The dataset contains 15 rows (cases) and the following 6 columns featuring Boolean factors taking
values 1 and 0 only:

[ , 1] A continual assistance on infrastructure improvement
[ , 2] R existence of a set of formal rules for irrigation operation and maintenance
[ , 3] F existence of provisions of fines
[ , 4] L existence of consistent leadership
[ , 5] C existence of collective action among farmers for system maintenance
[ , 6] W persistent improvement in water adequacy at the tail end in winter

Source

Lam, Wai Fung, and Elinor Ostrom. 2010. “Analyzing the Dynamic Complexity of Development
Interventions: Lessons from an Irrigation Experiment in Nepal.” Policy Sciences 43 (2):1-25.

d.jobsecurity Job security regulations in western democracies

Description

This dataset is from Emmenegger (2011), who analyzes the determinants of high job security regu-
lations in Western democracies using fsQCA.

Usage

d.jobsecurity

Format

The data frame contains 19 rows (cases) and the following 7 columns featuring fuzzy-set factors:
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[ , 1] S statism ("1" high, "0" not high)
[ , 2] C non-market coordination ("1" high, "0" not high)
[ , 3] L labour movement strength ("1" high, "0" not high)
[ , 4] R Catholicism ("1" high, "0" not high)
[ , 5] P religious party strength ("1" high, "0" not high)
[ , 6] V institutional veto points ("1" many, "0" not many)
[ , 7] JSR job security regulations ("1" high, "0" not high)

Contributors

Thiem, Alrik: collection, documentation

Note

The row names are the official International Organization for Standardization (ISO) country code
elements as specified in ISO 3166-1-alpha-2.

Source

Emmenegger, Patrick. 2011. “Job Security Regulations in Western Democracies: A Fuzzy Set
Analysis.” European Journal of Political Research 50(3):336-64.

d.minaret Data on the voting outcome of the 2009 Swiss Minaret Initiative

Description

This dataset is from Baumgartner and Epple (2014), who analyze the determinants of the outcome
of the vote on the 2009 Swiss Minaret Initative.

Usage

d.minaret

Format

The data frame contains 26 rows (cases) and the following 6 columns featuring raw data:

[ , 1] A rate of old xenophobia
[ , 2] L left party strength
[ , 3] S share of native speakers of Serbian, Croatian, or Albanian
[ , 4] T strength of traditional economic sector
[ , 5] X rate of new xenophobia
[ , 6] M acceptance of Minaret Initiative

Contributors

Ruedi Epple: collection, documentation
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Source

Baumgartner, Michael, and Ruedi Epple. 2014. “A Coincidence Analysis of a Causal Chain: The
Swiss Minaret Vote.” Sociological Methods & Research 43 (2):280-312.

d.pacts Data on the emergence of labor agreements in new democracies be-
tween 1994 and 2004

Description

This dataset is from Aleman (2009), who analyzes the causes of the emergence of tripartite la-
bor agreements among unions, employers, and government representatives in new democracies in
Europe, Latin America, Africa, and Asia between 1994 and 2004.

Usage

d.pacts

Format

The data frame contains 78 rows (cases) and the following 5 columns listing membership scores in
5 fuzzy sets:

[ , 1] PACT development of tripartite cooperation (ultimate outcome)
[ , 2] W regulation of the wage setting process
[ , 3] E regulation of the employment process
[ , 4] L presence of a left government
[ , 5] P presence of an encompassing labor organization (labor power)

Contributors

Thiem, Alrik: collection, documentation

Source

Aleman, Jose. 2009. “The Politics of Tripartite Cooperation in New Democracies: A Multi-level
Analysis.” International Political Science Review 30 (2):141-162.

d.pban Party ban provisions in sub-Saharan Africa

Description

This dataset is from Hartmann and Kemmerzell (2010), who, among other things, analyze the causes
of the emergence of party ban provisions in sub-Saharan Africa.



36 d.performance

Usage

d.pban

Format

The data frame contains 48 rows (cases) and the following 5 columns, some of which feature multi-
value factors:

[ , 1] C colonial background ("2" British, "1" French, "0" other)
[ , 2] F former regime type competition ("2" no, "1" limited, "0" multi-party)
[ , 3] T transition mode ("2" managed, "1" pacted, "0" democracy before 1990)
[ , 4] V ethnic violence ("1" yes, "0" no)
[ , 5] PB introduction of party ban provisions ("1" yes, "0" no)

Source

Hartmann, Christof, and Joerg Kemmerzell. 2010. “Understanding Variations in Party Bans in
Africa.” Democratization 17(4):642-65. DOI: 10.1080/13510347.2010.491189.

d.performance Data on combinations of industry, corporate, and business-unit effects

Description

This dataset is from Greckhammer et al. (2008), who analyze the causal conditions for superior
(above average) business-unit performance of corporations in the manufacturing sector during the
years 1995 to 1998.

Usage

d.performance

Format

The data frame contains 214 rows featuring configurations, one column reporting the frequencies
of each configuration, and 8 columns listing the following Boolean factors:

[ , 1] MU above average industry munificence
[ , 2] DY high industry dynamism
[ , 3] CO high industry competitiveness
[ , 4] DIV high corporate diversification
[ , 5] CRA above median corporate resource availability
[ , 6] CI above median corporate capital intensity
[ , 7] BUS large business-unit size
[ , 8] SP above average business-unit performance (in the manufacturing sector)
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Source

Greckhamer, Thomas, Vilmos F. Misangyi, Heather Elms, and Rodney Lacey. 2008. “Using Quali-
tative Comparative Analysis in Strategic Management Research: An Examination of Combinations
of Industry, Corporate, and Business-Unit Effects.” Organizational Research Methods 11 (4):695-
726.

d.volatile Data on the volatility of grassroots associations in Norway between
1980 and 2000

Description

This dataset is from Wollebaek (2010), who analyzes the causes of disbandings of grassroots asso-
ciations in Norway.

Usage

d.volatile

Format

The data frame contains 22 rows (cases) and the following 9 columns featuring Boolean factors
taking values 1 and 0 only:

[ , 1] PG high population growth
[ , 2] RB high rurbanization (i.e. people moving to previously sparsely populated areas that are

not adjacent to a larger city)
[ , 3] EL high increase in education levels
[ , 4] SE high degree of secularization
[ , 5] CS existence of Christian strongholds
[ , 6] OD high organizational density
[ , 7] PC existence of polycephality (i.e. municipalities with multiple centers)
[ , 8] UP urban proximity
[ , 9] VO2 very high volatility of grassroots associations

Source

Wollebaek, Dag. 2010. “Volatility and Growth in Populations of Rural Associations.” Rural Soci-
ology 75:144-166.

d.women Data on high percentage of women’s represention in parliaments of
western countries
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Description

This dataset is from Krook (2010), who analyzes the causal conditions for high women’s represen-
tation in western-democratic parliaments.

Usage

d.women

Format

The data frame contains 22 rows (cases) and the following 6 columns featuring Boolean factors
taking values 1 and 0 only:

[ , 1] ES existence of a PR electoral system
[ , 2] QU existence of quotas for women
[ , 3] WS existence of social-democratic welfare system
[ , 4] WM existence of autonomous women’s movement
[ , 5] LP strong left parties
[ , 6] WNP high women’s representation in parliament

Source

Krook, Mona Lena. 2010. “Women’s Representation in Parliament: A Qualitative Comparative
Analysis.” Political Studies 58 (5):886-908.

full.tt Generate all logically possible value configurations of a given set of
factors

Description

full.tt generates a truthTab with all logically possible value configurations of the factors defined
in the input x. It is more flexible than allCombs. x can be a truthTab, a data frame, an integer, a
list specifying the factors’ value ranges, or a character vector featuring all admissible factor values.

Usage

full.tt(x, ...)

## Default S3 method:
full.tt(x, type = c("cs", "mv", "fs"), ...)
## S3 method for class 'truthTab'
full.tt(x, ...)
## S3 method for class 'tti'
full.tt(x, ...)
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Arguments

x A truthTab, a data frame, an integer, a list specifying the factors’ value ranges,
or a character vector featuring all admissible factor values (see the details and
examples below).

type Character vector specifying the type of x: "cs" (crisp-set), "mv" (multi-value),
or "fs" (fuzzy-set); passed to truthTab; only required if x is a data frame or
matrix.

... Further arguments passed to methods.

Details

full.tt generates all logically possible value configurations of the factors defined in x, which can
either be a character vector or an integer or a list or a data frame or a matrix.

• If x is a character vector, it can be a condition of any of the three types of conditions, boolean,
atomic or complex (see condition). x must contain at least one factor. Factor names and
admissible values are guessed from the Boolean formulas. If x contains multi-value factors,
only those values are considered admissible that are explicitly contained in x. Accordingly, in
case of multi-value factors, full.tt should be given the relevant factor definitions by means
of a list (see below).

• If x is an integer and <=26, the output will be a full truth table of type "cs" with x factors. The
first x capital letters of the alphabet will be used as the names of the factors.

• If x is a list, x is expected to have named elements each of which provides the factor names
with corresponding vectors enumerating their admissible values (i.e. their value ranges).
These values must be integers.

• If x is a truthTab, data frame, or matrix, colnames(x) are interpreted as factor names and
the rows as enumerating the admissible values (i.e. as value ranges). If x is a data frame or
a matrix, x is first converted to a truthTab (the function truthTab is called with type as
specified in full.tt), and the truthTab method of full.tt is then applied to the result. The
truthTab method uses all factors and factor values occurring in the truthTab. If x is of type
"fs", 0 and 1 are taken as the admissible values.

In combination with selectCases, full.tt is useful for simulating data, which are needed for
inverse search trials benchmarking the output of cna. While full.tt generates the space of all
logically possible configurations of the factors in an analyzed factor set, selectCases selects those
configurations from this space that are compatible with a given data-generating causal structure (i.e.
the ground truth), that is, it selects the empirically possible configurations.

The method for class "tti" is for internal use only.

Value

A truthTab of type "cs" or "mv" with the full enumeration of combinations of the factor values.

See Also

truthTab, selectCases, allCombs
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Examples

# x is a character vector.
full.tt("A + B*c")
full.tt("A=1*C=3 + B=2*C=1 + A=3*B=1")
full.tt(c("A + b*C", "a*D"))
full.tt("!A*-(B + c) + F")

# x is a data frame.
full.tt(d.educate)
full.tt(d.jobsecurity, type = "fs")
full.tt(d.pban, type = "mv")

# x is a truthTab.
full.tt(cstt(d.educate))
full.tt(fstt(d.jobsecurity))
full.tt(mvtt(d.pban))

# x is an integer.
full.tt(6)

# x is a list.
full.tt(list(A = 0:1, B = 0:1, C = 0:1)) # cs
full.tt(list(A = 1:2, B = 0:1, C = 1:4)) # mv

# Simulating crisp-set data.
groundTruth.1 <- "(A*b + C*d <-> E)*(E*H + I*k <-> F)"
fullData <- full.tt(groundTruth.1)
idealData <- selectCases(groundTruth.1, fullData)
# Introduce 20% data fragmentation.
fragData <- idealData[-sample(1:nrow(idealData), nrow(idealData)*0.2), ]
# Introduce 10% random noise.
realData <- rbind(tt2df(fullData[sample(1:nrow(fullData), nrow(fragData)*0.1), ]), fragData)

# Simulating multi-value data.
groundTruth.2 <- "(JO=3 + TS=1*PE=3 <-> ES=1)*(ES=1*HI=4 + IQ=2*KT=5 <-> FA=1)"
fullData <- full.tt(list(JO=1:3, TS=1:2, PE=1:3, ES=1:2, HI=1:4, IQ=1:5, KT=1:5, FA=1:2))
idealData <- selectCases(groundTruth.2, fullData)
# Introduce 20% data fragmentation.
fragData <- idealData[-sample(1:nrow(idealData), nrow(idealData)*0.2), ]
# Introduce 10% random noise.
realData <- rbind(tt2df(fullData[sample(1:nrow(fullData), nrow(fragData)*0.1), ]), fragData)

is.inus Test disjunctive normal forms for logical redundancies

Description

is.inus checks for each element of a character vector specifying Boolean disjunctive normal forms
(DNFs) whether it amounts to a minimally necessary disjunction of minimally sufficient conditions
relative to all logically possible configurations of the factors contained in the DNF.
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Usage

is.inus(cond, x = NULL)

Arguments

cond Character vector specifying Boolean disjunctive normal forms (DNFs). Cur-
rently the permissible syntax is restricted to the operators +, * and = (in case of
DNFs of type "mv"), with negation being expressed by lower case letters.

x An optional argument providing a truthTab, a data frame, or a list specifying
the factors’ value ranges if cond contains multi-value factors; if x is not NULL,
is.inus tests whether cond is redundancy-free relative to full.tt(x), other-
wise relative to full.tt(cond).

Details

According to the regularity theory of causation underlying CNA, a Boolean dependency structure
is causally interpretable only if it does not contain any redundant elements. Boolean dependency
structures may feature various types of redundancies (Baumgartner and Falk 2018): redundancies in
necessary and sufficient conditions or structural redundancies. Redundancies may obtain relative to
an analyzed set of empirical data, which, typically, are fragmented and do not feature all logically
possible configurations, or they may obtain for principled logical reasons, that is, relative to all
configurations that are possible according to classical Boolean logic. While the function cna builds
redundancy-free Boolean dependency structures based on empirical data, the function is.inus tests
necessary and sufficient conditions for logical redundancies (redundant performs an analogous test
for structural redundancies).

is.inus takes a character vector cond specifying Boolean disjunctive normal forms (DNFs) as in-
put and checks whether these DNFs are redundancy-free according to Boolean logic, that is, mini-
mally necessary disjunctions of minimally sufficient conditions. A necessary disjunction is minimal
if, and only if, no proper sub-disjunction of it is necessary; and a sufficient conjunction is minimal
if, and only if, no proper sub-conjunction of it is sufficient (Grasshoff and May 2001). In the func-
tion’s default call with x = NULL, this minimality test is performed relative to full.tt(cond); if
x is not NULL, the test is performed relative to full.tt(x). As full.tt(cond) and full.tt(x)
coincide in case of binary factors, the argument x has no effect in the crisp-set and fuzzy-set cases
and, hence, does not have to be specified. In case of multi-value factors, however, the argument x
should be specified in order to define the factors’ value ranges (see details below).

A cond with is.inus(cond)==FALSE can be freed of logical redundancies by means of the minimalize
function.

Value

Logical vector of the same length as cond.

References

Baumgartner, Michael and Christoph Falk. 2018. “Boolean Difference-Making: A Modern Regu-
larity Theory of Causation”. PhilSci Archive. url: http://philsciarchive.pitt.edu/id/eprint/14876.

Grasshoff, Gerd and Michael May. 2001. “Causal Regularities.” In W Spohn, M Ledwig, M Esfeld
(eds.), Current Issues in Causation, pp. 85-114. Mentis, Paderborn.
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See Also

condition, full.tt, redundant, minimalize, cna

Examples

# Crisp-set case
# --------------
is.inus(c("A", "A + B", "A + a*B", "A + a", "A*a"))

is.inus("F + f*G")
is.inus("F*G + f*H + G*H")
is.inus("F*G + f*g + H*F + H*G")

# Multi-value case
# ----------------
mvdata <- mvtt(setNames(allCombs(c(2, 3, 2)) -1, c("C", "F", "V")))
is.inus("C=1 + F=2*V=0", mvdata)
is.inus("C=1 + F=2*V=0", list(C=0:1, F=0:2, V=0:1))
# When x is NULL, is.inus is applied to full.tt("C=1 + F=2*V=0"), which has only
# one single row. That row is then interpreted to be the only possible configuration,
# in which case C=1 + F=2*V=0 is tautologous and, hence, non-minimal.
is.inus("C=1 + F=2*V=0")

is.inus("C=1 + C=0*C=2", mvtt(d.pban)) # contradictory
is.inus("C=0 + C=1 + C=2", mvtt(d.pban)) # tautologous

# Fuzzy-set case
# --------------
fsdata <- fstt(d.jobsecurity)
conds <- csf(cna(fsdata, con = 0.85, cov = 0.85))$condition
conds <- cna:::lhs(conds)
is.inus(conds, fsdata)
is.inus(c("S + s", "S + s*R", "S*s"), fsdata)

is.submodel Identify correctness-preserving submodel relations

Description

is.submodel checks for each element of a vector of cna solution formulas whether it is a submodel
of a specified target model y. If y is the true model in an inverse search (i.e. the ground truth),
is.submodel identifies the correct models in the cna output (see Baumgartner and Thiem 2017,
Baumgartner and Ambuehl 2018).
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Usage

is.submodel(x, y, strict = FALSE)
identical.model(x, y)

Arguments

x Character vector of atomic and/or complex solution formulas (asf/csf). Must be
of length 1 in identical.model.

y Character string of length 1 specifying the target asf or csf.

strict Logical; if TRUE, the elements of x only count as submodels of y if they are
proper parts of y (i.e. not identical to y).

Details

To benchmark the reliability of a method of causal inference it must be tested to what degree the
method recovers the true data-generating structure ∆ or proper substructures of ∆ from data of
varying quality. Reliability benchmarking is done in so-called inverse searches, which reverse the
order of causal discovery as normally conducted in scientific practice. An inverse search comprises
three steps: (1) a causal structure ∆ is drawn/presupposed (as ground truth), (2) artificial data δ is
simulated from ∆, possibly featuring various deficiencies (e.g. noise, limited diversity, measure-
ment error etc.), and (3) δ is processed by the benchmarked method in order to check whether its
output meets the tested reliability benchmark (e.g. whether the output is true of or identical to ∆).

The main purpose of is.submodel is to execute step (3) of an inverse search that is tailor-made
to test the reliability of cna [with randomConds and selectCases designed for steps (1) and (2),
respectively]. A solution formula x being a submodel of a target formula y means that all the causal
claims entailed by x are true of y, which is the case if a causal interpretation of x entails conjunctive
and disjunctive causal relevance relations that are all likewise entailed by a causal interpretation of
y. More specifically, x is a submodel of y if, and only if, the following conditions are satisfied: (i)
all factor values causally relevant according to x are also causally relevant according to y, (ii) all
factor values contained in two different disjuncts in x are also contained in two different disjuncts in
y, (iii) all factor values contained in the same conjunct in x are also contained in the same conjunct
in y, and (iv) if x is a csf with more than one asf, (i) to (iii) are satisfied for all asfs in x. For more
details see Baumgartner and Thiem (2017) or Baumgartner and Ambuehl (2018, online appendix).

is.submodel requires two inputs x and y, where x is a character vector of cna solution formulas
(asf or csf) and y is one asf or csf (i.e. a character string of length 1), viz. the target structure or
ground truth. The function returns TRUE for elements of x that are a submodel of y according to
the definition of submodel-hood given in the previous paragraph. If strict = TRUE, x counts as a
submodel of y only if x is a proper part of y (i.e. x is not identical to y).

The function identical.model returns TRUE only if x (which must be of length 1) and y are iden-
tical. It can be used to test whether y is completely recovered in an inverse search.

Value

Logical vector of the same length as x.
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References

Baumgartner, Michael and Mathias Ambuehl. 2018. “Causal Modeling with Multi-Value and
Fuzzy-Set Coincidence Analysis.” Political Science Research and Methods. doi:10.1017/psrm.2018.45.

Baumgartner, Michael and Alrik Thiem. 2017. “Often Trusted But Never (Properly) Tested: Evalu-
ating Qualitative Comparative Analysis”. Sociological Methods & Research. doi: 10.1177/0049124117701487.

See Also

randomConds, selectCases, cna.

Examples

# Binary expressions
# ------------------
trueModel.1 <- "(A*b + a*B <-> C)*(C*d + c*D <-> E)"
candidates.1 <- c("(A + B <-> C)*(C + c*D <-> E)", "(A + B <-> C)",

"(A <-> C)*(C <-> E)", "(C <-> E)")
candidates.2 <- c("(A*B + a*b <-> C)*(C*d + c*D <-> E)", "(A*b*D + a*B <-> C)",

"(A*b + a*B <-> C)*(C*A*D <-> E)", "(D <-> C)",
"(A*b + a*B + E <-> C)*(C*d + c*D <-> E)")

is.submodel(candidates.1, trueModel.1)
is.submodel(candidates.2, trueModel.1)
is.submodel(c(candidates.1, candidates.2), trueModel.1)

is.submodel("C + b*A <-> D", "A*b + C <-> D")
is.submodel("C + b*A <-> D", "A*b + C <-> D", strict = TRUE)
identical.model("C + b*A <-> D", "A*b + C <-> D")

target.1 <- "(A*b + a*B <-> C)*(C*d + c*D <-> E)"
testformula.1 <- "(A*b + a*B <-> C)*(C*d + c*D <-> E)*(A + B <-> C)"
is.submodel(testformula.1, target.1)

# Multi-value expressions
# -----------------------
trueModel.2 <- "(A=1*B=2 + B=3*A=2 <-> C=3)*(C=1 + D=3 <-> E=2)"
is.submodel("(A=1*B=2 + B=3 <-> C=3)*(D=3 <-> E=2)", trueModel.2)
is.submodel("(A=1*B=1 + B=3 <-> C=3)*(D=3 <-> E=2)", trueModel.2)
is.submodel(trueModel.2, trueModel.2)
is.submodel(trueModel.2, trueModel.2, strict = TRUE)

target.2 <- "C=2*D=1*B=3 + A=1 <-> E=5"
testformula.2 <- c("C=2 + D=1 <-> E=5","C=2 + D=1*B=3 <-> E=5","A=1+B=3*D=1*C=2 <-> E=5",

"C=2 + D=1*B=3 + A=1 <-> E=5","C=2*B=3 + D=1 + B=3 + A=1 <-> E=5")
is.submodel(testformula.2, target.2)
identical.model(testformula.2[3], target.2)
identical.model(testformula.2[1], target.2)
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makeFuzzy Generate fuzzy-set data by simulating noise

Description

Generates fuzzy-set data by simulating the addition of random noise from the uncontrolled causal
background to a data frame featuring binary factors only.

Usage

makeFuzzy(x, fuzzvalues = c(0, 0.05, 0.1), ...)

Arguments

x Data frame or truthTab featuring binary factors with values 1 and 0 only.

fuzzvalues Values to be added to the 0’s and subtracted from the 1’s.

... Additional arguments are passed to truthTab.

Details

In combination with allCombs, full.tt and selectCases, makeFuzzy is useful for simulating
noisy data, which are needed for inverse search trials benchmarking the output of cna. makeFuzzy
transforms a data frame or truthTab consisting of binary factors into a fuzzy-set truthTab by
adding values selected at random from the argument fuzzvalues to the 0’s and subtracting them
from the 1’s in the data frame. This transformation simulates the introduction of background noise
into the data. selectCases can subsequently be applied to draw those fuzzy-set configurations
from the resulting data that are compatible with a given data generating causal structure.

Value

A truthTab of type "fs".

See Also

selectCases, allCombs, full.tt, truthTab, cna, tt2df, condition

Examples

# Fuzzify a binary 6x3 matrix with default fuzzvalues.
X <- matrix(sample(0:1, 18, replace = TRUE), 6)
makeFuzzy(X)

# ... and with customized fuzzvalues.
makeFuzzy(X, fuzzvalues = 0:5/10)
makeFuzzy(X, fuzzvalues = seq(0, 0.45, 0.01))

# Generate all configurations of 5 fuzzy-set factors that are compatible with the causal
# structure A*b + C*D <-> E, such that con = .8 and cov = .8.
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dat1 <- allCombs(c(2, 2, 2, 2, 2)) - 1
dat2 <- makeFuzzy(dat1, fuzzvalues = seq(0, 0.45, 0.01))
(dat3 <- selectCases1("A*b + C*D <-> E", con = .8, cov = .8, dat2))
condition("A*b + C*D <-> E", dat3)

# First, generate all configurations of 5 dichotomous factors that are compatible with
# the causal chain (A*b + a*B <-> C)*(C*d + c*D <-> E) and, second, introduce background
# noise.
dat1 <- full.tt(5)
dat2 <- selectCases("(A*b + a*B <-> C)*(C*d + c*D <-> E)", dat1)
(dat3 <- makeFuzzy(dat2, fuzzvalues = seq(0, 0.45, 0.01)))
condition("(A*b + a*B <-> C)*(C*d + c*D <-> E)", dat3)

# Inverse search for the data generating causal structure A*b + a*B + C*D <-> E from
# fuzzy-set data with non-perfect consistency and coverage scores.
dat1 <- full.tt(5)
set.seed(55)
dat2 <- makeFuzzy(dat1, fuzzvalues = 0:4/10)
dat3 <- selectCases1("A*b + a*B + C*D <-> E", con = .8, cov = .8, dat2)
fscna(dat3, ordering = list("E"), strict = TRUE, con = .8, cov = .8)

minimalize Eliminate logical redundancies from Boolean expressions

Description

minimalize eliminates logical redundancies from a Boolean expression cond based on all con-
figurations of the factors in cond that are possible according to classical Boolean logic. That is,
minimalize performs logical (i.e. not data-driven) redundancy elimination. The output is a set of
redundancy-free DNFs that are logically equivalent to cond.

Usage

minimalize(cond, x = NULL, maxstep = c(4, 4, 12))

Arguments

cond Character vector specifying Boolean expressions; the acceptable syntax is the
same as that of condition.

x A data frame, a truthTab, or a list determining the possible values for each fac-
tor in cond; x has no effect for a cond with only binary factors but is mandatory
for a cond with multi-value factors (see details).

maxstep Maximal complexity of the returned redundancy-free DNFs (see cna).
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Details

The regularity theory of causation underlying CNA conceives of causes as parts of redundancy-free
Boolean dependency structures. Boolean dependency structures tend to contain a host of redun-
dancies. Redundancies may obtain relative to an analyzed set of empirical data, which, typically,
are fragmented and do not feature all logically possible configurations, or they may obtain for prin-
cipled logical reasons, that is, relative to all configurations that are possible according to Boolean
logic. Whether a Boolean expression (in disjunctive normal form) contains the latter type of logical
redundancies can be checked with the function is.inus. If is.inus(cond)==FALSE, cond contains
logical redundancies.

minimalize eliminates logical redundancies from cond and outputs all redundancy-free disjunctive
normal forms (DNF) (within some complexity range given by maxstep) that are logically equivalent
with cond. If cond is redundancy-free, no reduction is possible and minimalize returns cond itself
(possibly as an element of multiple logically equivalent redundancy-free DNFs). If cond is not
redundancy-free, a cna with con = 1 and cov = 1 is performed relative to full.tt(x) (relative to
full.tt(cond) if x is NULL). The output is the set of all redundancy-free DNFs in the complexity
range given by maxstep that are logically equivalent to cond.

The purpose of the optional argument x is to determine the space of possible values of the factors
in cond. If all factors in cond are binary, x is optional and without influence on the output of
minimalize. If some factors in cond are multi-value, minimalize needs to be given the range of
these values. x can be a data frame or truthTab listing all possible value configurations or simply
a list of the possible values for each factor in cond (see examples).

The argument maxstep, which is identical to the corresponding argument in cna, specifies the
maximal complexity of the returned DNF. maxstep expects a vector of three integers c(i,j,k)
determining that the generated DNFs have maximally j disjuncts with maximally i conjuncts each
and a total of maximally k factors. The default is maxstep = c(4,4,12). If the complexity range of
the search space given by maxstep is too low, it may happen that nothing is returned (accompanied
by a corresponding warning message). In that case, the maxstep values need to be increased.

Value

A list of character vectors of the same length as cond. Each list element contains one or several
redundancy-free disjunctive normal forms (DNFs) that are logically equivalent to cond.

See Also

condition, is.inus, cna, full.tt.

Examples

# Binary expressions
# ------------------
# DNFs as input.
minimalize(c("A", "A+B", "A + a*B", "A + a", "A*a"))
minimalize(c("F + f*G", "F*G + f*H + G*H", "F*G + f*g + H*F + H*G"))

# Any Boolean expressions (with variable syntax) are admissible inputs.
minimalize(c("!(A*B*C + a*b*c)", "A*!(B*d+E)->F", "-(A+-(E*F))<->H"))
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# Proper redundancy elimination may require increasing the maxstep values.
minimalize("!(A*B*C*D*E+a*b*c*d*e)")
minimalize("!(A*B*C*D*E+a*b*c*d*e)", maxstep = c(3, 5, 15))

# Multi-value expressions
# -----------------------
# In case of expressions with multi-value factors, the relevant range of factor
# values must be specified by means of x. x can be a list or a truthTab:
values <- list(C = 0:3, F = 0:2, V = 0:4)
minimalize(c("C=1 + F=2*V=0", "C=1 + C=0*V=1"), values)
minimalize(c("C=1 + C=0 * C=2", "C=0 + C=1 + C=2"), mvtt(d.pban))

# Eliminating logical redundancies from non-inus asf inferred from real data
# --------------------------------------------------------------------------
fsdata <- fstt(d.jobsecurity)
conds <- asf(cna(fsdata, con = 0.8, cov = 0.8))$condition
conds <- cna:::lhs(conds)
noninus.conds <- conds[-which(is.inus(conds, fsdata))]
minimalize(noninus.conds)

minimalizeCsf Eliminate structural redundancies from csf

Description

minimalizeCsf eliminates structural redundancies from complex solutions formulas (csf) by recur-
sively testing their component atomic solution formulas (asf) for redundancy and eliminating the
redundant ones.

Usage

minimalizeCsf(x, ...)

## Default S3 method:
minimalizeCsf(x, data = full.tt(x), verbose = FALSE, ...)
## S3 method for class 'cna'
minimalizeCsf(x, n = 20, verbose = FALSE, ...)
## S3 method for class 'minimalizeCsf'
print(x, subset = 1:5, ...)

Arguments

x In the default method, x is a character vector specifying csf. The cna method
uses the strings representing the csf contained in an output object of cna (see
details).

data Data frame, matrix or truthTab with the data; optional if all factors in x are
binary but required if some factors are multi-value.
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verbose Logical; if TRUE additional messages on the number of csf that are found to be
reducible are printed.

n Minimal number of csf to use.

subset Integer vector specifying the numbers of csf to be displayed.

... Further arguments passed to the methods.

Details

The core criterion that Boolean dependency structures must satisfy in order to be causally inter-
pretable is redundancy-freeness. In atomic solution formulas (asf), both sufficient and necessary
conditions are completely free of redundant elements. However, when asf are conjunctively com-
bined to complex solution formulas (csf), new redundancies may arise. A csf may contain redundant
parts. To illustrate, assume that a csf is composed of three asf: asf1 * asf2 * asf3. It can happen that
the conjunction asf1 * asf2 * asf3 is logically equivalent to a proper part of itself, say, to asf1 * asf2.
In that case, asf3 is a so-called structural redundancy in asf1 * asf2 * asf3 and must not be causally
interpreted. See the cna package vignette or Baumgartner and Falk (2018) for more details.

minimalizeCsf recursively tests the asf contained in a csf for structural redundancies and elim-
inates the redundant ones. It takes a character vector x specifying csf as input and builds all
redundancy-free csf that can be inferred from x. The function is especially useful in combination
with cna, which builds csf by conjunctively concatenating asf. One of the cna solution attributes,
which is accessed via details = TRUE or details = "r", is called "redundant". If a csf output by
cna has the attribute redundant == TRUE, that csf has at least one structurally redundant part. The
cna function, however, does not identify those redundant parts. For this purpose, the cna object
must be passed on to minimalizeCsf.

There are two possibilities to use minimalizeCsf. Either the csf to be tested for structural re-
dundancies is passed to minimalizeCsf as a character vector (this is the default method), or
minimalizeCsf is applied directly to the output of cna. In the latter case, the csf are extracted
from the cna-object.

As a test for structural redundancies amounts to a test of logical equivalencies, it must be conducted
relative to all logically possible configurations of the factors in x. That space of logical possibil-
ities is generated by full.tt(x) if the data argument takes its default value. If all factors in x
are binary, providing a non-default data value is optional and without influence on the output of
minimalizeCsf. If some factors in x are multi-value, minimalizeCsf needs to be given the range
of these values by means of the data argument. data can be a data frame or truthTab listing all
possible value configurations.

Value

minimalizeCsf returns an object of class "minimalizeCsf", essentially a data frame.

Contributors

Falk, Christoph: identification and solution of the problem of structural redundancies

References

Baumgartner, Michael and Christoph Falk. 2018. “Boolean Difference-Making: A Modern Regu-
larity Theory of Causation”. PhilSci Archive. url: http://philsciarchive.pitt.edu/id/eprint/14876.
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See Also

csf, cna, redundant, full.tt.

Examples

# The default method.
minimalizeCsf("(f + a*D <-> C)*(C + A*B <-> D)*(c + a*E <-> F)")
minimalizeCsf("(f + a*D <-> C)*(C + A*B <-> D)*(c + a*E <-> F)",

verbose = TRUE) # Same result, but with some messages.

# The cna method.
dat1 <- selectCases("(C + A*B <-> D)*(c + a*E <-> F)")
ana1 <- cna(dat1, details = c("r"))
csf(ana1)
# The attribute "redundant" taking the value TRUE in ana1 shows that this csf contains
# at least one redundant element. Only the application of minimalizeCsf() identifies
# the redundant element.
minimalizeCsf(ana1)

# Real data entailing a large number of csf with many redundancies.
tt.js <- fstt(d.jobsecurity)
cna.js <- cna(tt.js, con = .8, cov = .8)
minim100 <- minimalizeCsf(cna.js, n = 100) # may take a couple of seconds...
minim100 # By default the first 5 solutions are displayed.

# With mv data.
tt.pban <- mvtt(d.pban)
cna.pban <- cna(tt.pban, con = .75, cov = .75)
csf.pban <- csf(cna.pban, 100)
sol.pban <- csf.pban$condition

minim.pban <- minimalizeCsf(sol.pban, tt.pban)
as.character(minim.pban$condition)

# Alternatively, a more direct replication of the above using the cna method.
minim.pban <- minimalizeCsf(cna.pban, n = 100)
print(minim.pban, 1:50) # print the first 50 redundancy-free csf

randomConds Generate random solution formulas

Description

Based on a set of factors and a corresponding data type—given as a data frame or truthTab—,
randomAsf generates a random atomic solution formula (asf) and randomCsf a random (acyclic)
complex solution formula (csf).
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Usage

randomAsf(x, outcome = NULL, compl = NULL, how = c("inus", "minimal"))
randomCsf(x, outcome = NULL, n.asf = NULL, compl = NULL)

Arguments

x Data frame or truthTab; determines the number of factors, their names and
their possible values.

outcome Optional character vector (of length 1 in randomAsf) specifying the outcome
factor(s) in the solution formula; must be a subset of names(x).

compl Integer vector specifying the maximal complexity of the formula (i.e. number
of factors in msc; number of msc in asf).

how Character string, either "inus" or "minimal", specifying whether the generated
solution formula is redundancy-free relative to full.tt(x) or relative to x (see
details).

n.asf Integer scalar specifying the number of asf in the csf. Is overridden by length(outcome)
if outcome is not NULL. Note that n.asf is limited to ncol(x)-2.

Details

randomAsf and randomCsf can be used to randomly draw data generating structures (ground truths)
in inverse search trials benchmarking the output of cna. In the regularity theoretic context in
which the CNA method is embedded, a causal structure is a redundancy-free Boolean dependency
structure. Hence, randomAsf and randomCsf both produce redundancy-free Boolean dependency
structures. randomAsf generates structures with one outcome, i.e. atomic solution formulas (asf),
randomCsf generates structures with multiple outcomes, i.e. complex solution formulas (csf), that
are free of cyclic substructures. In a nutshell, randomAsf proceeds by, first, randomly drawing
disjunctive normal forms (DNFs) and by, second, eliminating redundancies from these DNFs.
randomCsf essentially consists in repeated executions of randomAsf.

The only mandatory argument of randomAsf and randomCsf is a data frame or a truthTab x
defining the factors (with their possible values) from which the generated asf and csf shall be drawn.
If asf and csf are built from multi-value or fuzzy-set factors, x must be a truthTab.

The optional argument outcome determines which factors in x shall be treated as outcomes. If
outcome is at its default value NULL, randomAsf and randomCsf randomly draw factor(s) from x to
be treated as outcome(s).

The argument compl controls the complexity of the generated asf and csf. More specifically, the
initial complexity of asf and csf (i.e. the number of factors included in msc and the number of msc
included in asf prior to redundancy elimination) is drawn from the vector compl. As this complexity
might be reduced in the subsequent process of redundancy elimination, issued asf or csf will often
have lower complexity than specified in compl. The default value of compl is determined by the
number of columns in x. Assigning unduly high values to compl results in an error.

randomAsf has the additional argument how with the two possible values "inus" and "minimal".
how = "inus" determines that the generated asf is redundancy-free relative to all logically possible
configurations of the factors in x, i.e. relative to full.tt(x), whereas in case of how = "minimal"
redundancy-freeness is imposed only relative to all configurations actually contained in x, i.e. rela-
tive to x itself. Typically "inus" should be used; the value "minimal" is relevant mainly in repeated
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randomAsf calls from within randomCsf. Moreover, setting how = "minimal" will return an error
if x is a truthTab of type "fs".

The argument n.asf controls the number of asf in the generated csf. Its value is limited to ncol(x)-2
and overridden by length(outcome), if outcome is not NULL. Analogously to compl, n.asf spec-
ifies the number of asf prior to redundancy elimination, which, in turn, may further reduce these
numbers. That is, n.asf provides an upper bound for the number of asf in the resulting csf.

Value

The randomly generated formula, a character string.

See Also

is.submodel, selectCases, full.tt, truthTab, cna.

Examples

# randomAsf
# ---------
# Asf generated from explicitly specified binary factors.
randomAsf(full.tt("H*I*T*R*K"))
randomAsf(full.tt("Johnny*Debby*Aurora*Mars*James*Sonja"))

# Asf generated from a specified number of binary factors.
randomAsf(full.tt(7))

# Asf generated from an existing data frame.
randomAsf(d.educate)

# Specify the outcome.
randomAsf(d.educate, outcome = "G")

# Specify the complexity.
randomAsf(full.tt(7), compl = 2)
randomAsf(full.tt(7), compl = 3:4)

# Redundancy-freeness relative to x instead of full.tt(x).
randomAsf(d.educate, outcome = "G", how = "minimal")

# Asf with multi-value factors (x must be given as a truthTab).
randomAsf(mvtt(allCombs(c(3,4,3,5,3,4))))

# Asf from fuzzy-set data (x must be given as a truthTab).
randomAsf(fstt(d.jobsecurity))
randomAsf(fstt(d.jobsecurity), outcome = "JSR")

# Generate 20 asf.
replicate(20, randomAsf(full.tt(7), compl = 2:3))

# randomCsf
# ---------
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# Csf generated from explicitly specified binary factors.
randomCsf(full.tt("H*I*T*R*K*Q*P"))

# Csf generated from a specified number of binary factors.
randomCsf(full.tt(7))

# Specify the outcomes.
randomCsf(d.volatile, outcome = c("RB","SE"))

# Specify the complexity.
randomCsf(d.volatile, outcome = c("RB","SE"), compl = 2)
randomCsf(full.tt(7), compl = 3:4)

# Specify the number of asf.
randomCsf(full.tt(7), n.asf = 3)

# Csf with multi-value factors (x must be given as a truthTab).
randomCsf(mvtt(allCombs(c(3,4,3,5,3,4))))

# Generate 20 csf.
replicate(20, randomCsf(full.tt(7), n.asf = 2, compl = 2:3))

# Inverse searches
# ----------------
# === Ideal Data ===
# Draw the data generating structure. (Every run yields different
# targets and data.)
target <- randomCsf(full.tt(5), n.asf = 2)
target
# Select the cases compatible with the target.
x <- selectCases(target)
# Run CNA without an ordering.
mycna <- cna(x, maxstep = c(4, 4, 12), rm.dup.factors = FALSE)
# Extract the first 100 csf (depending on the seed, there may be
# more than 100 csf).
csfs <- csf(mycna, 100)
# Eliminate possible structural redundancies from the csf.
min.csfs <- minimalizeCsf(csfs$condition, x)$condition
# Check whether the target is completely returned.
any(unlist(lapply(min.csfs, identical.model, target)))

# === Data fragmentation (20% missing observations) ===
# Draw the data generating structure. (Every run yields different
# targets and data.)
target <- randomCsf(full.tt(7), n.asf = 2)
target
# Generate the complete data.
x <- tt2df(selectCases(target))
# Introduce fragmentation.
x <- x[-sample(1:nrow(x), nrow(x)*0.2), ]
# Run CNA without an ordering.
mycna <- cna(x, maxstep = c(4, 4, 12), rm.dup.factors = FALSE)
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# Extract and minimize the first 100 csf (depending on the seed, there may be
# more than 100 csf).
csfs <- csf(mycna, 100)
min.csfs <- minimalizeCsf(csfs$condition, x)
# Check whether (a submodel of) the target is actually returned.
any(is.submodel(min.csfs$condition, target))

# === Data fragmentation and noise (20% missing observations, noise ratio of 0.05) ===
# Multi-value data.
# Draw the data generating structure. (Every run yields different
# targets and data.)
fullData <- mvtt(allCombs(c(4,4,4,4,4)))
target <- randomCsf(fullData, n.asf=2, compl = 2:3)
target
# Generate the complete data.
x <- tt2df(selectCases(target, fullData))
# Introduce fragmentation.
x <- x[-sample(1:nrow(x), nrow(x)*0.2), ]
# Introduce random noise.
x <- rbind(tt2df(fullData[sample(1:nrow(fullData), nrow(x)*0.05), ]), x)
# Run CNA without an ordering.
mycna <- mvcna(x, con = .75, cov = .75, maxstep = c(3, 3, 12), rm.dup.factors = F)
# Extract and minimize the first 100 csf (depending on the seed, there may be
# more than 100 csf).
csfs <- csf(mycna, 100)
min.csfs <- if(nrow(csfs)>0) {

as.vector(minimalizeCsf(csfs$condition, mvtt(x))$condition)
} else {NA}

# Check whether no causal fallacy (no false positive) is returned.
if(length(min.csfs)==1 && is.na(min.csfs)) {

TRUE } else {any(is.submodel(min.csfs, target))}

redundant Identify structurally redundant asf in a csf

Description

redundant takes a character vector cond containing complex solution formulas (csf) as input and
tests for each element of cond whether the atomic solution formulas (asf) it consists of are struc-
turally redundant.

Usage

redundant(cond, x = NULL, simplify = TRUE)
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Arguments

cond Character vector specifying complex solution formulas (csf); only strings of type
csf are allowed, meaning conjunctions of one or more asf.

x An optional argument providing a truthTab, a data frame, or a list specifying
the factors’ value ranges if cond contains multi-value factors; if x is not NULL,
cond is tested for redundancy-freeness relative to full.tt(x), otherwise rela-
tive to full.tt(cond).

simplify Logical; if TRUE the result for csfs with the same number of component asfs
is presented as a matrix, otherwise all results are presented as a list of logical
vectors.

Details

According to the regularity theory of causation underlying CNA, a Boolean dependency structure
is causally interpretable only if it does not contain any redundant elements. Boolean dependency
structures may feature various types of redundancies, one of which are so-called structural redun-
dancies. A csf Φ has a structural redundancy if, and only if, reducing Φ by one or more of the asf
it is composed of results in a csf Φ′ that is logically equivalent to Φ. To illustrate, suppose that
Φ is composed of three asf: asf1 * asf2 * asf3; and suppose that Φ is logically equivalent to Φ′:
asf1 * asf2. In that case, asf3 makes no difference to the behaviour of the factors in Φ and Φ′; it is
structurally redundant and, accordingly, must not be causally interpreted. For more details see the
cna package vignette or Baumgartner and Falk (2018).

The function redundant takes a character vector cond composed of csf as input an tests for each
element of cond whether it is structurally redundant or not. As a test for structural redundancies
amounts to a test of logical equivalencies, it must be conducted relative to all logically possible con-
figurations of the factors in cond. That space of logical possibilities is generated by full.tt(cond)
in case of x = NULL, and by full.tt(x) otherwise. If all factors in cond are binary, x is optional and
without influence on the output of redundant. If some factors in cond are multi-value, redundant
needs to be given the range of these values. x can be a data frame or truthTab listing all possible
value configurations or a list of the possible values for each factor in cond.

If redundant returns TRUE for a csf, that csf must not be causally interpreted but further processed
by minimalizeCsf.

Value

A list of logical vectors or a logical matrix.

If all csf in cond have the same number of asf and simplify = TRUE, the result is a logical matrix
with length(cond) rows and the number of columns corresponds to the number of asf in each
csf. In all other cases, a list of logical vectors of the same length as cond is returned.

Contributors

Falk, Christoph: identification and solution of the problem of structural redundancies

References

Baumgartner, Michael and Christoph Falk. 2018. “Boolean Difference-Making: A Modern Regu-
larity Theory of Causation”. PhilSci Archive. url: http://philsciarchive.pitt.edu/id/eprint/14876.
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See Also

condition, full.tt, is.inus, csf, minimalizeCsf.

Examples

# Binary factors.
cond <- c("(f + a*D <-> C)*(C + A*B <-> D)*(c + a*E <-> F)", "f + a*D <-> C")
redundant(cond)

edu.sol <- csf(cna(d.educate))$condition
redundant(edu.sol, d.educate)

redundant(edu.sol, d.educate, simplify = FALSE)

# Multi-value factors.
tt.pban <- mvtt(d.pban)
cna.pban <- cna(tt.pban, con = .8, cov = .9)
csf.pban <- csf(cna.pban)
redundant(csf.pban$condition, tt.pban)
# If no truthTab is specified defining the factors' value ranges, the space of
# logically possible configurations is limited to the factor values contained in
# csf.pban, resulting in the structural redundancy of many asf.
redundant(csf.pban$condition)

selectCases Select the cases/configurations compatible with a data generating
causal structure

Description

selectCases selects the cases/configurations that are compatible with a Boolean function, in par-
ticular (but not exclusively), a data generating causal structure, from a data frame or truthTab.

selectCases1 allows for setting consistency (con) and coverage (cov) thresholds. It then selects
cases/configurations that are compatible with the data generating structure to degrees con and cov.

Usage

selectCases(cond, x = full.tt(cond), type, cutoff = 0.5,
rm.dup.factors = FALSE, rm.const.factors = FALSE)

selectCases1(cond, x = full.tt(cond), type, con = 1, cov = 1,
rm.dup.factors = FALSE, rm.const.factors = FALSE)

Arguments

cond Character string specifying the Boolean function for which compatible cases are
to be selected.

x Data frame or truthTab; if not specified, full.tt(cond) is used.
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type Character vector specifying the type of x: "cs" (crisp-set), "mv" (multi-value),
or "fs" (fuzzy-set). Defaults to the type of x, if x is a truthTab or to "cs"
otherwise.

cutoff Cutoff value in case of "fs" data.

rm.dup.factors Logical; if TRUE, all but the first of a set of factors with identical value distribu-
tions are eliminated.

rm.const.factors

Logical; if TRUE, constant factors are eliminated.

con, cov Numeric scalars between 0 and 1 to set the minimum consistency and coverage
thresholds.

Details

In combination with allCombs, full.tt, randomConds and makeFuzzy, selectCases is useful for
simulating data, which are needed for inverse search trials benchmarking the output of cna.

selectCases draws those cases/configurations from a data frame or truthTab x that are compatible
with a data generating causal structure (or any other Boolean or set-theoretic function), which is
given to selectCases as a character string cond. If the argument x is not specified, configurations
are drawn from full.tt(cond). cond can be a condition of any of the three types of conditions,
boolean, atomic or complex (see condition). To illustrate, if the data generating structure is "A +
B <-> C", then a case featuring A=1, B=0, and C=1 is selected by selectCases, whereas a case
featuring A=1, B=0, and C=0 is not (because according to the data generating structure, A=1 must
be associated with C=1, which is violated in the latter case). The type of the data frame is specified
by the argument type taking "cs" (crisp-set), "mv" (multi-value), and "fs" (fuzzy-set) as values.

selectCases1 allows for providing consistency (con) and coverage (cov) thresholds, such that
some cases that are incompatible with cond are also drawn, as long as con and cov remain satisfied.
The solution is identified by an algorithm aiming at finding a subset of maximal size meeting the
con and cov requirements. In contrast to selectCases, selectCases1 only accepts a condition of
type atomic as its cond argument, i.e. an atomic solution formula. Data drawn by selectCases1
can only be modeled with consistency = con and coverage = cov.

Value

A truthTab.

See Also

allCombs, full.tt, randomConds, makeFuzzy, truthTab, condition, cna, d.jobsecurity

Examples

# Generate all configurations of 5 dichotomous factors that are compatible with the causal
# chain (A*b + a*B <-> C) * (C*d + c*D <-> E).
groundTruth.1 <- "(A*b + a*B <-> C) * (C*d + c*D <-> E)"
(dat1 <- selectCases(groundTruth.1))
condition(groundTruth.1, dat1)

# Randomly draw a multi-value ground truth and generate all configurations compatible with it.
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dat1 <- allCombs(c(3, 3, 4, 4, 3))
groundTruth.2 <- randomCsf(mvtt(dat1), n.asf=2)
(dat2 <- selectCases(groundTruth.2, dat1, type = "mv"))
condition(groundTruth.2, dat2)

# Generate all configurations of 5 fuzzy-set factors compatible with the causal structure
# A*b + C*D <-> E, such that con = .8 and cov = .8.
dat1 <- allCombs(c(2, 2, 2, 2, 2)) - 1
dat2 <- makeFuzzy(dat1, fuzzvalues = seq(0, 0.45, 0.01))
(dat3 <- selectCases1("A*b + C*D <-> E", con = .8, cov = .8, dat2))
condition("A*b + C*D <-> E", dat3)

# Inverse search for the data generating causal structure A*b + a*B + C*D <-> E from
# fuzzy-set data with non-perfect consistency and coverage scores.
dat1 <- allCombs(c(2, 2, 2, 2, 2)) - 1
set.seed(9)
dat2 <- makeFuzzy(dat1, fuzzvalues = 0:4/10)
dat3 <- selectCases1("A*b + a*B + C*D <-> E", con = .8, cov = .8, dat2)
fscna(dat3, ordering = list("E"), strict = TRUE, con = .8, cov = .8)

# Draw cases satisfying specific conditions from real-life fuzzy-set data.
tt.js <- fstt(d.jobsecurity)
selectCases("S -> C", tt.js) # Cases with higher membership scores in C than in S.
selectCases("S -> C", d.jobsecurity, type = "fs") # Same.
selectCases("S <-> C", tt.js) # Cases with identical membership scores in C and in S.
selectCases1("S -> C", con = .8, cov = .8, tt.js) # selectCases1 makes no distinction

# between "->" and "<->".
condition("S -> C", selectCases1("S -> C", con = .8, cov = .8, tt.js))

# selectCases not only draws cases compatible with Boolean causal models. Any Boolean or
# set-theoretic function can be given as cond.
selectCases("C > B", allCombs(2:4), type = "mv")
selectCases("C=2 | B!=3", allCombs(2:4), type = "mv")
selectCases("A=1 * !(C=2 + B!=3)", allCombs(2:4), type = "mv")

some Randomly select configurations from a data frame or truthTab

Description

Randomly select configurations from a data frame or truthTab with or without replacement.

Usage

some(x, ...)

## S3 method for class 'data.frame'
some(x, n = 10, replace = TRUE, ...)
## S3 method for class 'truthTab'
some(x, n = 10, replace = TRUE, ...)
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Arguments

x Data frame or truthTab.

n Sample size.

replace Logical; if TRUE, configurations are sampled with replacement.

... Not used.

Details

The function some randomly samples configurations from x, which is a data frame or truthTab.
Such samples can, for instance, be used to simulate data fragmentation (limited diversity), i.e.
the failure to observe/measure all configurations that are compatible with a data generating causal
structure. They can also be used to simulate large-N data featuring multiple cases instantiating each
configuration.

Value

A data frame or truthTab.

Note

The some generic function and the method for data frames are adopted from the car package. In
particular, our data.frame-method has an additional argument replace, which is TRUE by default.
It will by default not apply the same sampling scheme as the method in car.

References

Krook, Mona Lena. 2010. “Women’s Representation in Parliament: A Qualitative Comparative
Analysis.” Political Studies 58(5):886-908.

See Also

truthTab, selectCases, allCombs, makeFuzzy, cna, d.women

Examples

# Randomly sample configurations from the dataset analyzed by Krook (2010).
tt.women <- truthTab(d.women)
some(tt.women, 20)
some(tt.women, 5, replace = FALSE)
some(tt.women, 5, replace = TRUE)

# Simulate limited diversity in data generated by the causal structure
# A=2*B=1 + C=3*D=4 <-> E=3.
dat1 <- allCombs(c(3, 3, 4, 4, 3))
dat2 <- selectCases("A=2*B=1 + C=3*D=4 <-> E=3", dat1, type = "mv")
(dat3 <- some(dat2, 150, replace = TRUE))
mvcna(dat3)

# Simulate large-N fuzzy-set data generated by the common-cause structure
# (A*b*C + B*c <-> D) * (A*B + a*C <-> E).
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dat1 <- selectCases("(A*b*C + B*c <-> D) * (A*B + a*C <-> E)")
dat2 <- some(dat1, 250, replace = TRUE)
dat3 <- makeFuzzy(tt2df(dat2), fuzzvalues = seq(0, 0.45, 0.01))
fscna(dat3, ordering = list(c("D", "E")), strict = TRUE, con = .8, cov = .8)

truthTab Assemble cases with identical configurations in a truth table

Description

The truthTab function assembles cases with identical configurations from a crisp-set (cs), multi-
value (mv), or fuzzy-set (fs) data frame in a table called a truth table (which is a very different type
of object for CNA than for the related method of QCA).

Usage

truthTab(x, type = c("cs", "mv", "fs"), frequency = NULL,
case.cutoff = 0, rm.dup.factors = TRUE, rm.const.factors = TRUE,
.cases = NULL, verbose = TRUE)

cstt(...)
mvtt(...)
fstt(...)

## S3 method for class 'truthTab'
print(x, show.cases = NULL, ...)

Arguments

x Data frame or matrix.

type Character vector specifying the type of x: "cs" (crisp-set), "mv" (multi-value),
or "fs" (fuzzy-set).

frequency Numeric vector of length nrow(x). All elements must be non-negative.

case.cutoff Minimum number of occurrences (cases) of a configuration in x. Configurations
with fewer than case.cutoff occurrences (cases) are not included in the truth
table.

rm.dup.factors Logical; if TRUE, all but the first of a set of factors with identical values in x are
eliminated.

rm.const.factors

Logical; if TRUE, factors with constant values in x are eliminated.

.cases Set case labels (row names): optional character vector of length nrow(x).

verbose Logical; if TRUE, some messages on the truth table are printed.

show.cases Logical; if TRUE, the attribute “cases” is printed.

... In cstt, mvtt, fstt: any formal argument of truthTab except type. In
print.truthTab: arguments passed to print.data.frame.
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Details

The first input x of the truthTab function is a data frame. To ensure that no misinterpretations
of issued asf and csf can occur, users are advised to use only upper case letters as factor (column)
names. Column names may contain numbers, but the first sign in a column name must be a letter.
Only ASCII signs should be used for column and row names.

The truthTab function merges multiple rows of x featuring the same configuration into one row,
such that each row of the resulting table, which is called a truth table, corresponds to one determi-
nate configuration of the factors in x. The number of occurrences (cases) and an enumeration of
the cases are saved as attributes “n” and “cases”, respectively. The attribute “n” is always printed in
the output of truthTab, the attribute “cases” is printed if the argument show.cases is TRUE in the
print method.

The argument type specifies the type of data. "cs" stands for crisp-set data featuring factors that
only take values 1 and 0; "mv" stands for multi-value data with factors that can take any non-
negative integers as values; "fs" stands for fuzzy-set data comprising factors taking real values
from the interval [0,1], which are interpreted as membership scores in fuzzy sets. To abbreviate the
specification of the data type using the type argument, the functions cstt(x,...), mvtt(x,...),
and fstt(x,...) are available as shorthands for truthTab(x,type = "cs",...),
truthTab(x,type = "mv",...), and truthTab(x,type = "fs",...), respectively.

Instead of multiply listing identical configurations in x, the frequency argument can be used to
indicate the frequency of each configuration in the data frame. frequency takes a numeric vector
of length nrow(x) as value. For instance, truthTab(x,frequency = c(3,4,2,3)) determines that
the first configuration in x is featured in 3 cases, the second in 4, the third in 2, and the fourth in 3
cases.

The case.cutoff argument is used to determine that configurations are only included in the truth
table if they are instantiated at least as many times in x as the number assigned to case.cutoff.
Or differently, configurations that are instantiated less than the number given to case.cutoff are
excluded from the truth table. For instance, truthTab(x,case.cutoff = 3) entails that configura-
tions with less than 3 cases are excluded.

rm.dup.factors and rm.const.factors allow for determining whether all but the first of a set of
duplicated factors (i.e. factors with identical value distributions in x) are eliminated and whether
constant factors (i.e. factors with constant values in all cases (rows) in x) are eliminated. From the
perspective of configurational causal modeling, factors with constant values in all cases can neither
be modeled as causes nor as outcomes; therefore, they can be removed prior to the analysis. Factors
with identical value distributions cannot be distinguished configurationally, meaning they are one
and the same factor as far as configurational causal modeling is concerned. Therefore, only one
factor of a set of duplicated factors is standardly retained by truthTab.

.cases can be used to set case labels (row names). It is a character vector of length nrow(x).

The row.names argument of the print function determines whether the case labels of x are printed
or not. By default, row.names is TRUE unless the (comma-separated) list of the cases exceeds 20
characters in one row at least.

Value

An object of type “truthTab”, i.e. a data.frame with additional attributes “type”, “n” and “cases”.
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Note

For those users of cna that are familiar with Qualitative Comparative Analysis (QCA), it must be
emphasized that a truth table is a very different type of object in the context of CNA than it is
in the context of QCA. While a QCA truth table is a list indicating whether a minterm (i.e. a
configuration of all exogenous factors) is sufficient for the outcome or not, a CNA truth table is
simply an integrated representation of the input data that lists all configurations in the data exactly
once. A CNA truth table does not express any relations of sufficiency whatsoever.

References
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Analysis.” International Political Science Review 30 (2):141-162.
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tative Comparative Analysis in Strategic Management Research: An Examination of Combinations
of Industry, Corporate, and Business-Unit Effects.” Organizational Research Methods 11 (4):695-
726.

Thiem, Alrik. 2018. “QCApro: Advanced Functionality for Performing and Evaluating Qualitative
Comparative Analysis.” R Package Version 1.1-2. URL: http://www.alrik-thiem.net/software/.

See Also

cna, condition, allCombs, d.performance, d.pacts

Examples

# Manual input of cs data
# -----------------------
dat1 <- data.frame(

A = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
B = c(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0),
C = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0),
D = c(1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0),
E = c(1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,0,0)

)

# Default return of the truthTab function.
truthTab(dat1)

# Recovering the cases featuring each configuration by means of the print function.
print(truthTab(dat1), show.cases = TRUE)

# The same truth table as before can be generated by using the frequency argument while
# listing each configuration only once.
dat1 <- data.frame(

A = c(1,1,1,1,1,1,0,0,0,0,0),
B = c(1,1,1,0,0,0,1,1,1,0,0),
C = c(1,1,1,1,1,1,1,1,1,0,0),
D = c(1,0,0,1,0,0,1,1,0,1,0),
E = c(1,1,0,1,1,0,1,0,1,1,0)

)
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truthTab(dat1, frequency = c(4,3,1,3,4,1,10,1,3,3,3))

# Set (random) case labels.
print(truthTab(dat1, .cases = sample(letters, nrow(dat1), replace = FALSE)),

show.cases = TRUE)

# Truth tables generated by truthTab can be input into the cna function.
dat1.tt <- truthTab(dat1, frequency = c(4,3,1,3,4,1,4,1,3,3,3))
cna(dat1.tt, con = .85, details = TRUE)

# By means of the case.cutoff argument configurations with less than 2 cases can
# be excluded (which yields perfect consistency and coverage scores for dat1).
dat1.tt <- truthTab(dat1, frequency = c(4,3,1,3,4,1,4,1,3,3,3), case.cutoff = 2)
cna(dat1.tt, details = TRUE)

# Simulating multi-value data with biased samples (exponential distribution)
# --------------------------------------------------------------------------
dat1 <- allCombs(c(3,3,3,3,3))
set.seed(32)
m <- nrow(dat1)
wei <- rexp(m)
dat2 <- dat1[sample(nrow(dat1), 100, replace = TRUE, prob = wei),]
truthTab(dat2, type = "mv") # 100 cases with 46 configurations instantiated only once.
mvtt(dat2, case.cutoff = 2) # removing the single instances.

# Duplicated factors are not eliminated, constant factors are not eliminated.
dat3 <- selectCases("(A=1+A=2+A=3 <-> C=2)*(B=3<->D=3)*(B=2<->D=2)*(A=2 + B=1 <-> E=2)",

dat1, type = "mv")
mvtt(dat3, rm.dup.factors = FALSE, rm.const.factors = FALSE)

# truthTab with fuzzy-set data from Aleman (2009)
# -----------------------------------------------
# Include all cases.
tt.pacts <- fstt(d.pacts)
fscna(tt.pacts, con = .93, cov = .86, details = TRUE)

# Only include configurations with at least 3 cases.
tt.pacts2 <- fstt(d.pacts, case.cutoff = 3)
fscna(tt.pacts2, con = .93, cov = .86, details = TRUE)

# Large-N data with crisp sets from Greckhamer et al. (2008)
#-----------------------------------------------------------
truthTab(d.performance[1:8], frequency = d.performance$frequency)

# Eliminate configurations with less than 5 cases.
truthTab(d.performance[1:8], frequency = d.performance$frequency, case.cutoff = 5)

# Various large-N CNAs of d.performance with varying case cut-offs.
cna(truthTab(d.performance[1:8], frequency = d.performance$frequency, case.cutoff = 4),

ordering = list("SP"), con = .75, cov = .6)
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cna(truthTab(d.performance[1:8], frequency = d.performance$frequency, case.cutoff = 5),
ordering = list("SP"), con = .75, cov = .6)

cna(truthTab(d.performance[1:8], frequency = d.performance$frequency, case.cutoff = 10),
ordering = list("SP"), con = .75, cov = .6)

print(cna(truthTab(d.performance[1:8], frequency = d.performance$frequency, case.cutoff = 15),
ordering = list("SP"), con = .75, cov = .6, what = "a"), nsolutions = "all")

tt2df Transform a truth table into a data frame

Description

Transform a truth table into a data frame. This is the converse function of truthTab.

Usage

tt2df(tt)

Arguments

tt A truthTab.

Details

Rows in the truthTab corresponding to several cases are rendered as multiple rows in the resulting
data frame.

Value

A data frame.

See Also

truthTab

Examples

tt.educate <- truthTab(d.educate[1:2])
tt.educate
tt2df(tt.educate)

dat1 <- some(truthTab(allCombs(c(2, 2, 2, 2, 2)) - 1), n = 200, replace = TRUE)
dat2 <- selectCases("(A*b + a*B <-> C)*(C*d + c*D <-> E)", dat1)
dat2
tt2df(dat2)

dat3 <- data.frame(
A = c(1,1,1,1,1,1,0,0,0,0,0),
B = c(1,1,1,0,0,0,1,1,1,0,0),
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C = c(1,1,1,1,1,1,1,1,1,0,0),
D = c(1,0,0,1,0,0,1,1,0,1,0),
E = c(1,1,0,1,1,0,1,0,1,1,0)
)

tt.dat3 <- truthTab(dat3, frequency = c(4,3,5,7,4,6,10,2,4,3,12))
tt2df(tt.dat3)
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